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Abstract: Decision-making problems can often be effectively solved using traditional 

optimization methods that have a clearly defined configuration. However, in real-world 

scenarios, decision-makers frequently encounter doubt or hesitation, making it challenging 

to precisely specify certain parameters. As a result, they often seek input from different 

experts, leading to conflicting values and varying levels of satisfaction among decision-

makers. This uncertainty and lack of crisp values make decision-making problems 

inherently non-deterministic. In this paper, a novel Pythagorean hesitant fuzzy (PHF) 

programming method is designed to address the challenges of optimization problems with 

multiple objectives. Here PHF aggregation operators are used to aggregate the PHF 

memberships and non-memberships of the objectives. Additionally, to account the 

uncertainties of the parameters of the optimization problem Parabolic Pythagorean fuzzy 

number is used and centroid method is applied for defuzzification. We solved an example 

of multi objective optimization problem of manufacturing system to demonstrate our 

proposed method and finally, presented a case study on reliability optimization model for 

Life Support Systems, where the primary objectives are to maximize system reliability and 

minimize cost. The result is compared with other existing methods by degree of closeness. 

Keywords: Parabolic Pythagorean fuzzy number, Pythagorean hesitant fuzzy set, 

Pythagorean hesitant fuzzy aggregation operator, multi objective reliability optimization. 

MSC: 03B52, 90C29, 90B25, 90B30. 

https://doi.org/10.2298/YJOR230417024J


S. Jana and S. Islam / A Pythagorean Hesitant Fuzzy Programming Approach 202 

1. INTRODUCTION 

In today's complex and uncertain world, decision-making procedures frequently entail 

a number of competing goals that need to be optimized to achieve the most desirable 

outcomes. Such situations are prevalent in various disciplines including engineering, 

finance, transportation, and environmental management, where reliability is a critical 

concern. Although it might be challenging to find optimal solution that successfully 

addresses all goals, so decision makers (DMs) accept compromise solutions. Most of the 

time the goal of the DMs and the parameter in the objective and constraints are not 

precisely known. To deal with such issues like ambiguity and inaccuracy that inevitably 

arise in decision-making problems, Zadeh [1] invented fuzzy sets (FSs). Later on, Bellman 

and Zadeh [2] presented fuzzy decision set  in uncertainty and ambiguity situations. Then 

to solve uncertain optimization problem, Zimmerman [3] introduced fuzzy programming 

approach. Various fuzzy programming methods have been proposed in literature to solve 

multi-objective optimization problem (MOOP) including transportation, supplier 

selection, inventory control, portfolio management, reliability optimization, etc. In order 

to find the best compromise solution to a multi-objective transportation problem, El-

Wahed [4] introduced fuzzy programming approach. Parra et al.  [5] found optimal 

portfolio of investors using fuzzy goal programming. Mahapatra et al. [6] solved reliability 

optimization model of series system by introducing max-min and max-additive operators 

based fuzzy goal geometric programming. Majumder et al. [7] used uncertainty theory to 

create three separate models allowed them to address the problem of multi-item fixed 

charge solid transportation. Further, Majumder et al. [8] used a chance constraint model 

and an expected value model to solve the multi-objective shortest route problem by treating 

the parameters as uncertain variables. An uncertain variable-based multi-objective minimal 

spanning tree problem is solved by Majumder et al. [9]. Afterword, Majumder et al. [10] 

solved the multi-objective mean entropy portfolio selection issue by making use of the 

investors' hazy securities. 

In fuzzy environment, only membership degree of an element is considered which is 

not fulfill DMs choice every time. Most of the time non-membership degree with 

membership is required to express the uncertainty in optimization goal, parameters and 

solution set involved in the problem. To overcome this, Atanassov [11] invented the idea 

of intuitionistic fuzzy (IF) set (IFS) as generalized version of FS where the membership 

and non-membership degrees added together are less than or equal to one. After that, 

Angelov [12] proposed a programming approach in IF environment to solve MOOP 

considering IF decision set. Further, lots of work has been done to solve MOOP in IF 

environments. Dey and Roy [13] developed an IF programming approach to find the 

optimal design of multi objective plane truss structure. Garg et al. [14] solved reliability 

optimization problem (ROP) by IF optimization technique in interval environment. A 

optimization model of biological treatment process on industrial waste water is solved by 

Ghosh P. et al. [15] using IF goal geometric programming.  

Reliability engineering is a crucial phase in the design and creation of a technological 

system. Considering availability of system resources effective technique to improve 

system reliability has always been the reliability engineer's top priority. The optimization 

model includes a variety of coefficients and parameters that are constantly inaccurate and 

ambiguous in nature due to the DM's uncertainty in everyday life. A fuzzy technique is 

used to analyze this type of nature in MOOP. Ravi et al. [16] complex system reliability 
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optimization model as fuzzy MOOP. Sharma et al. [17] presented an analysis of system 

reliability in IF environment. Islam and Kundu [18] applied neutrosophic optimization 

technique to solve complex system reliability optimization model (ROM). A neutrosophic 

goal geometric programming approach is presented by  Kundu and Islam [19]  to solve 

multi objective ROP. 

Yager [20] presented Pythagorean fuzzy (PF) set (PFS) as generalization of FS and IFS 

where the sum of the squares of the membership and non-membership degrees is ≤ 1. In 

last few years many decision-making problems has been solved in PF environment. 

Recently Fei et al. [21] solved a decision making problem considering Pythagorean fuzzy 

number (PFN) and interval valued PFN. Akram et al. [22] solved fully Pythagorean fuzzy 

linear programming problem considering triangular PFN. In a PF environment, Luqman et 

al. [23] designed digraph and matrix technique to assess risk in a Failure Mode and Effects 

Analysis. A minimal spanning tree agglomerative hierarchical clustering technique is 

proposed by Habib et al. [24] utilizing PF distance and similarity measurements. By taking 

into account linguistic capacities and flows, Akram et al. [25] created a novel Pythagorean 

fuzzy maximum flow method to handle various optimization problems using PF 

information. To handle the multi-attribute decision-making problem in a PF environment, 

Wan et al. [26] designed a Pythagorean fuzzy mathematical programming approach. 

 

The main motivation of this study: 

Most of the current approaches presented in the literature integrate multiple 

objectives into a single objective by using real-valued and utility functions. The 

utility functions can be expressed in many different ways, including the product form, max-

min, weighted max-min and weighted sum. Typically, these approaches employ the 

preferences of the DM. Using a useful function, this choice is converted to a mathematical 

expression. For instance, the weighted sum method can't guarantee that the levels of 

achievement of fuzzy goals are consistent with desired relative weights or the expectations 

of the DM. Zimmermann [3] employed the "min" operator in his suggested fuzzy 

programming technique due to the ease of calculation, it does not guarantee a solution 

which is free of dominance. Li and Lai [27] developed some aggregation operators based 

on weighted root-power mean to solve the multi-objective transportation problem 

worldwide in order to get over the aforementioned limitation. Further, Liu et al. [28] used 

a modified s-curve membership function to address the supplier selection problem by 

weighted root mean power aggregation operator. 

In the decision-making process, hesitation is actually a trivial concern. It describes the 

situation in which the decision-maker(s) are unsure of the precise values of the parameters, 

though there is considerable uncertainty around a few possible outcomes. It may be 

handled using a hesitant fuzzy (HF) set (HFS) [29] by assigning a set of varying 

membership degrees to an element in the set. A hesitant mathematical programming 

approach was created Zhang et al. [30] to address MCDM issues in the context of HF 

elements. Bharati [31] suggested a HF computational technique for the production 

planning problem. Additionally, aggregation procedures that were based on HFSs were 

expanded. A novel set of hesitant aggregation operators was addressed by Xia et al. [32] 

and their use in decision-making problems was provided. Additionally, Xia and Xu [33] 

established number of hesitant aggregations operators and demonstrated how to employ 

them to address decision-making issues. For hybrid multi-criteria group decision making 

with incomplete criterion weight information and HF membership degrees, Xu et al. [34] 
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suggested a new HF mathematical programming technique. In order to build a HF 

programming approach based on the linear programming methodology for 

multidimensional analysis of preference, Wan et al. [35] investigated a hybrid problem of 

multiple attribute decision making with unreliable attribute weight data. Recently F. 

Ahmad et al. [36] proposed a optimization method to solve optimization problem taking 

the advantage of HF aggregation operator. 

 Further, as an extension of hesitant FS, hesitant IFS, hesitant PFS are suggested to 

solve MOOP. Recently Bharti [37] developed an interactive optimization algorithm in 

hesitant IF environment to solve linear optimization problem. Adhami and Ahmad [38] 

solved transportation problem by introducing an interactive optimization algorithm in 

Pythagorean hesitant fuzzy (PHF) environment. Khan M.S.A et al. [39] introduced PHF 

aggregation operator (PHFAO) to solve multi criterion decision making problem. Later on, 

extension of PHFAO is established and applied to   MCDM problem [40-41]. Best of our 

knowledge still there are no use of PHFAO to solve MOOP. Fulfilling this gap in this study 

we have presented an optimization algorithm using PHF weighted averaging (PHFWA) 

operator and PHF weighted geometric (PHFWG) operator. Also, here the parameters of 

the problem are taken as parabolic PFN (PPFN) and centroid method is used for 

defuzzification. To illustrate the validity and acceptability of the proposed method, a 

mathematical model of manufacturing system, a ROM for a life support system is solved, 

and the outcomes are compared to the existing approach using HF aggregation operator by 

closeness degree to ideal solution [42].  

The main contribution of this study are as follows: 

1) To handle the uncertain parameter of the optimization problem we presented 

PPFN. 

2) A PHF programming approach is developed to solve MOOP by using the 

weighted sum of aggregated PHF membership and non-membership. 

3) To demonstrate the effectiveness of the suggested approach, we addressed a 

practical manufacturing system and a real-world multi-objective ROM 

concerning the life support system within a space capsule. We then conducted a 

comparative analysis of the outcomes against established methods.  

4) By varying the weight, sensitivity analysis of the results is shown and compare 

the results by degree of closeness to ideal solution. 

The remaining portions of the paper are arranged as: section 2 describes the basic 

definitions, PPFN and PHFAO. In section 3, a MOOP using PHFAO is formulated. 

Application of the proposed method on multi objective ROP is shown in section 4. The 

result and discussion part are in section 5, The limitation of this article is highlighted in 

section 6 and at last the conclusion of the article is discussed in section 7. 

 

2. PRELIMINARIES 

2.1. Basic definitions 

We have discussed some fundamental definitions of terms related to various fuzzy sets 

in this section. 
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Definition 1 (HFS [27]). 𝑋 be a fixed set, a HFS, A on 𝑋 is defined as 𝐴 =
{⟨𝑥, ℎ𝐴(𝑥)⟩ ∣ 𝑥 ∈ 𝑋} , where ℎ𝐴(𝑥) is a collection of finite membership values in [0, 1]. 

ℎ𝐴(𝑥) is referred to as a HF element also. 

Definition 𝟐 [31]. The intersection of two HFSs ℎ1 and ℎ2in a given set X is defined as 

follows: 

ℎ1 ∩ ℎ2 =∪𝛼1∈ℎ1,𝛼2∈ℎ2 min{𝛼1, 𝛼2} 

Definition 3. PFS [20]. Given a set  𝑆, the following is the PFS, �̃� in 𝑆 using ordered 

triplets: 

�̃� = {𝑠, 𝜇�̃�(𝑆), 𝑣�̃�(𝑆) ∣ 𝑠 ∈ 𝑆} 

where 𝜇�̃�(𝑠),𝑣�̃�(𝑠): 𝑆 → [0,1] are membership and non-membership function of the 

element 𝑥 into the set �̃�, respectively, with  0 ≤ 𝜇�̃�(𝑠)
2 + 𝑣�̃�(𝑠)

2 ≤ 1. Additionally, the 

value of uncertainty is indicated by√1 − 𝜇�̃�(𝑠)
2 − 𝑣�̃�(𝑠)

2. The PFS differs from IFS in 

that it places limits on the squares of the membership and non-membership degrees added 

together. 

Definition 4. PHFS [38]. 𝑌 be an arbitrary set. The following describes a PHFS on 

Y:  𝑃ℎ = {〈𝑦, 𝜇𝑃ℎ(𝑦), 𝑣𝑃ℎ(𝑦)〉 ∣ 𝑦 ∈ 𝑌}, where 𝜇𝑃ℎ(𝑦), 𝑣𝑃ℎ(𝑦) are finite values in [0, 1], 

representing degrees of PHF membership and non-membership of  𝑦 to 𝑃ℎ, with  0 ≤
𝛼, 𝛽 ≤ 1 and 0 ≤ 𝛼2 + 𝛽2 ≤ 1, where 𝛼 ∈ 𝜇𝑃ℎ(𝑦), 𝛽 ∈ 𝑣𝑃ℎ(𝑦) for all 𝑦 ∈ 𝑌. For 

simplicity, the 𝑃ℎ(𝑦) = {𝜇𝑃ℎ(𝑦), 𝑣𝑃ℎ(𝑦)} is called a PHF element. 

Definition 5. [38]. The union of two PHFSs 𝑃ℎ1  and 𝑃ℎ2  in on an arbitrary set Y can be 

defined as follows: 

𝑃ℎ1 ∪ 𝑃ℎ2 = {𝜇ℎ ∈ (𝜇ℎ1 ∪ 𝜇ℎ2) ∣ 𝜇ℎ ≥ 𝑚𝑎𝑥(𝑚𝑖𝑛{𝜇ℎ1 ∪ 𝜇ℎ2}),

𝑣ℎ ∈ (𝑣ℎ1 ∪ 𝑣ℎ2) ∣ 𝑣ℎ ≤ 𝑚𝑖𝑛(𝑚𝑎𝑥{𝑣ℎ1 ∪ 𝑣ℎ2})}
 

Definition 6. [38]. The intersection of two PHFSs 𝑃ℎ1  and 𝑃ℎ2  in on an arbitrary set Y can 

be defined as follows:  

𝑃ℎ1 ∩ 𝑃ℎ2 = {𝜇ℎ ∈ (𝜇ℎ1 ∩ 𝜇ℎ2) ∣ 𝜇ℎ ≤ 𝑚𝑖𝑛(𝑚𝑎𝑥{𝜇ℎ1 ∩ 𝜇ℎ2}),

𝑣ℎ ∈ (𝑣ℎ1 ∩ 𝑣ℎ2) ∣ 𝑣ℎ ≥ 𝑚𝑎𝑥(𝑚𝑖𝑛{𝑣ℎ1 ∩ 𝑣ℎ2})}
 

2.2. Parabolic Pythagorean fuzzy number (PPFN) and defuzzification 

Definition 7. A PPFN, �̃� = {(𝑎, 𝑏, 𝑐); 𝑝, 𝑞} is a PFS on ℝ, where 𝑝, 𝑞 are maximum degree 

of membership and minimum degree of non-membership respectively, here membership 

(𝜇�̃�) and non-membership(𝜗�̃�) are defined as: 
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𝜇�̃� = 

{
  
 

  
 𝑝 (

𝑥 − 𝑎

𝑏 − 𝑎
)

1
2
           𝑎 ≤ 𝑥 < 𝑏

𝑝                         𝑥 = 𝑏

𝑝 (
𝑐 − 𝑥

𝑐 − 𝑏
)

1
2
           𝑏 < 𝑥 ≤ 𝑐

0                   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

                      𝜗�̃� =

{
 
 
 

 
 
 
[
(𝑏 − 𝑥) + 𝑞2(𝑥 − 𝑎)

𝑏 − 𝑎
]

1
2

       𝑎 ≤ 𝑥 < 𝑏  

𝑞                                           𝑥 = 𝑏 

[
(𝑥 − 𝑏) + 𝑞2(𝑐 − 𝑥)

𝑐 − 𝑏
]

1
2

         𝑏 < 𝑥 ≤ 𝑐  

1                                 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

In particular, take 𝑝 = 1, 𝑞 = 0 then we get PPFN as �̃� = {(𝑎, 𝑏, 𝑐); (𝑎′, 𝑏′, 𝑐′)} and 

membership and non-membership are shown in Figure 1. 

                          

Figure1: Parabolic Pythagorean fuzzy number 

𝜇�̃�(𝑥) =

{
  
 

  
 (

𝑥 − 𝑎

𝑏 − 𝑎
)

1
2
       𝑎 ≤ 𝑥 < 𝑏

1                         𝑥 = 𝑏

(
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𝑐 − 𝑏
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1
2
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And   𝜗�̃�(𝑥) =

{
 
 

 
 (

𝑏−𝑥

𝑏−𝑎′
)

1

2
       𝑎′ ≤ 𝑥 < 𝑏

0                         𝑥 = 𝑏

(
𝑥−𝑏

𝑐′−𝑏
)

1

2
       𝑏 < 𝑥 ≤ 𝑐′

        1                      𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

 

 

1 

𝑐 𝑎 𝑏 𝑎′ 𝑐′ 𝑥 0 

𝜇(𝑥) 

𝜗(𝑥) 
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By COA method, here the Centre of area of membership and non-membership are 

calculated individually, i.e. 

𝑅1(�̃�) =
∫ 𝑥𝜇�̃�(𝑥)𝑑𝑥𝑥

∫ 𝜇�̃�(𝑥)𝑑𝑥𝑥

    𝑎𝑛𝑑   𝑅2(�̃�) =
∫ 𝑥𝜗�̃�(𝑥)𝑑𝑥𝑥

∫ 𝜗�̃�(𝑥)𝑑𝑥𝑥

   

Now the defuzzied value of the PPFN is defined by, 𝑅(�̃�) =
𝑅1(�̃�)+𝑅2(�̃�)

2
. 

So, here from the membership function  𝑅1(�̃�) =
∫ 𝑥(

𝑥−𝑎

𝑏−𝑎
)
1/2

𝑑𝑥+∫ 𝑥(
𝑐−𝑥

𝑐−𝑏
)
1/2

𝑑𝑥
𝑐
𝑏

𝑏
𝑎

∫ (
𝑥−𝑎

𝑏−𝑎
)
1/2

𝑑𝑥+∫ (
𝑐−𝑥

𝑐−𝑏
)
1/2

𝑑𝑥
𝑐
𝑏

𝑏
𝑎

=
2𝑎+𝑏+2𝑐

5
 

And from non-membership function  𝑅2(�̃�) =
∫ 𝑥(

𝑏−𝑥

𝑏−𝑎′
)
1/2

𝑑𝑥+∫ 𝑥(
𝑥−𝑏

𝑐′−𝑏
)
1/2

𝑑𝑥
𝑐
𝑏

𝑏
𝑎

∫ (
𝑏−𝑥

𝑏−𝑎′
)
1/2

𝑑𝑥+∫ (
𝑥−𝑏

𝑐′−𝑏
)
1/2

𝑑𝑥
𝑐
𝑏

𝑏
𝑎

= 
2𝑎′+𝑏+2𝑐′

5
 

Hence, 𝑅(�̃�) =
(2𝑎+𝑏+2𝑐)+(2𝑎′+𝑏+2𝑐′)

10
 

2.3. PHF aggregation operators 

Definition 8(PHFWA operator [39]). Let ℎ̂𝑖 = ⟨𝐴𝑖, 𝐵𝑖⟩ be a collection of all PHFNs, and 

𝑤 = (𝑤1, 𝑤2, … , 𝑤𝑛)
𝑇 is weight vector of ℎ̂𝑖 with 𝑤𝑖 ≥ 0 , 𝑤𝑖 ∈ [0,1] and ∑𝑖=1

𝑛  𝑤𝑖 = 1. 

Then, a mapping ∅: PHFN  𝑛 → 𝑃𝐻𝐹𝑁 is called PHFWA operator and defined as 

𝑃𝐻𝐹𝑊𝐴(ℎ̂1, ℎ̂2, … , ℎ̂𝑛) = 𝑤1ℎ̂1⊕𝑤2ℎ̂2⊕…⊕𝑤𝑛ℎ̂𝑛 

= ⋃

{
 
 

 
 

{√1 −∏(1 − 𝛼𝑖
2)𝑤𝑖

𝑛

𝑖=1

} , {∏𝛽𝑖
𝑤𝑖

𝑛

𝑖=1

}

}
 
 

 
 

𝛼1∈𝐴1,𝛼2∈𝐴2,…….𝛼𝑛∈𝐴𝑛
𝛽1∈𝐵1,𝛽2∈𝐵2,…….𝛽𝑛∈𝐵𝑛

 

Definition 9 (PHFWG operator) [39]. Let ℎ̂𝑖 = ⟨𝐴𝑖 , 𝐵𝑖⟩ be a collection of all PHFNs, and 

𝑤 = (𝑤1, 𝑤2, … , 𝑤𝑛)
𝑇 is weight vector of ℎ̂𝑖 with 𝑤𝑖 ≥ 0 , 𝑤𝑖 ∈ [0,1] and ∑𝑖=1

𝑛  𝑤𝑖 = 1. 

Then, a mapping ∅: PHFN  𝑛 → 𝑃𝐻𝐹𝑁 is called PHFWG operator and defined as 

𝑃𝐻𝐹𝑊𝐺(ℎ̂1, ℎ̂2, … , ℎ̂𝑛) = ℎ̂1
𝑤1⨂ℎ̂2

𝑤2⨂… . . .⨂ℎ̂𝑛
𝑤𝑛  

= ⋃

{
 
 

 
 

{∏𝛼𝑖
𝑤𝑖

𝑛

𝑖=1

} , {√1 −∏(1 − 𝛽𝑖
2)𝑤𝑖

𝑛

𝑖=1

}

}
 
 

 
 

𝛼1∈𝐴1,𝛼2∈𝐴2,…….𝛼𝑛∈𝐴𝑛
𝛽1∈𝐵1,𝛽2∈𝐵2,…….𝛽𝑛∈𝐵𝑛

 

 

3. MULTI OBJECTIVE OPTIMIZATION MODEL USING 

AGGREGATION OPERATORS BASED ON PHF SET 

3.1. Multi objective optimization problem 

A MOOP with 𝑙 objectives, 𝑚 constraints, and 𝑛 decision variables are formulated as 

follows: 

Minimize (𝑓1, 𝑓2, ……… . . 𝑓𝑙) 
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Subject to, 𝑎𝑖(𝑥) ≤ 𝑜𝑟 ≥ 𝑜𝑟 = 𝑏𝑖,                        𝑖 = 1,……𝑚. 

Where 𝑥 = (𝑥1, …… . . 𝑥𝑛)  and 𝑥𝑗 ≥ 0 for all 𝑗 = 1,…… . 𝑛.  (1) 

Here 𝑓𝑙   are objectives, 𝑎𝑖 are real valued functions, 𝑏𝑖 are real numbers, 𝑥𝑗 are the decision 

variables. 

Using weighted sum with weight vector 𝑤𝑇 = (𝑤1, 𝑤2, …… . . , 𝑤𝑙) and ∑ 𝑤𝑘 = 1
𝑙
𝑘=1 , 

Problem (1) becomes, 

Minimize (𝑤1𝑓1 + 𝑤2𝑓2 +⋯+𝑤𝑙𝑓𝑙) 

Subject to, 𝑎𝑖(𝑥) ≤ 𝑜𝑟 ≥ 𝑜𝑟 = 𝑏𝑖,                        𝑖 = 1,……𝑚. 

Where 𝑥 = (𝑥1, …… . . 𝑥𝑛)  and 𝑥𝑗 ≥ 0 for all 𝑗 = 1,…… . 𝑛.   (2) 

3.2. PHF membership and non-membership function 

We have 𝑙 solutions for the unique solution of each objective function:(𝑋1, 𝑋2, … . , 𝑋𝑙). 
Then, calculating value of each objective by all solutions we get the lower and upper bound 

of objectives: 

𝐿𝑘 = min[𝑓𝑘(𝑋
𝑖)] 𝑎𝑛𝑑 𝑈𝑘 = max[𝑓𝑘(𝑋

𝑖)] ∀𝑖 = 1,2,3, … , 𝑙  for all 𝑘 = 1,2, … . , 𝑙. 

The linear membership and non-membership have huge applications in uncertainty and 

a straightforward construction. Following is a definition of the linear membership function 

of minimization objective under PHFS (Figure 2): 

𝜇𝑝ℎ
𝐸𝑛(𝑍𝑘(𝑥)) =

{
 

 
1,  if 𝑓𝑘 < 𝐿𝑘;

𝛿𝑛
𝑈𝑘 − 𝑓𝑘

(𝑈𝑘 + α) − 𝐿𝑘
,  if 𝐿𝑘 ≤ 𝑓𝑘 ≤ 𝑈𝑘 + α;

0,  if 𝑓𝑘 > 𝑈𝑘 + 𝛼

 

 

Figure 2: Linear membership and non-membership function 

and linear non-membership under PHFS is: 
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𝜗𝑝ℎ
𝐸𝑛(𝑍𝑘(𝑥)) =

{
 

 
0,  if 𝑓𝑘 < 𝐿𝑘;

𝛾𝑛
𝑓𝑘 − 𝐿𝑘

(𝑈𝑘 + α) − 𝐿𝑘
,  if 𝐿𝑘 ≤ 𝑓𝑘 ≤ 𝑈𝑘 + α;

1,  if 𝑓𝑘 > 𝑈𝑘 + α

 

where 𝛿𝑛, 𝛾𝑛 ∈ [0,1] are assigned to expert (𝐸𝑛). 

Pareto optimal solution: pareto optimal solution to a MOOP is a basic feasible solution 

𝑥∗ in feasible space of the problem, iff  ∄ x s.t 𝑓𝑖(𝑥) ≤ 𝑓𝑖(𝑥
∗) for all 𝑖 = 1,… . 𝑙 and 𝑓𝑖(𝑥) <

𝑓𝑖(𝑥
∗) for at least one 𝑖 = 1,… . 𝑙. 

PHF pareto optimal solution: a point 𝑥∗ in solution space(𝑋) is called PHF pareto 

optimal solution , iff ∄ 𝑥 in 𝑋 s.t 𝑓𝑖(𝑥) ≤ 𝑓𝑖(𝑥
∗) for all 𝑖 = 1,2, …… 𝑙 with 𝜇𝑖

𝐸𝑘(𝑓𝑖(𝑥)) ≥

 𝜇𝑖
𝐸𝑘(𝑓𝑖(𝑥

∗))  and 𝜗𝑖
𝐸𝑘(𝑓𝑖(𝑥)) ≤  𝜗𝑖

𝐸𝑘(𝑓𝑖(𝑥
∗)) for all 𝑖 and inequality holds for at least one 

𝑖, where 𝜇𝑖
𝐸𝑘(𝑥), 𝜗𝑖

𝐸𝑘(𝑥) are PF membership and non-membership respectively. 

3.3. Evaluation of MOOP using PHFAO 

PHFAOs, which are previously mentioned, may serve as the foundation for the 

following type of utility function for MOOP: 

Max (PHFAO)(𝜇𝐸1 , 𝜇𝐸2 , … , 𝜇𝐸𝑛; 𝜗𝐸1 , 𝜗𝐸2 , … , 𝜗𝐸𝑛) = ∑  

𝑙

𝑘=1

𝑊𝑘(PHFAO) 

Where, 𝑊𝑘(∀𝑘 = 1,2, … , 𝑙), such that ∑𝑘=1
𝑙  𝑊𝑘 = 1 is weight assigned by DMs to each 

objective. PHFAO denotes the family of PHF aggregation operators. 

The fuzzy set, according to Bellman and Zadeh [2], consists of three notions: fuzzy 

goal (G), and fuzzy constraints (C), fuzzy decision (D). These concepts have been 

integrated into numerous real-world decision-making applications within fuzzy 

environments. A fuzzy decision set is formally defined as: 𝐷 = 𝐺 ∩ 𝐶 =
∪𝛼𝑛∈𝐺,𝛽𝑛∈𝐶 𝑚𝑖𝑛{(𝛼𝑛, 𝛽𝑛)}. 

Now, the PHF decision set 𝐷𝑝ℎis defined as follows, using PHF constraints (C) and 

goals (Z): 

𝐷𝑝ℎ = 𝑍 ∩ 𝐶  = (∩𝑘=1
𝑙 𝑍𝑘) ∩ (∩𝑗=1

𝑚 𝐶𝑗)

 = {
𝑥,∪ min{(𝛼1, 𝛽1), (𝛼2, 𝛽2), … , (𝛼𝑛, 𝛽𝑛)}(𝑥),

 max {(𝜃1, 𝜌1), (𝜃2, 𝜌2),… , (𝜃𝑛, 𝜌𝑛)}(𝑥) ∣ 𝑥 ∈ 𝑋
}

 = {𝑥, {𝜇𝐸1 , 𝜇𝐸2 , … , 𝜇𝐸𝑛; 𝜗𝐸1 , 𝜗𝐸2 , … , 𝜗𝐸𝑛}(𝑥) ∣ 𝑥 ∈ 𝑋}

𝑤ℎ𝑒𝑟𝑒, 𝜇𝐸1  = min(𝛼1, 𝛽1);  𝜗
𝐸1 = 𝑚𝑎𝑥(𝜃1, 𝜌1)

𝜇𝐸2  = min(𝛼2, 𝛽2);  𝜗
𝐸2 = 𝑚𝑎𝑥(𝜃2, 𝜌2)

⋮
𝜇𝐸𝑛  = min(𝛼𝑛, 𝛽𝑛);  𝜗

𝐸𝑛 = 𝑚𝑎𝑥(𝜃𝑛, 𝜌𝑛)

 

where, 𝜇𝐸𝑛, 𝜗𝐸𝑛 are PHF membership and non-membership by 𝑛th experts. 
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Now MOOP in PHF environment become as: 

MaxPHFAO(𝜇𝐸1 , 𝜇𝐸2 , … , 𝜇𝐸𝑛;  𝜗𝐸1 , 𝜗𝐸2 , … , 𝜗𝐸𝑛) = Max ∑𝑘=1
𝑙  𝑊𝑘(PHFAO) 

subject to 

𝜇𝐸1(𝑓𝑘(𝑥)) ≥ 𝛼𝑘1;    ϑ
E1(𝑓𝑘(𝑥)) ≤ 𝛽𝑘1

𝜇𝐸2(𝑓𝑘(𝑥)) ≥ 𝛼𝑘2;   ϑ
E2(𝑓𝑘(𝑥)) ≤ 𝛽𝑘2

 

…… .. 

    𝜇𝐸𝑛(𝑓𝑘(𝑥)) ≥ 𝛼𝑘n,   ϑ
E𝑛(𝑓𝑘(𝑥)) ≤ 𝛽𝑘𝑛 

𝑎𝑖(𝑥) ≤ 𝑜𝑟 = 𝑜𝑟 ≥ 𝑏𝑖           𝑖 = 1,2, …… .𝑚 

𝑥 ≥ 0 , 0 ≤  𝛼𝑘𝑟
2 + 𝛽𝑘𝑠

2 ≤ 1  𝑎𝑛𝑑 𝛼𝑘𝑟 ≥ 𝛽𝑘𝑠          𝑟, 𝑠 ∈ {1, …… . 𝑛} (3) 

𝑊𝑘(∀𝑘 = 1,2, … , 𝑙), such that ∑ 𝑊𝑘 = 1
𝑙
𝑘=1   are weights given to the objective by experts. 

𝜔 = (𝜔1, 𝜔2, … , 𝜔𝑛) is the weight vector allocated to each PHF element, 𝜔𝑖 ∈ [0,1] and 

∑ 𝜔𝑖
𝑛
𝑖=1   = 1.𝛼𝑘𝑛, 𝛽𝑘𝑛 are minimum membership and maximum non-membership to each 

PHF membership function. 

Here, 𝜇𝐸i(𝑓𝑘(𝑥)) : membership to the 𝑘𝑡ℎ objective by 𝑖𝑡ℎ expert. 

         𝜗𝐸i(𝑓𝑘(𝑥)) : non-membership to the 𝑘𝑡ℎ objective by 𝑖𝑡ℎ expert. 

Theorem1: For non-zero objective weight vector, a unique optimal solution (𝑥∗, 𝛼∗, 𝛽∗) 
of Problem (3) is a pareto optimal solution (𝑥∗) of problem (1). Where, 𝛼∗ =
(𝛼1

∗, 𝛼2
∗, …… . , 𝛼𝑙

∗),  𝛽∗ = (𝛽1
∗, 𝛽2

∗, …… . , 𝛽𝑙
∗) and 𝛼𝑖

∗ = (𝛼𝑖1
∗ , 𝛼𝑖2

∗ , …… . . , 𝛼𝑖𝑛
∗ ),and 𝛽𝑖

∗ =
(𝛽𝑖1

∗ , 𝛽𝑖2
∗ , …… . . , 𝛽𝑖𝑛

∗ ). 

Proof: (for PHFWA operator)  

Consider 𝑓(𝛼, 𝛽) =  ∑  𝑙
𝑘=1 𝑊𝑘(√1 − ∏  𝑛

𝑖=1   (1 − 𝛼𝑘𝑖
2 )𝜔𝑖 −∏ 𝛽𝑘𝑖

𝜔𝑖𝑛
𝑖=1 )   

Let (𝑥∗, 𝛼∗, 𝛽∗) is optimal solution of problem (3) then 𝑓(𝛼∗, 𝛽∗) > 𝑓(𝛼, 𝛽) for all (𝑥, 𝛼, 𝛽) 
in the feasible space of the problem (3).  

Suppose 𝑥∗ is not a pareto optimal solution of problem (1) then there exist 𝑥∗∗ in feasible 

space (𝑋) such that 𝑓𝑖(𝑥
∗∗) ≤ 𝑓𝑖(𝑥

∗) for all 𝑖 = 1,2, … . 𝑙 and 𝑓𝑖(𝑥
∗∗) < 𝑓𝑖(𝑥

∗) for at least 

one 𝑖 = 1,2, … . 𝑙.   (i) 

So, 
𝑈𝑘−𝑓𝑘(𝑥

∗∗)

𝑈𝑘−𝐿𝑘
≥

𝑈𝑘−𝑓𝑘(𝑥
∗)

𝑈𝑘−𝐿𝑘
 for all 𝑘 = 1,2… . . 𝑙 and 

𝑈𝑘−𝑓𝑘(𝑥
∗∗)

𝑈𝑘−𝐿𝑘
>

𝑈𝑘−𝑓𝑘(𝑥
∗)

𝑈𝑘−𝐿𝑘
 for at least one 

𝑘 = 1,2… . . 𝑙 

Now, 𝛿𝑖
𝑈𝑘−𝑓𝑘(𝑥

∗∗)

𝑈𝑘−𝐿𝑘
≥ 𝛿𝑖

𝑈𝑘−𝑓𝑘(𝑥
∗)

𝑈𝑘−𝐿𝑘
 for all 𝑘 = 1,2… . . 𝑝 and 𝛿𝑖

𝑈𝑘−𝑓𝑘(𝑥
∗∗)

𝑈𝑘−𝐿𝑘
> 𝛿𝑖

𝑈𝑘−𝑓𝑘(𝑥
∗)

𝑈𝑘−𝐿𝑘
 for 

at least one 𝑘 = 1,2… . . 𝑙 and for all 𝑖 = 1,2, … . , 𝑛. 
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That implies, 𝑀𝑎𝑥𝑘,𝑖  𝛿𝑖
𝑈𝑘−𝑓𝑘(𝑥

∗∗)

𝑈𝑘−𝐿𝑘
≥ 𝑀𝑎𝑥𝑘,𝑖𝛿𝑖

𝑈𝑘−𝑓𝑘(𝑥
∗)

𝑈𝑘−𝐿𝑘
 for all 𝑘 = 1,2… . . 𝑙 and 

𝑀𝑎𝑥𝑘,𝑖  𝛿𝑖
𝑈𝑘−𝑓𝑘(𝑥

∗∗)

𝑈𝑘−𝐿𝑘
> 𝑀𝑎𝑥𝑘,𝑖  𝛿𝑖

𝑈𝑘−𝑓𝑘(𝑥
∗)

𝑈𝑘−𝐿𝑘
 for at least one 𝑘 = 1,2… . . 𝑙 and for all 𝑖 =

1,2, … . 𝑛. 

Consider, 𝑀𝑎𝑥𝑘,𝑖  𝛿𝑖
𝑈𝑘−𝑓𝑘(𝑥

∗∗)

𝑈𝑘−𝐿𝑘
= 𝛼𝑘𝑖

∗∗ and 𝑀𝑎𝑥𝑘,𝑖  𝛿𝑖
𝑈𝑘−𝑓𝑘(𝑥

∗)

𝑈𝑘−𝐿𝑘
= 𝛼𝑘𝑖

∗  

𝛼𝑘𝑖
∗∗ ≥ 𝛼𝑘𝑖

∗  for all 𝑘 = 1,2… . . 𝑙 and for all 𝑖 = 1,2, …𝑛,  the inequality occurs for at least 

one 𝑘and 𝑖. 

∏(1 − 𝛼𝑘𝑖
∗∗2)

𝜔𝑖

𝑛

𝑖=1

<∏(1 − 𝛼𝑘𝑖
∗∗2)

𝜔𝑖

𝑛

𝑖=1

 

     ⇒ √1 − ∏ (1 − 𝛼𝑘𝑖
∗∗2)

𝜔𝑖𝑛
𝑖=1 > √1 −∏ (1 − 𝛼𝑘𝑖

∗ 2)
𝜔𝑖𝑛

𝑖=1     (ii) 

Similarly, from Eq. (i)  𝛾𝑖
𝑓𝑘(x

∗∗)−𝐿𝑘

𝑈𝑘+α−𝐿𝑘
≤ 𝛾𝑖

𝑓𝑘(x
∗)−𝐿𝑘

𝑈𝑘+α−𝐿𝑘
 for all 𝑘 = 1,2… . . 𝑙 and 𝛾𝑖

𝑓𝑘(x
∗∗)−𝐿𝑘

𝑈𝑘+α−𝐿𝑘
<

𝛾𝑖
𝑓𝑘(x

∗)−𝐿𝑘

𝑈𝑘+α−𝐿𝑘
 for at least one 𝑘and 𝑖. 

That implies, 𝑀𝑖𝑛𝑘,𝑖  𝛾𝑖
𝑓𝑘(x

∗∗)−𝐿𝑘

𝑈𝑘+α−𝐿𝑘
≤ 𝑀𝑖𝑛𝑘,𝑖  𝛾𝑖

𝑓𝑘(x
∗)−𝐿𝑘

𝑈𝑘+α−𝐿𝑘
 for all 𝑘 and 𝑖 and 

𝑀𝑖𝑛𝑘,𝑖  𝛾𝑖
𝑓𝑘(x

∗∗)−𝐿𝑘

𝑈𝑘+α−𝐿𝑘
< 𝑀𝑖𝑛𝑘,𝑖 𝛾𝑖

𝑓𝑘(x
∗)−𝐿𝑘

𝑈𝑘+α−𝐿𝑘
 for at least one 𝑘and 𝑖. 

Consider, 𝑀𝑖𝑛𝑘,𝑖  𝛾𝑖
𝑓𝑘(x

∗∗)−𝐿𝑘

𝑈𝑘+α−𝐿𝑘
= 𝛽𝑘𝑖

∗∗and 𝑀𝑖𝑛𝑘,𝑖  𝛾𝑖
𝑓𝑘(x

∗)−𝐿𝑘

𝑈𝑘+α−𝐿𝑘
= 𝛽𝑘𝑖

∗  

So, 𝛽𝑘𝑖
∗∗ ≤ 𝛽𝑘𝑖

∗  for all 𝑘and 𝑖. and 𝛽𝑘𝑖
∗∗ < 𝛽𝑘𝑖

∗  for at least one 𝑘 and 𝑖. 

 ∏ 𝛽𝑘𝑖
∗∗𝜔𝑖𝑛

𝑖=1 < ∏ 𝛽𝑘𝑖
∗ 𝜔𝑖𝑛

𝑖=1    (iii) 

Eqs. (ii) and (iii) ⇒ √1 − ∏ (1 − 𝛼𝑘𝑖
∗∗2)

𝜔𝑖𝑛
𝑖=1 −∏ 𝛽𝑘𝑖

∗∗𝜔𝑖𝑛
𝑖=1 > √1 − ∏ (1 − 𝛼𝑘𝑖

∗ 2)
𝜔𝑖𝑛

𝑖=1 −

∏ 𝛽𝑘𝑖
∗ 𝜔𝑖𝑛

𝑖=1  

⇒∑  

𝑙

𝑘=1

𝑊𝑘

[
 
 
 
√1 −∏(1 − 𝛼𝑘𝑖

∗∗2)
𝜔𝑖

𝑛

𝑖=1

−∏𝛽𝑘𝑖
∗∗𝜔𝑖

𝑛

𝑖=1
]
 
 
 

> ∑  

𝑙

𝑘=1

𝑊𝑘

[
 
 
 
√1 −∏(1 − 𝛼𝑘𝑖

∗ 2)
𝜔𝑖

𝑛

𝑖=1

−∏𝛽𝑘𝑖
∗ 𝜔𝑖

𝑛

𝑖=1
]
 
 
 
 

Hence, 𝑓(𝛼∗∗, 𝛽∗∗) >  𝑓(𝛼∗, 𝛽∗), which contradict (𝑥∗, 𝛼∗, 𝛽∗) is unique optimal solution 

of Problem (3). So 𝑥∗ is a pareto optimal solution of Problem (1). 

(For PHFWG operator) Similar as above. 

Theorem2: For non-zero weight vector, a pareto optimal solution (𝑥∗) of Problem (1) is 

an efficient solution of problem (3) if 𝑓𝑖 are convex. 

Proof: 𝑥∗ is a pareto optimal solution of Problem 1. 

Suppose, 𝑥∗ is not an efficient solution of Problem 3. Then there exists 𝑥∗∗ in feasible space 

such that 𝑓(𝛼∗, 𝛽∗) <  𝑓(𝛼∗∗, 𝛽∗∗) 
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⇒∑  

𝑙

𝑘=1

𝑊𝑘 (√1 −∏  

𝑛

𝑖=1

  (1 − 𝛼𝑘𝑖
∗2)𝜔𝑖 −∏𝛽𝑘𝑖

∗𝜔𝑖

𝑛

𝑖=1

)

<∑  

𝑙

𝑘=1

𝑊𝑘 (√1 −∏  

𝑛

𝑖=1

  (1 − 𝛼𝑘𝑖
∗∗2)𝜔𝑖 −∏𝛽𝑘𝑖

∗∗𝜔𝑖

𝑛

𝑖=1

) 

Since, 𝛿𝑖
𝑈𝑘−𝑓𝑘(𝑥

∗)

𝑈𝑘−𝐿𝑘
= 𝛼𝑘𝑖

∗ , 𝛾𝑖
𝑓𝑘(x

∗)−𝐿𝑘

(𝑈𝑘+α)−𝐿𝑘
= 𝛽𝑘𝑖

∗  𝑎𝑛𝑑 𝛿𝑖
𝑈𝑘−𝑓𝑘(𝑥

∗∗)

𝑈𝑘−𝐿𝑘
= 𝛼𝑘𝑖

∗  𝑎𝑛𝑑 𝛾𝑖
𝑓𝑘(x

∗∗)−𝐿𝑘

(𝑈𝑘+α)−𝐿𝑘
=

𝛽𝑘𝑖
∗    

If 𝑓𝑖 are convex, then for all 𝑘 = 1,2,… 𝑙 

(√1 −∏  

𝑛

𝑖=1

  (1 − 𝛼𝑘𝑖
∗2)𝜔𝑖 −∏𝛽𝑘𝑖

∗𝜔𝑖

𝑛

𝑖=1

) < √1 −∏  

𝑛

𝑖=1

  (1 − 𝛼𝑘𝑖
∗∗2)𝜔𝑖 −∏𝛽𝑘𝑖

∗∗𝜔𝑖

𝑛

𝑖=1

 

Taking, 𝜔1 = 1,𝜔2 = 𝜔3 = ⋯ .= 𝜔𝑛 = 0 

√1 − (1 − 𝛼𝑘1
∗2) − 𝛽𝑘1

∗ < √1 −  (1 − 𝛼𝑘1
∗∗2) − 𝛽𝑘1

∗∗  

⇒ 𝛼𝑘1
∗ − 𝛽𝑘1

∗ < 𝛼𝑘1
∗∗ − 𝛽𝑘1

∗∗  

⇒ 𝛿1
𝑈𝑘 − 𝑓𝑘(𝑥

∗)

𝑈𝑘 − 𝐿𝑘
− 𝛾1

𝑓𝑘(x
∗) − 𝐿𝑘

(𝑈𝑘 + α) − 𝐿𝑘
< 𝛿1

𝑈𝑘 − 𝑓𝑘(𝑥
∗∗)

𝑈𝑘 − 𝐿𝑘
− 𝛾1

𝑓𝑘(x
∗∗) − 𝐿𝑘

(𝑈𝑘 + α) − 𝐿𝑘
 

⇒ −(𝛿1 + 𝛾1)𝑓𝑘(𝑥
∗) < −(𝛿1 + 𝛾1)𝑓𝑘(𝑥

∗∗) 

⇒ 𝑓𝑘(𝑥
∗∗) < 𝑓𝑘(𝑥

∗) 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑘 = 1,2, … . . 𝑙. 

Which contradict that 𝑥∗ is pareto optimal solution of Problem (1) 

Hence, 𝑥∗ is efficient solution of Problem (3) 

The proposed method to solve MOOP is classified by two categories by two PHFAOs, 

which are PHFWA, PHFWG operators. The following is the formulation of MOOP using 

PHFAOs (weighted averaging and weighted geometric). 

Model 1: by PHFWA operator 

Max PHFWA (𝜇𝐸1 , 𝜇𝐸2 , … , 𝜇𝐸𝑛;  𝜗𝐸1 , 𝜗𝐸2 , … , 𝜗𝐸𝑛)

= Max∑  

𝑙

𝑘=1

𝑊𝑘 (√1 −∏ 

𝑛

𝑖=1

  (1 − 𝛼𝑘𝑖
2 )𝜔𝑖 −∏𝛽𝑘𝑖

𝜔𝑖

𝑛

𝑖=1

). 

Subject to the constraints in Problem (3). 

 



 S. Jana and S. Islam / A Pythagorean Hesitant Fuzzy Programming Approach 213 

Model 2: by PHFWG operator 

Max PHFWG (𝜇𝐸1 , 𝜇𝐸2 , … , 𝜇𝐸𝑛;  𝜗𝐸1 , 𝜗𝐸2 , … , 𝜗𝐸𝑛)

= Max∑  

𝑙

𝑘=1

𝑊𝑘 (∏𝛼𝑘𝑖
𝜔𝑖

𝑛

𝑖=1

− √1 −∏  

𝑛

𝑖=1

  (1 − 𝛽𝑘𝑖
2 )𝜔𝑖). 

Subject to the constraints in Problem (3). 

 

4. APPLICATION OF THE METHOD TO MULTI OBJECTIVE 

OPTIMIZATION PROBLEM 

A) Manufacturing system: 

We have taken an example of multi objective optimization problem of manufacturing 

system described in Singh and Yadav [43]. A manufacturing factory is planning to produce 

three types of products: A, B, and C over a period of one month. To produce each product, 

the factory requires three types of resources: R1, R2, and R3. 

There are around 30, 20 and 20 units of tolerance is allowed for resource R1, R2, R3 

respectively by manager. Unit cost and sale price of the product are  𝑐𝐴, 𝑐𝐵 , 𝑐𝐶  and 𝑆𝐴 =
𝑠𝐴

𝑥1

1
𝑎1

, 𝑆𝐵 =
𝑠𝐵

𝑥2

1
𝑎2

, 𝑆𝐶 =
𝑠𝐶

𝑥1

1
𝑎3

 respectively. Where 𝑎1, 𝑎2, 𝑎3 are positive real number. Company 

wants to maximize the profit and minimize the time required for production. 

 
 A B C  

R1 2 4 3 ≤ 325 

R2 4 2 2 ≤ 360 

R3 3 2 3 ≥ 360 

Time(h) 4 5 6  

 

There are around 30, 20 and 20 units of tolerance is allowed for resource R1, R2, R3 

respectively by manager. Unit cost and sale price of the product are  𝑐𝐴, 𝑐𝐵 , 𝑐𝐶  and 𝑆𝐴 =
𝑠𝐴

𝑥1

1
𝑎1

, 𝑆𝐵 =
𝑠𝐵

𝑥2

1
𝑎2

, 𝑆𝐶 =
𝑠𝐶

𝑥1

1
𝑎3

 respectively. Where 𝑎1, 𝑎2, 𝑎3 are positive real number. Company 

wants to maximize the profit and minimize the time required for production. 

To handling the uncertainty, all parameters are taken as PPFN. 

𝑠𝐴 = 100̃ = (95,100,103; 95, 100, 104), 𝑅(𝑠𝐴) = 99.4 

 𝑠𝐵 = 120̃ = (118, 120,122; 115,120,123), 𝑅(𝑠𝐵) = 119.6 

 𝑠𝐶 = 95̃ = (94, 95,96; 93,95,97), 𝑅(𝑠𝐶) = 95 

 𝑐𝐴 = 7.5̃ = (7.5,7.5, 8.5; 7,7.5,9), 𝑅(𝑐𝐴) = 7.9 

𝑐𝐵 = 10̃ = (9,10,10.5; 9,10,11), 𝑅(𝑐𝐵) = 9.9 

  𝑐𝐶 = 8̃ = (7.5,8,8.5; 7.5,8,9), 𝑅(𝑐𝐶) = 8.1 

325̃ = (325,325,340; 325,325,345), 𝑅(325̃) = 332 
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 360̃ = (360, 360,375; 360,360,380), 𝑅(360̃) = 367 

 365̃ = (350, 365, 365; 345,365,365), 𝑅(365̃) = 358 

2̃ = (1.5, 2,2.3; 1.2,2,2.5), 𝑅(2̃) = 1.9 

3̃ = (2.5,3,3.4; 2.3,3,3.7), 𝑅(3̃) = 2.98 

 4̃ = (3.5,4,4.3; 3.2,4,4.5), 𝑅( 4̃) = 3.9 

 5̃ = (4.8, 5,5.6; 4.5, 5,5.8), 𝑅(5̃) = 5.14 

 6̃ = (5.8,6,6.2; 5.5,6,6.3), 𝑅( 6̃) = 5.96 

𝑎1 = 𝑎2 = 2, 𝑎3 =
3

2
 

The optimization problem can be written as  

𝑚𝑎𝑥𝑖𝑚𝑖𝑧𝑒  𝑓1 = 100̃𝑥1
1−1/𝑎1 − 7.5̃𝑥1 + 120̃𝑥1

1−1/𝑎2 − 10̃𝑥2 + 95̃𝑥1
1−1/𝑎1 − 8̃𝑥3 

 𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑓2 = 4̃𝑥1 + 5̃𝑥2 + 6̃𝑥3    

𝑆𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜   

2̃𝑥1 + 4̃𝑥2 + 3̃𝑥3 ≤ 325̃ 

4̃𝑥1 + 2̃𝑥2 + 2̃𝑥3 ≤ 360̃ 

3̃𝑥1 + 2̃𝑥2 + 3̃𝑥3 ≥ 365̃ 

𝑥1, 𝑥2, 𝑥3 ≥ 0. 

The equivalent crisp multi objective optimization problem is  

𝑚𝑎𝑥𝑖𝑚𝑖𝑧𝑒  𝑓1 = 99.4𝑥1

1

2 − 7.9𝑥1 + 119.6𝑥2

1

2 − 9.9𝑥2 + 95𝑥3

1

3 − 8.1𝑥3 

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑓2 = 3.9𝑥1 + 5.14𝑥2 + 5.96𝑥3 

𝑆𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜   

1.9𝑥1 + 3.9𝑥2 + 2.98𝑥3 ≤ 332 

3.9𝑥1 + 1.9𝑥2 + 1.9𝑥3 ≤ 367 

2.98𝑥1 + 1.9𝑥2 + 2.98𝑥3 ≥ 358 

𝑥1, 𝑥2, 𝑥3 ≥ 0. 
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Pay-off matrix is:  

 

 

 

 

So, 𝑈1 = 606.4352, 𝐿1 = 220.4427, 𝑈2 = 615.3611, 𝐿2 = 573.0927  

Here three experts assign their hesitant values 𝛿1 = .96, 𝛿2 = .98, 𝛿3 = 1 for membership 

function of objective functions and hesitant values 𝛾1 = .96, 𝛾2 = .98, and 𝛾3 = 1 for non-

membership function. Tolerance 𝛼𝑓1 = 50 and 𝛼𝑓2 = 50. Take 𝜔1 = 𝜔2 = 𝜔3 =
1

3
, Then 

we can formulate the optimization problem in PHF environment as follows: 

Using PHFWA operator: 

Max PHFWA (𝜇𝐸1 , 𝜇𝐸2 , 𝜇𝐸3;  𝜗𝐸1 , 𝜗𝐸2 , 𝜗𝐸3)

= Max∑  

2

𝑘=1

𝑊𝑘

(

 √1 −∏  

3

𝑖=1

  (1 − 𝛼𝑘𝑖
2 )

1
3 −∏𝛽

𝑘𝑖

1
3

3

𝑖=1
)

 . 

Subject to, 

                                0.96
𝑓1 − 220.4427

606.4352 − 220.4427
≥ 𝛼11;  0.96

606.4352 − 𝑓1
606.4352 − 170.4427

≤ 𝛽11 

                                 0.98
𝑓1 − 220.4427

606.4352 − 220.4427
≥ 𝛼12; 0.98

606.4352 − 𝑓1
606.4352 − 170.4427

≤ 𝛽12 

                                                  
𝑓1 − 220.4427

606.4352 − 220.4427
≥ 𝛼13;

606.4352 − 𝑓1
606.4352 − 170.4427

≤ 𝛽13 

                                0.96
615.3611 − 𝑓2

615.3611 − 573.0927
≥ 𝛼21;  0.96

𝑓2 − 573.0927

665.3611 − 573.0927
≤ 𝛽21 

                               0.98
615.3611 − 𝑓2

615.3611 − 573.0927
≥ 𝛼22;  0.98

𝑓2 − 573.0927

665.3611 − 573.0927
≤ 𝛽22 

                                              
615.3611 − 𝑓2

615.3611 − 573.0927
≥ 𝛼23;  

𝑓2 − 573.0927

665.3611 − 573.0927
≤ 𝛽23 

Where 0 ≤  𝛼𝑘𝑟
2 + 𝛽𝑘𝑠

2 ≤ 1    𝛼𝑘𝑟
2 ≥ 𝛽𝑘𝑠

2   ∀𝑘 = 1,2 and  𝑟, 𝑠 ∈ {1,2,3}  

1.9𝑥1 + 3.9𝑥2 + 2.98𝑥3 ≤ 332 

3.9𝑥1 + 1.9𝑥2 + 1.9𝑥3 ≤ 367 

2.98𝑥1 + 1.9𝑥2 + 2.98𝑥3 ≥ 358 

 𝑋1 𝑋2 

𝑓1 606.4352 220.4427 

𝑓2 615.3611 573.0927 
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𝑥1, 𝑥2, 𝑥3 ≥ 0. 

𝑊1 +𝑊2 = 1. (4) 

Using PHFWG operator: 

Max PHFWG (𝜇𝐸1 , 𝜇𝐸2 , 𝜇𝐸3;  𝜗𝐸1 , 𝜗𝐸2 , 𝜗𝐸3)

= Max∑  

2

𝑘=1

𝑊𝑘

(

 ∏𝛼
𝑘𝑖

1
3

3

𝑖=1

− √1 −∏  

3

𝑖=1

  (1 − 𝛽𝑘𝑖
2 )

1
3

)

 . 

Subject to, the same constraints as Problem (4). (5) 

B) Life support system (LSS): 

 

 

 

 

 

 

 

 

 

                                      

 

 

 

 

 
Figure 3: Life support system 

The Figure 3 presents the Life support system, here the system cost (𝐶𝑠),system reliability 

(𝑅𝑆 )  are presented by: 

𝑅𝑆 = 1 − 𝑟3[(1 − 𝑟1)(1 − 𝑟4)]
2 − (1 − 𝑟3)[1 − 𝑟2{1 − (1 − 𝑟1)(1 − 𝑟4)}]

2 

𝐶𝑆 = 2𝐾1. 𝑟1
𝑎1 +  2𝐾2. 𝑟2

𝑎2 + 𝐾3. 𝑟3
𝑎3 + 2𝐾4. 𝑟4

𝑎4  

The goal of this problem is to reduce system cost while maintaining component and 

system reliability and taking cost coefficient as PPFN. Therefore, the problem is described 

as: 

Maximize 𝑅𝑆, Minimize 𝐶�̃� 
Subject to 

. 5 ≤ 𝑟𝑖 ≤ 1 − 10−6             𝑖 = 1,2,3,4 (6) 

Where, 𝑟𝑖 is reliability of 𝑖𝑡ℎ component. 

Here 𝐾1 = 100, 𝐾2 = 100, 𝐾3 = 200, 𝐾4 = 150 𝑎𝑛𝑑 𝑎𝑖 = 0.6 𝑓𝑜𝑟 𝑖 = 1,2,3,4. 
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Here cost coefficients 𝐾1, 𝐾2, 𝐾3, 𝐾4 are taken as parabolic fuzzy number and the crisp 

value is calculated in Table 1. 

Table 1: Cost coefficient as parabolic Pythagorean fuzzy number 

Parameter Parabolic Pythagorean fuzzy number 

{(𝑎, 𝑏, 𝑐), (𝑎′, 𝑏, 𝑐′)} 
Crisp value 

[
(2𝑎 + 𝑏 + 2𝑐) + (2𝑎′ + 𝑏 + 2𝑐′)

10
] 

𝐾1 {(98,100,102), (96,100,103)} 99.8 

𝐾2 {(99,100,102), (98,100,103)} 100.4 

𝐾3 {(198,200,201), (197,200,202)} 199.6 

𝐾4 {(147,150,152), (147,150,153)} 149.8 

Pay-off matrix is:  

 

 

 

 

So, 𝑈1 = .999999, 𝐿1 = 0.773437, 𝑈2 = 1099.199, 𝐿2 = 725.2015  

Here three experts assign their hesitant values 𝛿1 = .96, 𝛿2 = .98, 𝛿3 = 1 for membership 

function of objective functions and hesitant values 𝛾1 = .96, 𝛾2 = .98, and 𝛾3 = 1 for non-

membership function. Tolerance 𝛼𝑅𝑠 = .1 and 𝛼𝐶𝑠 = 50. Take 𝜔1 = 𝜔2 = 𝜔3 =
1

3
 , Then 

we can formulate the optimization problem in PHF environment as follows: 

Using PHFWA operator: 

Max PHFWA (𝜇𝐸1 , 𝜇𝐸2 , 𝜇𝐸3;  𝜗𝐸1 , 𝜗𝐸2 , 𝜗𝐸3)

= Max∑  

2

𝑘=1

𝑊𝑘

(

 √1 −∏  

3

𝑖=1

  (1 − 𝛼𝑘𝑖
2 )

1
3 −∏𝛽

𝑘𝑖

1
3

3

𝑖=1
)

 . 

Subject to,                                        

 0.96
Rs(r) − 0.7734375

0.999999 − .7734375
≥ 𝛼11;  0.96

0.999999 − Rs(r)

0.999999 − 0.6734375
≤ 𝛽11 

 0.98
Rs(r) − 0.7734375

0.999999 − .7734375
≥ 𝛼12; 0.98

0.999999 − Rs(r)

0.999999 − 0.6734375
≤ 𝛽12 

Rs(r) − 0.7734375

0.999999 − .7734375
≥ 𝛼13;

0.999999 − Rs(r)

0.999999 − 0.6734375
≤ 𝛽13 

 𝑅1 𝑅2 

𝑅𝑠 0.999999 0.7734375 

𝐶𝑠 1099.199 725.2015 
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 0.96
1099.199 − 𝐶𝑠(𝑟)

1099.199 − 725.2015
≥ 𝛼21;  0.96

𝐶𝑠(𝑟) − 725.2015

1149.199 − 725.2015
≤ 𝛽21 

0.98
1099.199 − 𝐶𝑠(𝑟)

1099.199 − 725.2015
≥ 𝛼22;  0.98

𝐶𝑠(𝑟) − 725.2015

1.199 − 725.2015
≤ 𝛽22 

1099.199 − 𝐶𝑠(𝑟)

1099.199 − 725.2015
≥ 𝛼23;  

𝐶𝑠(𝑟) − 725.2015

1099.199 − 725.2015
≤ 𝛽23 

Where  0 ≤  𝛼𝑘𝑟
2 + 𝛽𝑘𝑠

2 ≤ 1    𝛼𝑘𝑟
2 ≥ 𝛽𝑘𝑠

2   ∀𝑘 = 1,2 and  𝑟, 𝑠 ∈ {1,2,3}    

 0.5 ≤ 𝑟𝑗 ≤ 1 − 10−6            𝑗 = 1,2,3,4.         

𝑊1 +𝑊2 = 1. (7) 

Using PHFWG operator: 

Max PHFWG (𝜇𝐸1 , 𝜇𝐸2 , 𝜇𝐸3;  𝜗𝐸1 , 𝜗𝐸2 , 𝜗𝐸3)

= Max∑  

2

𝑘=1

𝑊𝑘

(

 ∏𝛼
𝑘𝑖

1
3

3

𝑖=1

− √1 −∏ 

3

𝑖=1

  (1 − 𝛽𝑘𝑖
2 )

1
3

)

 . 

Subject to, the same constraints as Problem (7). (8) 

Degree of closeness to Ideal solution: 

A pivotal factor in ascertaining the compromise solution to demonstrate the 

effectiveness of various solution strategies is how near the solutions are to the ideal ones. 

Multi-objective optimization problem solution a variety of distance function families exist, 

and these families may be used to evaluate the effectiveness of different solution methods. 

In this section, we have considered a family of distance functions that may be described as 

follows: 

𝐷𝑒(𝛾, 𝑙) = [∑  

𝑙

𝑘=1

  𝛾𝑘
𝑒(1 − 𝑟𝑘)

𝑒]

1
𝑒

 

where 𝑟𝑘 is the fraction of compromise solution to the ideal solution of 𝑘𝑡ℎ objective and 

𝛾 = (𝛾1, 𝛾2, … , 𝛾𝑙) is the weight vector assigned to objectives. 

𝐷1(𝛾, 𝑙) = 1 −∑  

𝑙

𝑘=1

𝛾𝑘𝑟𝑘 , 

𝐷2(𝛾, 𝑙) = [∑  

𝑙

𝑘=1

  𝛾𝑘
2(1 − 𝑟𝑘)

2]

1
2

𝐷∞(𝛾, 𝑙) = max
𝑘
 [𝛾𝑘(1 − 𝑟𝑘)]

 

In minimization type objective function, 
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𝑟𝑘 =
 the ideal solution of 𝑓𝑘

 the desired compromise solution of 𝑓𝑘
 

In maximization type objective function, 

𝑟𝑘 =
 the desired compromise solution of 𝑓𝑘

 the ideal solution of 𝑓𝑘
 

 
5. RESULTS AND DISCUSSION 

The compromise solution of manufacturing system and life support system has been 

achieved through the utilization of PHF linear membership functions and non-membership 

functions under two distinct models, as illustrated in Table 2 and Table 3, respectively. In 

each model, different crisp weights have been employed. The weights assigned to the first 

objective have been selected randomly within the range of 0 to 1. These weights are 

determined by the decision-maker(s) based on their level of satisfaction. Simultaneously, 

the weight assigned to the second objective is the complement of weight to the first 

objective function. The weight of PHF element in aggregation operator are taken 

maintaining same weightage. Then the single objective optimization models are solved by 

LINGO 18.0.   To assess the sensitivity of the results, a thorough sensitivity analysis was 

performed by modifying the weight parameter. To show the efficiency of the solution 

degree of closeness to ideal solution are calculated and compared with solution obtained 

by the existing method using HF weighted averaging (HFWA) and HF weighted geometric 

(HFWG) operators in Table 5 and Table 6. 

A. Compromise solutions of manufacturing system 

In Table 2, by HFWA operator, for weight (.1, .9) to the objective function the optimal 

solution is (220.7964, 573.0927), for weight (.3, .7) the solution is 

(347.7069, 575.7889), for weight (.5, .5) the solution is (453.2292, 583.6776), for 

weight (.7, .3) solution is (567.2987, 603.2049) and for (.9, .1) is 

(606.4351, 615.3611). 
So, when the weight of the first objective is increased then the solution goes from worst 

to best solution and when the weight of second objective is decreased the solution goes 

from best to the worst solution. 

By PHFWA operator, for weight (.1, .9) to the objective function the optimal solution 

is (292.2183, 573.9100), for weight (.3, .7) the solution is (427.8848, 581.1482), for 

weight (.5, .5) the solution is (543.0254, 597.5321), for weight (.7, .3) solution is 

(606.4313, 615.3597) and for  (.9, .1) is (606.4332, 615.3604). 
So, when the weight allocated to the first objective is increased, the solution transitions 

from a relatively poorer solution to a better one. Conversely, when the weight allocated to 

the second objective is decreased, the solution moves from a better solution to a relatively 

poorer one. 

The result obtained by using PHFWA operator is different from the result obtained by 

using HFWAO, the comparison is presented by degree of closeness to ideal solution in 

Table 5. 

By HFWG operator, for weight (.1, .9) to the objective function the optimal solution is 

(260.2183, 573.3294), for weight (.3, .7) the solution is (349.8160, 575.8869), for 
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weight (.5, .5) the solution is (453.3863, 583.6948), for weight (.7, .3) solution is 

(566.1693, 602.9149) and for  (.9, .1) is (606.4351, 615.3611). 
So, when the weight allocated to the first objective is increased, the solution progresses 

from its worst state to the best possible solution. Conversely, when the weight allocated to 

the second objective is reduced, the solution regresses from its best state to the worst 

possible solution. 

Table 2: Optimal compromise objective values for manufacturing system 

weight Objective values [(𝑓1
∗, 𝑓2

∗)] 
(𝑊1,𝑊2) HFWA PHFWA HFWG PHFWG 

(.1, .9) (220.7964, 573.0927) (292.9689, 573.9100) (260.2183, 573.3294) (270.9738, 573.4794) 
(.2, .8) (296.2601, 573.9894) (362.3822, 576.5138) (303.2744, 574.1721) (323.4829, 574.8055) 
(.3, .7) (347.7069, 575.7889) (427.8848, 581.1482) (349.8160, 575.8869) (377.7452, 577.3857) 
(.4, .6) (399.2316, 578.8155) (488.4911, 588.0708) (399.9206, 578.8656) (433.2288, 581.6428) 
(.5, .5) (453.2292, 583.6776) (543.0254, 597. 5321) (453.3863, 583.6948) (488.9955, 588.1421) 
(.6, .4) (509.6103, 591.2903) (590.1488, 609.7415) (509.4388, 591.2621) (543.4850, 597.6295) 
(.7, .3) (567.2987, 603.2049) (606.4313, 615.3597) (566.1693, 602.9149) (606.4351, 615.3610) 
(.8, .2) (606.4351, 615.3611) (606.4322, 615.3600) (606.4351, 615.3611) (606.4351, 615.3610) 
(.9, .1) (606.4351, 615.3611) (606.4332, 615.3604) (606.4351, 615.3611) (606.4351, 615.3610) 

 

By PHFWG operator, for weight (.1, .9) to the objective function the optimal solution 

is (270.9738, 573.4794), for weight (.3, .7) the solution is (377.7452, 577.3857), for 

weight (.5, .5) the solution is (488.9955, 588.1421), for weight (.7, .3) solution is 
(606.4351, 615.3610) and for  (.9, .1) is (606.4351, 615.3610). 

It is observed that as the weights assigned to the first objective function are increased, 

the solution values progressively move closer to their best possible outcome. Similarly, As 

the weights assigned to the second objective function decrease, the solution values tend to 

converge toward their least favorable state. 

The results obtained by PHFWG and HFWG operators are different; in Table 5, the 

comparison is shown by how closely the results match the ideal solution. 

 

B. Compromise solutions of reliability optimization model of Life support system 

In Table 3, by HFWA operator, at weight (.1, .9) assigned to the objective functions 

the optimal solution is (.773437, 725.2015), for weight (.3, .7) the solution is 
(. 955693, 805.6241), at weight (.5, .5) the solution is (.999999, 861.3603), for weight 

(.7, .3) solution is (. 999999, 861.3603)  and for  (.9, .1) is (.999999, 861.3603). 
In summary, it can be concluded that increasing the weight of the first objective brings 

the solution closer to the best outcome, while decreasing the weight of the second objective 

moves the solution towards the worst possible result and vice versa.  

By PHFWA operator, for weight (.1, .9) to the objective function the optimal solution 

is (.868483, 759.8243), for weight (.3, .7) the solution is (. 938986, 794.4539), for 

weight (.5, .5) the solution is (.992998, 840.6600), for weight (.7, .3) solution is 
(. 999999, 861.3583)  and for  (.9, .1) is (.999999, 861.3583). 

It is observed that altering the weight assigned to the first (second) objective leads the 

solution closer to the best (worst) possible outcome. 

By HFWG operator, for weight (.1, .9) to the objective function the optimal solution is 

(.773440, 725.2023), for weight (.3, .7) the solution is (. 955632, 805.5805), for weight 
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(.5, .5) the solution is (.993971,842.2107), for weight (.7, .3) solution is 

(. 998981, 853.6873), and for  (.9, .1) is (.999934, 859.4861). 
The results obtained by PHFWA and HFWA operators are different from one other, 

and Table 6 compares them according to how closely they get to the ideal optimal solution. 

So, when the weight allocated to the first objective is increased, the solution progresses 

from its worst state to the best possible solution. Conversely, when the weight allocated to 

the second objective is reduced, the solution regresses from its best state to the worst 

possible solution. 

By PHFWG operator, for weight (.1, .9) to the objective function the optimal solution 

is (.868482, 759.8240), for weight (.3, .7) the solution is (. 939301,794.6547), for 

weight (.5, .5) the solution is (.992432, 839.8040), for weight (.7, .3) solution is 
(. 998735, 852.7920) and for  (.9, .1) is (.999919, 859.2686). 

The result produced by PHFWG operator differs from the result produced by HFWG 

operator; the comparison is shown in Table 6 by the degree of similarity to the ideal 

solution. 

It is seen that the solution values gradually approach their ideal conclusion when the 

weights applied to the first goal function are increased. Similar to this, when the weight 

allocated to second objective is reduced, the solution values go to worse. 

Table 3: Optimal compromise objective values for Life support system (LSS) 

weight Objective values [(𝑓1
∗, 𝑓2

∗)] 

(𝑊1,𝑊2) HFWA PHFWA HFWG PHFWG 

(.1, .9) (.773437, 725.2015) (.868483, 759.8243) (.773440, 725.2023) (.868482, 759.8240) 

(.2, .8) (.773437, 725.2015) (.868483, 759.8243) (.873537, 761.8927) (.868482, 759.8240) 

(.3, .7) (.955693, 805.6241) (.938986,794.4539) (.955632, 805.5805) (.939301, 794.6547) 

(.4, .6) (.985855, 831.4092) (.981391, 826.6951) (.985179, 830.6577) (.981096, 826.4021) 

(.5, .5) (.999999, 861.3603) (.992998, 840.6600) (.993971, 842.2107) (.992432, 839.8040) 

(.6, .4) (.999999, 861.3603) (.997634, 849.5475) (.997451, 849.0868) (.996825, 847.6161) 

(.7, .3) (.999999, 861.3603) (.999999, 861.3583) (.998981, 853.6873)  (.998735, 852.7920) 

(.8, .2) (.999999, 861.3603) (.999999, 861.3583) (.999661, 856.9925) (.998581, 856.4895) 

(.9, .1) (.999999, 861.3603) (.999999, 861.3583) (.999934, 859.4861) (.999919, 859.2686) 

 

To summarize, increasing the weight of an objective enhances its influence, enabling 

the solution to reach its optimal performance in that objective. Conversely, decreasing the 

weight of an objective weakens its impact, potentially leading to a deterioration in 

performance in that aspect while aiming for a better balance with other objectives. This 

approach allows decision-makers to control the trade-offs between objectives and tailor the 

solution to their preferences and priorities. 

Using classical weighted sum method, the solution obtained for manufacturing system 

and life support system are listed in Table 4. In this context, the solution falls within the 

same coverage spectrum as the solution obtained through the proposed method. 

 

 

 

 



S. Jana and S. Islam / A Pythagorean Hesitant Fuzzy Programming Approach 222 

Table 4: Optimal value of the objective by classical weighted sum method 

weight Objective values [(𝑓1
∗, 𝑓2

∗)] by weighted sum method 

(𝑊1,𝑊2) Manufacturing system Life support system 

(.1, .9) (455.3876, 5839156) (.773437, 725.2015) 

(.2, .8) (563.5913,602.2633) (.773437, 725.2015) 

(.3, .7) (.606.4352,615.3611) (.773437, 725.2015) 

(.4, .6) (606.4352,615.3611) (.773437, 725.2015) 

(.5, .5) (606.4352,615.3611) (.773437, 725.2015) 

(.6, .4) (606.4352,615.3611) (.773437, 725.2015) 

(.7, .3) (606.4352,615.3611) (.773437, 725.2015) 

(.8, .2) (606.4352,615.3611) (.773437, 725.2015) 

(.9, .1) (606.4352,615.3611) (.773437, 725.2015) 
 

It is shown that, in the weighted sum method, the DMs needs to provide fixed weights 

for each objective in advance. These fixed weights may not reflect the DMs true 

preferences accurately and may lead to biased or suboptimal solutions. 

In Table 5, for each weight combination the closeness degree to ideal solution of 

solutions obtained by PHFWA operator is better than the solution obtained by HFWA 

operator, similarly the solution derived from the PHFWG operator is more proximate to 

the ideal solution than the solution obtained by HFWG operator. 
 

Table 5: Comparison of the optimal solution of manufacturing system by degree of closeness to 

ideal solution 
Weight Degree of closeness to 

ideal solution 

HFWA PHFWA HFWG PHFWG 

(.1, .9) 𝐷1 

𝐷2 

𝐷∞ 

0.0636 
0.0636 

0.0636 

0.0529 
0.0517 

0.0516 

0.0574 
0.0571 

0.0571 

0.0559 
0.0553 

0.0553 

(.2, .8) 𝐷1 

𝐷2 

𝐷∞ 

0.1035 

0.1023 

0.1023 

0.0823 

0.0806 

0.0806 

0.1015 

0.0999 

0.0998 

0.0957 

0.0933 

0.0933 

(.3, .7) 𝐷1 

𝐷2 

𝐷∞ 

0.1313 

0.1280 
0.1279 

0.0980 

0.0888 
0.0832 

0.1303 

0.1269 
0.1269 

0.1183 

0.1132 
0.1131 

(.4, .6) 𝐷1 

𝐷2 

𝐷∞ 

0.1426 
0.1368 

0.1366 

0.0930 
0.0792 

0.0777 

0.1422 
0.1363 

0.1362 

0.1230 
0.1145 

0.1142 

(.5, .5) 𝐷1 

𝐷2 

𝐷∞ 

0.1354 

0.1266 

0.1263 

0.0727 

0.0561 

0.0522 

0.1353 

0.1265 

0.1261 

0.1096 

0.0976 

0.0968 

(.6, .4) 𝐷1 

𝐷2 

𝐷∞ 

0.1081 

0.0966 
0.0958 

0.0401 

0.0289 
0.0240 

0.1082 

0.0967 
0.0959 

0.0787 

0.0644 
0.0622 

(.7, .3) 𝐷1 

𝐷2 

𝐷∞ 

0.0602 
0.0476 

0.0451 

0.0206 
0.0206 

0.0206 

0.0613 
0.0488 

0.0464 

0.0206 
0.0206 

0.0206 

(.8, .2) 𝐷1 

𝐷2 

𝐷∞ 

0.0137 

0.0137 

0.0137 

0.0137 

0.0137 

0.0137 

0.0137 

0.0137 

0.0137 

0.0137 

0.0137 

0.0137 

(.9, .1) 𝐷1 

𝐷2 

𝐷∞ 

0.0069 

0.0069 
0.0069 

0.0069 

0.0069 
0.0069 

0.0069 

0.0069 
0.0069 

0.0069 

0.0069 
0.0069 
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To show the efficiency of the proposed method closeness degree to ideal solution is 

calculated and listed in Table 6. From this table, except the weight (.1, .9) the closeness 

degree to ideal solution of the obtained solution by PHFWA operator is better than the 

closeness of the solution obtained by HFWA operator and closeness degree of the solution 

obtained by PHFWG operator is better than the solution obtained by HFWG operator. 

Table 6: Comparison of the optimal solution of LSS by degree of closeness to ideal solution 

Weight  Degree of closeness to 

ideal solution 

HFWA PHFWA HFWG PHFWG 

(.1, .9) 𝐷1 

𝐷2 

𝐷∞ 

0.0226 

0.0226 
0.0226 

0.0541 

0.0430 
0.0410 

0.0226 

0.0226 
0.0226 

0.0541 

0.0430 
0.0410 

(.2, .8) 𝐷1 

𝐷2 

𝐷∞ 

0.0453 
0.0453 

0.0453 

0.0627 
0.0449 

0.0364 

0.0638 
0.0460 

0.0385 

0.0627 
0.0449 

0.0364 

(.3, .7) 𝐷1 

𝐷2 

𝐷∞ 

0.0832 

0.0711 
0.0698 

0.0793 

0.0637 
0.0610 

0.0832 

0.0711 
0.0698 

0.0794 

0.0638 
0.0611 

(.4, .6) 𝐷1 

𝐷2 

𝐷∞ 

0.0823 
0.0768 

0.0766 

0.0811 
0.0740 

0.0736 

0.0821 
0.0764 

0.0761 

0.0810 
0.0738 

0.0734 

(.5, .5) 𝐷1 

𝐷2 

𝐷∞ 

0.0790 

0.0790 

0.0790 

0.0721 

0.0687 

0.0687 

0.0724 

0.0695 

0.0694 

0.0720 

0.0683 

0.0682 

(.6, .4) 𝐷1 

𝐷2 

𝐷∞ 

0.0632 

0.0632 

0.0632 

0.0631 

0.0631 

0.0631 

0.0598 

0.0584 

0.0583 

0.0598 

0.0581 

0.0581 

(.7, .3) 𝐷1 

𝐷2 

𝐷∞ 

0.0474 
0.0474 

0.0474 

0.0473 
0.0473 

0.0473 

0.0459 
0.0451 

0.0451 

0.0458 
0.0450 

0.0450 

(.8, .2) 𝐷1 

𝐷2 

𝐷∞ 

0.0316 

0.0316 

0.0316 

0.0316 

0.0316 

0.0316 

0.0310 

0.0307 

0.0307 

0.0310 

0.0307 

0.0307 

(.9, .1) 𝐷1 

𝐷2 

𝐷∞ 

0.0158 

0.0158 
0.0158 

0.0158 

0.0158 
0.0158 

0.0157 

0.0156 
0.0156 

0.0157 

0.0156 
0.0156 

 

6. LIMITATION OF OUR STUDY 

We have identified certain limitations in our approach. While our method seeks to 

obtain the Pareto optimal solution, it's important to note that the reverse may not hold true. 

This is because we employ a weighted sum of the aggregated PHF membership and non-

membership as a utility function, which may not effectively explore solutions in the non-

convex region of the Pareto front, if one exists. To address this limitation and find Pareto 

optimal solutions in the non-convex portion of the Pareto front, alternative approaches such 

as metaheuristic methods or ϵ-constraint methods with suitable ϵ bounds on the objective 

function are necessary. By explicitly discussing these limitations, we aim to offer a 

transparent and balanced assessment of our work and provide guidance for future research 

in this field. 
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7. CONCLUSIONS 

In this paper, a multi-objective optimization approach is presented in PHF environment. 

To convert the uncertain multi-objective optimization problem to single objective 

optimization problem the PHFWA and PHFWG operators are used. So, here PHF 

environments gives the option to choose memberships and non-memberships in much 

range of area than FS and IFS to decision making experts. For uncertainty of the parameters 

of objective functions, that are taken as PPFN. This method conclude that the result 

obtained by using PHFWA and PHFWG operator is better than the result obtained by 

HFWA and HFWG operator by degree of closeness to ideal solution. In order to 

demonstrate the practicality of the suggested approach a numerical example of 

manufacturing system and a real-life multi-objective ROM of LSS is solved. A sensitivity 

analysis of the optimal solution is presented by different weights of the objectives and 

giving the same weight to all DM’s preferences. A comparison of the solutions obtained 

by proposed method and existing method is presented by closeness degree to ideal solution. 

The proposed method is also useful when several experts are involved in decision making 

process and they are confused about the exact value of parameters and goal of the 

optimization problem. 

In future, multi objective optimization model of various field such as engineering, 

finance, inventory control, transportation, environmental management etc. can be solved 

by the proposed method. We can make this method more reliable by using the extension 

of PHF aggregation operator. At the place of linear membership, we can use non-linear 

membership and non-membership functions (exponential, hyperbolic, etc.). Various 

metaheuristic algorithm can be applied to the proposed model for more insightful result in 

future. 
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