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Abstract: This paper deals with an industrial problem of machining line design, which
consists in partitioning a given set of operations into several subsets corresponding to
workstations and sequencing the operations to satisfy the technical requirements and
achieve the best performance of the line. The problem has a complex set of constraints
that include partial order on operations, part positioning, inclusion, exclusion, cycle
time, and installation of parallel machines on a workstation. The problem is NP-hard
and even finding a feasible solution can be a difficult task from the practical point of
view. A parallel evolutionary algorithm (EA) is proposed and implemented for execution
on a Graphics Processing Unit (GPU). The parallelization in the EA is done by working
on several parents in one iteration and in multiple application of mutation operator to
the same parent to produce the best offspring. The proposed approach is evaluated on
large scale instances and demonstrated superior performance compared to the algorithms
from the literature in terms of running time and ability to obtain feasible solutions. It is
shown that in comparison to the traditional populational EA scheme the newly proposed
algorithm is more suitable for advanced GPUs with a large number of cores.
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1. INTRODUCTION

In the general problem of machining line design, there is a set of mechani-
cal operations that must be performed on a flow of machining parts. The line is
represented as a sequence of workstations that contain tools to perform certain
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operations. The line balancing problem basically consists in partitioning the op-
erations into several subsets corresponding to workstations (like in the well-known
Bin Packing problem). In the Assembly Line Balancing Problem, a partial order
on operations is given and the allocation of operations in the line must respect this
order. The problem of our interest known as the Reconfigurable Transfer Line Bal-
ancing Problem (RTLBP) has the same origin but contains many special technical
requirements that reflect the particular properties of machining lines composed of
computer numerical control (CNC) machines. In addition to the mentioned par-
tial order, the line must satisfy such constraints as inclusion (some operations are
required to be installed on the same workstation), exclusion (some operations can-
not be installed on the same workstation), accessibility (all the operation installed
on the same workstation must be able to operate without changing the position
of the processing part). A special feature of RTLBP is that a workstation may
consist of several identical machines that work in parallel, which increases the per-
formance of the workstation proportionally to the number of machines. Besides,
the need to change tools when switching from one operation to another introduces
the sequence dependent setup times, which makes RTLBP related to the vehicle
routing problems (VRP). Finding even a feasible solution of RTLBP is NP-hard
since it requires to find a minimal length Hamiltonian path.

Note that the described constraints are quite known and appear separately in
many line balancing problems. Broad reviews of different problem formulations
that cover many possible serial-parallel lines structures can be found in [1, 2]. Ref-
erences concerning the sequencing and setup times optimization are given in [3, 4].
Reconfigurable manufacturing systems including the problem of our interest are
surveyed in [5]. The considered RTLBP was formulated in [6] where its indus-
trial background is discussed and a Mixed Integer Programming (MIP) model is
proposed. This research was further extended in [7], where the extensive computa-
tional investigation of this model with IBM CPLEX solver is done, which showed
that problems with up to 20 operations can be solved with good approximation
quality. Unfortunately, using this approach for problems with more than 100 op-
erations seems to be not realistic even with modern MIP solvers and computer
equipment and development of metaheuristic algorithms is of great interest in this
case.

Among the heuristics one may notice a greedy algorithm enhanced by a local
search [8] and an ant colony algorithm [9], which were tested on instances with
about 100 operations. In [10] a Genetic Algorithm (GA) with a MIP decoder is
proposed and tested on randomly generated instances with 200 operations. Its
results are improved in [11] using the Iterated Local Search (ILS) heuristic based
on the Split procedure for optimal cutting a permutation into several parts mini-
mizing some additive objective function. An advantage of this approach consists
in reduction of the considered line balancing problem to the search of an optimal
permutation, which allows to use a vast experience of (meta)heuristics design for
permutational problems. It should be noted that the Split procedure is widely
used in genetic algorithms for solving different types of VRP [12] or Bin Pack-
ing problems [13]. A simple but rather effective genetic algorithm (without Split
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procedure) is developed in [14], in which a finely tuned penalty function and a
greedy heuristic are proposed, and the solutions of the test instances are further
improved.

In the present paper, the Split procedure is used as a decoder in a parallel
evolutionary algorithm (EA) adapted for running on a GPU. The main feature
of a GPU is a possibility to run a large number of simultaneous threads, which
can drastically speed up the code comparing to the traditional CPU computing,
provided the algorithm can be highly parallelized. The use of GPUs in the applied
evolutionary computation has become widely recognized and there are a number
of implementations of exact and heuristic approaches for different problems in-
cluding VRP [15, 16], although there seem to be no published papers on GPU
computing for solving line balancing problems. In this study, a special scheme of
an EA is proposed for better adaptation to the parallel execution. The computer
experiments on hard large-scale instances showed the advantage of the new scheme
comparing to the traditional one in terms of solution quality. The improvement of
the running time due to parallelization in comparison to the algorithms from the
literature is also demonstrated.

The rest of the paper is structured as follows. Section 2 gives a formal definition
of RTLBP. In Section 3, the usage of the split procedure in the EA is described and
the parallel EA scheme is presented. In Section 4, the proposed EA is compared
to the traditional parallel implementation of the EA and to the other algorithms
from the literature. Section 5 gives the conclusions and the directions of future
research.

2. PROBLEM DESCRIPTION

Let us introduce the following notation. N = {1, ..., n} is a set of all operations
that must be performed on each machining part. All the machining parts are
similar and form an infinite input stream so that at any moment there is always
a new available part to be processed. A workstation is a device that contains
machines to perform a certain set of operations. In what follows, a workstation
is associated with a sequence of operations assigned to it. A part can be fixed
on a workstation in different positions, the set of all possible positions is given by
A = {1, ..., a}. When the part is fixed, its position can not be changed until all
the operations of the workstation are complete. For each operation i ∈ N define:

ti is an execution time of operation i;
Ai ⊆ A is a subset of part positions for which the execution of operation i is

possible (accessibility relations);
Pi ⊂ N is a subset of operations that must be performed before operation i

(precedence relations).
For a pair of operations (i, j) a setup time required to switch tools when op-

eration j is executed immediately after i on the same workstation is given by sij .
When operations i and j are assigned to different workstations, the setup time is
not applied. These times are sequence dependent and no any assumptions about
symmetry or triangle inequality properties are made for them.
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Figure 1: Line with parallel machines on workstations

E is a set of exclusion subsets: each E ∈ E is a subset of operations that cannot
be placed together on one workstation, but any proper subset E′ ⊂ E is allowed
to be put on one workstation unless E′ ∈ E .

I is a set of inclusion subsets: each I ∈ I is a subset of operations that must
be placed together on one workstation.

For the whole line, the following limits are defined.
Tmax is a limit on the takt time of the line.
s0 is the maximal number of operations that can be assigned to one workstation.
n0 is the maximal number of parallel machines that can be installed on one

workstation.
m is the maximal number of workstations in the line.
The problem asks to find a sequence of operations and their partitioning into

workstations respecting the described constraints. For any workstation w =
(i1, ..., ik), its worktime is defined as the sum of processing and setup times:
T (w) = ti1+si1,i2+ti2+...+sik−1,ik+tik . If this workstation consists of nw parallel
machines, then its takt time is defined as T (w)/nw and it must not exceed Tmax.
The total number of machines is to be minimized. An illustration of a line with
parallel machines is shown in Figure 1.

3. SOLUTION APPROACH

Evolutionary algorithms and genetic algorithms in particular are known to
be among the most successful metaheuristic approaches to solve NP-hard opti-
mization problems of large size. This study is concentrated on development and
comparison of different ways of parallel EA implementation with an extensive use
of GPU computing.

Basically, in the EA, some set of solutions of the problem is represented as a
population of individuals that evolves in time by means of random mutations and
selection of good-quality solutions. Note that the usual crossover operator is not
considered in this paper; although it can be easily incorporated, the experiments
did not show significant advantages when using some widely known operators for
permutational problems [17], so it is omitted for the simplicity (by this reason the
considered algorithms are referred to as EAs rather than GAs).
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3.1. Populational evolutionary algorithm

In the GA and EA practice, several replacement schemes are known. In the
populational scheme, which is regarded as a canonical GA form, the entire popu-
lation is updated at each iteration. To ensure that good solutions are not lost, a
subset of best individuals (elite) are copied to the new population. A particular
scheme with one elite individual that is used as a baseline in this paper is given
below.

Parallel populational evolutionary algorithm

1 Build an initial population Π(0) of N random individuals.

2 For t := 1,2,... do:

2.1 Repeat N times:

2.1.1 Select parent p from Π(t−1).
2.1.2 c := Mut(p).
2.1.3 Add c to new population Π(t).

2.2 Find the worst individual in Π(t) and replace it by the best individual
from Π(t−1).

2.3 If the termination condition is satisfied, stop and return the best found
solution

The populational EA is naturally parallel and can be rather easily implemented
on the GPU. On the other hand, many studies report a superior performance of
the steady-state replacement scheme, in which the population is not regenerated
completely each time, but at most two individuals are changed. Namely, at each
iteration, only one or two parents are selected and generated offspring are in-
cluded in the population instead of some existing individuals of inferior quality.
Unfortunately, this scheme is essentially sequential and cannot be implemented
in parallel. A modification of an EA, in which offspring solution are improved
by a local search, is known as a memetic algorithm [18]. It shows outstanding
performance in practice and usually admits parallelization [19].

3.2. Combined evolutionary algorithm

In this paper, another reproduction scheme is proposed. It can be viewed as an
attempt to combine the features of the populational, steady-state, and memetic
algorithms for better adaptation to the parallel computing. At each iteration, a
set of parents is selected and for each parent, several offspring are generated by
means of mutation. Then among the offspring of the same parent the best one is
chosen and included in the population.

The formal description is given below and an illustration is shown in Figure 2.
The most time consuming part consists in applying mutations and evaluating the
offspring solutions, which can be easily parallelized on the GPU. The number of
parents and offspring define the degree of parallelism and can be easily adjusted
depending on the capability of the GPU device.
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Figure 2: Scheme of the parallel combined EA

Parallel combined evolutionary algorithm

1 Π is an initial randomly built population.

2 Until a termination condition is satisfied do

2.1 Select p1, ..., pl individuals (parents) from Π.
2.2 For each parent pk generate h offspring ck1 = Mut(pk), ..., ckh = Mut(pk)

and let ck∗ be the best one among them.
2.3 Choose q1, ..., ql from Π for replacement.
2.4 For each i = 1, ..., l if ci∗ is better than qi, then remove qi from Π and

insert ci∗ .

3 Return the best found solution.

Clearly, this general scheme may admit variations in details. In this imple-
mentation, each parent is selected with the tournament selection operator [17],
in which a certain number of individuals are chosen randomly and the best one
among them is returned as a parent. The individuals for replacement are selected
similarly, but the worst individual among the randomly chosen subset is returned
instead of the best one. The mutation operators are developed depending on the
particular solution representation, which will be described below. As a termination
condition the running time limit is assumed.

3.3. Solution Representation and Split Decoder

In the proposed EA, an individual is stored as a permutation of all operations
(giant sequence) and the Split algorithm is used to construct an actual solution.
This approach has become a common practice in development of heuristics for a
wide range of vehicle routing problems (see, e.g., [12]). It was adapted for RTLBP
in [11], where an Iterated Local Search heuristic was developed on its base. To
cope with the RTLBP constraints, a special randomized algorithm was proposed to
construct a weakly compatible sequence that can be decoded to an “almost feasible”
solution, in which only the number of workstations may exceed m. Unfortunately,
this algorithm relies on the dynamic programming procedure and formally has an
exponential execution time, which may restrict its usage on large scale problems.
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Figure 3: Shortest path approach for cutting a sequence

In this paper, a simpler approach is used that consists in decoding any permu-
tation to some solution. The precedence constraints are ensured by a preliminary
correction procedure, and for the other constraints, the penalties are introduced.
Initial population is built by generating random permutations. Offspring individ-
uals are obtained by the well-known swap and insertion mutation operators [17,
Sect. 32.3.3], the choice between them is made randomly with equal probability.

Consider an arbitrary permutation of operations π = (π1, ..., πn). If it is not
feasible w.r.t. the precedence constraints, it can be corrected as follows.

Precedence correction

1 Create new empty permutation π′ = ().

2 For i = 1, ..., n do

2.1 Find the leftmost operation in π that does not have precedent
operations in π.

2.2 Put this operation at the i-th place in π′ and remove from π.

For the sake of simplicity, in what follows assume that π = (1, 2, ..., n) and
it satisfies the precedence constraints. The Split algorithm is used for optimal
cutting the permutation into several parts. It consist of two main steps: build
an auxiliary graph and find the shortest path in it. The graph has n+ 1 vertices
V = {0, ..., n} and the set of arcs A = {(i, j) : i < j ≤ i + s0}. Any arc (i, j)
represents a workstation with a sequence of operations w = (i + 1, ..., j) and has
an associated length cij equal to the “cost” of this workstation (the number of
machines). Namely, if the workstation is feasible, then its takt time is computed as
the sum of processing and setup times: tij := ti+1+si+1,i+2+ti+2+...+sj−1,j+tj .
Then the required number of machines on the workstation is computed as cij :=
⌈tij/Tmax⌉. If the workstation w is not feasible, cij is increased by a sufficiently
large value M for each violation of inclusion, exclusion, or accessibility constraints,
or excess of the limit on the number of machines. The next step is to find the
shortest path with at most m arcs from vertex 0 to n. Each arc of the shortest
path defines a workstation, namely the endpoint vertex of the arc corresponds to
the last operation of the current workstation, and the next vertex marks the start
of the new workstation. This is illustrated in Figure 3 where the shortest path is
depicted by thick arcs.
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The shortest path can be found using the algorithm from [11]. This algorithm
for each vertex i builds a set of labels Li = {(a, b)}, where a is a current path
length from 0 to i and b is the number of arcs in this path. A dominance rule is
used to reduce the number of labels: label (a, b) dominates (a′, b′) if a ≤ a′ and
b ≤ b′. It was shown in [11] that if set Li does not contain dominated labels, then
their number does not exceed m.

Below, the formal description of the algorithm from [11] is reproduced with
a minor modification, which consists in introducing an upper bound B so that
the labels (a, b) such that a ≥ B are not considered (step 2.1.1). In this form,
the algorithm returns either a solution of cost less or equal to B or +∞ if such
a solution does not exist. Setting the value B close to the expected fitness of the
offspring solution in the GA helps to reduce the computation time of the shortest
path evaluation.

Constrained shortest path algorithm [11]

1 Initialize labels: L0 := {(0, 0)}; Li := ∅, i > 0.

2 For each vertex t = 0, ..., n− 1 do

2.1 For each arc (t, i) of vertex t do (possibly in parallel)
For each label (at, bt) of vertex t do

2.1.1 If (bt + 1 < m or i = n) and at + cti < B then

2.1.1.1 Create new label l := (at + cti, bt + 1).
2.1.1.2 If l dominates some label l′ ∈ Li then remove l′ from Li.
2.1.1.2 If l is not dominated by any label of Li then add l to Li.

3 Return min(a,b)∈Ln
a.

Actually, the described algorithm computes only the length of the shortest
path, which is then used as a fitness of a given individual. The path itself is
constructed only once for the best found permutation and is returned as a final
solution. To do this, modified labels (a, b, c) can be considered, where c tracks the
previous vertex in the path.

4. COMPUTER EXPERIMENTS

For the experimental evaluation, the algorithms were coded in C++ and com-
piled with g++ 7.5. The GPU part was implemented using CUDA 11.2. The
programs were run on the server with Xeon 4210 CPU and Tesla V100 GPU un-
der Ubuntu 18.04.

4.1. GPU implementation

The classic populational and the newly proposed combined EAs described
above were implemented with parallelization using CUDA for running on a GPU.
The main part of CUDA programming consists in development of one or several
kernel functions. Each such function defines a piece of code that must be executed
large number of times in parallel. Recall that N is the population size, l and h are
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the number of parents and the number of offspring of each parent in the combined
EA. For the considered algorithms, the following kernels are realized.

Kernel select mutate. Selection of parent individual, applying mutation and
the precedence correction procedure. For the populational EA, this kernel is exe-
cuted N times in parallel. For the combined EA, the selection is implemented as
a separate kernel and is executed l times; the mutation and precedence correction
are executed lh times in parallel.

Kernel build arcs. Building the graph for the Split algorithm. Here we have
two levels of parallelizm: many offspring individuals and many vertices of the
graph of each individual. So, the kernel function must build all the outgoing arcs
from vertex i of the graph of offspring c. Collecting all the offspring and vertices
together we obtain in total N(n − 1) parallel executions for the populational EA
and lh(n− 1) executions for the combined one.

Kernel find path(i). A series of kernel functions that evaluate the length of
the shortest path. Again, there are two levels of parallelism: many offspring and
many arcs. One function corresponds to an offspring individual c, a vertex i, and
an outgoing arc (i, j), and its action consists in updating the labels in vertex j.
The kernels for vertices i = 0, ..., n−1 are executed sequentially one after another,
and for each fixed i, the computations for all c and j are done in parallel.

The population is stored as a matrix, in which the columns represent indi-
vidual. Such a way allows to increase the chances of the coalesced access to
the GPU memory (https://docs.nvidia.com/cuda/cuda-c-best-practices-guide/, see
also [15]), which may significantly speed up the computations. With the indicated
equipment, the developed GPU code shows about 120 times faster computing
speed comparing to its CPU equivalent.

4.2. Comparison to the algorithms from the literature

The comparison to the heuristics from the literature was done on the 15 test
instances from [10] with the following characteristics: n = 200,m = 25, n0 = 5,
s0 = 10, processing and setup times are uniformly distributed numbers ti ∈ [1, 10],
sij ∈ [0, 2], and Tmax = 50. The precedence relations comprise from 50 to 70 arcs,
the numbers of inclusion and exclusion sets are from 7 to 15, each set contains up
to 4 elements. Unfortunately, the test instances from the other previous studies
are not available.

The following settings are used in the tests: in the combined EA, the population
size is N = 1024, the number of parents is l = 64, the number of offspring for each
parent is h = 256. In the populational EA, N = 5120. The tournament size
in the selection operator equals 20 for both EAs. In the Split algorithm, the
bound B is defined as the average fitness of the selected parent individuals. Note
that introducing this bound drastically improves the time spent on the fitness
calculations, but has a side effect that this time depends on the currently achieved
quality of individuals in the population and so the evaluation of the algorithms in
terms of the number of iterations becomes rather meaningless.

The results are given in Table 1. On each problem instance, the algorithms
made 20 independent runs. In each run the time was limited by one minute (this
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is indicated in the table with mark “20 x 1m.”). Each cell in the table shows the
best found fitness value (in what follows it is denoted by F ), the numbers in the
parenthesis show how many times the best and the next best results were obtained.
For example, “27(16,4)” means that the solutions with F = 27 were found in 16
runs out of 20, and the solutions with F = 28 were found in four runs. The
last two rows show the number of runs (out of 300) where feasible solutions were
found and the average fitness computed over only the feasible solutions. Also, the
EAs are compared to the algorithms from the literature: the GA-MIP [10] that
uses CPLEX in the decoder, the Split-based ILS heuristic [11] and the steady-
state GA with a different solution encoding and a greedy improvement procedure,
GA-GRD [14].

Table 1: Experimental comparison of heuristics

Name Parallel EA, 20 x 1m. GA-MIP ILS GA-GRD GA-GRD
Populational Combined 20 x 10m. 83m. 20 x 1m. 20 x 10m.

a1 27(20,0) 27(16,4) 32(2,4) 28 27(13,2) 25(5,15)
a2 25(2,16) 25(2,16) 32(1,1) 26 26(7,9) 25(4,16)
a3 26(19,0) 25(2,17) 29(1,2) 26 – 26(19,1)
a4 25(2,18) 25(4,16) 30(8,7) 26 26(6,7) 24(12,8)
a5 26(11,7) 26(10,10) 31(1,4) 27 26(14,5) 25(2,18)
a6 26(19,1) 26(17,3) 31(1,6) 26 26(6,12) 25(8,12)
a7 27(17,1) 27(16,2) 31(2,0) 28 26(6,14) 25(4,11)
a8 26(3,17) 27(19,1) 31(1,5) 28 27(11,8) 26(13,7)
a9 26(19,1) 26(19,1) 30(2,8) 27 26(20,0) 25(2,18)
a10 28(18,2) 28(6,14) 33(2,5) 29 28(9,11) 28(13,7)
a11 25(1,19) 26(20,0) 30(4,8) 26 26(7,11) 25(2,18)
a12 26(1,19) 27(20,0) 31(1,8) 28 27(13,4) 25(1,9)
a13 26(6,5) 27(1,4) 32(1,3) 28 27(3,6) 25(20,0)
a14 26(14,6) 26(13,7) 30(2,5) 27 26(10,7) 25(15,5)
a15 26(15,4) 26(11,8) 31(2,3) 27 26(9,10) 26(20,0)

N feas 283 280 274 266 300
Avg F 26.6 26.7 32.9 27.1 27 25.9

The results for the ILS are copied from [11], where it was executed once on each
instance with 5000 seconds (83.3 minutes) time limit on i7-4790 CPU. For each
instance, a feasible solution was found. To avoid misunderstanding, the number
of feasible solutions is not shown in the table for this algorithm.

The experiments with GA-MIP presented in [10] were obtained on the outdated
CPU and with the old CPLEX version, so they were reproduced on Xeon 4210
CPU using CPLEX 12.10 and the new results are presented. On each problem,
GA-MIP made 20 runs and since the MIP solution is rather time consuming, it
was given ten minutes in each run. The obtained results are slightly better than
in [10], although the improvement is not essential. Besides, as soon as GA-GRD
is not parallel and does not rely on high performance computing, it was also
interesting to evaluate it with larger execution time, so an additional experiment
with GA-GRD giving it ten minutes in each run was performed.
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Table 2: Experiments on large scale instances

Name Parallel EA, 20 x 15 min. GA-GRD
Populational Combined 20 x 150 min.

c1 81(1,2) 81(1,1) 87(1,0)
c2 80(2,0) 79(2,0) –
c3 81(1,0) 81(2,1) –
c4 80(2,3) 80(1,5) 76(2,5)
c5 83(1,0) 81(1,0) –
c6 80(4,3) 79(1,4) –
c7 80(3,6) 80(7,5) –
c8 82(7,0) 80(2,3) 78(1,0)
c9 83(1,0) 80(2,0) –
c10 79(7,0) 78(2,1) 76(2,0)
c11 – 80(2,0) –
c12 – – –
c13 80(1,2) – 79(1,0)
c14 79(1,10) 79(1,10) –
c15 77(1,8) 76(1,7) –

N feas 82 79 26
Avg F 80.76 80.39 78.8

As one can see, the two EAs demonstrate very similar performance and they
are superior to the ILS and GA-GRD with one minute time limit. GA-MIP looks
rather outdated and it cannot compete with the other algorithms even on the
modern hardware. Since the ILS is based on the similar Split approach, its com-
parison to the EAs gives the most clear illustration of the benefits of parallelization
and GPU usage. Note that the results for GA-GRD are better than the ones re-
ported in [14] due to faster CPU (except for a3 where it could not find any feasible
solution). Giving it ten times longer running time provides surprisingly good solu-
tions, which means that the greedy heuristics is yet rather promising and it could
be worthwhile to try using it in a high-performance parallel algorithm.

4.3. Evaluation on large-scale instances

In order to test the algorithms on large-scale problems, another benchmark
set was generated (it is available at https://github.com/pborisovsky/RTLBP). The
new instances contain 600 operations and 50 stations, from 2 to 7 inclusion sets,
and from 26 to 36 exclusion sets. To generate precedence relations, the number of
arcs was taken from 300 to 600 and the arcs were added to the precedence graph
at random. If the resulting instance was infeasible due to cycles, it was neglected
and a new one was generated until the required 15 instances were ready.

For this experiment, only the main competitors, i.e., the populational and the
combined EA and GA-GRD are chosen, because they have shown a clear advantage
over GA-MIP and ILS in the previous experiments. GA-MIP provides rather poor
solutions and ILS takes quite a long time and still does not outperform the other
considered heuristics. Solving larger and harder problems with GA-MIP and ILS
will be very time consuming and the superior results are hardly expected.
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On each of the 15 instances, the EAs were run 20 times by 15 minutes. GA-
GRD could not find any feasible solutions within this limit, so it was given 150
minutes in each run. The results of comparison are given in Table 2. In these
experiments, both EAs show a similar ability to find feasible solutions, but the
combined EA has better approximation quality: for nine instances out of 15 it
found better solutions and in five cases the results were the same. In most cases,
GA-GRD could not find feasible solutions, but for four instances the outputs are
better than the ones of the EAs. For problem c12 neither of the algorithm could
find a solution within given time, but in an additional extensive computation, a
solution with F = 80 was found by the combined EA after three hours.

These results illustrate the difference between the Split and the greedy ap-
proaches. While the Split based EA show much better ability to find feasible
solutions, the greedy heuristic provides better results in case the feasibility is ob-
tained. Although GA-GRD is steady-state and so it cannot be straightforwardly
run on a GPU, presumably a hybrid approach combining the Split decoder and
the greedy heuristic could be developed, which seems to be a promising direction
for the future research.

4.4. Scalability of the two EAs

By the term scalability we mean an adaptiveness of an algorithm to newer gen-
erations of computing hardware so that devices with better characteristics provide
faster and more accurate results and allow to treat larger problems. During 1990s –
2000s, when the main trend in the development of hardware consisted in growth
of CPU speed, this property was trivially fulfilled and so it was not of great inter-
est. It became an important issue in the area of distributed computing systems
comprised of a large number of computers. Ideally, the performance of a soft-
ware should grow linearly with the size of the system, which is usually not an
easy task to implement in practice. For GPU computing, scalability also plays an
important role. In the last decade, the performance characteristics of GPUs are
rapidly grown. Comparing to the devices of late 2010s with several dozens of basic
parallel processing elements (CUDA cores in Nvidia terms) modern GPUs have
thousands of them and this number is expected to keep growing in the future. On
the other hand, a GPU clock speed still remains in the range from 1500 to 2500
MHz. For example, the current top Nvidia device RTX 4090 has 16384 CUDA
cores and a clock speed of 2230 MHz. Clearly, this means that the performance of
a GPU-oriented algorithm should rely on the number of cores rather than on the
clock speed.

In this section, the two implemented EAs are compared from the scalability
point of view. Besides the already mentioned Nvidia Tesla V100 GPU, another
device, RTX 2070 Super, was used in the experiment. It has 1770 MHz of maximal
clock speed and 2560 CUDA cores. Tesla V100 has about 13.5% lower speed
(1530 MHz) but twice as much CUDA cores, i.e. 5120. To see the dynamics of
the search process, both algorithms were run 200 times by 1000 seconds, and in
each run every second the current best value of the fitness function was stored.
Then, for each second an average fitness was computed. The results are shown in
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Figure 4: Comparison of two EAs on different GPUs

Figure 4. The computations were done on the instance c1. The axes represent the
running time t and the average fitness value F . The 95%-confidence interval bars
are shown for several time points (since the number of runs is 200, the classic large
sample formula is used). Recall, that feasible solutions are very hard to obtain,
so the individuals in the EAs are highly penalized, which explains the large values
of F . To cope with this, a logarithmic scale is used for the y-axis. The first and the
second diagram correspond to the populational and the combined EAs accordingly.
On the first one we can see that the performance is very similar on the two devices.
At the beginning, RTX 2070 Super provides slightly faster descent, but then two
lines converge to the points very close to each other (the T-test does not show a
significant difference). This means that the populational EA relies mostly on the
processor speed rather than the number of cores. In contrast, the combined EA
shows much better performance on V100 especially at the beginning. At the end
the difference is still notable and statistically significant according to the T-test.
From these results we may expect that the second EA will be more suitable for
advanced GPUs with larger number of cores.

5. CONCLUSION

In this paper, a parallel GPU-accelerated evolutionary approach for one indus-
trial machining line balancing problem is developed. Two reproduction schemes
are considered: the classic populational scheme and a newly proposed one which
combines ideas of populational, steady state, and memetic algorithms. Both
schemes showed good improvements in terms of solutions quality and execution
time comparing to the previously published iterative local search algorithm based
on the same Split decoder. New hard large scale test instances are generated.
On these instances, the combined EA showed a clear advantage over the popula-
tional one and the early proposed GA with a problem specific greedy heuristic.
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On the other hand, this GA could achieve better approximation for moderate-
size instances and for several large instances provided the running time was long
enough. This observation leads to a natural idea of hybridization of the Split
algorithm with the greedy heuristic in a GPU accelerated EA, which can be a
promising direction for the future research.

Another issue addressed in this paper is a comparison of two parallel EAs in
terms of their suitability to the GPU computing. Although the classic EA can
be easily implemented on a GPU, obviously, there could be other evolutionary
schemes that can better exploit the particular qualities of a GPU. In this study, it
is shown that the proposed combined EA fits better for GPUs with a large number
of cores and so could be more attractive for using in GPUs of next generations.
It would be worthwhile to implement and test the new EA on other industrial
optimization problems like routing and scheduling. In general, due to the rapid
progress in development of high-performance devices, new ideas in metaheuristics
design especially focusing on paralellization and scalability can be of great interest.
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