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Abstract: In this paper, we consider three cases of an intractable problem of searching
for two subsets in a finite set of points of Euclidean space. In all three cases, it is required
to maximize the minimum cluster’s cardinality under constraint on each cluster’s scatter.
The scatter is the sum of the distances from the cluster elements to the center, which is
defined differently in each of the three cases. In the first case, cluster centers are fixed
points. In the second case, the centers are unknown points from the input set. In the
third case, the centers are defined as the centroids (the arithmetic mean) of clusters.
We propose a general scheme that allows us to build a polynomial 1/2-approximation
algorithm for a generalized problem and can be used for constructing 1/2-approximation
algorithms for the first two cases and for the one-dimensional third case. Also we show
how, using precomputed general information, their time complexities can be reduced to
the complexity of sorting. Finally, we present the results of computational experiments
showing the accuracy of the proposed algorithms on randomly generated input data.
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1. INTRODUCTION

The subject of this paper is three cases of a problem of finding two disjoint
subsets in a finite set of points of Euclidean space. This problem models the
applied problems of searching for a family of objects in the case when each family
consists of objects similar in the sense of some criterion. Such problem is often
found in applications such as pattern recognition and machine learning [2], data
analysis [3], data cleaning [4].

In all three considered cases, it is required to maximize the minimum cluster’s
cardinality so that in each cluster the total intra-cluster scatter relative to the cen-
ter does not exceed the specified threshold. In each case, the center is determined
in its own way.

NP-hardness was previously proved for all three cases, even in the subcase of
a one-dimensional space (see the next section). This paper aims to construct fast
approximation algorithms with guaranteed accuracy for the problem considered.

2. PROBLEM STATEMENTS AND SIMILAR PROBLEMS

In this paper we will use the following definitions.

Definition 1. P(Rd) is the set of all finite subsets of Rd.

Definition 2. F (C, z): P(Rd)× Rd → R+ is a function such that

F (C, z) :=
∑
y∈C

∥y − z∥2,

where ∥v∥2 =
√
v21 + . . .+ v2d for each v = (v1, . . . , vd) ∈ Rd.

Definition 3. Centroid of a set C ∈ P(Rd) is a point ȳ(C) from Rd such that

ȳ(C) = 1

|C|
∑
y∈C

y.

We consider three cases of the following clustering problem.
Bounded Sums-of-Distances Clustering (Y, c1, c2, A).

Given an N -element set Y = {y1, . . . , yN} of points of Euclidean space Rd, centers
c1, c2 (as described later), a non-negative number A ∈ R+.

Find non-empty disjoint subsets C1, C2 ⊂ Y such that the minimum subset size
is maximal. In other words,

min (|C1|, |C2|) → max, (1)

where

F (Ci, ci) ≤ A, i = 1, 2. (2)
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Further we will refer to this problem as BSD-CLUSTER. Three considered
cases differ by the type of centers. In the first case, the centers c1 and c2 are equal
to the given points z1, z2 ∈ Rd, respectively — problem BSD-CLUSTER(Y,
z1, z2, A). In the second case, the centers are unknown and are to be found,
but must be from the initial set. In this case we will denote the problem as
BSD-CLUSTER(Y, ∗, ∗, A). Finally, in the third case, the centers are equal
to the centroids c̄i = ȳ(Ci), i = 1, 2, and the problem will be denoted as BSD-
CLUSTER(Y, c̄1, c̄2, A).

The considered problem has the following interpretation. There is a group of
objects, among which there are two disjoint subgroups of similar objects. Also,
there are some “outliers”, which are objects that do not belong to either of the
two subgroups. It is known that each subgroup has its own reference object and
that in a subgroup the scatter relative to this reference object does not exceed a
certain value. The scatter is defined as the sum of measures of “dissimilarity” of
objects within the subgroup and the corresponding reference object. Given this
constraint, it is required to find the largest subgroups of similar objects.

Similar clustering problems, in which the cardinalities of the sought subsets are
maximized, can be found, for example, in [5], [6], [7], [8]. Like BSD-CLUSTER,
the problems considered in these papers model the search for homogeneous subsets,
which is a typical problem for editing [9] and clearing [4] data. However, we note
that despite the similarity of the statements, the algorithms proposed in [5], [6],
[7], [8] are not applicable to BSD-CLUSTER.

Previously, it was proved [10] that all three described cases of problem BSD-
CLUSTER are NP-hard even in the one-dimensional case. In addition, it is
known [11] that this property also holds for quadratic analogs of the first two
cases, that is, for problems in which the squares of distances are summed in (2).

In [1], 1
2 -approximation algorithms for the problem BSD-CLUSTER with

fixed and unknown centers and for the one-dimensional case of problem with cen-
troids are proposed. The running time of the algorithms for the case of unknown
centers is O(N3 logN) and for the other two cases is O(N2 logN).

In this paper, we present modifications of these algorithms that allow us to
speed up each of them by a factor of N .

The paper has the following structure. Section 3 provides a formulation of the
problem that generalizes considered problem and justifies an approach that allows
one to find a 1

2 -approximate solution to the general problem. In Section 4, we
show the complexity of a simple approximation algorithm constructed in this way
for problem with fixed centers and present an approach that allows us to speed
up this algorithm by eliminating unnecessary operations. Further, in Sections 5
and 6, the existence of similar algorithms for the problem with unknown centers
and the one-dimensional case of the problem with centroids are shown. Finally,
in Section 7, we present the results of computational experiments showing the
accuracy of the proposed algorithms on randomly generated input data.
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3. GENERALIZED PROBLEM

Let us present a general approach to solving the considered problem, that is
not based on the specifics of the scatter function.

By d-dimensional scatter function we will understand an arbitrary function
F : P(Rd) → R+ such that for any C′ ⊂ C′′ ⊂ Rd inequality F (C′) ≤ F (C′′) holds.

Now, let us consider the following general problem of finding two clusters of the
given size with a limited scatter. The scatter of those clusters will be determined
by two arbitrary scatter functions.

Problem CLUSTER(Y, F1, F2, A, M). Given a set Y = {y1, . . . , yN} ⊂
Rd, d-dimensional scatter functions F1,F2, a non-negative number A ∈ R+, and
a positive integer M ∈ N. Find non-empty disjoint subsets C1, C2 ⊂ Y with
cardinalities equal to M such that

Fi (Ci) ≤ A, i = 1, 2,

or prove that they do not exist.
Since the problem formulated in Section 2 is the problem of finding two clusters

of the maximum size rather than the given one, let us consider respective modifi-
cation of CLUSTER problem. In this problem, we will denote the last argument
as Mmax (instead of a given cluster size M).

Problem CLUSTER(Y, F1, F2, A, Mmax). Given a set Y = {y1, . . . , yN} ⊂
Rd, d-dimensional scatter functions F1,F2, and a non-negative number A ∈ R+.
Find non-empty disjoint subsets C1, C2 ⊂ Y such that the minimum subset size is
maximal:

min (|C1|, |C2|) → max,

where

Fi (Ci) ≤ A, i = 1, 2.

Note that problem CLUSTER(Y, F1, F2, A, Mmax) (which we will refer to
as maximin CLUSTER problem) is a generalization of three cases described in
Section 2. Indeed, problem with fixed centers is equivalent to problem CLUS-
TER(Y, F (C, z1), F (C, z2), A, Mmax). Problem with unknown centers is reduced
(see Section 5) to problem CLUSTER(Y, FM

2 , FM
2 , A, Mmax), where

FM
2 (C) = min

u∈Y
F (C, u).

Finally, problem with centroids is the same as problem CLUSTER(Y, F (C, ȳ(C)),
F (C, ȳ(C)), A, Mmax).

We also consider an analog of problem CLUSTER in which it is required to
find only one subset of Ỹ ⊆ Y of given cardinality with the minimal scatter. In
this problem, we will denote the second last argument as Amin (instead of a given
scatter bound A).
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Problem CLUSTER(Ỹ, F , Amin, M). Given a set Ỹ = {y1, . . . , yk} ⊂ Rd,
a d-dimensional scatter function F and a positive integer M ∈ N. Find M -element
subset C of Ỹ with minimal scatter F (C).

Let us consider two arbitrary scatter functions F1, F2 and assume that there
is an algorithm that allows us to find optimal solutions to one-cluster problems
CLUSTER(Ỹ, Fi, Amin, M), i = 1, 2. Then we can propose the following algo-
rithm for solving problem CLUSTER(Y, F1, F2, A, M).

Essentially, in this algorithm, firstly we try to find the best subset in terms
of the first scatter function, and then among the remaining elements — the best
subset in terms of the second scatter function. If the found subsets do not satisfy
the scatter constraints, then we repeat the same procedure, but in a different
order.

Algorithm A(Y,F1,F2, A,M)

Input: Y ⊂ Rd, scatter functions F1, F2, A ∈ R+, M ∈ N.
1: If 2M > N , terminate the algorithm (no solution is constructed).
2: Find the optimal solution C1 to problem CLUSTER(Y, F1, Amin, M), then

find the optimal solution C2 to problem CLUSTER(Y \ C1, F2, Amin, M).
If F1(C1) > A or F2(C2) > A, go to Step 3. Otherwise, go to Step 4 (a feasible
solution with minimal cardinality M has been constructed).

3: Find the optimal solution C2 to problem CLUSTER(Y, F2, Amin, M), then
find the optimal solution C1 to problem CLUSTER(Y \ C2, F1, Amin, M).
If F1(C1) > A or F2(C2) > A, terminate the algorithm (no solution is con-
structed). Otherwise, go to Step 4 (a feasible solution has been constructed).

4: Return the sets C1 and C2 as the result of the algorithm.

Remark 4. It is worth mentioning that if the scatter functions F1 and F2 are
equal at the input of the algorithm A(. . . , A,M), then Step 3 can be skipped, be-
cause, in this case, Step 2 and Step 3 either both find no solution or find the same
solution.

Let us consider an arbitrary instance of maximin problem CLUSTER(Y, F1,
F2, A, Mmax), where Y ⊂ Rd; F1, F2 are d-dimensional scatter functions; A ∈ R+.
Let C∗

1 , C∗
2 be an arbitrary feasible solution to this problem. Denote the minimal

cardinality of C∗
1 and C∗

2 by M∗. Then the following statements hold true (in [1],
the first two of them are intermediate results of the proofs of Proposition 1 and
Theorem 1, respectively).

Proposition 5. If M∗ is even, i.e., M∗ = 2K∗, the algorithm A(. . . , A,M) ap-
plied to problem CLUSTER(Y, F1, F2, A, K∗) will construct a feasible solution.

Proof. Using the existence of a solution with minimum cardinality M∗ and mono-
tonicity of the scatter function, it can be shown that at the second step of the algo-
rithm A(Y,F1,F2, A,M), a feasible solution will be constructed, since when con-
structing a solution to a one-cluster problem, there will always be at leastK∗ avail-
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able elements from each solution’s cluster with minimal cardinality M∗ = 2K∗.

Proposition 6. If M∗ is odd, i.e., M∗ = 2K∗ + 1, the algorithm A(. . . , A,M)
applied to problem CLUSTER(Y, F1, F2, A, K∗ + 1) will construct a feasible
solution.

Proof. Suppose that considered algorithm A didn’t construct a feasible solution
with sets of cardinality of K∗ + 1. Let C∗∗

1 be the set constructed at Step 2. Its
scatter is not greater than A (F1(C∗∗

1 ) ≤ A), since any (K∗ +1)-element subset of
C∗
1 is a feasible solution to Problem CLUSTER(Y, F1, Amin, K

∗ + 1) and has a
scatter of no more than A. Then, let C∗∗

2 be the second set constructed at Step 2.
From our assumption that no feasible solution was found, it follows that the pair
C∗∗
1 and C∗∗

2 is not a feasible solution. Using that, we will show that C∗∗
1 is a subset

of C∗
2 .
Suppose the opposite is true: there is an element from C∗∗

1 that is not contained
in C∗

2 .
Then the set C∗

2 \C∗∗
1 contains at least K∗+1 elements and its scatter does not

exceed A. However, since C∗
2 \ C∗∗

1 ⊂ Y \ C∗∗
1 , then any (K∗ +1)-element subset of

C∗
2 \ C∗∗

1 is a feasible solution to Problem CLUSTER(Y \ C∗∗
1 , F2, Amin, K

∗ + 1)
and has a scatter of no more than A. Therefore, C∗∗

2 has a scatter of no more than
A, which contradicts the fact that pair C∗∗

1 and C∗∗
2 is not a feasible solution to

maximin CLUSTER problem. Hence, C∗∗
1 ⊂ C∗

2 .
Since no solution was found at Step 2, the algorithm will proceed to Step 3.
By analogy with Step 2, the constructed set C∗∗∗

2 has a scatter not exceeding
A, therefore the second set will be constructed further. Let C∗∗∗

1 and C∗∗∗
2 be

the sets of cardinality K∗ + 1 which are constructed at Step 3. According to
our assumption, a pair C∗∗∗

1 and C∗∗∗
2 of sets is not a feasible solution. Then, by

analogy with the reasoning for Step 2, we get that C∗∗∗
2 ⊂ C∗

1 .
The sets C∗∗

1 and C∗∗∗
2 don’t intersect because they are subsets of the sets C∗

2

and C∗
1 , respectively, that do not intersect by assumption. Hence, C∗∗∗

2 ⊂ Y \ C∗∗
1

and Problem CLUSTER(Y \ C∗∗
1 , F2, Amin, K

∗ + 1) has a feasible solution C∗∗∗
2

with a scatter of no more than A and a scatter of optimal solution C∗∗
2 does not

exceed A. As a result, we get that C∗∗
2 satisfies the restriction on the scatter and

also have the cardinality of K∗ + 1. It follows from this that at Step 2, a feasible
solution for maximin CLUSTER problem is constructed with the sets of K∗ + 1
cardinality, which contradicts our assumption.

Proposition 7. If there is an algorithm that solves problem CLUSTER(Ỹ, F ,
Amin, M) in time O(T (k)), where k = |Ỹ|, then algorithm A(. . . , A,M) can be
implemented in O(T (N)) time, where N = |Y|.

Proof. It is enough to note that in the considered algorithm, the search for solu-
tions to one-cluster problems is performed no more than four times.

Now we can construct an approximation algorithm for maximin problem
CLUSTER(Y, F1, F2, A, Mmax) using A(. . . , A,M). One possible approach
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is to start from M = 1 and increase M by one until the algorithm for problem
CLUSTER(Y, F1, F2, A, M) finds no solution. However, the running time can
be reduced by using a binary search by the value of M . It suffices to start with
the boundaries M = 1 (for which a solution must exist) and M = ⌈N

2 ⌉+ 1 (there
are no solutions with such cardinality). Formally, the algorithm can be written as
follows.

Algorithm A(Y,F1,F2, A,Mmax)

Input: Y ⊂ Rd, scatter functions F1, F2, A ∈ R+.
1: Let Mf = 1, Mt = ⌈N

2 ⌉ + 1. Construct a solution C1, C2 to problem CLUS-
TER(Y, F1, F2, A, M) for M = 1. If there is no solution, then terminate the
algorithm (maximin CLUSTER problem has no solutions).

2: If Mf + 1 = Mt, then go to Step 4, otherwise go to Step 3.

3: Let M = ⌈Mf+Mt

2 ⌉. Construct a solution to problem CLUSTER(Y, F1, F2,
A, M). If the solution has been constructed, then put Mf = M and store the
constructed solution in C1, C2 (an approximate solution of cardinality M has
been constructed); otherwise put Mt = M . Go to Step 2.

4: Return the sets C1 and C2 as the result of the algorithm.

The accuracy of algorithm A(. . . , A,Mmax) is established by the following
proposition.

Proposition 8. Algorithm A(. . . , A,Mmax) constructs a 1
2 -approximate solution

to problem CLUSTER(Y, F1, F2, A, Mmax).

Proof. Let C∗
1 , C∗

2 ⊂ Y be the optimal solution to maximin CLUSTER problem
and M∗ = min(|C∗

1 |, |C∗
2 |). It means there are feasible solutions with cardinalities

from 1 to M∗ since the scatter function is monotonous. Then it follows from
Propositions 5 and 6 that algorithm A(. . . , A,M) is able to construct feasible
solutions for M = 1, . . . , ⌈M∗

2 ⌉.
Clearly, during the execution of Steps 2–4 of the algorithm, the variable Mf

always contains the cardinality for which algorithm A(. . . , A,M) constructs a so-
lution and the variable Mt always contains the cardinality for which the algorithm
finds no solution.

After O(logN) iterations of Step 3, the algorithm will reach the case where
Mf + 1 = Mt. After that, the algorithm will stop and return a solution with
sets of cardinality Mf . We need to show that 2 ∗Mf ≥ M∗. Let us assume that

this is not the case, i.e., Mf < M∗

2 . But in this case Mt = Mf + 1 ≤ ⌈M∗

2 ⌉.
However, we have previously shown that for all cardinalities not exceeding ⌈M∗

2 ⌉,
the algorithm constructs a feasible solution, which contradicts the fact that Mt

contains the cardinality for which the algorithm does not find a solution. Thus,
we have obtained a contradiction, and hence 2 ∗Mf ≥ M∗, i.e., the result of the
algorithm will indeed be a 1

2 -approximate solution.
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The time complexity of algorithm A(. . . , A,Mmax) is established by the follow-
ing proposition.

Proposition 9. If algorithm A(. . . , A,M) finds the solution to problem CLUS-
TER in O(T (N)) time, then the total time complexity of the original algorithm
A(. . . , A,Mmax) is O(T (N) logN).

Proof. The number of repetitions of Steps 2 and 3 of algorithm A(. . . , A,Mmax)
is determined by the complexity of the binary search on the interval [1, ⌈N

2 ⌉ + 1]
and can be estimated by O(logN). By the assumption of the proposition, at each
repetition the number of operations is equal to O(T (N)), so the total complexity
of the A(. . . , A,Mmax) algorithm is O(T (N) logN).

So, this section shows that having an exact algorithm for solving one-cluster
problem with T (N) complexity for a certain scatter function, we can construct
a 1

2 -approximate solution to maximin CLUSTER problem with the same scat-
ter functions with complexity O(T (N) logN). Described in this paper approach
differs from the approach from [1] in that binary search is being used instead of
linear search. That allows us to run the proposed algorithm not in T (N) ∗N , but
in T (N) ∗ logN time. In the following sections, we will propose additional modifi-
cations that would allow us to eliminate unnecessary operations in the process of
solving one-cluster problems and obtain a 1

2 -approximate solution to the original
problem with a time complexity that equals to the time of sorting the initial set
according to the scatter functions.

4. ALGORITHM FOR PROBLEM WITH FIXED CENTERS

4.1. Exact algorithm for one-cluster problem

Let us consider problem CLUSTER and its modifications produced by BSD-
CLUSTER with fixed centers. One can use the following simple approach to
solving these problems.

Proposition 10. Problem CLUSTER(Ỹ, F , Amin, M), where F(C) =
∑
y∈C

∥y−

z∥, is solvable in time O(k(d+ log k)), where k = |Ỹ|.

Proof. It suffices to calculate distances between points of Ỹ and the point z, sort
the elements of the set Ỹ in non-decreasing order of this distance, and choose the
first M elements of the sorted set.

Then, according to Propositions 8 and 9, one can construct an algorithm that
finds a 1

2 -approximate solution to maximinCLUSTER problem in O(N logN(d+
logN)).

Note that with this approach, unnecessary operations are performed to sort the
original set. Indeed, in the A(. . . , A,Mmax) algorithm, the A(. . . , A,M) algorithm
is repeatedly called, which uses the algorithm from Proposition 10 for solving one-
cluster problem. But the input set (or its subset) is being sorted each time in
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non-decreasing distance to the point z1 or z2. Since the number of calls to the
algorithm A(. . . , A,M) is estimated from above by O(logN), the number of sorts
of the input set is estimated by the same value.

In order to preserve the simplicity of solving one-cluster problem, but to re-
duce the running time of the final algorithm, we propose the following accelerated
approach which is still based on sorting the input set.

Consider an arbitrary N -element set Y = {y1, . . . , yN}, yi ∈ Rd, i = 1, . . . , N .
Denote yi by Y[i]. First, in order not to recalculate the distances between the
elements of the input set and the point z, these distances can be calculated and
stored as a sequence D of length N , where

D[j] = ∥Y[j]− z∥, 1 ≤ j ≤ N. (3)

In addition, it is necessary to sort the elements of the input set by non-
decreasing order of distances to the point z and store the indices of the elements
of the sorted set as a sequence Z. Thus, we will assume that Z is a sequence of
numbers from 1 to N such that

D[Z[m]] ≤ D[Z[n]], 1 ≤ m < n ≤ N. (4)

Finally, instead of the input subset Ỹ ⊆ Y in the one-cluster problem, we will
use its characteristic vector, i.e., a sequence M of zeros and ones of length N such
that

Ỹ = {Y[j] | M[j] = 0, 1 ≤ j ≤ N}. (5)

In other words, the sequence M will define a set of “prohibitions” — a set of
indices of elements of the sequence Y that cannot be used in valid solutions of
one-cluster problem.

Using such structures, it is easy to find an optimal solution to the one-cluster
problem where the input set is a subset Ỹ ⊆ Y in O(N) time — just choose M of
the first elements of Z that are allowed by the M sequence. We will denote the
corresponding algorithm by Az1,z2 (Z,D,M, Amin,M). Also, for convenience, we
assume that the output of the algorithm is a sequence B of zeros and ones such
that C∗ = {Y[j] | B[j] = 1, 1 ≤ j ≤ N} is the optimal solution to the problem
CLUSTER(Ỹ, F , Amin, M), where F(C) =

∑
y∈C

∥y − z∥.

4.2. Approximation algorithm for problem with fixed centers

Using the modified algorithm for one-cluster problem, let us formulate a mod-
ified algorithm for CLUSTER problem.
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Algorithm Az1,z2(Z1,Z2,D1,D2, A,M)

Input: sequences Z1, Z2 of numbers from 1 to N and sequences D1, D2 of real
numbers such that

Di[Zi[m]] ≤ Di[Zi[n]], 1 ≤ m < n ≤ N, i = 1, 2;

A ∈ R; integer number M ≤ N .
1: If 2M > N , then terminate the algorithm (no solution is constructed).
2: In M1 write the result of the algorithm Az1,z2 (Z1,D1,M0, Amin,M), where

M0 is the zero-filled N -element sequence. In M2 write the result of the Az1,z2

(Z2,D2,M1, Amin,M), algorithm.

If
N∑
j=1

M1[j]∗D1[j] > A or
N∑
j=1

M2[j]∗D2[j] > A, then go to Step 3. Otherwise,

go to Step 4.
3: In M2 write the result of the algorithm Az1,z2 (Z2,D2,M0, Amin,M), where

M0 is the zero-filled N -element sequence. In M1 write the result of the Az1,z2

(Z1,D1,M2, Amin,M), algorithm.

If
N∑
j=1

M1[j]∗D1[j] > A or
N∑
j=1

M2[j]∗D2[j] > A, then terminate the algorithm

(no solution is constructed). Otherwise, go to Step 4.
4: Form the sets C1 and C2 according to the formulas

Ci = {Y[j] | M[j] = 1, 1 ≤ j ≤ N}, i = 1, 2,

and return them as a result.

Proposition 11. For BSD-CLUSTER(Y, z1, z2, A) with fixed centers, there
is a 1

2 -approximation algorithm with time complexity O(N(d+ logN)).

Proof. From the equality Gi =
N∑
j=1

Mi[j] ∗ Di[j] = Fi(Ci) it follows that the

Az1,z2(. . . , A,M) algorithm is a formal description of theA(. . . , A,M) algorithm in
the case when the scatter function corresponds toBSD-CLUSTER(Y, z1, z2, A).
Therefore, from Proposition 8 follows the statement that if the Az1,z2(. . . , A,M)
algorithm is used in the A(. . . , A,Mmax) algorithm to solve problem CLUS-
TER(. . . , A,M), then the result solution will be a 1

2 -approximate solution to
BSD-CLUSTER with fixed centers.

Let us estimate the complexity of this approach. To form the sequences
Z1,Z2,D1,D2, it is necessary to sort the points of the initial set (according to
the distances to points z1 and z2), which requires O(N(d + logN)) operations.
The complexity of the Az1,z2(. . . , A,M) algorithm is O(N), since each of its steps
requires no more than O(N) operations. And since the algorithm for problem
CLUSTER(. . . , A,M) is called O(logN) times (see Proposition 9), the total
complexity is equal to O(N(d+ logN)) +O(logN)O(N) = O(N(d+ logN)).
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Remark 12. Note that the execution of both Steps 2 and 3 of the A(. . . , A,M)
algorithm is necessary to obtain a 1

2 -approximate solution to problem with fixed
centers. Indeed, consider the following one-dimensional instance:

Y = {0, 8, 12, 43, 96, 99}, A = 156, z1 = 73, z2 = 112.

For this instance, there is a valid solution with a minimum cluster size of three:

C1 = {8, 12, 43}, C2 = {0, 96, 99}, max{F(C1, z1),F(C2, z2)} = 156.

Figure 1: The instance of problem with fixed centers and its valid solution

However, if only Step 2 of the algorithm is executed, then in the end we will
not be able to obtain a feasible solution with clusters of size 2, since the set C1
will be equal to {96, 99} and C2 will be equal to {12, 43}, with the total scatter that
exceeds A = 156. However, if C2 is constructed first, then the set {96, 99} will be
obtained, C1 will be equal to {12, 43}, and this solution is feasible (the maximum of
the scatters of Ci is 91). Thus, there are instances of problem with fixed centers for
which algorithm A(. . . , A,M) produces a 1

2 -approximate solution only at Step 3.

5. ALGORITHM FOR PROBLEM WITH CENTERS FROM THE
INPUT SET

5.1. Exact algorithm for one-cluster problem

In [1], it is shown that BSD-CLUSTER with centers from the input set
reduces to problem CLUSTER(Y, FM

2 , FM
2 , A, Mmax), where

FM
2 (C) = min

u∈Y
F (C, u). (6)

Also it can be shown that if we know 1
2 -approximate solution to problem CLUS-

TER(Y, FM
2 , FM

2 , A, Mmax), then we can calculate the centers

ui = argmin
u∈Y

F (Ci, u), i = 1, 2, (7)

in quadratic time and obtain a 1
2 -approximate solution to original problem with

centers from the input set.
As in the case of problem with fixed centers, if we construct an algorithm that

finds an exact solution to one-cluster problem generated by problem with centers
from the input set, then it can be used to construct an algorithm that finds a
1
2 -approximate solution to respective maximin CLUSTER problem.
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As in Section 4.1, we propose the approach which allows one to simplify solving
one-cluster problem generated by problem with centers from the input set and
avoid unnecessary sortings at the same time. First of all, we need to calculate all
the distances

Di[j] = ∥Y[j]− Y[i]∥, 1 ≤ i, j ≤ N, (8)

sort the input set N times using these distances and store the results as sequences
Z1, . . . ,ZN , where

Di[Zi[m]] ≤ Di[Zi[n]], 1 ≤ m < n ≤ N, 1 ≤ i ≤ N. (9)

As in the case with the previous problem, using the proposed structures, it is
possible in O(N2) time to find a solution to the one-cluster problem with arbitrary
subset Ỹ ⊆ Y as input set. It is enough to iterate over all possible values of the
center, for each center select M of the allowed elements closest to it, and among
all such solutions choose the solution with the minimal scatter. We will denote
the corresponding algorithm as A∗,∗(Z1, . . . ,ZN ,D1, . . . ,DN ,M, Amin,M). By
analogy with the problem with fixed centers, the output of the algorithm is a
sequence B of zeros and ones such that C∗ = {Y[j] | B[j] = 1, 1 ≤ j ≤ N},
and the index j of the chosen center, such that C∗ is the optimal solution to the
problem CLUSTER(Ỹ, FM

2 , Amin, M) and FM
2 (C∗) =

∑
y∈C∗

∥y − Y[j]∥.

5.2. Approximation algorithm for problem with centers from the input
set

The following algorithm finds a solution toCLUSTER problem corresponding
to problem with centers from the input set.

Algorithm A∗,∗(Z1, . . . ,ZN ,D1, . . . ,DN , A,M)

Input: sequences Z1, . . . ,ZN of numbers from 1 to N and sequences D1, . . . ,DN

of real numbers such that (9) holds; A ∈ R+; positive integer M ≤ N .
1: If 2M > N , then terminate the algorithm (no solution is constructed).
2: In M1 and ĵ1 write the result of A∗,∗(Z1, . . . ,ZN ,D1, . . . ,DN , M0, Amin, M),

where M0 is a zero-filled sequence of length N .
3: In M2 and ĵ2 write the result of A∗,∗(Z1, . . . ,ZN ,D1, . . . ,DN , M1, Amin, M).

If
N∑

k=1

M1[k] ∗ Dĵ1
[k] > A or

N∑
k=1

M2[k] ∗ Dĵ2
[k] > A, terminate the algorithm

(no solution is constructed). Otherwise, go to Step 3.
4: Form the sets C1 and C2 according to the formulas

Ci = {Y[j] | Mi[j] = 1, 1 ≤ j ≤ N}, i = 1, 2.

Return clusters C1, C2 and their corresponding centers Y[ĵ1], Y[ĵ2] as the result
of the algorithm.
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Proposition 13. For BSD-CLUSTER(Y, ∗, ∗, A), there is a 1
2 -approximation

algorithm with time complexity O(N2(d+ logN)).

Proof. Consider an arbitrary instance of this problem: Y ⊂ Rd and A ∈ R+.
Based on it, we construct an instance of problem CLUSTER(Y, FM

2 , FM
2 , A,

Mmax). Let C1, C2 be the result of algorithm A(. . . , A,Mmax) applied to this
instance, where algorithm A∗,∗(Z1, . . . ,ZN ,D1, . . . ,DN , A,M) is used to solve
CLUSTER problem. As in Proposition 11, since the A∗,∗(. . . , A,M) algorithm
is a formal description of the A(. . . , A,M) algorithm in the case when the scatter
function corresponds to BSD-CLUSTER(Y, ∗, ∗, A), then the obtained solu-
tion is 1

2 -approximate for the considered instance. Therefore C1, C2, u1, u2 are
the 1

2 -approximate solution to original considered problem, where ui, i = 1, 2, are
determined by formula (7) and can be calculated in quadratic time O(|Y|2). Thus,
Ci, i = 1, 2, can be constructed in O(N2(d + logN)) time, and ui, i = 1, 2, — in
time O(N2). So, the total complexity is O(N2(d+ logN)).

6. ALGORITHM FOR PROBLEM WITH GEOMETRIC CENTERS

6.1. Exact algorithm for one-cluster problem

Let us consider the one-dimensional case of BSD-CLUSTER with geometric
centers. As for two previous types of centers, we justify the approach for the one-
dimensional case of maximin CLUSTER problem generated by problem with
geometric centers, which allows us to find a 1

2 -approximate solution.
The following property of the scatter function F3(C) = F (C, ȳ(C)) is proved

in [1].

Proposition 14. Let C = {y1, . . . , yk} ⊂ R, ymin = min
y∈C

y and ymax = max
y∈C

y.

Then for every z such that ymin < z < ymax, at least one of the following inequal-
ities holds:

1. F3(C ∪ {z} \ {ymax}) < F3(C)
2. F3(C ∪ {z} \ {ymin}) < F3(C)

It follows from Proposition 14 that if in the one-dimensional case of one-cluster
problem with geometric centers all elements in Y are different, then the optimal
solution to this problem consists of M consecutive points of the set Y. Indeed,
suppose that for the optimal solution C∗ = {yi1 , yi2 , . . . , yik}, where yi1 < yi2 <
. . . < yik , there exists z ∈ Y \ C∗ such that yi1 < z < yik . Then, according to
Proposition 14, the scatter of one of the sets C∗ ∪ {z} \ {yik}, C∗ ∪ {z} \ {yi1} is
less than the scatter of the set C∗, which contradicts the optimality of C∗.

Similarly, it can be proved that if the set Y = {y1, . . . , yN} ⊂ R, where y1 ≤
y2 ≤ . . . ≤ yN , contains identical elements, then among the optimal solutions of
considered one-cluster problem there is a solution that consists of the elements of
the set Y with consecutive indices.
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An algorithm that solves a one-cluster problem with centroids is described
in [1]. In the case when the input set is sorted, the algorithm has the complexity
O(N).

Therefore, we can preliminarily sort the input set Y in non-decreasing order
and save the resulting indices as a sequence L:

Y[L[m]] ≤ Y[L[n]], 1 ≤ m < n ≤ |L|. (10)

Then, among all optimal solutions of considered one-cluster problem, there is a
solution that contains consecutive elements from L.

By analogy with the algorithm from [1], if the sequence L is known, it is
possible to find an optimal solution to a one-cluster problem in time O(N). We
will denote the corresponding algorithm as Ac̄1,c̄2(L,Y, Amin,M). Unlike in the
previous algorithms for one-cluster problems, it is convenient to assume that the
output of this algorithm is a sequence i1, . . ., iM of consecutive elements from L,
such that the set C∗ = {Y[i1], . . . ,Y[iM ]} is the optimal solution to the problem
CLUSTER(Ỹ, F , Amin, M), where Ỹ = {Y[L[m]] | 1 ≤ m ≤ |L|}, F(C) = F3(C).

6.2. Approximation algorithm for problem with geometric centers

The following algorithm finds a solution to the one-dimensional case of CLUS-
TER problem corresponding to BSD-CLUSTER with geometric centers.

Algorithm Ac̄1,c̄2(L,Y, A,M)

Input: a sequence L of numbers from 1 to N and a sequence Y of real numbers
such that (10) holds; A ∈ R+; positive integer M ≤ N .

1: If 2M > N , then terminate the algorithm (no solution is constructed).
2: Let B1 be the result of the Ac̄1,c̄2(L,Y, Amin,M) algorithm and the sequence

B2 be the result of Ac̄1,c̄2(L \ B1,Y, Amin,M). Calculate centroids using the

formula ȳi =
1
M

M∑
j=1

Y[Bi[j]], i = 1, 2.

If
M∑
j=1

|Y[B1[j]] − ȳ1| > A or
M∑
j=1

|Y[B2[j]] − ȳ2| > A, terminate the algorithm

(no solution is constructed). Otherwise, go to Step 3.
3: Form the sets Ci according to the formulas

Ci = {Y[Bi[j]] | j = 1, . . . ,M}, i = 1, 2,

and return them as a result.

Remark 15. The difference L\B1 in Step 2 can be calculated in linear time, since
the sequence B1 consists of consecutive elements of L.

Proposition 16. For the one-dimensional case of BSD-CLUSTER(Y, c̄1, c̄2,
A), there is a 1

2 -approximate algorithm with time complexity O(N logN).

Proof. It can be proved in the same way as Propositions 11, 13.
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7. NUMERICAL EXPERIMENTS

This section will present the results of numerical experiments. The following
procedure was used to generate problem instances. We considered fixed positive
integers N , d, where N is the size of the input set Y, d is the dimension of the Eu-
clidean space, as well as some d-dimensional scatter functions F1, F2. After that,
we randomly generated (based on some d-dimensional probability distribution)
points yi = (y1i , . . . , y

d
i ) ∈ Rd, i = 1, . . . , N . The maximum possible minimum

cluster size with this configuration is ⌊N
2 ⌋. To obtain a constraint A on the scatter

of sets, we iterated over all admissible sets with ⌊N
2 ⌋-element clusters C1, C2, and

as A we choose the minimum of all max(F1(C1),F2(C2)). Thus, as a result, we
get an instance of maximin CLUSTER problem — the set Y, the scatter func-
tions F1, F2, and the scatter constraint A, to which we will apply the proposed
approximate algorithm.

The distribution with the following density will be used:

f2,d(x1, . . . , xd) =
1

2
(f(−1,...,0), 12

+ f(1,0...,0), 12 ), (11)

where fx,σ is the density of the d-dimensional normal distribution with mean x
and covariance matrix σI, where I is the identity d-dimensional matrix. For the
one-dimensional case (d = 1), the density of the proposed distribution has the
following form.

Figure 2: Density plot f2,1(x1).

The calculation results are shown in Table 1, the values in each row are obtained
after solving 60 generated instances (20 instances for each of three considered cases
of problem BSD-CLUSTER).
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Table 1: Results of numerical experiments.

|Y| d amin (+again) aavg amax

32 1 12
16

(+50%) 14.496
16

1

32 2 12
16

(+50%) 14.352
16

1

32 3 12
16

(+50%) 14.448
16

1

32 4 13
16

(+62.5%) 14.528
16

1

32 5 12
16

(+50%) 14.448
16

1

32 6 13
16

(+62.5%) 14.624
16

1

32 7 13
16

(+62.5%) 14.608
16

1

32 8 12
16

(+50%) 14.640
16

1

32 9 13
16

(+62.5%) 14.784
16

1

32 10 13
16

(+62.5%) 14.640
16

1

In this table, amin, aavg, and amax are the minimum, average, and maximum
approximation ratios, respectively. Since the amin column contains rational num-
bers, for convenience of comparison, the numbers in the columns amin and aavg
are represented as fractions with a denominator of 16. In the amin column the
brackets contain the value

again =
amin − 1/2

1/2
· 100%,

which is the gain of the minimum approximation ratio over the guaranteed (ac-
cording to Propositions 11, 13, and 16) estimate 1/2.

Thus, for the proposed distributions, we find that in all test cases even the
minimum obtained approximation ratio exceeds the guaranteed approximation
ratio of proposed algorithms by at least 50 percent. The obtained average ratios
also significantly exceed the guaranteed estimate 1

2 : the difference between 1 and
the average approximation ratio is more than twice less than between 1 and the
minimum approximation ratio.

8. CONCLUSION

In this paper, we have considered three cases of NP-hard maximin 2-clustering
problem. We have constructed 1/2-approximation polynomial algorithms for the
first two cases and for the special subcase (when the dimension of the space is equal
to one) of the third case. The presented algorithms are N times faster compared
to the 1/2-approximation algorithms proposed earlier, where N is equal to the
number of elements of the input set. As a result, each accelerated algorithm has
the same asymptotic time complexity as the sorting the initial set (according to
the scatter functions). Therefore, constructing faster algorithms with the same
accuracy, if possible, requires a fundamentally different approach. In addition,
it is of interest to build more accurate polynomial algorithms for the problem
considered, as well as approximation algorithms for the problems of finding more
than two clusters.
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