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1. INTRODUCTION 

The well-known overlapping (OVL) Weitzman coefficient (∆) is defined as the 

intersection area between two probability density functions. Some authors defined it as a 

measure of similarity, agreement or closeness between two probability distributions. Let  

𝑓𝑋(𝑥) and 𝑓𝑌(𝑥) be two continuous probability density functions for the two random 

variables 𝑋 and 𝑌 respectively, then the OVL measure ∆ is defined by [1], 

Δ = ∫𝑚𝑖𝑛{𝑓𝑋(𝑥), 𝑓𝑌(𝑥)}𝑑𝑥 

The above formula represents the common area under the two probability density 

functions 𝑓𝑋(𝑥) and 𝑓𝑌(𝑥). The values of Δ ranged between 0 and 1. A value of zero for Δ 

indicates that the intersection of the support of the two variables 𝑋 and 𝑌 is the empty set, 

while a value of 1 for Δ indicates a perfect agreement between two densities, which is 

equivalent to say,  𝑓𝑋(𝑥) = 𝑓𝑌(𝑥), ∀ 𝑥.  

Other OVL measures have been studied in the literature, such as the Matusita and 

Morsita OVL measures [2]. In addition, the two OVL measures named, Pianka and 

Kullback-Leibler have also been studied by some authors [3] and [4]. OVL measures have 

many applications in various fields including ecology [5] and [6], reliability analysis [7] 

and genetics [8]. Sneath [9] used the OVL coefficient as a measure of disjunction and some 

authors used the OVL measure on income differences (see [10], [11] and [12]. Samawi et 

al. [13] suggested a new nonparametric test of symmetry based on OVL measure Δ and 

recently, Alodat et al. [14] showed the importance of OVL measure in goodness-of-fit test.  
Most studies have concerned the point and interval estimations of ∆ under some specific 

pair distributions. Inman and Bradly [12] estimated ∆ for two normal distributions with 

equal variances. The case of two normal distributions with equal means and different 

variances is considered by Mulekar and Mishra [10]. Reiser and Faraggi [15] constructed 

and investigated the confidence intervals for 𝛥 in the case of two normal distributions 

with common variance. Mulekar and Mishra [16] suggested the use of Jackknife and 

Bootstrap methods to construct confidence intervals of Δ in the case of two normal 

distributions with common mean. Chaubey et al. [3] studied the point estimator of  𝛥 

 when the two populations are assumed to be described by the inverse Gaussian 

distributions with equal means.  

The case of two exponential distributions was studied by Samawi and Al-Saleh (2008), 

who also studied the effect of sampling scheme on Δ. Helu and Samawi [17] investigated 

the OVL measures for two Lomax distributions with different sampling procedures. 

Parallel to the work of Helu and Samawi [2], Dhaker et al. [18] considered the case of two 

inverse Lomax distributions to study the OVL measures. Finally, Wang and Tiana [19] 

also proposed methods for confidence interval estimation of 𝛥 under a variety of 

distributions, including normal, gamma and mixture Gaussian. 

Let 𝑋 be a continuous random variable follow a Weibull distribution with a scale 

parameter 𝛼1 and a shape parameter 𝛽1, then the 𝑝𝑑𝑓 of 𝑋 is,  

𝑓𝑋(𝑥; 𝛼1, 𝛽1) =
𝛽1
𝛼1
(
𝑥

𝛼1
)
𝛽1−1

𝑒−(𝑥/𝛼1)
𝛽1 , 𝑥 > 0, 𝛼1, 𝛽1 > 0. 

We will denote it by, 𝑋 ~ 𝑊𝑒(𝛼1, 𝛽1). Thus, if 𝑌 ~ 𝑊𝑒(𝛼2, 𝛽2) then the 𝑝𝑑𝑓 of 𝑌 is, 
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𝑓𝑌(𝑦; 𝛼2, 𝛽2) =
𝛽2
𝛼2
(
𝑦

𝛼2
)
𝛽2−1

𝑒−(𝑦/𝛼2)
𝛽2 , 𝑦 > 0, 𝛼2, 𝛽2 > 0. 

Under the assumption that 𝑋 and 𝑌 are independent, Al-Saidy et al. [20] considered the 

case of two Weibull distributions with the same shape parameters and different scale 

parameters. Let 𝐾 = 𝛼1/𝛼2, 𝛽1 = 𝛽2(= 𝛽, say) and 𝑄 = (2𝛽 − 1)/𝛽 they derived the 

formula of  Δ, which is given by, 

𝛥 = {1 − (𝐾
𝛽)

1

1−𝐾𝛽 |1 −
1

𝐾𝛽
|           ,   𝐾 ≠ 1      

1                                                 ,    𝐾 = 1       

 

Most of the previous studied were accomplished by using some restrictions on the 

distributions parameters. For example, without using the assumption 𝛽1 = 𝛽2 = 𝛽 (Al-

Saidy et al., 2005), the above formula of 𝛥 is no longer true. The main goal of this work 

is to introduce a general expression for ∆ under Weibull distributions without using any 

assumptions about the shape or scale parameters. The new expression is provided based 

on numerical integration methods; in particular the trapezoidal and Simpson rules that 

facilitate making inference on ∆. Accordingly, for each numerical integration rule, a new 

maximum likelihood estimator of ∆ is obtained. The finite sample properties of the 

proposed estimators of ∆ are studied and investigated via Monte-Carlo simulation 

technique and real data sets. 

 

2. MAXIMUM LIKELIHOOD ESTIMATORES  

Consider the two independent random samples, 𝑋1, 𝑋2, … , 𝑋𝑛1of size 𝑛1 from 𝑊𝑒(𝛼1,

𝛽1) and  𝑌1, 𝑌2, … , 𝑌𝑛2 is another random sample of size 𝑛2 from 𝑊𝑒(𝛼2, 𝛽2). The log-

likelihood function is, 

  𝑙𝑛𝐿(𝛼1, 𝛽1, 𝛼2, 𝛽2) = 𝑛1𝑙𝑛𝛽1 + 𝑛2𝑙𝑛𝛽2 − (𝑛1𝛽1𝑙𝑛𝛼1 + 𝑛2𝛽2𝑙𝑛𝛼2) +    

+(𝛽1 − 1)∑𝑙𝑛𝑥𝑖

𝑛1

𝑖=1

+ (𝛽2 − 1)∑𝑙𝑛𝑦𝑖

𝑛2

𝑖=1

−
1

𝛼1
𝛽1
∑𝑥𝑖

𝛽1

𝑛1

𝑖=1

−
1

𝛼2
𝛽2
∑𝑦𝑖

𝛽2

𝑛2

𝑖=1

 

The ML estimators of 𝛼1, 𝛽1, 𝛼2 and 𝛽2 are obtained by solving the following equations 

simultaneously,  

1

𝛽1
+
1

𝑛1
∑𝑙𝑛𝑥𝑖

𝑛1

𝑖=1

−
∑ [𝑥𝑖

𝛽1 𝑙𝑛 𝑥𝑖]
𝑛1
𝑖=1

∑ 𝑥𝑖
𝛽1𝑛1

𝑖=1

= 0 

1

𝛽2
+
1

𝑛2
∑𝑙𝑛𝑦𝑖

𝑛2

𝑖=1

−
∑ [𝑦𝑖

𝛽2 𝑙𝑛 𝑦𝑖]
𝑛2
𝑖=1

∑ 𝑦𝑖
𝛽2𝑛2

𝑖=1

= 0 

𝛼1 = (
∑ 𝑥𝑖

𝛽1𝑛1
𝑖=1

𝑛1
)

1
𝛽1

 

and   

𝛼2 = (
∑ 𝑦𝑖

𝛽2𝑛2
𝑖=1

𝑛2
)

1
𝛽2
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If �̂�1, �̂�2, �̂�1 and �̂�2 are the ML estimators of 𝛼1, 𝛼2, 𝛽1and 𝛽2 respectively then the ML 

estimators of 𝑓𝑋(𝑥; 𝛼1, 𝛽1) and 𝑓𝑌(𝑥; 𝛼2, 𝛽2) are 𝑓𝑋(𝑥; �̂�1, �̂�1) and 𝑓𝑌(𝑥; �̂�2, �̂�2) 
respectively. 

 

3. NUMERICAL INTEGRATION METHODS 

Numerical integration method provides a way to solve problems quickly and easily 

with a satisfactory absolute upper error (see Chapra and  Canale [21]). Trapezoidal, 

Simpson 1/3 and Simpson 3/8 rules to approximate the interested integral are adopted in 

this paper. Let ℎ(𝑡) be a continuous function on [𝑎, 𝑏] and let ∆𝑡 =
𝑏−𝑎

𝑘
 , a and b are finite 

real numbers. Suppose that the interval [𝑎, 𝑏] is divided into 𝑘 subintervals each of length 

∆𝑡 as follows, 

𝑎 = 𝑡0 <  𝑡1 <  𝑡2 < … < 𝑡𝑘 = 𝑏, 

where 𝑡𝑖 = 𝑎 + 𝑖∆𝑡 ,   𝑖 = 0, 1, … , 𝑘 − 1. The three interested numerical integration rules 

to approximate ∫ ℎ(𝑡)𝑑𝑡
𝑏

𝑎
 are (Atkinson, 1989), 

 The trapezoidal rule is given by, 

∫ ℎ(𝑡)𝑑𝑡 =  
∆𝑡

2

𝑏

𝑎

[ℎ(𝑎) + 2ℎ(𝑡1) + 2ℎ(𝑡2)…+ 2ℎ(𝑡𝑘−1) + ℎ(𝑏)], 

 The Simpson 1/3 rule is given by, 

∫ ℎ(𝑡)𝑑𝑡 =  
∆𝑡

3

𝑏

𝑎

[ℎ(𝑎) + 4ℎ(𝑡1) + 2ℎ(𝑡2) + ⋯+ 4ℎ(𝑡𝑘−1) + ℎ(𝑏)], 

 The Simpson 3/8 rule is given by, 

∫ ℎ(𝑡)𝑑𝑡
𝑏

𝑎

=
3∆𝑡

8
[ℎ(𝑎) + 3ℎ(𝑡1) + 3ℎ(𝑡2) + 2ℎ(𝑡3) + 3ℎ(𝑡4) + 3ℎ(𝑡5) 

+2ℎ(𝑡6) + ⋯+ 2ℎ(𝑡𝑘−3) + 3ℎ(𝑡𝑘−2) + 3ℎ(𝑡𝑘−1) + ℎ(𝑏)] 

 

4. APPROXIMATION OF 𝜟(𝑿, 𝒀) 

The formula of Weitzman measure ∆(𝑋, 𝑌) between 𝑋 and 𝑌 is, 

 ∆(𝑋, 𝑌) = ∫ 𝑚𝑖𝑛 { 𝑓𝑋(𝑥) ,  𝑓𝑌(𝑥)}𝑑𝑥
∞

0

. 

Let 𝑋 ~ 𝑊𝑒(𝛼1, 𝛽1) and 𝑌 ~ 𝑊𝑒(𝛼2, 𝛽2), where 𝑋 and 𝑌 are independent random 

variables. In this section, different approximations for ∆(𝑋, 𝑌) are given. These 

approximations are derived based on the trapezoidal, Simpson 1/3 and Simpson 3/8 rules. 

In the following three subsections, we assumed that the interval [𝑎, 𝑏] is partitioned into 

the 𝑘 sub-intervals, 
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[𝑎 =  𝑢0,  𝑢1), [ 𝑢1,  𝑢2), [ 𝑢2, 𝑢3), … , [ 𝑢𝑘−1, 𝑢𝑘 = 𝑏], 

where  𝑢𝑖 = 𝑎 + 𝑖
𝑏−𝑎

𝑘
 , 𝑖 = 0,1,2, … , 𝑘 − 1. 

Accordingly, the main interest of this paper is to approximate ∆(𝑋, 𝑌) using numerical 

integration methods which are trapezoidal method and also Simpson methods. These 

methods enable us to estimate ∆(𝑋, 𝑌) without placing any restrictions on the parameters 

of Weibull distributions. These numerical methods require that the integral limits (bounds) 

to be finite. So as a first step, we need to find a suitable transformation that enables us to 

apply them.  

In general, consider the transformation 𝑡 = 𝑊(𝑥), where 𝑊(𝑥) is assumed to be 

continuous increasing function in 𝑥, such that, 𝑊(0) = 𝑎 and 𝑊(∞) = 𝑏, where 𝑎 < 𝑏 

are two finite real numbers. Then 𝑥 = 𝑊−1(𝑡) = (𝑉(𝑡) 𝑠𝑎𝑦) and  
𝑑𝑥

𝑑𝑡
= 𝑉′(𝑡). Therefore,  

∆(𝑋, 𝑌) = ∫ 𝑚𝑖𝑛{ 𝑓𝑋(𝑉(𝑡)) ,  𝑓𝑌 (𝑉(𝑡))}𝑉
′(𝑡)𝑑𝑡.                                             (1)

𝑏

𝑎

 

Now, let ∆(𝑊(𝑋) ,𝑊(𝑌)) be the Weitzman overlapping measure between 𝑊(𝑋) and 

𝑊(𝑌) then we state the following theorem. 

Theorem 1. Let 𝑊 be a continuous increasing (or decreasing) function then,  

∆(𝑊(𝑋) ,𝑊(𝑌)) = ∆(𝑋, 𝑌). 

Which indicates that ∆ is invariant measure with respect to any continuous increasing or 

decreasing function. 

Proof: Let 𝑇1 = 𝑊(𝑋) be a continuous increasing (or decreasing) function of a random 

variable  𝑋. The 𝑝𝑑𝑓 of 𝑇1 is, 

 

𝑓𝑇1(𝑡1) = 𝑓𝑋(𝑉(𝑡1); 𝛼1, 𝛽1)|𝑉′(𝑡1)| 

and the 𝑝𝑑𝑓 of 𝑇2 = 𝑊(𝑌) is, 

𝑓𝑇2(𝑡2) = 𝑓𝑌(𝑉(𝑡2); 𝛼2, 𝛽2)|𝑉′(𝑡2)| 

Therefore,   

∆(𝑊(𝑋) ,𝑊(𝑌)) = ∆(𝑇1 ,  𝑇2) 

                                = ∫ 𝑚𝑖𝑛{𝑓𝑇1(𝑡1) , 𝑓𝑇2(𝑡1)}𝑑𝑡1

𝑏

𝑎

 

                                

= ∫ 𝑚𝑖𝑛{ 𝑓𝑋(𝑉(𝑡1); 𝛼1, 𝛽1)|𝑉′(𝑡1)| ,  𝑓𝑌 (𝑉(𝑡1); 𝛼1, 𝛽1)|𝑉′(𝑡1)|}𝑑𝑡1

𝑏

𝑎

 

                                = ∫ 𝑚𝑖𝑛{ 𝑓𝑋(𝑉(𝑡1); 𝛼1, 𝛽1),  𝑓𝑌 (𝑉(𝑡1); 𝛼1, 𝛽1)}|𝑉′(𝑡1)|𝑑𝑡1

𝑏

𝑎

 

                                = ∆(𝑋, 𝑌). 

The last step is obtained based on Eq. (1). This completes the proof. 



704 O. Eidous and M. Abu Alhija’a / Numerical Integration Approximations 

Now, we can approximate ∆(𝑋, 𝑌) based on Eq. (1). The approximations of ∆(𝑋, 𝑌) 
by using trapezoidal, Simpson 1/3 and Simpson 3/8 rules are as follows: 

Let  ℎ(𝑢) = 𝑚𝑖𝑛{ 𝑓𝑋(𝑉(𝑡1); 𝛼1, 𝛽1),  𝑓𝑌 (𝑉(𝑡1); 𝛼2, 𝛽2)}|𝑉′(𝑡1)|  then, 

                    ∆(𝑋, 𝑌) = ∫ 𝑚𝑖𝑛{ 𝑓𝑋(𝑉(𝑡1); 𝛼1, 𝛽1) ,  𝑓𝑌 (𝑉(𝑡1); 𝛼2, 𝛽2)}|𝑉′(𝑡1)|𝑑𝑡1

𝑏

𝑎

 

                                   =  ∫ ℎ(𝑡1)𝑑𝑡1

𝑏

𝑎

. 

Then the approximations of ∆(𝑋, 𝑌) = ∫ ℎ(𝑡1)𝑑𝑡1
𝑏

𝑎
 by using the numerical integration 

methods are: 

 Trapezoidal Approximation: The approximation of ∆(𝑋, 𝑌) by using 

trapezoidal rule is,  

∆𝑇𝑟𝑎𝑝≅ 
𝑏 − 𝑎

2𝑘
[ℎ(𝑎) + 2∑ℎ(𝑢𝑗)

𝑘−1

𝑗=1

+ ℎ(𝑏)]. 

 Simpson 1/3 Approximation: The approximation of ∆(𝑋, 𝑌) by using Simpson 

1/3 rule is (𝑘 is an integer positive number and a multiple of 2), 

∆𝑆𝑖𝑚𝑝1≅ 
𝑏 − 𝑎

3𝑘
[ℎ(𝑎) + 4∑ℎ(𝑢2𝑗−1)

𝑘/2

𝑗=1

+ 2 ∑ ℎ(𝑢2𝑗)

𝑘/2−1

𝑗=1

+ ℎ(𝑏)]. 

 Simpson 3/8 Approximation: The approximation of ∆(𝑋, 𝑌) by using Simpson 

3/8 rule is (𝑘 is an integer positive number and a multiple of 3), 

∆𝑆𝑖𝑚𝑝2≅ 
3(𝑏 − 𝑎)

8𝑘

{
 

 

ℎ(𝑎) + 3 ∑ ℎ(𝑢𝑗)

𝑘−1

𝑗=1
𝑗≠3𝑚

+ 2 ∑ ℎ(𝑢3𝑗)

𝑘/3−1

𝑗=1

+ ℎ(𝑏)

}
 

 

,𝑚 ∈ 𝑁0. 

 

5. ESTIMATION OF 𝜟(𝑿, 𝒀) 

Let �̂�1, �̂�2, �̂�1 and �̂�2 be the ML estimators of 𝛼1, 𝛼2, 𝛽1 and 𝛽2 respectively then the 

ML estimators of 𝑓𝑋(𝑥; 𝛼1, 𝛽1) and 𝑓𝑌(𝑥; 𝛼2, 𝛽2) are 𝑓𝑋(𝑥; �̂�1, �̂�1) and 𝑓𝑌(𝑥; �̂�2, �̂�2) 
respectively. Eidous and AL-Maqableh [22] suggested the following maximum likelihood 

estimator for ∆(𝑋, 𝑌). Their work depends entirely on writing the formula of ∆(𝑋, 𝑌) as 

an expected value of some function(s), and then they estimated the resulting expected 

value(s) by using the method of moments (See also Eidous and Al-Talafhah [23]). The 

estimator of ∆(𝑋, 𝑌) is,  
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  ∆̂𝐸𝑀=
1

2
[
1

𝑛1
∑(

𝑚𝑖𝑛{𝑓𝑋(𝑋𝑘; �̂�1, �̂�1), 𝑓𝑌(𝑋𝑘; �̂�2, �̂�2)}

𝑓𝑋(𝑋𝑘; �̂�1, �̂�1)
)

𝑛1

𝑘=1

+
1

𝑛2
∑(

𝑚𝑖𝑛{𝑓𝑋(𝑌𝑘; �̂�1, �̂�1), 𝑓𝑌(𝑌𝑘; �̂�2, �̂�2)}

𝑓𝑌(𝑌𝑘; �̂�1, �̂�1)
)

𝑛2

𝑘=1

] 

The proposed estimators of ∆(𝑋, 𝑌) can be obtained simply by substituting the ML 

estimators 𝑓𝑋(. ; �̂�1, �̂�1) and 𝑓𝑌(. ; �̂�2, �̂�2) of 𝑓𝑋(. ; 𝛼1, 𝛽1) and 𝑓𝑌(. ; 𝛼2, 𝛽2) back into ℎ(𝑢) 

to obtain the corresponding estimators of ∆𝑇𝑟𝑎𝑝, ∆𝑆𝑖𝑚𝑝1 and ∆𝑆𝑖𝑚𝑝2. Briefly, the proposed 

estimators of ∆(𝑋, 𝑌) are given as follows:  

Let  ℎ̂(𝑡) = 𝑚𝑖𝑛{ 𝑓𝑋(𝑉(𝑡1); �̂�1, �̂�1),  𝑓𝑌 (𝑉(𝑡1); �̂�2, �̂�2)}𝑉′(𝑡1)  then, 

 The proposed estimators of ∆(𝑋, 𝑌) that corresponding the trapezoidal 

approximation is, 

∆̂𝑇𝑟𝑎𝑝= 
𝑏 − 𝑎

2𝑘
[ℎ̂(𝑎) + 2∑ℎ̂(𝑢𝑗)

𝑘−1

𝑗=1

+ ℎ̂(𝑏)]. 

 The proposed estimators of ∆(𝑋, 𝑌) that corresponding Simpson 1/3 

approximation is 

∆̂𝑆𝑖𝑚𝑝1=
𝑏 − 𝑎

3𝑘
[ℎ̂(𝑎) + 4∑ℎ̂(𝑢2𝑗−1)

𝑘/2

𝑗=1

+ 2 ∑ ℎ̂(𝑢2𝑗)

𝑘/2−1

𝑗=1

+ ℎ̂(𝑏)]. 

 The proposed estimators of ∆(𝑋, 𝑌) that corresponding Simpson 3/8 

approximation is, 

∆̂𝑆𝑖𝑚𝑝2= 
3(𝑏 − 𝑎)

8𝑘

{
 

 

ℎ̂(𝑎) + 3 ∑ ℎ̂(𝑢𝑗)

𝑘−1

𝑗=1
𝑗≠3𝑚

+ 2 ∑ ℎ̂(𝑢3𝑗)

𝑘/3−1

𝑗=1

+ ℎ̂(𝑏)

}
 

 

,𝑚 ∈ 𝑁0. 

 

6. NUMBER OF PARTITIONS AND TRANSFORMATION 

To implement the different proposed estimators of ∆(𝑋, 𝑌) that stated in the previous 

section in practice, two quantities are to be determined. The first quantity is the number of 

partitions (subintervals) 𝑘. In this study, we suggest to take its value to be 𝑘 = 𝑚𝑖𝑛 {𝑛1, 𝑛2}. 
It is well known that the maximum absolute error of the different numerical integral 

approximation decreases as the number of partitions 𝑘 increases [21]. However, a 

preliminary simulation study was performed for different values of 𝑘 greater than  

𝑚𝑖𝑛 {𝑛1, 𝑛2}, it is found that there is no significant improvement in the estimation process 

for the different proposed estimators by taking 𝑘 > min {𝑛1, 𝑛2}.    
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The second quantity is the transformation function  𝑊. Let 𝑍 be a continuous random 

variable with cumulative distribution function 𝐹𝑍(𝑧), 𝑧 ≥ 0 then our special interest is to 

take 𝑊(𝑥) = 𝐹𝑍(𝑥). In this case, 𝑎 = 𝑊(0) = 0 and 𝑏 = 𝑊(∞) = 1. More specifically, 

we consider the following transformation in our simulation study in the next section, 

𝐹𝑍(𝑥) = 1 − 𝑒
−𝑥 ,   0 ≤ 𝑥 < ∞.  

That is, 𝑍~exp(1) = 𝑊𝑒(1,1). In addition, and to study the effect of the selected 

transformation on the estimation process we also take 𝑍~𝑊𝑒(1, 2). In general, let 

𝑍~𝑊𝑒(1, 𝜃)  then, 

𝐹𝑍(𝑥) = 1 − 𝑒
−𝑥𝜃 ,   0 ≤ 𝑥 < ∞. 

In this case, 𝑡 = 𝑊(𝑥) = 𝐹𝑍(𝑥) = 1 − 𝑒
−𝑥𝜃 . The inverse transformation is 𝑥 =

𝑉(𝑡) = (−𝑙𝑛 (1 − 𝑡))1/𝜃 and 𝑑𝑥 = 𝑉′(𝑡)𝑑𝑡 =
(− ln(1−𝑡))1/𝜃

𝜃(1−𝑡)
𝑑𝑡.  

 

7. SIMULATION STUDY AND RESULTS 

In this section, a Monte Carlo simulation study is conducted to justify the performances 

of the proposed estimators Δ̂𝑇𝑟𝑎𝑝, Δ̂𝑆𝑖𝑚𝑝1 and Δ̂𝑆𝑖𝑚𝑝2 of Δ. The transformation 𝐹𝑍(𝑥) =

1 − 𝑒−𝑥
𝜃  with 𝜃 = 1, 2  is used for each of the proposed estimator. For sake of 

comparison, the estimator ∆̂𝐸𝑀 that suggested by Eidous and AL-Maqableh [22] is also 

considered.  

Two random samples are simulated from two Weibull distributions. The first sample 

𝑥1, 𝑥2, … , 𝑥𝑛1 is simulated from 𝑓𝑋(𝑥) = 𝑊𝑒(𝛼1, 𝛽1), while the second sample 

𝑦1, 𝑦2, … , 𝑦𝑛2 is generated from  𝑓𝑌(𝑦) = 𝑊𝑒(𝛼2, 𝛽2), where 𝑓𝑋(𝑥) and 𝑓𝑌(𝑦) and the 

corresponding choosing parameters are given in Table (1). Also, the exact values of Δ for 

each pair of selection are also provided. Despite that the process of selection parameters 

seems to be arbitrary, we take into account that our selection should vary the exact values 

of Δ  from 0 to 1. That is, the selection gives the values of Δ to be small (near zero), 

moderate (around one-half) and large (near one). For each pair of densities, the size of 

simulated data are (𝑛1, 𝑛2) = (12,12), (24, 30), (96,180). All simulation results are 

calculated by using Mathematica Version 7. 

Table 1: The simulated pair of distributions and the corresponding exact values of Δ.  

Exact ∆ 𝑓𝑌(𝑦) 𝑓𝑋(𝑥) Weibull Distributions 

0.929 We(1.9, 1.1) We(2,1) Case (1) 

0.4370 We(2.1, 1.8) We(4,1) Case (2) 

0.0144 We(6.0, 5.0) We(2,1) Case (3) 
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The empirical results were calculated based on one thousand replication (Rep = 1000). 

For each estimator, we computed the Relative Bias (RB), Relative Mean Square Error 

(RMSE) and Efficiency (EFF), which are defined by, 

𝑅𝐵 =
�̂�(𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑜𝑟) − 𝑒𝑥𝑎𝑐𝑡

𝑒𝑥𝑎𝑐𝑡
, 

M. Eidous and M. Abu Alhija’a  /  Numerical Integration Approximations to Estimate 

𝑅𝑀𝑆𝐸 =
√𝑀𝑆�̂�(𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑜𝑟)

𝑒𝑥𝑎𝑐𝑡
 

and 

𝐸𝐹𝐹 =
𝑀𝑆�̂�(∆̂𝐸𝑀)

𝑀𝑆�̂�(𝑝𝑟𝑜𝑝𝑜𝑠𝑒𝑑 𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑜𝑟)
 

For example, if ∆̂ is the estimator of ∆ and if ∆̂(𝑗) is the value of ∆̂ computed based on a 

sample of iteration  𝑗, 𝑗 = 1, 2, … , 𝑅𝑒𝑝 = 1000 then, 

�̂�(∆̂) =
∑ ∆̂(𝑗)
𝑅𝑒𝑝
𝑗=1

𝑅𝑒𝑝
, 

𝑀𝑆�̂�(∆̂) =
∑ (∆̂(𝑗) − 𝐸(∆̂))

2
𝑅𝑒𝑝
𝑗=1

𝑅𝑒𝑝
. 

and the EFF of ∆̂ with respect to ∆̂𝐸𝑀 is, 

𝐸𝐹𝐹 =
𝑀𝑆�̂�(∆̂𝐸𝑀 )

𝑀𝑆�̂�(�̂�)
.  

All computations and outputs of the simulation study are showed in Table (2). Based 

on these outputs we can summarize the results as follows. 

 The effect of transformation selection: To study the effect of the selected 

transformation on the performance of the proposed estimators of ∆, the two 

transformations 𝐹𝑍(𝑥) = 1 − 𝑒
−𝑥𝜃 , 𝜃 = 1, 2 were studied. The two selected 

transformations (i.e. 𝜃 = 1, 2) give acceptable results for our proposed estimators. 

It is clear from the simulation results that these estimators are sensitive to the 

transformation selection. This can be inferred by examining and comparing the 

values of RMSEs and then the values of EFFs values associated with the proposed 

estimators when 𝜃 = 1 and when 𝜃 = 2 for different sample sizes. However, 

based on the simulation results, we recommend taking 𝜃 = 1.  

 The effect of the selected numerical rule: The three proposed estimators ∆̂𝑇𝑟𝑎𝑝,

∆̂𝑆𝑖𝑚𝑝1 and  ∆̂𝑆𝑖𝑚𝑝2 are obtained based on trapezoidal, Simpson 1/3 and Simpson 

3/8 rules respectively. By examining the simulation results related to these rules 

and by comparing between them, it is clear that the three rules give similar results 

for different sample sizes. In general, their results coincide when the sample sizes 
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get larger. This indicates that using any of these three rules is equivalent to use 

the other to estimate ∆.  

 Properties and performances of the various estimators:  

1. It is clear that the MSE values of the different estimators of ∆ decrease with 

increasing sample sizes. This indicates the various estimators are consistent. 

2. Most of the |𝑅𝐵|𝑠 values of the proposed estimators are small for different sample 

sizes. As the sample sizes increase the associated |𝑅𝐵| of the different estimators 

become negligible for most considered cases.  

3. For the three simulated cases and based on the MSE and EFF values of all 

estimators, it is clear that the performances of the proposed estimators are better 

than that of Eidous and Al-Magableh [22] estimator for almost all considered 

cases. This feature becomes more evident when the exact value of ∆ is small. 

Table 2: The RB, RMSE and EFF of the estimators ∆̂𝐸𝑀 , ∆̂𝑇𝑟𝑎𝑝, ∆̂𝑆𝑖𝑚𝑝1 and  ∆̂𝑆𝑖𝑚𝑝2 when the data 

are simulated from pair Weibull distributions as given in Table (1). 

5 𝜃 = 1  

∆̂𝑆𝑖𝑚𝑝2 ∆̂𝑆𝑖𝑚𝑝1 ∆̂𝑇𝑟𝑎𝑝 ∆̂𝐸𝑀 ∆̂𝑆𝑖𝑚𝑝2 ∆̂𝑆𝑖𝑚𝑝1 ∆̂𝑇𝑟𝑎𝑝 ∆̂𝐸𝑀  (𝑛1, 𝑛2) 

Case 1 

-0.165 -0.160 -0.182 -0.118 -0.119 -0.118 -0.118 -0.120 RB 

(12,12) 
0.2058 0.2025 0.2176 0.1830 0.1777 0.1768 0.1767 0.1809 RMSE 

0.790 0.816 0.707 1.000 1.036 1.047 1.048 1.000 EFF 

-0.0924 -0.0893 -0.102 -0.0614 -0.0592 -0.0591 -0.0594 -0.0596 RB 

(24,30) 
0.1266 0.1248 0.1324 0.1157 0.1112 0.1112 0.1112 0.1123 RMSE 

0.836 0.859 0.764 1.000 1.020 1.020 1.019 1.000 EFF 

-0.0209 -0.0199 -0.0236 -0.0116 -0.0116 -0.0116 -0.0117 -0.0118 RB 

(96,180) 
0.0489 0.0486 0.0497 0.0482 0.0484 0.0484 0.0484 0.0488 RMSE 

0.973 0.982 0.940 1.000 1.016 1.016 1.016 1.000 EFF 

Case 2 

-0.0957 -0.0977 -0.0959 -0.0836 -0.117 -0.113 -0.113 -0.0858 RB 

(12,12) 
0.2822 0.2780 0.2776 0.2829 0.2798 0.2881 0.2874 0.2880 RMSE 

1.004 1.035 1.038 1.000 1.060 1.000 1.005 1.000 EFF 

-0.0412 -0.0423 -0.0429 -0.0319 -0.0527 -0.0506 -0.0529 -0.0455 RB 

(24,30) 
0.1703 0.1706 0.1707 0.1784 0.1737 0.1736 0.1773 0.1855 RMSE 

1.098 1.094 1.093 1.000 1.141 1.143 1.095 1.000 EFF 

-0.0091 -0.0091 -0.0091 -0.0077 -0.0131 -0.0132 -0.0131 -0.0123 RB 

(96,180) 
0.0709 0.0708 0.0708 0.0770 0.0747 0.0746 0.0746 0.0799 RMSE 

1.181 1.182 1.182 1.000 1.144 1.146 1.146 1.000 EFF 
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5 𝜃 = 1  

∆̂𝑆𝑖𝑚𝑝2 ∆̂𝑆𝑖𝑚𝑝1 ∆̂𝑇𝑟𝑎𝑝 ∆̂𝐸𝑀 ∆̂𝑆𝑖𝑚𝑝2 ∆̂𝑆𝑖𝑚𝑝1 ∆̂𝑇𝑟𝑎𝑝 ∆̂𝐸𝑀  (𝑛1, 𝑛2) 

Case 3 

-0.812 -0.799 -0.827 -0.204 0.0612 0.0963 -0.0334 -0.229 RB 

(12,12) 0.8627 0.8564 0.8700 1.402 1.207 1.302 1.095 1.412 RMSE 

2.64 2.68 2.60 1.000 1.368 1.177 1.663 1.000 EFF 

-0.719 -0.701 -0.739 -0.171 -0.0063 -0.0306 -0.0031 -0.0894 RB 

(24,30) 0.7631 0.7513 0.7771 0.9160 0.7696 0.7229 0.7476 0.9889 RMSE 

1.441 1.486 1.389 1.000 1.651 1.872 1.750 1.000 EFF 

-0.375 -0.345 -0.413 -0.0071 -0.0397 -0.0391 -0.0392 -0.0625 RB 

(96,180) 0.4200 0.3969 0.4498 0.4546 0.3168 0.3182 0.3177 0.4389 RMSE 

1.171 1.312 1.021 1.000 1.919 1.902 1.908 1.000 EFF 

 

 

8. REAL DATA ANALYSIS 

In this section, two sets of data have been taken to be used as an application to calculate 

and investigate the properties of various estimators of ∆. The first set (Data set I) consists 

of 69 values representing the measured strength in the GPA of a single carbon fiber with a 

length of 20 mm. The second set (data set II) consists of 63 observations and represents 

the measured strength in GPA of single carbon fibers with a length of 50 mm. The 

measurements of the two sets are reproduced here and are as follows: 
Data set I  (𝑥𝑖 , 𝑖 = 1,2, … ,69): 

1.312 1.314 1.479 1.552 1.700 1.803 1.861 1.865 1.944 1.958 1.966 1.997 2.006 2.021 

2.027 2.055 2.063 2.098 2.140 2.179 2.224 2.240 2.253 2.270 2.272 2.274 2.301 2.301 

2.359 2.382 2.382 2.426 2.434 2.435 2.478 2.490 2.511 2.514 2.535 2.554 2.566 2.570 

2.586 2.629 2.633 2.642 2.648 2.684 2.697 2.726 2.770 2.773 2.800 2.809 2.818 2.821 

2.848 2.880 2.954 3.012 3.067 3.084 3.090 3.096 3.128 3.233 3.433 3.585 3.585. 

 

Data set II (𝑦𝑖 , 𝑖 = 1,2, … ,63)∶ 
1.901 2.132 2.203 2.228 2.257 2.350 2.361 2.396 2.397 2.445 2.454 2.474 2.518 2.522 

2.525 2.532 2.575 2.614 2.616 2.618 2.624 2.659 2.675 2.738 2.740 2.856 2.917 2.928 

2.937 2.937 2.977 2.996 3.030 3.125 3.139 3.145 3.220 3.223 3.235 3.243 3.264 3.272 

3.294 3.332 3.346 3.377 3.408 3.435 3.493 3.501 3.537 3.554 3.562 3.628 3.852 3.871 

3.886 3.971 4.024 4.027 4.225 4.395 5.020. 

 

These data were originally reported and analyzed by Badar and Priest [24]. Also, some 

authors analyzed these data in the system of reliability to estimate the well-known quantity 

𝑃(𝑋 < 𝑌) subject to Weibull distribution (See, Gül Akgü and Şenoğlu [25] and Almarashi 

et al. [26]) . 

The values of the parameters were calculated using the maximum likelihood method, 

which gave �̂�1 = 2.65086, �̂�2 = 3.31472,  �̂�1 = 5.50485 and �̂�2 = 5.04941. Based on 

these values, we obtain, 
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                                   ∆̂(𝑋, 𝑌) = ∫ 𝑚𝑖𝑛 {𝑊𝑒(�̂�1, �̂�1) ,𝑊𝑒(�̂�2, �̂�2)}𝑑𝑥
∞

0

 

                                                  = 0.591011. 

For illustration, the plot of the Weibull distribution for each data set together with its 

histogram is depicted in Figure (2). In addition, Figure (3) gives the overlapping area under 

the two Weibull distributions. The values of the three proposed estimators ∆̂𝑇𝑟𝑎𝑝, ∆̂𝑆𝑖𝑚𝑝1, 

∆̂𝑆𝑖𝑚𝑝2 and the estimator ∆̂𝐸𝑀 (Eidous and AL-Maqableh [22]) of 𝛥 together with their 

biases, standard deviations (SD) and mean square errors (MSE) are given in Table (3). 

These statistical properties are computed by using the Bootstrap method with 500 

replications (For the use of bootstrap method, see Mulekar and Mishra [16]). As we can 

see from Table (3), the MSEs of the proposed estimators are less than that of ∆̂𝐸𝑀 , and 

this supports our conclusion based on the simulation results. 

 

 
       (a)                                                              (b) 

Figure 1: a. Histogram and 𝑊𝑒(2.65086, 5.50485) curve for the first data set and b. Histogram 

and 𝑊𝑒(3.31472, 5.04941) curve for the second data set 

 

 
Figure 2: The overlapping area (shaded area) of the two data sets based on 𝑊𝑒(2.65086,

5.50485) and 𝑊𝑒(3.31472, 5.04941). The shaded area, ∆̂(𝑋, 𝑌) = 0.591011 
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Table 3: The approximate Bias, SD and MSE for each considered estimators of  𝛥. 

 Estimator                 Bias                    SD                     MSE  

∆̂𝐸𝑀 

∆̂𝑇𝑟𝑎𝑝 

∆̂𝑆𝑖𝑚𝑝1 

∆̂𝑆𝑖𝑚𝑝2 

0.601533              -0.009152             0.062198             0.003952 

0.590232              -0.008275             0.059551             0.003615 

0.589878              -0.007857             0.059125            0.003558 

0.589482              -0.007968             0.059297            0.003580 

9. CONCLUSION 
The purpose of this study was to establish a new technique for estimating the Weitzman 

coefficient ∆(𝑋, 𝑌) under a pair of Weibull distributions based on numerical integration 

methods. The benefit of the proposed technique is to estimate ∆(𝑋, 𝑌) without setting any 

conditions on the parameters of the Weibull distributions. The numerical results showed 

that the new technique is effective and that the performance of the produced estimators is 

better than the performance of the estimator developed by Eidous and Al-Maqableh [22]. 

Therefore, this technique can be used to estimate the other OVL coefficients mentioned in 

the literature, such as the Matusita coefficient (Eidous and Al-Shorman [27] and Eidous 

and Abu Al-Hayja`a [28]) and Pianka and Kullback-Leibler coefficients (Eidous and Abu 

Al-Hayja`a [29]) without specifying any conditions on the parameters of the distributions 

under study. 
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