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Abstract: The main objective of this work is to present a modification of the Mittag-
Leffler function to deduce a relatively new analytical approximate method (for short
MMLFM) able to solve time-fractional nonlinear partial differential equations (PDEs).
Moreover, we employ the MMLFM to solve the time-fractional coupled Korteweg–de
Vries (KdV) model described by two nonlinear fractional partial differential equations
(FPDEs) based upon Caputo fractional derivative (CFD). The simulation of projected
results is presented in some figures and tables. Furthermore, we compare our solutions
when α = 1 with known exact solutions which indicate a good agreement, in addition,
we compare our outcomes with the results obtained by other methods in the literature
such as the Natural decomposing method (NDM) and homotopy decomposition method
(HDM) in order to prove the reliability and efficiency of our used method. Also, we
display solutions with different values of α to present the effect of the fractional order on
the proposed problem. The results of this article reveal the advantages of the MMLFM,
which is simple, reliable, accurate, needs simple mathematical computations, is rapidly
convergent to the exact solution, have a straightforward and easy algorithm compared
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to other analytical methods to study linear and nonlinear FPDEs, which makes this
technique suited for real industrial or medical applications.

Keywords: Fractional coupled Korteweg-de Vries equation, fractional partial differential

equations, Mittag-Leffler function, nonlinear problems, approximate solutions.
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1. INTRODUCTION

The study of fractional calculus (FC) which includes fractional derivatives and
integrals is one of the most fundamental and applicable branches. Where it has
played a constructive role in many applications in different fields such as physics,
engineering, chemistry and so on [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]. Moreover, there are
several mathematical problems successfully modeled by linear or nonlinear FPDEs
which has some important features such as non-locality, memory effect, kernel,
non-singularity and others [11, 12, 13, 14, 15, 16, 17]. So, there are many well-
known methods in the literature concerning the solution of FPDEs such as the
spectral collection method (SCM) [18], HDM [19], variational iteration method
(VIM) [20], Elzaki transform decomposition method [21], NDM [22], homotopy
analysis method (HAM) [23, 24, 25], residual power series method [26], homotopy
perturbation method (HPM) [27, 28], Fourier spectral method [29], finite difference
method [30] and many others (see e.g., [31, 32, 33, 34, 35]).

The KdV model has been considered a key to many applications in physical
phenomena, like long internal waves in a density-stratified ocean, shallow water
waves, acoustic waves on a crystal lattice, ion-acoustic waves in plasma and many
others. The historical ground behind the KdV model is fascinating this remarkable
discovery date back to over 150 years by a young Scottish engineer named John
Scott Russel [36], while conducting experiments to determine the most efficient
design for canal boats, he came across a singular and beautiful phenomenon which
he called the wave of translation. Considerable effort has been concentrated on
the solution for the KdV model. For example, in [22] the authors used NDM to
solve fractional KdV equations and compared their results with various methods
in the literature, we will prove our method more efficient than NDM. In [19] the
HDM has been applied to get the approximate solution for the fractional KdV
model and demonstrated that this method is more efficient than other methods
such as VIM, HAM, HPM and adomian decomposition method, we will prove
our method more efficient than HDM, therefore, our method is more efficient
than all of the aforementioned methods. The fractional VIM has been used to
solve the fractional KdV equations with Jumarie fractional derivative [37]. In
[38] the authors applied a coupled fractional transform to obtain the solutions of
the fractional KdV model. A shifted Legendre polynomials are used to present a
numerical technique for solving fractional KdV model in [39].

The motivation of this work is to investigate the analytic-approximate solutions
of the time-fractional coupled KdV model by a new analytical-approximate method
(i.e., MMLFM). To confirm the eligibility and efficacy of the proposed method,
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we compare the outcomes with known exact solutions and solutions obtained by
other methods. Moreover, analytical solutions of the time-fractional coupled KdV
model by the suggested method have not been considered before, which strongly
motivated us to complete this work.

The time-fractional coupled KdV model is considered as the following [19, 22]:

C
0D

α
t U(x, t) = µ

∂3U(x, t)

∂x3
+ δU(x, t)

∂U(x, t)

∂x
+ σV (x, t)

∂V (x, t)

∂x
,

(1)

C
0D

α
t V (x, t) = ξ
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subject to initial conditions (ICs)
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2a

sech2
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√
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where C
0D

α
t is CFD, µ, δ, σ, ξ, ρ, λ and a are constant parameters.

The main contribution of this paper is to introduce the basic idea and analysis
of MMLFM in order to give an appropriate solution for general nonlinear FPDEs
which is considered a new analytical-approximate method capable of solving many
applications that contain FPDEs. Moreover, we applied this technique for evalu-
ating the approximate solutions of the time-fractional coupled KdV model (1) via
CFD. Finally, we compared our outcomes with the known exact solutions and the
results obtained by other methods in the literature (i.e. NDM and HDM) where
we obtained a good agreement which confirms the efficiency and eligibility of our
method. The simulations of projected results are presented in some tables and
figures for different values of fractional order α to display the impact of memory
in the behaviour of obtained solutions. To the best of our knowledge, the time-
fractional coupled KdV model (1) has not been solved before by this technique,
which motivated us to conduct this research.

The remaining of this work is organized as follows. In Section 2, we introduce
a brief history of FC and their properties. Section 3 explained the algorithm of
the MMLFM for solving general nonlinear FPDEs. In Section 4, we discuss the
solution procedure of the fractional coupled KdV model by MMLFM. Additionally,
the simulation of our results is investigated by some figures and a comparison
with the exact solution and two different methods is given in the tables to provide
the validation of the proposed method. Section 5 included the conclusion and
discussion.

2. PRELIMINARIES

Here, we present some basic concepts, definitions and properties of FC to
achieve this work (see e.g. [40, 41, 42]).
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Definition 1. The Riemann-Liouville fractional integral of order α > 0, t ∈ [0, T ]
for a function ϕ(x, t) is given by

0I
α
t ϕ(x, t) =

1

Γ(α)

∫ t

0

(t− ξ)α−1ϕ(x, ξ)dξ, t > 0,

0I
0
t ϕ(x, t) = ϕ(x, t).

Definition 2. The CFD of order n − 1 < α ≤ n ∈ N on [0, T ] for absolutely
continuous function ϕ(x, t) is given by

C
0D

α
t ϕ(x, t) =

1

Γ(n− α)

∫ t

0

(t− ξ)n−α−1 ∂
nϕ(x, ξ)

∂ξn
ds, t > 0,

when 0 < α < 1, then we have

C
0D

α
t ϕ(x, t) =

1

Γ(1− α)
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0

(t− ξ)−α ∂ϕ(x, ξ)

∂ξ
dξ, t > 0.

Theorem 3. let ϕ(x, t) be a differentiable function in [0, T ], n − 1 < α ≤ n ∈ N
and β > −1, then

C
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α
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Also, we have the following properties:

C
0D

α
t t
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Γ(β + 1)

Γ(β − α+ 1)
tβ−α,

0I
α
t t
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Definition 4. The Mittag-Leffler function is given by

Eα(t) =

∞∑
n=0

tn

Γ(nα+ 1)
, α > 0.

Lemma 5. The CFD of generalized Mittag-Leffler function is given by

C
0D

α
t Eα(λt

α) = C
0D

α
t (

∞∑
n=0

λntnα

Γ(nα+ 1)
) =

∞∑
n=1

λnt(n−1)α

Γ((n− 1)α+ 1)

=

∞∑
n=0

λn+1tnα

Γ(nα+ 1)
= λEα(λt

α).

Theorem 6. [43, 44] Let a function ϕ(x, t) =
∑∞

k=0 η
kϕk(x, t), then a nonlinear
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.
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3. ANALYSIS OF THE PROPOSED METHOD

To clarify the basic idea and the algorithm of the MMLFM, we consider the
following general nonlinear FPDEs:

C
0D

α
t F (X, t) = L(F (X, t)) +N(F (X, t)) , (3)

with ICs

F (X, 0) = G(X), (4)

where L and N are the general linear and nonlinear differential operators, respec-

tively, F =

 f1
f2

...
fm

, X = [ x1 x2 ··· xn ], n,m ∈ N, and G(X) =

 g1
g2

...
gm

.
The MMLFM represents the solution of F (X, t) for Eq.(3) as follows:

f1(X, t) = w1(X)Eα(λ1t
α) =

∞∑
k=0

w1(X)λk
1

tkα

Γ(kα+ 1)
,

f2(X, t) = w2(X)Eα(λ2t
α) =

∞∑
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w2(X)λk
2

tkα

Γ(kα+ 1)
, (5)

...

fm(X, t) = wm(X)Eα(λmtα) =

∞∑
k=0

wm(X)λk
m

tkα

Γ(kα+ 1)
,

where λ1, λ2, · · · , λm are undetermined coefficient and from ICs (4) functions
w1, w2, · · · , wm satisfies w1 = g1, w2 = g2, · · · , wm = gm. By using Lemma 5
and assumptions (5) the FPDEs (3) is given by

∞∑
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m
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),m = 1, 2, · · · .(6)

Therefore, the linear operator L is given by

L(F (X, t)) = L(
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G(X)λk
m

tkα

Γ(kα+ 1)
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= γG(X)

∞∑
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λk
m

tkα

Γ(kα+ 1)
,
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where γ is a constant. Following the Theorem 6 the nonlinear operator N can be
written as

N(F (X, t)) = N(

∞∑
k=0

G(X)λk
m

tkα

Γ(kα+ 1)
) = N(

∞∑
k=0

G(X)Fj(X, t))

(8)

=N(G(X)) (N(F0(X, t)) +

∞∑
k=1

(N(

k∑
i=0

Fi(X, t)) −N(

k−1∑
i=0

Fi(X, t)) )).

By replacing the linear and nonlinear terms from Eq.(7) and Eq.(8) in Eq.(6),
we obtain a general recursive formula in order to determine the coefficients λm.
Then, we get a general solution of Eq.(3). For more details on the convergence of
the Mittag-Leffler function can consult [14, 15, 45, 46].

4. APPLICATION AND RESULUTS

4.1. Implementing MMLFM on Fractional KdV Model

Here, we extend the MMLFM to solve the time-fractional KdV model, if we
put µ = −1, η = 6, δ = −6, σ = 6, ρ = −3 and ξ = −1 in Eq.(1), we have
fractional KdV model as follows [22]:

C
0D

α
t U(x, t) +

∂3U(x, t)

∂x3
+ 6U(x, t)

∂U(x, t)

∂x
− 6V (x, t)

∂V (x, t)

∂x
= 0,

(9)

C
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α
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∂3V (x, t)

∂x3
+ 3U(x, t)

∂V (x, t)

∂x
= 0,

subject to ICs
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λ

a
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(
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a
x

)
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V (x, 0) = V0 =
λ√
2a

sech2

(
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√
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a
x

)
.

To prove the validity of the MMLFM we compare obtained results when α = 1
with the following known exact solution [19, 22]:

U(x, t) =
λ

a
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(
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√
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a
(x− λt)

)
,

(11)

V (x, t) =
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)
.
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To implement the MMLFM on KdV model (9), let the solutions in the following
form

U(x, t) = f(x)Eα(Atα) =

∞∑
n=0

f(x)λn
1

tnα

Γ(nα+ 1)
,

(12)

V (x, t) = g(x)Eα(Btα) =

∞∑
n=0

g(x)λn
2

tnα

Γ(nα+ 1)
,

where λ1 and λ2 are undetermined coefficient. From Eq.(10), we have f(x) =
U0 and g(x) = V0.

Using Lemma (5) and Eq.(12), we have

∞∑
n=0

(
U0λ

n+1
1 + λn

1 s1 + 6U0s2d
nΓ(nα+ 1)− 6V0s3E
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) tnα
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∞∑

n=0

(
V0λ

n+1
2 + λn
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λ
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√

λ
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λ
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λ
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a
, s3 = −

λ
√

λ
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2 (θ) tanh (θ)
√
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√
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√

λ
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√
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λ
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√
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1

2

√
λ

a
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It is remarkable that in Eq.(13) the part tnα is not able to occur equal zero.
So, their coefficients are equal to zero. Then, the recurrence relation is given by:

λn+1
1 =

−λn
1 s1 − 6U0s2d

nΓ(nα+ 1) + 6V0s3E
nΓ(nα+ 1)

U0
,

(14)

λn+1
2 =

−λn
2 s4 − 3U0s3C

nΓ(nα+ 1)

V0
.



674 H.M. Ali et al. / A New Analytical Approximate Solution

By substituting different values of n ≥ 0 in Eq.(14), we get

λ1
1 =

−λ0
1s1 − 6U0s2d

0 + 6V0s3E
0

U0
,

λ1
2 =

−λ0
2s4 − 3U0s3C

0

V0
,

where λ0
1 = λ0

2 = 1, d0 = E0 = C0 = 1. When n = 1, we have

λ2
1 =

−λ1
1s1 − 6U0s2d

1Γ(α+ 1) + 6V0s3E
1Γ(α+ 1)

U0
,

λ2
2 =

−λ1
2s4 − 3U0s3C

1Γ(α+ 1)

V0
,

where d1 =
2λ1

1λ
0
1

Γ(α+1) , E
1 =

2λ0
2λ

1
2

Γ(α+1) and C1 =
λ0
1λ

1
2+λ1

1λ
0
2

Γ(α+1) .

In a similar way, by replacing different values of n = 2, 3, · · · , we be able to
acquire other factors for λ1 and λ2. Then, interchange these gained factors in the
following power series which perform to the approximate solution Eq.(12):

U(x, t) = U0(λ
0
1 + λ1

1

tα

Γ(α+ 1)
+ λ2

1

t2α

Γ(2α+ 1)
+ λ3

1

t3α

Γ(3α+ 1)
+ · · · ),

V (x, t) = V0(λ
0
2 + λ1

2

tα

Γ(α+ 1)
+ λ2

2

t2α

Γ(2α+ 1)
+ λ3

2

t3α

Γ(3α+ 1)
+ · · · ).

4.2. Simulation of the Results

In this part, we show the graphical representation of the obtained results by
MMLFM for the time-fractional KdV model (9). Moreover, a comparison between
the obtained approximate solution with the exact solution (11) and two other
methods (i.e., NDM [22] and HDM [19]) are reported in tables to test the accuracy
of the proposed method. The presented results are computed by substituting the
5th-terms of the power series solution, where we find the solution converges to the
exact solutions and the absolute error is significantly small.

In Figs.1 and 3, we display the behaviour of the solutions obtained by our
method for the time-fractional KdV model (1) compared with the exact solutions
Eq.(11) .

In Fig.2 and 4, we show the impact of changing the fractional order α on the
approximate solutions for U(x, t) and V (x, t), respectively.

In Fig.5, we present the effect of fractional order α of the approximate solu-
tions for model (1) w.s.t. space variable x by selecting the fixed time t = 0.2.
Furthermore, we highlight the effect of α of the approximate solutions for model
(1) w.s.t. time t by selecting the fixed space variable x = 5 in Fig. 6.

The results presented in these figures indicate that the solutions obtained by
the MMLFM are consistent with the exact solutions for the time-fractional KdV
model.
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Figure 1: Comparison between the MMLFM solution for U(x, t) when α = 1, µ = −1, η = 6,
δ = −6, σ = 6, ρ = −3, ξ = −1 and a = 1 with the exact solution for the time-fractional coupled
KdV model.

Figure 2: The MMLFM solution for U(x, t) with different values of α with µ = −1, η = 6,
δ = −6, σ = 6, ρ = −3 and ξ = −1.
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Figure 3: Comparison between the MMLFM solution for V (x, t) when α = 1 , µ = −1, η = 6,
δ = −6, σ = 6, ρ = −3, ξ = −1 and a = 1 with the exact solution for the time-fractional coupled
KdV model.

Figure 4: The MMLFM solution for V (x, t) with different values of α with µ = −1, η = 6,
δ = −6, σ = 6, ρ = −3 and ξ = −1.
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Figure 5: The obtained solutions by MMLFM for U(x, t) and V (x, t) with x for the time-fractional
coupled KdV model with different values α when t = 0.2, µ = −1, η = 6, δ = −6, σ = 6, ρ = −3
and ξ = −1.

Figure 6: The obtained solutions by MMLFM for U(x, t) and V (x, t) with t for the time-fractional
coupled KdV model with different values α when x = 5, µ = −1, η = 6, δ = −6, σ = 6, ρ = −3
and ξ = −1.

In Tables 1 and 2, we report the obtained numerical values of U(x, t) and
V (x, t), respectively, with different values of the state x and time t when fractional
order α = 1, in order to be compared with the exact values, NDM [22] and HDM
[19].

From these tables, we note that the obtained values when α = 1 are nearly
identical to the exact solutions and the absolute values are very small. Also, it
can be observed that the obtained solutions by the MMLFM are more accurate
than those obtained in [19] and [22].

From the presented results in the tables and figures, we confirm that the va-
lidity, exactness and efficiency of our used method.
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Table 1: The outcomes of U(x, t) for the exact and MMLFM solutions in the presence of solutions
provided by other methods in [22, 19] with various values of t and x when α = 1, µ = −1, η = 6,
δ = −6, σ = 6, ρ = −3, ξ = −1 and a = 1.
x t Exact MGMFM NDM [22] Error NDM [22] Error HDM [19] Error MGMFM

-10
0.1 0.000164305 0.000164305 0.000164334 2.95039 ×10−8 2.99039 ×10−8 5.0551 ×10−10

0.2 0.00014867 0.000148672 0.000148901 2.30335 ×10−7 2.33335 ×10−7 1.76949×10−9

-5
0.1 0.0240923 0.0241029 0.0240963 3.93592 ×10−6 3.96592 ×10−6 1.05846 ×10−6

0.2 0.0218248 0.0218619 0.0218556 0.0000308049 0.0000338049 0.000037098

5
0.1 0.0293476 0.0293615 0.0293435 0.000202966 0.00000397592 0.0000138323
0.2 0.0323838 0.0324471 0.0323501 0.000515586 0.0000378049 0.0000633656

10
0.1 0.000200679 0.000200679 0.000200648 2.11254 ×10−8 2.96039 ×10−8 6.59404 ×10−10

0.2 0.000221782 0.000221785 0.000221527 2.28173 ×10−7 2.37335 ×10−7 3.01639 ×10−9

Table 2: The outcomes of V (x, t) for the exact and MMLFM solutions in the presence of solutions
provided by other methods in [22, 19] with various values of t and x when α = 1, µ = −1, η = 6,
δ = −6, σ = 6, ρ = −3, ξ = −1 and a = 1.
x t Exact MGMFM NDM [22] Error NDM [22] Error HDM [19] Error MGMFM

-10
0.1 0.000116181 0.000116181 0.000116202 2.08624 ×10−8 2.18624 ×10−8 3.57125 ×10−10

0.2 0.000105126 0.000105127 0.000105289 1.62872 ×10−7 1.64872 ×10−7 1.25122 ×10−9

-5
0.1 0.0170358 0.0170433 0.0170386 2.78312 ×10−6 2.88312 ×10−6 7.48447 ×10−6

0.2 0.0154325 0.0154587 0.0154542 0.0000217824 0.0000287824 0.0000262322

5
0.1 0.0207519 0.0207617 0.020749 2.9094 ×10−6 2.98312 ×10−6 9.78092×10−6

0.2 0.0228988 0.0229436 0.022875 0.0000238036 0.0000247824 0.000044806

10
0.1 0.000141901 0.000141902 0.000141879 2.19313 ×10−8 2.09624 ×10−8 4.6629 ×10−10

0.2 0.000156823 0.000156826 0.000156643 1.79991 ×10−7 1.72872 ×10−7 2.13291 ×10−9

5. CONCLUSION

In this article, we have successfully offered the approximate analytical solution
for the nonlinear time-fractional coupled KdV model by using a relatively new
method called MMLFM. The mathematical formalism of the proposed model con-
sists of FPDEs based on Caputo differential operator. We presented the algorithm
and basic idea of the MMLFM to solve general nonlinear FPDEs. In order to
demonstrate that the used method is an efficient and powerful tool for FPDEs, we
have tested this method in solving the nonlinear time-fractional KdV model (9)
with convenient ICs (10). We have provided a numerical simulation for obtained
results in some figures and a comparison between given exact solutions (11) and
two different methods in some tables in order to illustrate the efficiency and valid-
ity of the used method. From the given results in this paper, we conclude that the
MMLFM is a well-organized approximate analytical method for solving nonlinear
FPDEs that have real-life applications in different fields.

Future recommendations are that the MMLFM can easily be implemented
to obtain the analytic-approximate solution for several linear and nonlinear so-
phisticated systems of FPDEs facing researchers and has physical and biological
applications in real life. Additionally, the mathematical formalism of the fractional
order models can be based upon other fractional derivative operators.

Funding. This research received no external funding.
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