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Abstract: Many optimization problems have competing objectives that require being
optimized at the same time. These problems are called ”multiple objective programming
problems (MOPPs)”. Real-world MOPPs may have some imprecision (roughness) in the
decision set and/or the objective functions. These problems are known as ”rough MOPPs
(RMOPPs)”. There is no unique method able to solve all RMOPPs. Accordingly, the
decision maker (DM) should have more than one method for solving RMOPPs at his dis-
posal so that he can select the most appropriate method. To contribute in this regard, we
propose a new method for solving a specific class of RMOPPs in which all the objec-
tives are precisely defined, but the decision set is roughly defined by its lower and upper
approximations. Our proposed method is a modified version of the Technique for Order
Preference by Similarity to Ideal Solution (TOPSIS). TOPSIS was chosen as the foun-
dation for our method because it is one of the most widely applied methods for solving
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MOPPs. The basic concept underlying TOPSIS is that the compromise solution is closer
to the ideal solution while also being farther away from the anti-ideal solution. The con-
ventional TOPSIS can only solve MOPPs with precise (crisp) definitions of the two main
parts of the problem. We extend TOPSIS to optimize multiple precise objectives over
an imprecise decision set. The proposed approach is depicted in a flowchart. A numer-
ical example is given to demonstrate the effectiveness of our proposed method to solve
RMOPPs with a rough decision set at different values of objectives’ weights and using
different Lp-metrics.

Keywords: TOPSIS, rough programming, rough decision set, multiple objective pro-
gramming.

MSC: 90C29.

1. INTRODUCTION

With the advancement of science and technology, decision-making has drawn the at-
tention of many researchers from diverse fields of human activity. Making decisions in
the quest for optimality is one of the globe’s most fundamental principles. Accordingly,
optimization is a significant scientific discipline. A situation in which the DM attempts
to fulfill the ideal scenario under some circumstances is referred to as ”an optimization
problem.” MOPPs are a typical class of optimization problems. In a MOPP, a set of con-
flicting crisp objectives is optimized simultaneously under a determined set of conditions
[1].

In some realistic MOPPs, there is a lack of information required to precisely spec-
ify any part of the problem [2], [3], [4]. In other problems, the approximate descriptions
of objective(s) and/or feasible set are more convenient and less expensive than the crisp
descriptions [3], [4], [5]. Correspondingly, decisions are made based on imprecise infor-
mation rather than precise information. These problems are named ”RMOPPs”. Rough
set theory (RST) [6] provides an excellent mathematical tool to the DM for dealing with
imprecision in RMOPPs. It is important to expand the study of the rough multi-objective
programming field to address many real-world optimization problems that have multiple
objectives to optimize over a rough decision set.

Youness [7] was the first to combine RST and optimization. He presented a new sin-
gle objective programming problem with a crisp objective function and a rough decision
set, called a ”rough single objective programming (RSOP) problem”. He also defined the
term ”rough optimal solution”. Five years later, Osman et al. [8] stated that roughness may
appear not only in the decision set but also in the objective function. Hence, they classi-
fied RSOP problems into three distinct classes according to the place of roughness. They
talked about concepts like ”rough feasibility”, ”rough optimality”, and ”rough optimal
set”. In the same manner, Atteya [4] introduced a concentrated study of the hybridization
of multi-objective programming (MOP) and RST. He presented a novel MOPP in a rough
environment and called it a ”rough multiple objective programming problem”. He pro-
posed a classification of such problems based on the location of roughness. He modeled
and solved problems of the 1st class in which roughness exists just in the feasible set. Also,
some research articles studied the appearance of rough intervals in MOPPs. For instance,
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TOPSIS was extended by El-Feky and Abou-El-Enien [9] to solve MOPPs with rough
interval parameters. In addition, the authors of [10] proposed a new methodology for ad-
dressing unbalanced multi-objective fixed-charge transportation problems whose decision
variables and coefficients are rough intervals. Furthermore, an algorithm is introduced for
solving multi-objective fractional transportation problems with parameters represented as
rough intervals in [11].

Until now, there is only one method proposed to find a compromise solution to a
RMOPP with a rough decision set. This method is introduced in [4], and it is based on the
weighted-sum method. Despite the simplicity of the weighted-sum method, it is challeng-
ing to determine the weights of objectives when their magnitudes differ [12]. Moreover,
this method is inefficient when solving non-convex problems [12]. This inspires us to
devise a new method for dealing with RMOPPs whose decision sets are rough. We select
TOPSIS to be the basis of our proposed method. TOPSIS was chosen because it is a sim-
ple and straightforward method that simulates DM’s rational thinking [13]. In this paper,
TOPSIS is modified to handle a particular type of RMOPPs where roughness exists only
in the decision set. TOPSIS is one of the major MOP methods. Hwang and Yoon first
presented it in [14] as a two-reference-point-based method for solving multiple-attribute
decision-making (MADM) problems. TOPSIS was later expanded to tackle MOPPs [15].
Due to conflict between objectives, there is no solution to optimize all objectives simulta-
neously. Therefore, TOPSIS searches for a solution that is both closer to the best solution
and further away from the worst solution. TOPSIS considers two extreme opposite poles
as the best and worst reference points, which are referred to as ”positive ideal solution
(PIS)” and ”negative ideal solution (NIS),” respectively [16]. To be more specific, TOP-
SIS transforms the MOPP into a bi-objective programming problem whose objectives are
the distance to the PIS and the distance to the NIS. Since these two objectives are usually
conflicting, the concept of a fuzzy membership function is used to represent the satisfac-
tion level for both objectives. Eventually, a max-min operation [17] is used to obtain the
most satisfactory (compromise) feasible solution.

The main impacts of this paper are as follows:
1. We point out that when the feasible region is a rough set in a MOPP, the domain of

the objective functions is either a set of simple elements from the fine universe or a
set of equivalence classes from the coarse universe.

2. RST and granular computing have been used in modeling a RMOPP and character-
izing its optimal sets.

3. Based on TOPSIS andRST,we propose a novelMOP algorithm for solvingRMOPPs
with a rough decision set and a search space composed of simple elements from the
fine universe.

4. The validity of this algorithm is demonstrated by solving a RMOPP with it using
different types of distance metrics. The results are compared to those of another
algorithm.

The remainder of the paper is structured as follows. Section 1 goes over some essential
concepts and notions of RST and GrC. In section 2, a model of a RMOPP with crisp func-
tions and a rough decision set is created. Also, new concepts using RST and GrC are being
developed along the lines of their crisp counterparts, such as ”rough PIS”, ”rough NIS”,
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”rough distance”, and ”rough compromise solution”. In section 3, a modified TOPSIS
is proposed to find the four optimal sets of compromise solutions to the problem above.
Also, an illustrative example is provided to support the new method. Section 4 contains
concluding remarks as well as some suggestions for future research.

2. ROUGH SET THEORY AND GRANULAR COMPUTING
Data of real-world problems may be very complex or may be vague. Hence, it is

very complicated to solve such problems from a computational perspective. Therefore, Z.
Pawlak proposed RST as a flexible mathematical means for representing vagueness and
complexity [6]. The main notions of RST are the approximation space and the lower and
upper approximations.

Let U denote a nonempty finite set of elements called a ground universe. Let E ⊆
U ×U , which is the mathematical representation of available information about elements
of the universe, be an equivalence relation (i.e., reflexive, symmetric, and transitive bi-
nary relation). Applying E on U partitions (divides) U into pairwise subsets U/E =
{C1, C2, ..., Cm} where C1, C2, ..., Cm are the ’names’ of the equivalence classes. The
family U/E is called a quotient universe, and the pair A = (U,E) is called an approx-
imation space. That is, the equivalence relation interprets the universe as being a pair
of a ground (fine) universe/space of elements and a quotient (coarse) universe/space of
equivalence classes [18], [19].

The equivalence class containing an elementx ∈ U and all elements that have the same
description as x in accordance with E is denoted by [x]E and is defined as [x]E = {y ∈
U |xEy}. In other words, [x]E, whose name belongs to the quotient universe, is a subset
of the ground space (i.e., name([x]E) ∈ U/E) [20]. Thus, there are two representations
of an equivalence class. An equivalence class can be expressed either as a set of elements
in the fine universe or as a single granular element in the coarse universe.

In an approximation space A = (U,E), an arbitrarily setM ⊆ U is represented by its
lower and upper approximations,ML andM U respectively [21]. The lower approximation
contains all equivalence classes that are totally contained in the set, and the upper approxi-
mation contains all equivalence classes that overlap with the set. Both approximations can
either be defined in terms of equivalence classes (equivalence class-oriented definition)
or in terms of elements (elements-oriented definition) [22], as follows:

ML = ∪{[x]E | name([x]E) ∈ U/E, [x]E ⊆ M}
= {x | x ∈ U, [x]E ⊆ M}

M U = ∪{[x]E | name([x]E) ∈ U/E, [x]E ∩M ̸= ϕ}
= {x | x ∈ U, [x]E ∩M ̸= ϕ}

Thus, ML ⊆ M ⊆ M U . The difference between the upper and the lower approxima-
tions is called the boundary region of M . It is denoted by MBN and defined as MBN =
M U −ML. The set M is rough iff MBN ̸= ϕ; otherwise it is crisp. More vagueness of a
set means a larger boundary region of this set. An element x ∈ U surely belongs to the set
M iff x ∈ ML. An element x ∈ U probably belongs to the set M iff x ∈ M U [4], [23].
An element x ∈ U surely does not belong to the set M iff x /∈ M U . An element x ∈ U
may belong to the setM iff x ∈ MBN [4].
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SinceM is characterized differently under different levels of granulation, the motive
for presenting RST notions from GrC has emerged [24]. GrC is a general term for a
multidisciplinary field that involves theories, methodologies, techniques, and tools that
make use of granules in complex problem solving [3], [25]. There are two operators
linking different representations ofM [26].

The first operator is called the ’zooming-in’ operator. It enables us to expand the
classes from coarse universe U/E into a subset of the fine universe U , and hence provide
more details about these classes [27]. Let ZI : 2U/E → 2U be the ’zooming-in’ operator.
Then, the detailed view of equivalence class C ∈ U/E is given by [26]:

ZI(C) = [x]E where C = name([x]E)

By ’zooming-in’ an arbitrary subset H ⊆ U/E, a unique subset ZI(H) ⊆ U called
the refinement ofH is attained as follows [26]:

ZI(H) =
∪

C∈H

{ZI(C)}

The second operator is called the ’zooming-out’ operator. It enables us to coarsen
elements from the fine universe U into some classes from the coarse universe U/E by
ignoring certain details, which make indiscernible elements no longer discernible [27].
In contrast to ’zooming-in’, ’zooming-out’ on a subset of U may generate an imprecise
representation in U/E. Let ZO be the ’zooming-out’ operator. Then, the abstract view of
a subset M ⊆ U is defined by the ’zooming-out’ of its lower and upper approximations
as follows [26]:

ZO(ML) ⊆ ZO(M) ⊆ ZO(M U)

where

ZO(ML) = {C ∈ U/E | ZI(C) ⊆ ML}
ZO(M U) = {C ∈ U/E | ZI(C) ⊆ M U}

IfM ⊂ U is rough according to the approximation spaceA, then ’zooming-out’ of its
lower and upper approximations are not equal (i.e., ZO(ML) ⊂ ZO(M) ⊂ ZO(M U)). If
M ⊆ U is crisp according to the approximation space A, then ’zooming-out’ of its lower
and upper approximations are equal, and the abstract view ofM in the coarse universe is
given by:

ZO(M) = {C ∈ U/E | ZI(C) ⊆ M}

3. MULTIPLE OBJECTIVE PROGRAMMINGWITH ROUGH DECISION SET

In this section, we model a RMOPP in which the decision set is imprecisely defined,
and all the objectives are precisely defined over a subset of the fine universe.

Let A = (U,E) be an approximation space generated by applying an equivalence
relation E on a universal set U , and let U/E = {C1, C2, ..., Cm} be a coarse universe
established by E on U .
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Mathematically, a RMOP with crisp objectives and a rough decision set can be repre-
sented as follows:

max [f1(x), f2((x), ..., fk((x)]
s.t. x ∈ M

ML ⊂ M ⊂ M U

ML,M
U ⊆ U

k > 1

(1)

where M ⊂ U ⊆ Rn is the decision set of the problem which is roughly defined by its
lower and upper approximations,ML andM U respectively. x is an n-dimensional decision
variable vector. fl : U → R, l = 1, 2, ..., k are k scalar crisp functions.

Before we begin presenting our new approach to solving problem (1), we must first
state some definitions.

Definition 1 (Rough positive ideal solution). The positive ideal solution (PIS)
F ∗ = (f∗

1 , f
∗
2 , ..., f

∗
k ) is defined by its lower and upper bounds, F ∗ = (f∗

1 , f
∗
2 , ..., f

∗
k )

and F ∗ = (f∗
1 , f

∗
2 , ..., f

∗
k ) respectively, such that:

f∗
l = max{al, bl} and f∗

l = max{al, cl}

where (assuming the existence of the solution of the following crisp problems)

al = max
x∈ML

fl(x), bl = max
C∈ZO(MBN )

min
x∈ZI(C)

fl(x), and cl = max
x∈MBN

fl(x), l = 1, 2, ..., k.

F ∗ = (f∗
1 , f

∗
2 , ..., f

∗
k ) are a set of lower bounds of individual positive ideal solutions, and

F ∗ = (f∗
1 , f

∗
2 , ..., f

∗
k ) are a set of upper bounds of individual positive ideal solutions.

Definition 2 (Rough negative ideal solution). The negative ideal solution (NIS)
F− = (f−

1 , f−
2 , ..., f−

k ) is defined by its lower and upper bounds, F− = (f−
1 , f−

2 , ..., f−
k )

and F− = (f−
1 , f−

2 , ..., f−
k ) respectively, such that:

f−
l = min{al, bl} and f−

l = min{al, cl}

where (assuming the existence of the solution of the following crisp problems)

al = min
x∈ML

fl(x), bl = min
C∈ZO(MBN )

max
x∈ZI(C)

fl(x), and cl = min
x∈MBN

fl(x), l = 1, 2, ..., k.

F− = (f−
1 , f−

2 , ..., f−
k ) are a set of lower bounds of individual negative ideal solutions,

and F− = (f−
1 , f−

2 , ..., f−
k ) are a set of upper bounds of individual negative ideal solu-

tions.
The main goal of TOPSIS is to find the feasible solution with the least distance from

the PIS and with the greatest distance from the NIS. Therefrom, a formulation of a rough
weighted normalized distance (dp-metric) in a k-dimensional space is required.
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Definition 3 (Rough distance to the PIS). The distance between point x and the PIS is
denoted by dPIS

p (x), and it is defined by its least and most probable distances to the PIS,
(dPIS

p (x))L and (dPIS

p (x))U respectively, such that:

(
dPIS

p (x)
)

L
=


k∑

l=1

f−
l ≤fl(x)≤f∗

l

wp
l ·

f∗
l − fl (x)

f∗
l − f−

l

p


1
p

(
dPIS

p (x)
)U

=

[
k∑

l=1

wp
l ·

(
f∗
l − fl (x)
f∗
l − f−

l

)p] 1
p

The DM selects the values of 0 < wl < 1, l = 1, 2, ..., k that represent the relative
weights of objectives, as well as the value of p ≥ 1 that represents the balancing factor
between the group utility and maximal individual regret.

Definition 4 (Rough distance to the NIS). The distance between point x and the NIS is
denoted by dNIS

p (x), and it is defined by its least and most probable distances to the NIS,
(dNIS

p (x))L and (dNIS

p (x))U respectively, such that:

(
dNIS

p (x)
)

L
=


k∑

l=1

f−
l ≤fl(x)≤f∗

l

wp
l ·

fl (x)− f−
l

f∗
l − f−

l

p


1
p

(
dNIS

p (x)
)U

=

[
k∑

l=1

wp
l ·

(
fl (x)− f−

l

f∗
l − f−

l

)p] 1
p

Definition 5 (Surely-compromise solution). The solution x́ is a surely-compromise so-
lution iff x́ has a smaller most probable distance to the PIS and, at the same time, a larger
most probable distance to the NIS (see Figure 1).

Definition 6 (Probably-compromise solution). The solution x́ is a probably-compromise
solution iff x́ has a smaller least probable distance to the PIS and, at the same time, a larger
least probable distance to the NIS (see Figure 2).

Definition 7 (Surely-feasible solution). The solution x́ is a surely-feasible solution iff
x́ ∈ ML [8].

Definition 8 (Probably-feasible solution). The solution x́ is a probably-feasible solution
iff x́ ∈ M U [8].
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Figure 1: The surely-compromise solution exists in the thick curve, when p = 2

Figure 2: The probably-compromise solution exists in the thick curve, when p = 2

4. THE PROPOSED TOPSIS FOR MULTIPLE OBJECTIVE PROGRAMMING
WITH A ROUGH DECISION SET

Suppose we have the following RMOPP:

max/min [f1(x), f2(x), ..., fk(x)]
s.t. x ∈ M

ML ⊂ M ⊂ M U

ML,M
U ⊆ U

k > 1

(2)

where
fi(x) =Benefit objective for maximization, i ∈ I .
fj(x) =Cost objective for minimization, j ∈ J .
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Now, our new modified TOPSIS algorithm (see Figure 3) to generate a compromise
solution to problem (2) is presented.

The algorithm

Step (1): Determine the lower bound of the PIS F ∗ = (f∗
1 , f

∗
2 , ..., f

∗
k ), where:

f∗
i = max {max

x∈ML

fi(x), max
C∈ZO(MBN )

min
x∈ZI(C)

fi(x)}, ∀i ∈ I

f∗
j = min

x∈MU
fj(x), ∀j ∈ J

Step (2): Determine the upper bound of the PIS F ∗ = (f∗
1 , f

∗
2 , ..., f

∗
k ), where:

f∗
i = max

x∈MU
fi(x), ∀i ∈ I

f∗
j = min { min

x∈ML

fj(x), min
C∈ZO(MBN )

max
x∈ZI(C)

fj(x)}, ∀j ∈ J

Step (3): Determine the lower bound of the NIS F− = (f−
1 , f−

2 , ..., f−
k ), where:

f−
i = min

x∈MU
fi(x), ∀i ∈ I

f−
j = max {max

x∈ML

fj(x), max
C∈ZO(MBN )

min
x∈ZI(C)

fj(x)}, ∀j ∈ J

Step (4): Determine the upper bound of the NIS F− = (f−
1 , f−

2 , ..., f−
k ), where:

f−
i = min { min

x∈ML

fi(x), min
C∈ZO(MBN )

max
x∈ZI(C)

fi(x)}, ∀i ∈ I

f−
j = max

x∈MU
fj(x), ∀j ∈ J

Step (5): Construct the least and most probable distances to the PIS, (dPIS

p (x))L and
(dPIS

p (x))U respectively. They can be expressed as:

(
dPIS

p (x)
)

L
=

 ∑
i∈I

f−
i ≤fi(x)≤f∗

i

wp
i ·

f∗
i − fi (x)

f∗
i − f−

i

p

+
∑
j∈J

f∗
j ≤fj(x)≤f−

j (x)

wp
j ·

(
fj (x)− f∗

j

f−
j − f∗

j

)p


1
p

(
dPIS

p (x)
)U

=

∑
i∈I

wp
i ·

(
f∗
i − fi (x)
f∗
i − f−

i

)p

+
∑
j∈J

wp
j ·

fj (x)− f∗
j

f−
j − f∗

j

p
1
p

where p = 1, 2, ...,∞,

k∑
l=1

wl = 1.
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Step (6): Construct the least and most probable distances to the NIS, (dNIS

p (x))L and
(dNIS

p (x))U respectively. They can be expressed as:

(
dNIS

p (x)
)

L
=

 ∑
i∈I

f−
i ≤fi(x)≤f∗

i

wp
i ·

fi (x)− f−
i

f∗
i − f−

i

p

+
∑
j∈J

f∗
j ≤fj(x)≤f−

j (x)

wp
j ·

(
f−
j − fj (x)

f−
j − f∗

j

)p


1
p

(
dNIS

p (x)
)U

=

∑
i∈I

wp
i ·

(
fi (x)− f−

i

f∗
i − f−

i

)p

+
∑
j∈J

wp
j ·

f−
j − fj (x)

f−
j − f∗

j

p
1
p

where p = 1, 2, ...,∞,

k∑
l=1

wl = 1.

Step (7): Determine the lower and upper bounds of both the least and most probable
distances to the PIS, (dPIS

p )L, (dPIS

p )U , (dPIS
p )L, and (dPIS

p )U respectively, and determine the
lower and upper bounds of both the least and most probable distances to the NIS, (dNIS

p )L,
(dNIS

p )U , (dNIS
p )L, and (dNIS

p )U respectively. They can be expressed as:

(dPIS

p )L = min (dPIS

p (x))L

s.t. x ∈ M U

f−
i ≤ fi (x) ≤ f∗

i , i ∈ I

f∗
j ≤ fj (x) ≤ f−

j , j ∈ J

(dNIS

p )L = (dNIS

p (xPL))L; xPL is the solution to the above problem

(dNIS
p )L = max (dNIS

p (x))L
s.t. x ∈ M U

f−
i ≤ fi (x) ≤ f∗

i , i ∈ I

f∗
j ≤ fj (x) ≤ f−

j , j ∈ J

(dPIS
p )L = (dPIS

p (xNL))L; xNL is the solution to the above problem

(dPIS

p )U = min (dPIS

p (x))U

s.t. x ∈ M U

(dNIS

p )U = (dNIS

p (xPU))
U ; xPU is the solution to the above problem

(dNIS
p )U = max (dNIS

p (x))U

s.t. x ∈ M U

(dPIS
p )U = (dPIS

p (xNU))
U ; xNU is the solution to the above problem
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Step (8): Construct fuzzy membership functions representing the individual optima
of the most probable distance to the PIS and the most probable distance to the NIS, µPU

and µNU respectively. They can be expressed as:

µPU(x) =


1 (dPIS

p (x))U < (dPIS

p )U

(dPIS
p (x))U−(dPIS

p )U

(dPIS
p )U−(dPIS

p )U
(dPIS

p )U ≤ (dPIS

p (x))U ≤ (dPIS
p )U

0 (dPIS

p (x))U > (dPIS
p )U

µNU(x) =


1 (dNIS

p (x))U > (dNIS
p )U

(dNIS
p (x))U−(dNIS

p )U

(dNIS
p )U−(dNIS

p )U
(dNIS

p )U ≤ (dNIS

p (x))U ≤ (dNIS
p )U

0 (dNIS

p (x))U < (dNIS

p )U

Step (9): Solve the following problem to obtain the set of surely-feasible, surely-
compromise solutionsFsCs and the set of probably-feasible, surely-compromise solutions
FpCs:

max α

s.t. µPU(x) ≥ α

µNU(x) ≥ α

x ∈ M U

α ∈ [0, 1]

(3)

where α is the satisfactory level for both minimizing the most probable distance to the PIS
and maximizing the most probable distance to the NIS.

FsCs = {x ∈ ML | x solves problem (3)}
FpCs = {x ∈ M U | x solves problem (3)}

Step (10): Construct fuzzy membership functions representing the individual optima
of the least probable distance to the PIS and the least probable distance to the NIS, µPL

and µNL respectively:

µPL(x) =


1 (dPIS

p (x))L < (dPIS

p )L
(dPIS

p (x))L−(dPIS
p )L

(dPIS
p )L−(dPIS

p )L
(dPIS

p )L ≤ (dPIS

p (x))L ≤ (dPIS
p )L

0 (dPIS

p (x))L > (dPIS
p )L

µNL(x) =


1 (dNIS

p (x))L > (dNIS
p )L

(dNIS
p (x))L−(dNIS

p )L

(dNIS
p )L−(dNIS

p )L
(dNIS

p )L ≤ (dNIS

p (x))L ≤ (dNIS
p )L

0 (dNIS

p (x))L < (dNIS

p )L
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Step (11): Solve the following problem to obtain the set of surely-feasible, probably-
compromise solutions FsCp and the set of probably-feasible, probably-compromise solu-
tions FpCp:

max α

s.t. µPL(x) ≥ α

µNL(x) ≥ α

x ∈ M U

f−
i ≤ fi (x) ≤ f∗

i , i ∈ I

f∗
j ≤ fj (x) ≤ f−

j , j ∈ J

α ∈ [0, 1]

(4)

where α is the satisfactory level for both minimizing the least probable distance to the PIS
and maximizing the least probable distance to the NIS.

FsCp = {x ∈ ML |x solves problem (4)}
FpCp = {x ∈ M U | x solves problem (4)}

The purpose of using RST in the algorithm is to only describe and handle the rough-
ness that appears in the problem. Hence, the limitations of our proposed algorithm are the
same limitations of the conventional TOPSIS. Our algorithm assumes that the coefficients
are described as exact values. Unfortunately, in some actual problems, the coefficients are
provided by the DM as interval numbers, fuzzy numbers, hesitant fuzzy sets, etc. Further-
more, our algorithm is inappropriate for situations in which the DM is concerned only
with finding a compromise solution that is near the ideal solution, whatever the distance
between this compromise solution and the anti-ideal solution [13].

Let us consider the next numerical example to illustrate our proposed algorithm.
Example 1. Suppose U is a universe defined by:
U = {x ∈ R2 | x1 ∈ [−5, 5], x2 ∈ [−5, 5]} where x = (x1, x2).
Let E be an equivalence relation that generates a partition U/E = {C1, C2, C3, C4, C5}
such that:
ZI(C1) = {x ∈ U | − 5x1 + 4x2 ≤ 16, x1 ≤ 0, x2 ≥ 0}
ZI(C2) = {x ∈ U | − 5x1 + 4x2 ≤ 16, x1 + 4x2 ≥ −8, x1 ≤ 0, x2 < 0}
ZI(C3) = {x ∈ U | x1 > 0, x1 ≤ 2, x2 ≥ 0, x2 ≤ 4}
ZI(C4) = {x ∈ U | x1 > 0, x1 ≤ 2, x2 ≥ −2, x2 < 0}
ZI(C5) = {x ∈ U | x /∈

∪4
n=1{ZI(Cn)}}

Consider the following RMOPP:

max f1(x) = 2x1 − 3x2

min f2(x) = x1 + 5x2

s.t. x ∈ M

ML ⊂ M ⊂ M U

ZO(ML) = {C1, C2}
ZO(M U) = {C1, C2, C3, C4}

(5)
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Start

Benefit objectives: fi(x), i ∈ I
Cost objectives: fj(x), j ∈ J
Abstract view of the decision
set: ZO(ML), ZO(MU )

Obtain the lower and upper bounds of both PIS and NIS

Ask the DM for the values of: p and wl, l = 1, 2, ..., k

Construct the least and most probable distances to the PIS,
and construct the least and most probable distances to the NIS

Obtain the lower and upper bounds of both the least and most
probable distances to the PIS, and obtain the lower and upper
bounds of both the least and most probable distances to the NIS

Construct a fuzzy membership function for the most prob-
able distance to the PIS, and construct a fuzzy member-
ship function for the most probable distance to the NIS

Solve problem (3) for the set of surely-feasible, surely-compromise so-
lutions and the set of probably-feasible, surely-compromise solutions

Construct a fuzzy membership function for the least prob-
able distance to the PIS, and construct a fuzzy member-
ship function for the least probable distance to the NIS

Solve problem (4) for the set of surely-feasible, probably-compromise
solutions and the set of probably-feasible, probably-compromise solutions

Is the DM satisfied
with the optimal sets?

Stop

Yes

No

Figure 3: Flowchart of the proposed TOPSIS to solve a MOPP with rough decision set
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Solution
The boundary region of the feasible set in the coarse universe is:

ZO(MBN) = ZO(M U)− ZO(ML) = {C3, C4}

Step (1): The lower bound of the PIS is F ∗ = (f∗
1 , f

∗
2 ), where:

f∗
1 = max {max

x∈ML

f1(x), max
C∈ZO(MBN )

min
x∈ZI(C)

f1(x)} = max {6, 0+} = 6

f∗
2 = min

x∈MU
f2(x) = −10

Step (2): The upper bound of the PIS is F ∗ = (f∗
1 , f

∗
2 ), where:

f∗
1 = max

x∈MU
f1(x) = 10

f∗
2 = min { min

x∈ML

f2(x), min
C∈ZO(MBN )

max
x∈ZI(C)

f2(x)} = min {−10, 4−} = −10

Step (3): The lower bound of the NIS is F− = (f−
1 , f−

2 ), where:

f−
1 = min

x∈MU
f1(x) = −12

f−
2 = max {max

x∈ML

f2(x), max
C∈ZO(MBN )

min
x∈ZI(C)

f2(x)} = max {20, 0+} = 20

Step (4): The upper bound of the NIS is F− = (f−
1 , f−

2 ), where:

f−
1 = min { min

x∈ML

f1(x), min
C∈ZO(MBN )

max
x∈ZI(C)

f1(x)} = min {−12, 4−} = −12

f−
2 = max

x∈MU
f2(x) = 22

Remark 1. If r ∈ R, then r− = r − ϵ and r+ = r + ϵ where ϵ > 0, ϵ ≃ 0. The value of
ϵ is chosen by the DM.

Step (5): Let us assume that w1 = w2 = 0.5 and p = 1. The least probable distance
to the PIS is:

(dPIS

1 (x))
L
= 0.5

(
6− 2x1 + 3x2

6− (−12)

)
+ 0.5

(
x1 + 5x2 − (−10)

20− (−10)

)
=

1

3
− 7

180
x1 +

1

6
x2

The most probable distance to the PIS is:

(dPIS

1 (x))U = 0.5

(
10− 2x1 + 3x2

10− (−12)

)
+ 0.5

(
x1 + 5x2 − (−10)

22− (−10)

)
=

135

352
− 21

704
x1 +

103

704
x2
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Step (6): The least probable distance to the NIS is:

(dNIS

1 (x))
L
= 0.5

(
2x1 − 3x2 − (−12)

6− (−12)

)
+ 0.5

(
20− x1 − 5x2

20− (−10)

)
=

2

3
+

7

180
x1 −

1

6
x2

The most probable distance to the NIS is:

(dNIS

1 (x))U = 0.5

(
2x1 − 3x2 − (−12)

10− (−12)

)
+ 0.5

(
22− x1 − 5x2

22− (−10)

)
=

217

352
+

21

704
x1 −

103

704
x2

Step (7): The lower bound of the least probable distance to the PIS is:

(dPIS

1 )L = min (dPIS

1 (x))L
s.t. x ∈ M U

− 12 ≤ f1 (x) ≤ 6

− 10 ≤ f2 (x) ≤ 20

(dPIS

1 )L = 0 at xPL = (0,−2)

The lower bound of the least probable distance to the NIS is:

(dNIS

1 )L = (dNIS

1 (0,−2))L = 1

The upper bound of the least probable distance to the NIS is:

(dNIS

1 )L = max (dNIS

1 (x))L
s.t. x ∈ M U

− 12 ≤ f1 (x) ≤ 6

− 10 ≤ f2 (x) ≤ 20

(dNIS

1 )L = 1 at xNL = (0,−2)

The upper bound of the least probable distance to the PIS is:

(dPIS

1 )L = (dPIS

1 (0,−2))L = 0

The lower bound of the most probable distance to the PIS is:

(dPIS

1 )U = min (dPIS

1 (x))U

s.t. x ∈ M U

(dPIS

1 )U =
1

32
at xPU = (2,−2)
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The lower bound of the most probable distance to the NIS is:

(dNIS

1 )U = (dNIS

1 (2,−2))U =
31

32

The upper bound of the most probable distance to the NIS is:

(dNIS

1 )U = max (dNIS

1 (x))U

s.t. x ∈ M U

(dNIS

1 )U =
31

32
at xNU = (2,−2)

The upper bound of the most probable distance to the PIS is:

(dPIS

1 )U = (dPIS

1 (2,−2))U =
1

32

Step (8):

(d1)U = ((dPIS

1 )U , (dNIS

1 )U) = (
1

32
,
31

32
)

(d1)
U = ((dPIS

1 )U , (dNIS

1 )U) = (
1

32
,
31

32
)

It is not necessary to create the fuzzy membership functions µPU and µNU because
(d1)

U = (d1)U .

Step (9): Consider the following problem:

max α

s.t. µPU(x) ≥ α

µNU(x) ≥ α

x ∈ M U

α ∈ [0, 1]

(6)

Since (dPIS

1 (x))U and (dNIS

1 (x))U are not incompatible, the solution to problem (6) is
xPU = xNU = (2,−2) with the highest level of satisfaction (i.e., α = 1).

The set of surely-feasible, surely-compromise solutions is:

FsCs = {x ∈ ML | x solves problem (6)} = ϕ

The set of probably-feasible, surely-compromise solutions is:

FpCs = {x ∈ M U | x solves problem (6)} = {(2,−2)}

Step (10):

(d1)L = ((dPIS

1 )L, (dNIS

1 )L) = (
1

32
,
31

32
)

(d1)L = ((dPIS

1 )L, (d
NIS

1 )L) = (
1

32
,
31

32
)
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It is not necessary to create the fuzzy membership functions µPL and µNL because
(d1)L = (d1)L.

Step (11): Consider the following problem:

max α

s.t. µPL(x) ≥ α

µNL(x) ≥ α

x ∈ M U

− 12 ≤ f1 (x) ≤ 6

− 10 ≤ f2 (x) ≤ 20

α ∈ [0, 1]

(7)

Since (dPIS

1 (x))L and (dNIS

1 (x))L are not incompatible, the solution to problem (7) is
xPL = xNL = (0,−2) with the highest level of satisfaction (i.e., α = 1).

The set of surely-feasible, probably-compromise solutions is:

FsCp = {x ∈ ML |x solves problem (7)} = {(0,−2)}

The set of probably-feasible, probably-compromise solutions is:

FpCp = {x ∈ M U | x solves problem (7)} = {(0,−2)}

It should be noted that when p = 1, the same outcome is obtained whether the weights
are equal or unequal. Considering the objective representation space, the slopes of the
lines (dPIS

1 (x))U and (dNIS

1 (x))U are equal. Moreover, the slopes of the lines (dPIS

1 (x))L and
(dNIS

1 (x))L are equal. Therefore, the solution to min (dPIS

1 (x))U is the same as the solution
to max (dNIS

1 (x))U , and the solution to min (dPIS

1 (x))L is the same as the solution to
max (dNIS

1 (x))L. The surely-compromise solution and the probably-compromise solution
are always achieved with a satisfactory degree equal to 1 when p = 1.

To validate our approach, we solve the same problem using the method described in
[4]. Both methods produce the same solution.

Assume that the DM values both objectives equally and prefers the Euclidean distance.
Then, the least and the most probable distances to the PIS and the NIS are:

(dPIS

2 (x))
L
=

√
0.52

(
6− 2x1 + 3x2

6− (−12)

)2

+ 0.52
(
x1 + 5x2 − (−10)

20− (−10)

)2

(dPIS

2 (x))U =

√
0.52

(
10− 2x1 + 3x2

10− (−12)

)2

+ 0.52
(
x1 + 5x2 − (−10)

22− (−10)

)2

(dNIS

2 (x))
L
=

√
0.52

(
2x1 − 3x2 − (−12)

6− (−12)

)2

+ 0.52
(
20− x1 − 5x2

20− (−10)

)2

(dNIS

2 (x))U =

√
0.52

(
2x1 − 3x2 − (−12)

10− (−12)

)2

+ 0.52
(
22− x1 − 5x2

22− (−10)

)2



130 T. Abou-El-Enien et al. / TOPSIS for MOP with Rough Decision Set

The lower bound of the least probable distance to the PIS is:

(dPIS

2 )L = min (dPIS

2 (x))L
s.t. x ∈ M U

− 12 ≤ f1 (x) ≤ 6

− 10 ≤ f2 (x) ≤ 20

(dPIS

2 )L =
1

12
at xPL = (0,−2)

The lower bound of the least probable distance to the NIS is:

(dNIS

2 )L = (dNIS

2 (0,−2))L =
1√
2

The upper bound of the least probable distance to the NIS is:

(dNIS

2 )L = max (dNIS

2 (x))L
s.t. x ∈ M U

− 12 ≤ f1 (x) ≤ 6

− 10 ≤ f2 (x) ≤ 20

(dNIS

2 )L =
1√
2

at xNL = (0,−2)

The upper bound of the least probable distance to the PIS is:

(dPIS

2 )L = (dPIS

2 (0,−2))L =
1

12

The lower bound of the most probable distance to the PIS is:

(dPIS

2 )U = min (dPIS

2 (x))U

s.t. x ∈ M U

(dPIS

2 )U = 0.029553 at xPU = (1.79,−2)

The lower bound of the most probable distance to the NIS is:

(dNIS

2 )U = (dNIS

2 (1.79,−2))U = 0.680705

The upper bound of the most probable distance to the NIS is:

(dNIS

2 )U = max (dNIS

2 (x))U

s.t. x ∈ M U

(dNIS

2 )U =

√
481

32
at xNU = (2,−2)
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The upper bound of the most probable distance to the PIS is:

(dPIS

2 )U = (dPIS

2 (2,−2))U =
1

32

(d2)U = ((dPIS

2 )U , (dNIS

2 )U) = (
1

32
,

√
481

32
)

(d2)
U = ((dPIS

2 )U , (dNIS

2 )U) = (0.029553, 0.680705)

It is necessary to create the fuzzy membership functions µPU and µNU because (d2)U ̸=
(d2)U .

µPU(x) =


1 (dPIS

2 (x))U < 0.029553
(dPIS

2 (x))U− 1
32

0.029553− 1
32

0.029553 ≤ (dPIS

2 (x))U ≤ 1
32

0 (dPIS

2 (x))U > 1
32

µNU(x) =


1 (dNIS

2 (x))U >
√
481
32

(dNIS
2 (x))U−0.680705
√

481
32 −0.680705

0.680705 ≤ (dNIS

2 (x))U ≤
√
481
32

0 (dNIS

2 (x))U < 0.680705

Now, we will solve the following problem:

max α

s.t. µPU(x) ≥ α

µNU(x) ≥ α

− 5x1 + 4x2 ≤ 16

x1 + 4x2 ≥ −8

x1 ≤ 2

− 2 ≤ x2 ≤ 4

α ∈ [0, 1]

The solution to the above problem is (1.888,−2) with the level of satisfaction α =
46.4%.
Thus, the set of surely-feasible, surely-compromise solutions is FsCs = ϕ, and the set of
probably-feasible, surely-compromise solutions is FpCs = {(1.888,−2)}.

Now, let us consider the least probable distances to the PIS and NIS.

(d2)L = ((dPIS

2 )L, (dNIS

2 )L) = (
1

12
,
1√
2
)

(d2)L = ((dPIS

2 )L, (d
NIS

2 )L) = (
1

12
,
1√
2
)
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It is not necessary to create the fuzzy membership functions µPL and µNL because
(d2)L = (d2)L.

Consider the following problem:

max α

s.t. µPL(x) ≥ α

µNL(x) ≥ α

− 5x1 + 4x2 ≤ 16

x1 + 4x2 ≥ −8

x1 ≤ 2

− 2 ≤ x2 ≤ 4

− 12 ≤ f1 (x) ≤ 6

− 10 ≤ f2 (x) ≤ 20

α ∈ [0, 1]

Since (dPIS

2 (x))L and (dNIS

2 (x))L are not incompatible, the solution to the above problem
is xPL = xNL = (0,−2) with the highest level of satisfaction (i.e., α = 1). Thus, the set
of surely-feasible, probably-compromise solutions is FsCp = {(0,−2)}, and the set of
probably-feasible, probably-compromise solutions is FpCp = {(0,−2)}.

5. CONCLUSION

In this paper, TOPSIS is modified to solve RMOPPs in which all the objectives are
crisp functions, the decision set is a rough set, and the search space is composed of simple
points from the fine universe. The basic model, the required definitions, and the flowchart
depicting the proposed algorithm were introduced. Through a numerical example, we
indicated that the presence of roughness in the decision set results in four optimal sets
covering all possible levels of feasibility and optimality of the solutions.

A number of issues will need to be addressed in future research. These issues are
summarized as follows:

1. Future research should consider RMOPPs with a rough decision set and crisp ob-
jective functions whose domains are a set of equivalence classes from the coarse
universe.

2. It will be fruitful to expand our study to include RMOPPs with rough objective
functions.

3. Future work should apply methods rather than TOPSIS to solve RMOPPs.
4. More research is needed on topics such as stability and parametric analysis in RMOPPs.
5. Testing the proposed method with large real-world problems and developing com-

puter code for this method will yield significant benefits.

Funding: This research received no external funding.
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