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Faculté des Sciences, Université Mouloud Mammeri de Tizi Ouzou, 15000

Tizi-Ouzou, Algeria
mohand.ouanes@ummto.dz

Received: March 2023 / Accepted: August 2023

Abstract: In this paper, we investigate bounds on eigenvalues of real symmetric interval
matrices. We present a method that computes bounds on eigenvalues of real symmetric
interval matrices. It outperforms many methods developed in the literature and produces
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approaches of bounding eigenvalues of real symmetric interval matrices. Moreover, a set
of test problems found in the literature are solved efficiently and the performances of the
proposed method are compared with those of other methods.
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1. INTRODUCTION

We consider the following problem

(Pb)

{
min f(x)

x ∈ [x, x] ⊂ Rn

where f : Rn → R is a nonconvex and C2-continuous function and variable x ∈ Rn,
with xi ∈ xi = [xi, xi], xi < xi, for i = 1, . . . , n, is the interval domain. (Pb) is
called a problem of global optimization. Several methods have been studied in the
literature for solving global optimization problems. The αBB branch and bound
algorithm [1, 2, 3, 4] is based on constructing a convex underestimator for general
C2 functions. The efficiency of the algorithm αBB depends on the tightness of the
underestimator. In the αBB method [4], the underestimator has been defined as
follows

F (x) = f(x)− 1

2

∑n
i=1 αi(xi − xi)(xi − xi),

with

αi ≥ max

{
0,− min

x∈[x,x]
λi(x)

}
,

where λi(x) is the ith eigenvalue of the hessian matrix of f(x). The rule choice
of αi is to ensure the convexity of the underestimator. If we assume that the
convexity property is guaranteed, then selecting a smaller value of αi leads to a
tighter underestimator. Since we deal with a symmetric interval hessian matrix of
f(x), it’s too difficult to calculate exact bounds on eigenvalues of general symmet-
ric interval matrices, in fact, it is revealed in [5, 6, 7] that such a problem is, in
general, NP-hard. Various methods in [2, 8, 9, 10, 11, 12, 13, 14] have investigated
the calculation of eigenvalues of interval matrices. Also, methods in [15, 16, 17]
have studied the stability of interval dynamic systems, general parametric interval
matrices and more related results to eigenvalues bounds. For the αBB method,
the most favorable method for bounding eigenvalues of interval matrices is the
scaled Gerschgorin method [2]. It’s an easy method to compute each αi param-
eter. Otherwise, methods in [11, 10, 12, 14] are less easy to compute bounds on
eigenvalues of interval matrices, but they can produce sharper bounds compared
to the ones produced by the scaled Gerschgorin method.

Our aim in this paper is to develop a useful method from a practical point of
view, to compute as sharp as possible bounds on eigenvalues of real symmetric
interval matrices.

An interval matrix is defined by

A := [A,A] =
{
A ∈ Rn×n;A ≤ A ≤ A

}
,
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where A,A ∈ Rn×n, are given matrices and A =: (aij), with aij ∈ R for i, j =
1, . . . , n. The inequality A ≤ A, is considered element-wise.
We also define a symmetric interval matrix by

As :=
{
A ∈ A|AT = A

}
,

where A ∈ Rn×n, is a real symmetric matrix. We denote the midpoint matrix and
the radius matrix of the interval matrix A, respectively by

Ac :=
1

2
(A+A), A∆ :=

1

2
(A−A).

A real symmetric matrix has n real eigenvalues sorted in a decreasing order as
follows

λ1(A) ≥ λ2(A) ≥ · · · ≥ λn(A).

And for a real symmetric interval matrix, the eigenvalues are defined as follows

λi(A
s) = [λi(A

s), λi(A
s)] := {λi(A)|A ∈ As} , i = 1, . . . , n.

The structure of this paper is as follows. In section 2, several methods for
bounding eigenvalues of symmetric interval matrices are presented. In section 3,
a new approach and main results are stated. Computational results are reported
in section 4.

2. RELATED WORKS

The Rohn method developed in [14], computes bounds on eigenvalues of the
symmetric interval matrix As, as follows

Theorem 1. Bounds on eigenvalues of the symmetric interval matrix As, are
given by

λi(A
s) ∈ [λi(Ac)− ρ(A∆), λi(Ac) + ρ(A∆)], i = 1, . . . , n.

ρ(A∆) is the spectral radius of the matrix A∆.

See [12] for the proof of the above theorem.

The scaled Gerschgorin method developed in [2], computes αi values (lower
bounds on eigenvalues of a real symmetric interval matrix) as follows

αi = max

0,−

aii −
n∑

i ̸=j

max
{
|aij |, |aij |

} dj
di

 (1)
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with di > 0,∀i = 1, . . . , n. The scaling vector is d = x − x, which means that
variables with a wider range have a greater impact on the quality of the underes-
timator compared to variables with a smaller range. For more details see [2].

The Hladik method developed in [12], is based on Cauchy’s interlacing prop-
erty for eigenvalues of a symmetric matrix [18, 19, 20]. This method involves two
versions of interlacing. The first is the direct version which is based directly on the
Cauchy theorem. The second is the indirect version which is based on the Weyl
theorem [19, 20].

The Hladik diagonal maximization (DM) method developed in [12], is the same
as the previous method except that in this method the authors use a diagonal
maximization symmetric interval matrix instead of the original symmetric interval
matrix. For more details see [12].

The Hertz method developed in [21], is based on constructing a set of 2n−1

vertex matrices, so the smallest eigenvalues of this set of matrices are the exact
bounds on eigenvalues of the original symmetric interval matrix.

3. NEW APPROACH AND MAIN RESULTS

3.1. New approach

In the following, we present a general proposition that proves valid bounds
on eigenvalues for any selection of a symmetric interval matrix from the original
symmetric interval matrix As. The selection of such a symmetric interval matrix
is based on the diagonal elements of the original symmetric interval matrix As.

Definition 2. Let LV (m) = {i ∈ N}, a set of indices, and m is the index of the
set LV . For example, LV (1) = {2, 4, 5}, LV (2) = {1, 2, 4, 6}, for m = 1, 2.

LV (m) is an identification of a symmetric interval matrix, where all its diago-
nal elements whose indices are in the set LV (m), are fixed at their lower bounds.

Similar definition, UV (m) = {i ∈ N} is an identification of a symmetric inter-
val matrix, where all its diagonal elements whose indices are in the set UV (m),
are fixed at their upper bounds.

We define a symmetric interval matrix As
LV (m) derived from the original sym-

metric interval matrix As, by

As
LV (m) =

{
aij if i = j = k with k ∈ LV (m)

aij else

Proposition 3. For any selection of a symmetric interval matrix As
LV (m) derived

from As, for each i ∈ {1, . . . , n}, we have

λi(A
s) ≥ λi(A

s
LV (m)).
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Proof. For every A ∈ As, with aij ∈ [aij , aij ]. The formula of eigenvalue from

The Courant-Fischer theorem [18, 19], is given by

λi(A) = max
V⊆Rn;dim V=i

{
min

xT x=1
xTAx

}

= max
V⊆Rn;dim V=i

 min
xT x=1

 n∑
i=1

aiix
2
i +

n∑
i ̸=j

aijxixj

 .

Now, all diagonal elements whose indices are included in the set LV (m), are fixed
at their lower bounds. Hence, the above equality becomes as follows

= max
V⊆Rn;dim V=i

 min
xT x=1

 n∑
i=1

aiix
2
i +

n∑
i ̸=j

aijxixj


≥ max

V⊆Rn;dim V=i

 min
xT x=1

 ∑
k∈LV (m)

akkx
2
k +

n∑
i/∈LV (m)

aiix
2
i +

n∑
i ̸=j

aijxixj


= max

V⊆Rn;dim V=i

{
min

xT x=1
xTALV (m)x

}
= λi(ALV (m)), ∀ALV (m) ∈ As

LV (m).

Therefore,
λi(A

s) ≥ λi(A
s
LV (m)), ∀i = 1, . . . , n, ∀m

In the same way, we can prove that λi(A
s) ≤ λi(A

s
UV (m)), ∀i = 1, . . . , n.

Definition 4. Similarly with definition 2, LV 1, LV 2, UV 1 and UV 2 are sets of
indices.

LV 1(m) = {i ∈ N} is an identification of a symmetric interval matrix, where
all its diagonal elements whose indices are in the set LV 1(m), are fixed at their
lower bounds.

LV 2(m) = {i ∈ N} is an identification of a symmetric interval matrix, where
all its diagonal elements whose indices are in the set LV 2(m), are intervals.

UV 1(m) = {i ∈ N} is an identification of a symmetric interval matrix, where
all its diagonal elements whose indices are in the set UV 1(m), are fixed at their
upper bounds.

UV 2(m) = {i ∈ N} is an identification of a symmetric interval matrix, where
all its diagonal elements whose indices are in the set UV 2(m), are intervals.

Now, we define two types of symmetric interval matrices for the calculation
of the lower bounds on eigenvalues and two types of symmetric interval matrices
for the upper bounds on eigenvalues of the symmetric interval matrix As. These
symmetric interval matrices are obtained from As as follows
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As
LV 1(m) =

{
aij if i = j = k, with k ∈ LV 1(m)

aij else
,

As
UV 1(m) =

{
aij if i = j = k, with k ∈ UV 1(m)

aij else
;

As
LV 2(m) =

{
aij if i = j ̸= l, with l ∈ LV 2(m)

aij else
,

As
UV 2(m) =

{
aij if i = j ̸= l, with l ∈ UV 2(m)

aij else
;

with aij = [aij , aij ], aij < aij and aij , aij ∈ R, for i, j = 1, . . . , n and ∀m.

We use LV 1 and LV 2 for the calculation of the lower bounds on eigenvalues
of symmetric interval matrices, and we use UV 1 and UV 2 for the calculation of
the upper bounds on eigenvalues of symmetric interval matrices.

The main contribution of this work is based on the diagonal elements of the
symmetric interval matrix As, which is the selection of specific symmetric interval
matrices obtained from the original symmetric interval matrix As, to produce
valid bounds on eigenvalues for As. Therefore, we will use the well-known result
given in [19, 20], to identify a better selection of symmetric interval matrices that,
in general, can produce as sharp as possible bounds on eigenvalues of the original
symmetric interval matrix As.

3.2. Algorithm

The result used from [19, 20], is the sum of squares of entries of a normal matrix
equals the sum of squares of its eigenvalues. Hence, we present an algorithm based
on that result, for the selection of the specific symmetric interval matrices. Noted

in the presented algorithm that r =
n

2
if n is even or r =

n− 1

2
if n is odd, and

that because the sets LV 1(m) and LV 2(m) will be reconstructed starting from
i = r until i = (n− 2). In other words, the symmetric interval matrices As

LV 1(m)

and As
LV 2(m) for i = r, . . . , (n−2) are already generated when i variates from 0 to

r−1. Also, if i = (n−1) and j = n, then all indices are added in the set LV 1(m),
so all diagonal elements of As

LV 1(m) are fixed at their lower bounds, and that work
is already done in [12]. In step 2 of the proposed algorithm, S is a vector of real
numbers and Λ is a list of sets that contain indices. In steps 6 and 9, the sum is
computed by interval arithmetic as follows

S(m) =

n∑
i=1

|As
LV 1(m),ii|2 if m is odd,
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Algorithm 1 Interval matrices selection O(n3)

1. Set r =
n

2
if n is even or r =

n− 1

2
if n is odd.

2. Set m = 1, a vector S and a list Λ = {∅}.
3. for i = 0, . . . , r − 1 do

4. for j = i+ 1, . . . , n do

5. Construct the set LV 1(m) and if i > 0 add all indices 1, . . . , i into the set
LV 1(m).

6. Add the index j into the set LV 1(m) and calculate the sum of squares of
the diagonal elements of As

LV 1(m). Store the result in S(m).

7. Add the set LV 1(m) into the list Λ and set m=m+1.

8. Construct the set LV 2(m) and if i > 0 add all indices 1, . . . , i into the set
LV 2(m).

9. Add the index j into the set LV 2(m) and calculate the sum of squares of
the diagonal elements of As

LV 2(m). Store the result in S(m).

10. Add the LV 2(m) into the list Λ and set m=m+1.

11. end for, end for

12. Select from Λ, the n sets corresponding to the n minimum values of the
vector S. Also select the n sets corresponding to the n maximum values of
the vector S.

and

S(m) =

n∑
i=1

|As
LV 2(m),ii|2 if m is even,

whereAs
LV 1(m),ii is the diagonal element of the symmetric interval matrixAs

LV 1(m)

(same for As
LV 2(m)). Considering only diagonal elements because all symmetric

interval matrices As
LV 1(m) have the same nondiagonal elements with the origi-

nal symmetric interval matrix As and they differ only on the diagonal elements.
Finally, in step 12, we select the 2n sets (or matrices) corresponding to the n mini-
mum and maximum values, to produce as sharp as possible bounds on eigenvalues.
For example, for negative lower bound eigenvalues, it is wise to choose the mini-
mum value of the sum of squares, otherwise, for positive lower bound eigenvalues,
choosing the maximum value of the sum of squares would be a good choice. The
outputs of the proposed algorithm are 2n symmetric interval matrices, but not
necessarily n matrices As

LV 1(m) and n matrices As
LV 2(m).

To more understand how to use the vector S, the sets LV 1, LV 2 and the list
Λ in the proposed algorithm, we present a simple execution (without an interval
matrix) of the algorithm with n = 4. At steps 1 and 2, we have r = 2, m = 1 and
Λ = {∅}. At steps 5 and 6, we construct the set LV 1(1) = {1}, we calculate the
sum (noted s1) and we store it in the vector S, so S = (s1). At step 7 we add the
set LV 1(1) into the list Λ, so Λ = {LV 1(1)}. Here we have a remark that the sum
s1 in the vector S is an identification of the set LV 1(1) in the list Λ. In similar
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way for steps 8, 9 and 10, we have m = 2, we construct the set LV 2(2) = {1}, we
calculate the sum (noted s2) and we store it in the vector S, so S = (s1, s2). We
add the set LV 2(2) into the list Λ, so Λ = {LV 1(1), LV 2(2)}. At step 12 we will
have the following:

S = (s1, s2, s3, . . . , sm−1),

Λ = {LV 1(1), LV 2(2), LV 1(3), . . . , LV 2(m− 1)} .

Finally, for example, if the n minimum values in S are s1, s2, s4 and s5, then the
sets that must be chosen are LV 1(1), LV 2(2), LV 2(4) and LV 1(5). Similar way
for the n maximum.

For the complexity, the algorithm involves two nested loops which depend on

n. Inside these two loops, in the worst cases, we have:
n

2
statements in step 5,

(2n+ 2) statements (2n elementary operations) in step 6, 2 statements in step 7,
n

2
statements in step 8, (2n+ 2) statements (2n elementary operations) in step 9

and 2 statements in step 10. Therefore, the total complexity without step 12 is
O(n3). The number of statements in step 12 is m− 1 which can be computed as
follows

m− 1 =

r−1∑
i=0

n∑
j=i+1

2 = −r(−2n+ r − 1).

If n is odd we have m − 1 =
3

4
(n − 1)(n + 1), and if n is even we have m − 1 =

1

4
n(3n + 2), which mean that the complexity of step 12 is O(n2). Hence, the

complexity of the algorithm is the dominant term between O(n3) and O(n2),
which is O(n3).

3.3. Main results

In this part of this section, results of calculation bounds on eigenvalues of
the symmetric interval matrix As are presented. These results are valid and the
number of fixed elements at their lower bounds, has no effect on the correctness of
these results since we have already proved in proposition 3 that for any selection
of symmetric interval matrices As

LV (m), the bounds on eigenvalues produced from
these matrices are valid. Therefore, for simplicity, we assume that the sets LV 1(m)
and LV 2(m) contain one index, also we assume that the outputs of the proposed
algorithm are n symmetric interval matrices As

LV 1(m) and n symmetric interval
matrices As

LV 2(m) with m = 1, . . . , n.

Theorem 5. For each i ∈ {1, . . . , n}, we have

λi(A
s) ≥ max

m=1,...,n
λi(A

s
LV 1(m))

Proof. For every A ∈ As, with aij ∈ [aij , aij ], we can start with The Courant-

Fischer theorem [18, 19]
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λi(A) = max
V⊆Rn;dim V=i

{
min

xT x=1
xTAx

}

= max
V⊆Rn;dim V=i

 min
xT x=1

 n∑
i=1

aiix
2
i +

n∑
i ̸=j

aijxixj

 ,

now, for i = j = k with k ∈ LV 1(m), we assume that aij = aij = akk, else we

have ∀aij ∈ [aij , aij ], then

max
V⊆Rn;dim V=i

 min
xT x=1

 n∑
i=1

aiix
2
i +

n∑
i̸=j

aijxixj


≥ max

V⊆Rn;dim V=i

 min
xT x=1

akkx
2
k +

n∑
i ̸=k

aiix
2
i +

n∑
i ̸=j

aijxixj


= max

V⊆Rn;dim V=i

{
min

xT x=1
xTALV 1(m)x

}
= λi(ALV 1(m)), ∀ALV 1(m) ∈ As

LV 1(m),

therefore,

λi(A
s) ≥ λi(A

s
LV 1(m)), ∀i = 1, . . . , n, ∀m = 1, . . . , n.

Hence,
λi(A

s) ≥ max
m=1,...,n

λi(A
s
LV 1(m)), ∀i = 1, . . . , n.

In similar way, for i = j = k with k ∈ UV 1(m), we assume that aij = aij = akk,
else we have aij ∈ [aij , aij ], we can prove that

λi(A
s) ≤ min

m=1,...,n
λi(A

s
UV 1(m)), i = 1, . . . , n.

The next theorem is analogous to theorem 5 since the difference between them
is only in the sets LV 1(m) and LV 2(m).

Theorem 6. For each i ∈ {1, . . . , n}, we have

λi(A
s) ≥ max

m=1,...,n
λi(A

s
LV 2(m))
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In similar way, for i = j ̸= l with l ∈ UV 2(m), we assume that aij = aij , we have

λi(A
s) ≤ min

m=1,...,n
λi(A

s
UV 2(m)), i = 1, . . . , n.

At this point, we can present our main result by resuming theorems 5 and 6 in
the following corollary.

Corollary 7. Let the symmetric interval matrix As ∈ IRn×n, for i,m = 1, . . . , n,
then we have

λi(A
s) ≥ max

{
max
m

λi(A
s
LV 1(m)),max

m
λi(A

s
LV 2(m))

}
,

λi(A
s) ≤ min

{
min
m

λi(A
s
UV 1(m)),min

m
λi(A

s
UV 2(m))

}
,

Proof. Let As ∈ IRn×n. From theorems 5 and 6, for i,m = 1, . . . , n, we have

λi(A
s) ≥ max

m=1,...,n
λi(A

s
LV 1(m)) and λi(A

s) ≥ max
m=1,...,n

λi(A
s
LV 2(m)),

therefore,

λi(A
s) ≥ max

{
max
m

λi(A
s
LV 1(m)),max

m
λi(A

s
LV 2(m))

}
.

In the same way, we can prove the second inequality presented in corollary 7.

We denote respectively by A
(m)
l1c , A

(m)
u1c , A

(m)
l2c , A

(m)
u2c , the midpoint matrices of the

symmetric interval matrices As
LV 1(m),A

s
UV 1(m),A

s
LV 2(m),A

s
UV 2(m). And A

(m)
l1∆,

A
(m)
u1∆, A

(m)
l2∆, A

(m)
u2∆, the radius matrices of the same symmetric interval matrices for

m = 1, . . . , n.

Corollary 7 presents valid lower and upper bounds on eigenvalues of the real
symmetric interval matrix As. Moreover, the symmetric interval matrices derived
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from As, can produce tight bounds on eigenvalues of the original real symmetric
interval matrix. By applying Rohn’s bounds from theorem 1 on the generated
symmetric interval matrices, we get the following corollary.

Corollary 8. Let As ∈ IRn×n. Then for i,m = 1, . . . , n we have

λi(A
s) ≥ max

{
max
m

(
λi(A

(m)
l1c )− ρ(A

(m)
l1∆)

)
,max

m

(
λi(A

(m)
l2c )− ρ(A

(m)
l2∆)

)}
,

λi(A
s) ≤ min

{
min
m

(
λi(A

(m)
u1c ) + ρ(A

(m)
u1∆)

)
,min

m

(
λi(A

(m)
u2c ) + ρ(A

(m)
u2∆)

)}
.

3.4. Example

Consider an example found in [12]:

As =



[2975, 3025] [−2015,−1985] 0 0

[−2015,−1985] [4965, 5035] [−3020,−2980] 0

0 [−3020,−2980] [6955, 7045] [−4025,−3975]

0 0 [−4025,−3975] [8945, 9055]


Next, bounds on eigenvalues of the symmetric interval matrix As are com-

puted. The signification items are as follows

(Q) Bounds computed by Leng method [11].

(R) Bounds computed by Rohn method [14].

(D1) Bounds computed by method 1 rule 1 in [12].

(D2) Bounds computed by method 1 rule 2 in [12].

(I1) Bounds computed by method 2 rule 1 in [12].

(I2) Bounds computed by method 2 rule 2 in [12].

(B) Best bounds computed in [12].

(P) Bounds computed by the proposed method.

(O) Optimal bounds found in [10].
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[3
3
0
9
.9
4
6
,3
4
6
9
.750]

[825.259,985.063]

(I2)
[12

5
60.62

9
,1
272

0
.4
333]

[69
8
4
.5
5
7
,7
1
4
4
.3
6
0
]

[3
3
0
9
.9
4
6
,3
4
6
9
.750]

[825.259,985.063]

(B
)

[12
5
60.62

9
,1
272

0
.2
27]

[699
0
.7
6
1
,7
1
3
8
.1
8
0
]

[3
3
2
0
.2
8
6
,3
4
5
9
.432]

[837.063,973.199]

(P
)

[12
5
60.68

5
,1
272

0
.3
78]

[699
4
.4
1
8
,7
1
3
4
.5
1
1
]

[3
3
2
9
.4
0
4
,3
4
5
0
.475]

[841.923,968.096]

(O
)

[12
5
60.83

7
,1
272

0
.2
27]

[700
2
.2
8
2
,7
1
2
6
.8
2
8
]

[3
3
3
7
.0
7
8
,3
4
4
3
.312]

[842.925,967.108]
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Results in table 1 show that the proposed method produces sharper and better
bounds (P) compared to Rohn’s bounds (R) and Leng’s bounds (Q). Noted in [12]
that the developed methods are not so sharp when the intervals [λi(A

s), λi(A
s)]

for i = 1, . . . , n, don’t overlap, therefore, the authors choose the best combina-
tion bounds (B) of all methods. However, the proposed method produces always
sharper bounds compared to Rohn’s bounds and even to the best bounds (B) in
[12] in this case. λi(A

s) = 12720.227 from (B) is obtained from proposition 3.2
in [12], and that value is by chance the optimal value. We can easily apply that
proposition on the proposed method to obtain the same value.

3.5. Complexity

Methods for the calculation of bounds on eigenvalues of real symmetric interval
matrices can be classified by their complexities. Hertz method in [21] computes ex-
act bounds on eigenvalues of symmetric interval matrices. However, this accuracy
of the bounds comes with a cost of time complexity. The Hertz method generates
a number of 2n−1 vertex matrices to arrive at the exact bounds on eigenvalues,
that cost may become prohibitive in the computations for high dimensional matri-
ces. The scaled Gerschgorin method in [2] sacrifices the accuracy of the bounds on
eigenvalues of symmetric interval matrices, for the speed of the computations. It
is a method with O(n2) complexity. The complexity of Rohn and Hladik methods
is O(n3).

The proposed method involves two procedures. The first procedure is the algo-
rithm of interval matrices selection, with complexity equal to O(n3) as described
in section 3.2. The second procedure is the calculation of bounds on eigenvalues of
the interval matrices obtained from the first procedure. We have mentioned in sec-
tion 3.2, that the outputs of the first procedure are 2n interval matrices. Since we
have applied the Rohn method on the 2n interval matrices, then the complexity of
the second procedure would be 2n∗O(n3), which is O(n4). Hence, the complexity
of the proposed method is the dominant term among the complexities of the two
procedures, which in our case is O(n4).

The proposed method has a simple structure and its complexity is polyno-
mial. Furthermore, the proposed method produces, in general, sharper bounds on
eigenvalues of symmetric interval matrices. Therefore, these factors can be seen
as implementation advantages for the proposed method in comparison with the
existing methods in the literature.

4. COMPUTATIONAL RESULTS

The aim of this paper is to produce tighter lower bounds on eigenvalues λi for
i = 1, . . . , n, of symmetric interval hessian matrices, then tighter underestimators
in the αBB method, for solving global optimization problems.

In the next experiment, we compare the efficiency of the algorithm αBB when
using five different methods for the calculation of each αi value. The first is the
scaled Gerschgorin method that computes αi by equation (1). The second is the
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Hladik method developed in [12]. The third is Hladik diagonal maximization (DM)
developed in [12]. The fourth is the proposed method and the last is the Hertz
method [21].

The αBB algorithm is implemented in C++ programs and executed on a Dell
computer with an Intel(R) Core(TM) i5-4210U CPU with a speed of 3.40 GHz and
8GB RAM. The computational results of the αBB algorithm using the proposed
method are summarised in table 3. The performances comparison results of the
proposed method with the other methods are reported in tables 4 and 5. The
following criteria are taken in consideration:

• Noiter is the number of iteration to reach to ϵ-global optimum value.

• Tcpu is the computing time in seconds. The values reported are the average
values of 1000 times run for each function in table 2.

• σ is the standard deviations of computing time of 1000 times run for each
function in table 2.

• Fopt is the minimum ϵ-global optimum value.

Table 3 shows that the minimum optimal solution is obtained by the αBB al-
gorithm when using the proposed method, in a significantly small computational
time. Notice from table 4, that the results differ for each function. For func-
tions (1,2,3,4 and 7), there was no improvement when using the Hladik diagonal
maximization (DM) or the proposed lower bounds on eigenvalues of the hessian
interval matrices of the corresponding functions. However, in comparison with the
other approach methods, there was an improvement of up to 156 iterations for
function (4) with less computational time as well. For the rest of the functions,
the improvement was up to 1886 iterations between using the proposed method
and using the other approach methods. On average of 14 functions, using the
proposed method, the αBB algorithm requires 776 iterations to reach the optimal
minimum value while it requires 1430 iterations with the Hladik method, 1184
iterations with the scaled Gerschgorin method, and 846 iterations with the Hladik
diagonal maximization (DM) method. We can measure in percentage, the average
improvement on the number of iterations between the proposed method and the
other approach methods. Therefore, for the Hladik method there was an improve-
ment of approximately 45.7%. For the scaled Gerschgorin method there was an
improvement of 34.5%. Finally, for the Hladik (DM) method there was an im-
provement of 8.3%. Using the Hertz method [21] that computes exact bounds on
the eigenvalues, the αBB algorithm requires 507 iterations on average, to reach the
optimal minimum value. Results reported in table 5 present the study of the time
speed of the algorithm αBB with different methods of computing each αi value.
Table 5 shows that, for most cases, the algorithm αBB runs faster when using
the proposed method than when using other approach methods. Furthermore, the
low standard deviations of multiple runs of the algorithm αBB with the proposed
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Table 3: Computational results of using the proposed method in αBB algorithm for solving the
test functions listed in table 2.

Function ϵ Noiter Tcpu.10−4 Fopt
1 1.10−8 41 4.8259 1.913223

2 1.10−3 146 17.3072 -0.999994

3 1.10−6 120 14.3239 0.399250

4 1.10−7 275 29.8433 0

5 1.10−4 3261 948.007 0.000179

6 5.10−5 829 116.375 3.000003

7 5.10−5 752 120.295 -4

8 1.10−5 118 24.8714 0

9 5.10−5 76 7.27851 0

10 1.10−7 32 3.72991 27.8846

11 5.10−4 2068 562.093 -9.2

12 1.10−5 1487 381.041 0

13 1.10−4 510 107.736 0

14 1.10−4 1159 320.712 0

method, indicate that the results are more consistent compared to those of the
other approach methods.

5. CONCLUSION

In this paper, we considered bounds on eigenvalues of real symmetric inter-
val matrices. Since it’s hard to calculate exact or better bounds on eigenvalues
of symmetric interval matrices for all cases, we presented a method with several
improvements for computing as sharp as possible bounds on eigenvalues of sym-
metric interval matrices. We have used the lower bounds on eigenvalues from the
proposed method to show the efficiency effect of our lower bounds on eigenvalues
of symmetric interval hessian matrices, on the αBB algorithm for solving global
optimization problems.
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