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Abstract: In fuzzy set theory, the similarity measure is a significant device that measures 

the degree of correlation between two objects. An extension to intuitionistic fuzzy sets 

(IFS), Pythagorean fuzzy sets (PFS) have been widely employed in numerous disciplines. 

It is critical to investigate the similarity measure of PFS. The study proposes the 

trigonometric function to suggest new similarity measures of PFS to handle the uncertainty 

that the existing similarity measures are unable to differentiate. Firstly, axiomatic 

descriptions of similarity measures for the proposed measures are proved. Then, an 

example is used to validate the proposed measures. Application to pattern recognition and 

medical diagnosis is also discussed in real-life scenarios.  The validity of the suggested 

similarity measures is proved by comparing the results to the effectiveness of current 

equivalent similarity measures. Finally, a comparative study of these real-life examples  
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reveals that the novel similarity measures are more flexible and dependable than the current 

similarity measures in dealing with various real application difficulties. 

Keywords: Intuitionistic fuzzy sets (IFS), Pythagorean fuzzy sets (PFS), similarity 

measures, pattern recognition, medical diagnosis. 
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1. INTRODUCTION 

Decision-making is the process of choosing a course of action or selecting a solution 

from among various alternatives. It is a fundamental cognitive process that individuals, 

groups, or organizations engage in to address problems, achieve goals, or respond to 

opportunities. Decision-making involves assessing information, evaluating options, 

considering potential outcomes, and making a choice whereas multi-criteria decision-

making (MCDM) is a specialized approach to decision-making that considers multiple 

criteria or factors simultaneously. In many real-life scenarios, decisions involve multiple 

and often conflicting criteria that need to be considered. MCDM methods provide a 

structured framework for systematically analysing and evaluating alternatives based on 

multiple criteria, helping decision-makers make informed and balanced choices. TOPSIS 

(Technology for Order of Preference by Similarity to Ideal Solution) is a valuable method 

for MCDM issues in the real world proposed by Hwang & Yoon [1]. TOPSIS provides a 

practical and effective framework for multi-criteria decision-making, enabling decision-

makers to systematically evaluate and rank alternatives in complex decision environments 

[2,3,4]. 

Zadeh [5] defined fuzzy sets for non-statistical modelling and incomplete information 

data [6]. Since its inception, fuzzy sets become an interesting area for researchers for 

decision-making purposes in various domains of the universe. The generalized version of 

the fuzzy set known as IFS given by Atanassov [7] by including membership grade (MG), 

non-membership grade (NMG) and hesitation grade (HG) or intuitionistic index. In the 

past many decades, researchers have proposed entropies based on IFS, which have 

applications in the fields of decision-making, optimization, pattern recognition, etc. Many 

new measures of IF entropy that establish a mathematical relationship between the entropy 

for FS and IFS have been proposed by many researchers [8, 9, 10, 11, 12]. These entropies 

satisfy all the axioms for the IF entropy and can be applied in many areas of research.  

Yager [13] proposed an extension of IFS called the Pythagorean fuzzy set. The new 

concept derived from IFS is a quadratic form of the IFS, which means that the new 

modality of fuzzy set has a larger range of the change of variables and therefore has more 

potential in indicating the probability of various objects. The new form of a fuzzy set is 

also extended into different forms, such as interval-valued Pythagorean fuzzy set [14], 

decision-making [15, 16, 17], and some other applications [18]. PFS features have been 

developed by many scientists in decision-making situations with numerous attributes. the 

extensions of TOPSIS methods, optimization techniques to MCDM problems with 

Pythagorean and hesitant fuzzy sets were proposed by Zhang & Xu [19]. Many researchers 

[20, 21, 22, 23, 24, 25, 26, 27, 28] simplified the concept of PFS and established various 

Pythagorean fuzzy operators in solving MCDM problems. Zhang [29] and Zhang et al. 

[30] considered a novel approach based on similarity measure for Pythagorean fuzzy 

MCDM. Researchers [31, 32, 33, 34, 35, 36] generalized Pythagorean fuzzy aggregation 
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operators and proposed norms for information measures with applications in MCDM 

problems.  

The similarity measure is a valuable means to establish the degree of similarity between 

the two sets. These measures have been used by researchers across various domains.  Mohd 

& Abdullah [37] introduced the cosine similarity measure and Euclidean distance measure 

for PFSs. Ejegwa [38] surveyed three grades of PFSs and proposed that these new 

similarity measures for PFSs with more consistent and efficient results.  Cotangent 

similarity measure by proposed by Immaculate et al. [39] for rough IFS by considering a 

medical diagnosis problem to verify the proposed measure. Some new similarity measures 

for PFS have been proposed by Ejegwa [34] and applied to decision-making problems. 

New cosine similarity measures for imprecise sets and IFS have been proposed by Shi & 

Ye [41] and Ye [42, 43]. Cotangent similarity measures are defined by Maoying [44] and 

Rajarajeswari & Uma [45]. Many researchers [46, 47] developed various similarity 

measures between FSs and IFSs, which have applications to tackle the problems of pattern 

recognition and medical diagnosis. Mao & Zhang [48] proposed similarity measure for 

group decision-making problems and is a geometric distance measure between of IFSs. 

Hung [49] developed similarity measure based on the likelihood of IFSs for bacteria 

classification problems. Ejegwa & Agbetayo [50] introduced a novel similarity-distance 

technique with a better performance rating. A comparative analysis was presented to 

showcase the advantages of the novel similarity-distance over similar existing approaches. 

Some attributes of the similarity-distance technique were presented. Ejegwa & Onyeke 

[51] developed a novel distance measure between PFSs and its weighted version to enhance 

reliability in terms of applications. To show the suitability of the measures, they 

characterized the distance measure and its weighted version with some results. In addition, 

certain decision-making problems involving cases of pattern recognition and disease 

diagnosis were discussed based on the measures. Some novel distance measures for PFSs 

by incorporating the conventional parameters that describe PFS were proposed by Ejegwa 

& Awolola [52]. A numerical example to illustrate the validity and applicability of the 

distance measures for PFS was also discussed. Ejegwa [53] formulated Modified Zhang & 

Xu’s distance measure for Pythagorean fuzzy sets and discussed its application to pattern 

recognition problems. Measures of similarity between PFS are an important tool for 

MADM Problems, medical diagnosis, decision-making, pattern recognition, machine 

learning, image processing, and in other real-world problems. Recently, some researchers 

have been engaged in the development of similarity measure of PFS and its applications in 

MCDM [54, 55, 56], clustering [57], medical diagnosis [58], admission process [59], 

pattern recognition [60], transportation problem [61], waste-to-energy technology 

selection [62]. 

Research Gap and Motivation  

The study of similarity measures for Pythagorean fuzzy sets represents a relatively new 

and evolving area within the broader field of fuzzy set theory. Despite the growing interest 

in PFS, notable research gaps create opportunities for further investigation. Firstly, the 

current literature lacks a thorough examination of the performance of similarity measures 

in specific applications. Different domains may require tailored similarity measures, and 

understanding their effectiveness in diverse contexts is essential. Secondly, many studies 
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focus on the theoretical aspects of PFS, but research is needed to integrate these sets with 

real-world problems. Bridging this gap involves identifying practical scenarios where 

similarity measures for Pythagorean fuzzy sets can offer tangible benefits. Thirdly, existing 

measures are less informative, they have certain drawbacks regarding accuracy and 

consistency with the PFS notion that need to be addressed to produce more accurate results. 

The motivation for delving into the study of similarity measures for Pythagorean fuzzy 

sets and their applications is driven by several compelling factors: 

 Improving similarity measures by considering membership, non-membership, and 

hesitancy degrees can enhance decision-making processes by providing more accurate 

and nuanced comparisons. 

 The significance stems from the need to address practical challenges in decision 

support systems, optimization, and pattern recognition where uncertainty is inherent. 

Robust similarity measures for Pythagorean fuzzy sets can contribute to overcoming 

these challenges and improving the reliability of various applications. 

The motivation lies in addressing the identified gaps and, in doing so, advancing the 

understanding of Pythagorean fuzzy sets and their effective utilization in decision-making 

processes across various domains. 

This article is organized by introducing a few fundamental concepts of PFSs in Section 

2. Some similarity measures for PFSs have been projected with its verification through 

numerical examples in section 3. The utility of the suggested similarity measures in pattern 

recognition and medical diagnosis problems has been examined in section 4. A 

comparative study of the proposed similarity measures with the similarity measures 

proposed by Wei & Wei [63] has been established in section 5. Lastly, section 6 concludes 

with directions for impending studies.  

 

2. PRELIMINARIES 

In this section, basic theories related to FSs, IFSs, and PFSs used in the outcome have 

been given:  

Definition 1 (Zadeh [5]). Assume a fuzzy set 𝓕 in Ŷ= {𝕪𝟏, 𝕪𝟐, … , 𝕪𝒏} where Ŷ is non-

empty defined by MG as 

 𝓕 = {⟨𝕪, 𝝁𝓕(𝕪𝒊)⟩|𝕪 ∈ Ŷ} (1) 

where 𝝁𝓕: Ŷ → [𝟎, 𝟏] is a measure of MG of an object 𝕪 ∈ Ŷ in 𝓕.   

Definition 2 (Atanassov [7]). An IFS 𝓕 in Ŷ is defined as 

𝓕 = {⟨𝕪, 𝝁𝓕(𝕪𝒊), 𝝂𝓕(𝕪𝒊)⟩|𝕪 ∈ Ŷ} (2) 
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where 𝝁𝓕, 𝝂𝓕: Ŷ → [𝟎, 𝟏]  

Also, 𝝁𝓕 + 𝝂𝓕 ∈ [𝟎, 𝟏], ∀ 𝕪 ∈ Ŷ and 𝝁𝓕(𝕪𝒊), 𝝂𝓕(𝕪𝒊) represents the MG and NMG 

respectively of an object 𝕪 ∈ Ŷ in 𝓕.  

F, or every IFS 𝓕 in Ŷ, we have 

𝝅𝓕(𝕪𝒊) = 𝟏 − 𝝁𝓕(𝕪𝒊) − 𝝂𝓕(𝕪𝒊), ∀ 𝕪 ∈ Ŷ (3) 

is the HG.  

Definition 3 (Yager [13]). Consider a finite set Ŷ= {𝕪𝟏, 𝕪𝟐, … , 𝕪𝒏}, we define a PFS 𝓕  as 

𝓕 = {⟨𝕪, 𝝁𝓕(𝕪𝒊), 𝝂𝓕(𝕪𝒊)⟩|𝕪 ∈ Ŷ} 𝝁𝓕(𝕪𝒊), 𝝂𝓕(𝕪𝒊) represents the MG and NMG 

respectively of an object 𝕪 ∈ Ŷ in 𝓕. 

Also  𝟎 ≤ (𝝁𝓕)𝟐 + (𝝂𝓕)𝟐 ≤ 𝟏   and 𝝅𝓕(𝕪𝒊) = √𝟏 − 𝝁𝓕
𝟐 (𝕪𝒊) − 𝝊𝓕

𝟐 (𝕪𝒊)  ;  𝝅𝓕: Ŷ → [𝟎, 𝟏] 

such that (𝝁𝓕(𝕪𝒊))𝟐 + (𝝂𝓕(𝕪𝒊))𝟐 + (𝝅𝓕(𝕪𝒊))𝟐 = 𝟏. (4) 

 
3. SIMILARITY MEASURES 

 

Primarily, we remind the obvious preposition of similarity for PFS. 

Proposition 1 (Ejegwa, [38]). 𝓚, 𝓛, and 𝓜 be three PFS in Ŷ where Ŷ is a non-empty set, 

then the similarity measure between 𝓚 and 𝓛 must satisfies the following properties 

(𝓢1) 𝟎 ≤ 𝓢𝓲𝓶(𝓚, 𝓛) ≤ 𝟏  

(𝓢2) 𝓢𝓲𝓶(𝓚, 𝓛) = 𝟏 ⇔ 𝓚 = 𝓛. 

(𝓢3) 𝓢𝓲𝓶(𝓚, 𝓛) =  𝓢𝓲𝓶(𝓛, 𝓚 )  

(𝓢4) Inequality: If 𝓜 is a PFS in Ŷ and 𝓚 ⊆ 𝓛 ⊆ 𝓜, then 𝓢𝓲𝓶(𝓚, 𝓜) ≤
𝓢𝓲𝓶(𝓚, 𝓛) and 𝓢𝓲𝓶(𝓚, 𝓜) ≤ 𝓢𝓲𝓶(𝓛, 𝓜).  

Wei & Wei [63] proposed cosine similarity measures for two PFSs A and B (5-8) as 

follows: 

𝑺𝟏(𝓚, 𝓛) =
𝟏

𝒏
∑ 𝒄𝒐𝒔 [

𝝅

𝟐
(|𝝁𝓚

𝟐 (𝕪𝒊) − 𝝁𝓛
𝟐(𝕪𝒊)|⋁|𝝊𝓚

𝟐 (𝕪𝒊) − 𝝊𝓛
𝟐(𝕪𝒊)|)]𝒏

𝒊=𝟏  (5) 

𝑺𝟐(𝓚, 𝓛) =
𝟏

𝒏
∑ 𝒄𝒐𝒔 [

𝝅

𝟒
(|𝝁𝓚

𝟐 (𝕪𝒊) − 𝝁𝓛
𝟐(𝕪𝒊)| + |𝝊𝓚

𝟐 (𝕪𝒊) − 𝝊𝓛
𝟐(𝕪𝒊)|)]𝒏

𝒊=𝟏  (6)  

𝑺𝟑(𝓚, 𝓛) =
𝟏

𝒏
∑ 𝒄𝒐𝒔 [

𝝅

𝟐
(|𝝁𝓚

𝟐 (𝕪𝒊) − 𝝁𝓛
𝟐(𝕪𝒊)|⋁|𝝊𝓚

𝟐 (𝕪𝒊) − 𝝊𝓛
𝟐(𝕪𝒊)|⋁|𝝅𝓚

𝟐 (𝕪𝒊) −𝒏
𝒊=𝟏

𝝅𝓛
𝟐(𝕪𝒊)|)] (7) 

𝑺𝟒(𝓚, 𝓛) =
𝟏

𝒏
∑ 𝒄𝒐𝒔 [

𝝅

𝟒
(|𝝁𝓚

𝟐 (𝕪𝒊) − 𝝁𝓛
𝟐(𝕪𝒊)| + |𝝊𝓚

𝟐 (𝕪𝒊) − 𝝊𝓛
𝟐(𝕪𝒊)| + |𝝅𝓚

𝟐 (𝕪𝒊) −𝒏
𝒊=𝟏

𝝅𝓛
𝟐(𝕪𝒊)|)] (8) 
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Based on the above measures, trigonometric similarity measures between 𝓚 and 𝓛 is 

defined as 

 
Consider a finite set Ŷ= {𝕪𝟏, 𝕪𝟐, … , 𝕪𝒏}, we define PFS 𝓚 and 𝓛 as   

𝓚 = {⟨𝕪, 𝝁𝓚(𝕪𝒊), 𝝂𝓚(𝕪𝒊)⟩|𝕪 ∈ Ŷ}; 𝓛 = {⟨𝕪, 𝝁𝓛(𝕪𝒊), 𝝂𝓛(𝕪𝒊)⟩|𝕪 ∈ Ŷ}, then 

𝐒𝟏(𝓚, 𝓛) = 𝟏 −
𝟏

𝐧
∑ 𝐬𝐢𝐧 [

𝛑

𝟐
(|𝝁𝓚

𝟐 (𝕪𝒊) − 𝝁𝓛
𝟐(𝕪𝒊)|𝚲|𝝊𝓚

𝟐 (𝕪𝒊) − 𝝊𝓛
𝟐(𝕪𝒊)|𝚲|𝝅𝓚

𝟐 (𝕪𝒊) −𝐧
𝐢=𝟏

𝝅𝓛
𝟐(𝕪𝒊)|)]  (9) 

𝐒𝟐(𝓚, 𝓛) =
𝟏

𝐧
∑ 𝐭𝐚𝐧 [

𝛑

𝟒
−

𝛑

𝟒
(|𝝁𝓚

𝟐 (𝕪𝒊) − 𝝁𝓛
𝟐(𝕪𝒊)|𝚲|𝝊𝓚

𝟐 (𝕪𝒊) − 𝝊𝓛
𝟐(𝕪𝒊)|𝚲|𝝅𝓚

𝟐 (𝕪𝒊) −𝐧
𝐢=𝟏

𝝅𝓛
𝟐(𝕪𝒊)|)] (10) 

𝑺𝟑(𝓚, 𝓛) =
𝟏

𝒏
∑ 𝒄𝒐𝒔 [

𝝅

𝟐
(|𝝁𝓚

𝟒 (𝕪𝒊) − 𝝁𝓛
𝟒(𝕪𝒊)|⋁|𝝊𝓚

𝟒 (𝕪𝒊) − 𝝊𝓛
𝟒(𝕪𝒊)|⋁|𝝅𝓚

𝟒 (𝕪𝒊) −𝒏
𝒊=𝟏

𝝅𝓛
𝟒(𝕪𝒊)|)]    (11) 

 

where the symbol ⋁ 𝒂𝒏𝒅 𝚲 signifies maximum and minimum operations. 

Also,  𝛑𝓚(𝕪𝒊) = √𝟏 − 𝛍𝓚
𝟐 (𝕪𝒊) − 𝛖𝓚

𝟐 (𝕪𝒊) ;        𝝅𝓛(𝕪𝒊) = √𝟏 − 𝝁𝓛
𝟐(𝕪𝒊) − 𝝊𝓛

𝟐(𝕪𝒊)    

Theorem 1. The Pythagorean fuzzy similarity measures 𝑺𝟏(𝓚, 𝓛) , 𝑺𝟐(𝓚, 𝓛) and 𝑺𝟑(𝓚, 𝓛) 

defined in Eq. (9) to Eq. (11) are valid measures of Pythagorean fuzzy similarity. 

Proof. All the essential conditions (𝓢1- 𝓢4) given in proposition needs to be fulfilled by 

the proposed similarity measures as follows: 

(𝓢1) 𝟎 ≤ 𝑺𝟏(𝓚, 𝓛), 𝑺𝟐(𝓚, 𝓛) 𝒂𝒏𝒅 𝑺𝟑(𝓚, 𝓛) ≤ 𝟏 

lie.  For 𝑺𝟏(𝓚, 𝓛): As the sine function lies in [0,1], 𝑺𝟏(𝓚, 𝓛) will always lies in [0,1].  

Thus, 𝟎 ≤ 𝑺𝟏(𝓚, 𝓛) ≤ 𝟏. Similarly, measures: 𝑺𝟐(𝓚, 𝓛) and 𝑺𝟑(𝓚, 𝓛) can be proved.  

(𝓢2) 𝑺𝟏(𝓚, 𝓛), 𝑺𝟐(𝓚, 𝓛), 𝑺𝟑(𝓚, 𝓛) = 𝟏 ⇔ 𝓚 = 𝓛.  

Proof. For 𝑺𝟏(𝓚, 𝓛): Let 𝓚 = {⟨𝕪, 𝝁𝓚(𝕪𝒊), 𝝂𝓚(𝕪𝒊)⟩|𝕪 ∈ Ŷ}; 𝓛 = {⟨𝕪, 𝝁𝓛(𝕪𝒊), 𝝂𝓛(𝕪𝒊)⟩|𝕪 ∈

Ŷ} be two PFS in Ŷ= {𝕪𝟏, 𝕪𝟐, … , 𝕪𝒏}. 

If 𝓚 = 𝓛, then  𝝁𝓚
𝟐 (𝕪𝒊) = 𝝁𝓛

𝟐(𝕪𝒊)  ; 𝝊𝓚
𝟐 (𝕪𝒊) = 𝝊𝓛

𝟐(𝕪𝒊) and 𝝅𝓚
𝟐 (𝕪𝒊) = 𝝅𝓛

𝟐(𝕪𝒊).  

Thus, |𝝁𝓚
𝟐 (𝕪𝒊) − 𝝁𝓛

𝟐(𝕪𝒊)| = 𝟎 ;  |𝝊𝓚
𝟐 (𝕪𝒊) − 𝝊𝓛

𝟐(𝕪𝒊)| = 𝟎 and |𝝅𝓚
𝟐 (𝕪𝒊) − 𝝅𝓛

𝟐(𝕪𝒊)| = 𝟎.  

Since sin0 =0, therefore, 𝑺𝟏(𝓚, 𝓛) = 𝟏.   

If 𝑺𝟏(𝓚, 𝓛) = 𝟏, this implies that  

 |𝝁𝓚
𝟐 (𝕪𝒊) − 𝝁𝓛

𝟐(𝕪𝒊)| = 𝟎 ; |𝝊𝓚
𝟐 (𝕪𝒊) − 𝝊𝓛

𝟐(𝕪𝒊)| = 𝟎 and |𝝅𝓚
𝟐 (𝕪𝒊) − 𝝅𝓛

𝟐(𝕪𝒊)| = 𝟎.  

Since sin0 = 0, ∴   𝝁𝓚
𝟐 (𝕪𝒊) = 𝝁𝓛

𝟐(𝕪𝒊)  ; 𝝊𝓚
𝟐 (𝕪𝒊) = 𝝊𝓛

𝟐(𝕪𝒊) and 𝝅𝓚
𝟐 (𝕪𝒊) = 𝝅𝓛

𝟐(𝕪𝒊).  
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Hence 𝓚 = 𝓛. Similarly, measures: 𝑺𝟐(𝓚, 𝓛) and 𝑺𝟑(𝓚, 𝓛) can be proved.  

(𝓢3) 𝑺𝟏(𝓚, 𝓛) =  𝑺𝟏(𝓛, 𝓚); 𝑺𝟐(𝓚, 𝓛) =  𝑺𝟐(𝓛, 𝓚) and 𝑺𝟑(𝓚, 𝓛) =  𝑺𝟑(𝓛, 𝓚)   

Proofs are direct and self-evident. 

(𝓢4) If 𝓜 is a PFS in Ŷ and 𝓚 ⊆ 𝓛 ⊆ 𝓜, then  

 𝑺𝒊(𝓚, 𝓜) ≤ 𝑺𝒊(𝓚, 𝓛); 𝑺𝒊(𝓚, 𝓜) ≤ 𝑺𝒊(𝓛, 𝓜), where 𝒊 = 𝟏, 𝟐, 𝟑. 

Proof. For 𝑺𝟏(𝓚, 𝓛): If 𝓚 ⊆ 𝓛 ⊆ 𝓜, then for 𝕪𝒊 ∈ Ŷ,  

We have,  𝟎 ≤ 𝝁𝓚(𝕪𝒊) ≤ 𝝁𝓛(𝕪𝒊) ≤ 𝝁𝓜(𝕪𝒊) ≤ 𝟏;  𝟏 ≥ 𝝊𝓚(𝕪𝒊) ≥ 𝝊𝓛(𝕪𝒊) ≥ 𝝊𝓜(𝕪𝒊) ≥ 𝟎  

and 𝟎 ≤ 𝝅𝓚(𝕪𝒊) ≤ 𝝅𝓛(𝕪𝒊) ≤ 𝝅𝓜(𝕪𝒊) ≤ 𝟏 

⇒ 𝟎 ≤ 𝝁𝓚
𝟐 (𝕪𝒊) ≤ 𝝁𝓛

𝟐(𝕪𝒊) ≤ 𝝁𝓜
𝟐 (𝕪𝒊) ≤ 𝟏; 𝟏 ≥ 𝝊𝓚

𝟐 (𝕪𝒊) ≥ 𝝊𝓛
𝟐(𝕪𝒊) ≥ 𝝊𝓜

𝟐 (𝕪𝒊) ≥ 𝟎 and 

 𝟎 ≤ 𝝅𝓚
𝟐 (𝕪𝒊) ≤ 𝝅𝓛

𝟐(𝕪𝒊) ≤ 𝝅𝓜
𝟐 (𝕪𝒊) ≤ 𝟏.  

Thus,   

|𝝁𝓚
𝟐 (𝕪𝒊) − 𝝁𝓛

𝟐(𝕪𝒊)| ≤ |𝝁𝓚
𝟐 (𝕪𝒊) − 𝝁𝓜

𝟐 (𝕪𝒊)| ; |𝝁𝓛
𝟐(𝕪𝒊) − 𝝁𝓜

𝟐 (𝕪𝒊)| ≤ |𝝁𝓚
𝟐 (𝕪𝒊) − 𝝁𝓜

𝟐 (𝕪𝒊)|,  

|𝝊𝓚
𝟐 (𝕪𝒊) − 𝝊𝓛

𝟐(𝕪𝒊)| ≤ |𝝊𝓚
𝟐 (𝕪𝒊) − 𝝊𝓜

𝟐 (𝕪𝒊)|  ; |𝝊𝓛
𝟐(𝕪𝒊) − 𝝊𝓜

𝟐 (𝕪𝒊)| ≤ |𝝊𝓚
𝟐 (𝕪𝒊) − 𝝊𝓜

𝟐 (𝕪𝒊)|,  

|𝝅𝓚
𝟐 (𝕪𝒊) − 𝝅𝓛

𝟐(𝕪𝒊)| ≤ |𝝅𝓚
𝟐 (𝕪𝒊) − 𝝅𝓜

𝟐 (𝕪𝒊)| ; |𝝅𝓛
𝟐(𝕪𝒊) − 𝝅𝓜

𝟐 (𝕪𝒊)| ≤ |𝝅𝓚
𝟐 (𝕪𝒊) − 𝝅𝓜

𝟐 (𝕪𝒊)|   

We can deduce the following from the above 

[|𝝁𝓚
𝟐 (𝕪𝒊) − 𝝁𝓛

𝟐(𝕪𝒊)| ∧ |𝝊𝓚
𝟐 (𝕪𝒊) − 𝝊𝓛

𝟐(𝕪𝒊)| ∧ |𝝅𝓚
𝟐 (𝕪𝒊) − 𝝅𝓛

𝟐(𝕪𝒊)|] 

                            ≤  [ |𝝁𝓚
𝟐 (𝕪𝒊) − 𝝁𝓜

𝟐 (𝕪𝒊)| ∧ |𝝊𝓚
𝟐 (𝕪𝒊) − 𝝊𝓜

𝟐 (𝕪𝒊)| ∧ |𝝅𝓚
𝟐 (𝕪𝒊) − 𝝅𝓜

𝟐 (𝕪𝒊)|] 

⇒
𝝅

𝟐
{|𝝁𝓚

𝟐 (𝕪𝒊) − 𝝁𝓛
𝟐(𝕪𝒊)| ∧ |𝝊𝓚

𝟐 (𝕪𝒊) − 𝝊𝓛
𝟐(𝕪𝒊)| ∧ |𝝅𝓚

𝟐 (𝕪𝒊) − 𝝅𝓛
𝟐(𝕪𝒊)|}

≤
𝝅

𝟐
{ |𝝁𝓚

𝟐 (𝕪𝒊) − 𝝁𝓜
𝟐 (𝕪𝒊)| ∧ |𝝊𝓚

𝟐 (𝕪𝒊) − 𝝊𝓜
𝟐 (𝕪𝒊)|

∧ |𝝅𝓚
𝟐 (𝕪𝒊) − 𝝅𝓜

𝟐 (𝕪𝒊)|} 

⇒ 𝒔𝒊𝒏 [
𝝅

𝟐
{|𝝁𝓚

𝟐 (𝕪𝒊) − 𝝁𝓛
𝟐(𝕪𝒊)| ∧ |𝝊𝓚

𝟐 (𝕪𝒊) − 𝝊𝓛
𝟐(𝕪𝒊)| ∧ |𝝅𝓚

𝟐 (𝕪𝒊) − 𝝅𝓛
𝟐(𝕪𝒊)|}] 

                    ≤ 𝒔𝒊𝒏 [
𝝅

𝟐
{ |𝝁𝓚

𝟐 (𝕪𝒊) − 𝝁𝓜
𝟐 (𝕪𝒊)| ∧ |𝝊𝓚

𝟐 (𝕪𝒊) − 𝝊𝓜
𝟐 (𝕪𝒊)| ∧ |𝝅𝓚

𝟐 (𝕪𝒊) − 𝝅𝓜
𝟐 (𝕪𝒊)|}]  

⇒ −  
𝟏

𝒏
∑ 𝒔𝒊𝒏 [

𝝅

𝟐
{|𝝁𝓚

𝟐 (𝕪𝒊) − 𝝁𝓛
𝟐(𝕪𝒊)| ∧ |𝝊𝓚

𝟐 (𝕪𝒊) − 𝝊𝓛
𝟐(𝕪𝒊)| ∧ |𝝅𝓚

𝟐 (𝕪𝒊) − 𝝅𝓛
𝟐(𝕪𝒊)|}]𝒏

𝒊=𝟏  

    ≥  − 
𝟏

𝒏
∑ 𝒔𝒊𝒏 [

𝝅

𝟐
{ |𝝁𝓚

𝟐 (𝕪𝒊) − 𝝁𝓜
𝟐 (𝕪𝒊)| ∧ |𝝊𝓚

𝟐 (𝕪𝒊) − 𝝊𝓜
𝟐 (𝕪𝒊)| ∧ |𝝅𝓚

𝟐 (𝕪𝒊) −𝒏
𝒊=𝟏

𝝅𝓜
𝟐 (𝕪𝒊)|}] 

⇒1 −  
𝟏

𝒏
∑ 𝒔𝒊𝒏 [

𝝅

𝟐
{|𝝁𝓚

𝟐 (𝕪𝒊) − 𝝁𝓛
𝟐(𝕪𝒊)| ∧ |𝝊𝓚

𝟐 (𝕪𝒊) − 𝝊𝓛
𝟐(𝕪𝒊)| ∧ |𝝅𝓚

𝟐 (𝕪𝒊) − 𝝅𝓛
𝟐(𝕪𝒊)|}]𝒏

𝒊=𝟏   
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 ≥ 𝟏 −  
𝟏

𝒏
∑ 𝒔𝒊𝒏 [

𝝅

𝟐
{ |𝝁𝓚

𝟐 (𝕪𝒊) − 𝝁𝓜
𝟐 (𝕪𝒊)| ∧ |𝝊𝓚

𝟐 (𝕪𝒊) − 𝝊𝓜
𝟐 (𝕪𝒊)| ∧ |𝝅𝓚

𝟐 (𝕪𝒊) −𝒏
𝒊=𝟏

𝝅𝓜
𝟐 (𝕪𝒊)|}] 

⇒  𝑺𝟏(𝓚, 𝓜) ≤ 𝑺𝟏(𝓚, 𝓛). Similarly, 𝑺𝟏(𝓚, 𝓜) ≤ 𝑺𝟏(𝓛, 𝓜). 

Similarly, measures: 𝑺𝟐(𝓚, 𝓛) and 𝑺𝟑(𝓚, 𝓛) can be proved.  

From the above, we conclude that proposed similarity measures fulfill all the axiomatic 

properties. 

3.1 Numerica Authentication of the proposed Similarity Measures 

Example 1.   Suppose 𝒦, ℒ, ℳ ∈ PFS(X) for Ŷ = {𝕪1, 𝕪2, 𝕪3}.  

Let 𝒦 = {⟨𝑥1, 0.60, 0.20⟩, ⟨𝑥2, 0.40, 0.60⟩, ⟨𝑥3, 0.50, 0.30⟩},  

ℒ = {⟨𝑥1, 0.80, 0.10⟩, ⟨𝑥2, 0.70, 0.30⟩, ⟨𝑥3, 0.60, 0.10⟩} and  

ℳ = {⟨𝑥1, 0.90, 0.20⟩, ⟨𝑥2, 0.80, 0.20⟩, ⟨𝑥3, 0.70, 0.30⟩}  

 

Computing similarity measures for the above PFS, we find the following numerical values 

 

Table 1: Example for validation of suggested measures 

Measure 1 Values Measure 2     Values Measure 3 Values 

𝑆1(𝐴, 𝐵) 0.968631 𝑆2(𝐴, 𝐵) 0.969977 𝑆3(𝐴, 𝐵) 0.958569 

𝑆1(𝐴, 𝐶) 0.859623 𝑆2(𝐴, 𝐶) 0.870417 𝑆3(𝐴, 𝐶) 0.819468 

𝑆1(𝐵, 𝐶) 0.931992 𝑆2(𝐵, 𝐶) 0.934245 𝑆3(𝐵, 𝐶) 0.942274 

 

4. PRACTICAL APPLICATIONS OF PFS 

To demonstrate the legitimacy of the proposed similarity measures, discussed in section 3, 

the applications for Pattern recognition and Medical Diagnosis have been presented in this 

section. 

 

4.1 Pattern recognition 

Suppose there exists four patterns represented as a set of customers  𝐴 = {𝐴1, 𝐴2,  𝐴3,  𝐴4}, 

in the feature space consists of set of attributes/ criteria C = {Performance(𝐶1), Price(𝐶2), 

Safety(𝐶3), Features(𝐶4), Discounts(𝐶5)} with the sample to be recognized as the brands 

of cars as B = {𝐵1 , 𝐵2 ,  𝐵4,  𝐵4} . The objective for the problems is to classify the class in 

which the unknown pattern B is labelled by using the proposed similarity measures. 

Relations of attributes have been given in the Tables 2 & Table 3. To make decisions, the 

steps given in the form of flow chart (Figure 1) have been used to complete the task. 
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Figure 1: Flow Chart of the Methodology 

The relationship between the customer and their criteria is defined as 𝛉:  𝐀 → 𝐂 and is 

presented in Table 2.   

Table 2: The relationship between Customers and their Criteria 

𝜽 Performance (𝐂𝟏) Price (𝐂𝟐) Safety (𝐂𝟑) Features (𝐂𝟒) Discount (𝐂𝟓) 

𝑨𝟏 <0.8, 0.1> <0.6, 0.1> <0.2, 0.8> <0.6, 0.1> <0.1, 0.6> 

𝑨𝟐 <0.0, 0.8> <0.4, 0.4> <0.6, 0.1> <0.1, 0.7> <0.1, 0.8> 

𝑨𝟑 <0.6, 0.1> <0.5, 0.4> <0.3, 0.4> <0.7, 0.2> <0.3, 0.4> 

𝑨𝟒 <0.7, 0.2> <0.4, 0.3> <0.6, 0.2> <0.8, 0.1> <0.2, 0.5> 

The relationship between the criteria and the likely brand is defined as 𝛗:  𝐂 → 𝐁 and is 

given in Table 3.   
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Table 3: The relationship between Criteria and the brands 

φ 𝐵1 𝐵2 𝐵3 𝐵4 

Performance (𝑪𝟏) <0.4, 0.0> <0.7, 0.0> <0.3, 0.3> <0.1, 0.8> 

Price (𝑪𝟐) <0.3, 0.5> <0.2, 0.6> <0.6, 0.1> <0.2, 0.4> 

Safety (𝑪𝟑) <0.1, 0.7> <0.0, 0.9> <0.2, 0.7> <0.8, 0.0> 

Features (𝑪𝟒) <0.4, 0.3> <0.1, 0.8> <0.2, 0.6> <0.2, 0.7> 

Discounts (𝑪𝟓) <0.1, 0.7> <0.8, 0.1> <0.1, 0.9> <0.4, 0.5> 

Using the proposed similarity measures, the degree of similarity between the customers 

and the brands are given in Table 4 to Table 6. 

 

Table 4: Degree of Similarity between the Customers and the Brands for 𝑆1(𝐴, 𝐵) 

𝑺𝟏(𝑨, 𝑩) 𝑩𝟏 𝑩𝟐 𝑩𝟑 𝑩𝟒 

𝑨𝟏 0.95294931 0.856733339 0.909086562 0.899720204 

𝑨𝟐 0.804567426 0.821078922 0.881371491 0.781733468 

𝑨𝟑 0.965512063 0.896968667 0.881059324 0.832726098 

𝑨𝟒 0.878456742 0.950169464 0.843159302 0.896797551 

 

Table 5: Degree of Similarity between the Customers and the Brands for  𝑆2(𝐴, 𝐵) 

𝑺𝟐(𝑨, 𝑩) 𝑩𝟏 𝑩𝟐 𝑩𝟑 𝑩𝟒 

𝑨𝟏 0.954787566 0.869442272 0.913543302 0.90487781 

𝑨𝟐 0.829333557 0.843941936 0.890438486 0.811325179 

𝑨𝟑 0.96711423 0.904355671 0.888163636 0.848453655 

𝑨𝟒 0.888428191 0.954550112 0.861194703 0.903599378 

 

Table 6: Degree of Similarity between the Customers and the Brands for 𝑆3(𝐴, 𝐵) 

𝑺𝟑(𝑨, 𝑩) 𝑩𝟏 𝑩𝟐 𝑩𝟑 𝑩𝟒 

𝑨𝟏 0.899102564 0.878528476 0.899718227 0.865328793 

𝑨𝟐 0.894085515 0.813221516 0.816826663 0.813224419 

𝑨𝟑 0.854156457 0.897082442 0.848146406 0.810665711 

𝑨𝟒 0.890483527 0.944014083 0.8697812 0.89413737 

 

Results and Discussion:   

From the results received from 𝑆1(𝐴, 𝐵) and 𝑆2(𝐴, 𝐵) presented in Tables 4 & Ta the 

degree of similarity for 𝐴1 is with brand 𝐵3 and brand 𝐵4 whereas,  𝐴3 is with brand  𝐵1 

and 𝐴4 is with brand 𝐵2 ,  the largest. However, from the results by using 𝑆3(𝐴, 𝐵) 

represented in the Table 6, it is observed that degree of similarity of 𝐴1 is with brand 𝐵1 and 

brand 𝐵3 whereas 𝐴4 prefers brand 𝐵2 and brand 𝐵4 , the largest one. These results are 
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desired from the proposed similarity measures. The proposed entropy measures can be 

used for the problems of pattern recognition for the labelling of most likely classes in the 

feature space.   

 

4.2 Medical Diagnosis Problem 

 

Medical decision-making problems cannot afford a little uncertainty or vagueness in 

any serious situation. To demonstrate this problem, let  P = {P1, P2,  P3,  P4,  P5 }   be the 

set of patients under the diagnosis of set of diseases as   = {𝑉𝑖𝑟𝑎𝑙 𝑓𝑒𝑣𝑒𝑟, 𝑀𝑎𝑙𝑎𝑟𝑖𝑎, 

𝑇𝑦𝑝ℎ𝑜𝑖𝑑, 𝑆𝑡𝑜𝑚𝑎𝑐ℎ 𝑝𝑟𝑜𝑏𝑙𝑒𝑚 𝑎𝑛𝑑 𝐶ℎ𝑒𝑠𝑡 𝑝𝑟𝑜𝑏𝑙𝑒𝑚} with symptoms set as 𝑆 = 

{𝑇𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒, 𝐻𝑒𝑎𝑑𝑎𝑐ℎ𝑒, 𝑆𝑡𝑜𝑚𝑎𝑐ℎ 𝑝𝑎𝑖𝑛, 𝐶𝑜𝑢𝑔ℎ 𝑎𝑛𝑑 𝐶ℎ𝑒𝑠𝑡 𝑝𝑎𝑖𝑛}. The objective is 

to classify the disease for which patient P is suffering by using the proposed similarity 

measures. Relations of attributes have been given in Table 7 & Table 8. To make decisions, 

the flow chart (Figure 1) is used to complete the task as: 

The relationship between the symptoms and their diseases is defined as σ:  S → D and 

is given in Table 7. The relationship between the patients and the likely symptom is defined 

as 𝛚:  𝐏 → 𝐒 and is given in Table 8. Using the proposed similarity measures, the degree 

of similarity between the patients   and the diseases are given in Table 9 to Table11. 

 

 

Table 7: The relationship between Symptoms and their Disease 

𝛔 Viral Fever Malaria Typhoid Stomach Pain Chest Pain 

Temperature <0.8, 0.1> <0.6, 0.1> <0.2, 0.8> <0.6, 0.1> <0.1, 0.6> 

Headache <0.9, 0.1> <0.7, 0.2> <0.2, 0.8> <0.7, 0.2> <0.2, 0.7> 

Stomach Pain <0.0, 0.7> <0.4, 0.5> <0.6, 0.2> <0.2, 0.7> <0.1, 0.2> 

Cough <0.7, 0.1> <0.7, 0.1> <0.0, 0.5> <0.1, 0.7> <0.0, 0.6> 

Chest pain <0.5, 0.1> <0.4, 0.3> <0.4, 0.5> <0.8, 0.2> <0.3, 0.4> 

 

 

Table 8: The relationship between Patient and the Diseases 

𝛚 Temperature Headache Stomach Pain Cough Chest pain 

Alex <0.4, 0.0> <0.3, 0.5> <0.1, 0.7> <0.4, 0.3> <0.1, 0.7> 

Chris <0.7, 0.0> <0.2, 0.6> <0.0, 0.9> <0.7, 0.0> <0.1, 0.8> 

James <0.3, 0.3> <0.6, 0.1> <0.2, 0.7> <0.2, 0.6> <0.1, 0.9> 

Mike <0.1, 0.7> <0.2, 0.4> <0.8, 0.0> <0.2,0.7> <0.2, 0.7> 

Shawn <0.1, 0.8> <0.0, 0.8> <0.2, 0.8> <0.2,0.8> <0.8, 0.1> 

 

 

Table 9: Degree of Similarity between the Diseases and the Patients for 𝑆1(𝐴, 𝐵) 

 Alex Chris James Mike Shawn 

Viral Fever 0.8245 0.8187 0.8700 0.7857 0.8758 

Malaria 0.8381 0.8598 0.8500 0.8043 0.7621 

Typhoid 0.8873 0.7137 0.7909 0.9279 0.8286 

Stomach Pain 0.8355 0.9311 0.9466 0.8408 0.8710 

Chest Pain 0.8781 0.8937 0.8907 0.9591 0.9187 
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Table 10: Degree of Similarity between the Diseases and the Patients for 𝑆2(𝐴, 𝐵) 

 Alex Chris James Mike Shawn 

Viral Fever 0.8450 0.8448 0.8830 0.8067 0.8881 

Malaria 0.8521 0.8725 0.8610 0.8227 0.7869 

Typhoid 0.8946 0.7512 0.8135 0.9318 0.8506 

Stomach Pain 0.8524 0.9351 0.9486 0.8540 0.8858 

Chest Pain 0.8869 0.9014 0.8985 0.9605 0.9240 

 

Table 11: Degree of Similarity between the Diseases and the Patients 𝑆3(𝐴, 𝐵) 

 Alex Chris James Mike Shawn 

Viral Fever 0.7817 0.8120 0.8081 0.7835 0.7729 

Malaria 0.9088 0.8547 0.9064 0.8667 0.8054 

Typhoid 0.8654 0.7931 0.8321 0.8709 0.8747 

Stomach Pain 0.9000 0.8863 0.9309 0.8645 0.9061 

Chest Pain 0.8401 0.7629 0.8169 0.7859 0.7669 

 

5. COMPARATIVE ANALYSIS 

To determine the supremacy of the projected similarity measures, a comparison 

between the proposed similarity measures and the existing similarity measures proposed 

by Wei & Wei [63] has been conducted based on the numerical data suggested in pattern 

recognition and medical diagnosis problems.  

 

 

Table 12: Comparative study for pattern recognition problem 

Comparison 𝑨𝟏 𝑨𝟐 𝑨𝟑 𝑨𝟒 

𝑆1(𝐴, 𝐵) 

 

𝐵1 

 

𝐵4 𝐵1 𝐵1 

𝑆2(𝐴, 𝐵) 𝐵1 𝐵4 𝐵1 𝐵1 

𝑆3(𝐴, 𝐵) 𝐵1 𝐵4 𝐵1 𝐵1 

𝑆4(𝐴, 𝐵) 𝐵1 𝐵4 𝐵1 𝐵1 

Proposed 𝑆1(𝐴, 𝐵) 𝐵3 𝐵4 𝐵1 𝐵1 

Proposed 𝑆2(𝐴, 𝐵) 𝐵3 𝐵4 𝐵1 𝐵1 

Proposed 𝑆3(𝐴, 𝐵) 𝐵1 𝐵4 𝐵1 𝐵4 
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Table 13: Comparative study for medical diagnosis problem 

 

The comparative evaluation of proposed similarity measures stated in sections (4.1) 

and (4.2) respectively are presented in Table 12 & Table 13. From the numerical results 

presented in the tables, it has been noticed that the results obtained by using the proposed 

similarity measures are analogous to the existing results. 

 

6. CONCLUSIONS 

In this article, we have put forward a new way to construct PFS similarity 

measurements based on sine, cosine, and tangent functions. These trigonometric similarity 

measures are widely used as effective tools that allow for greater flexibility when handling 

real-world decision-making situations. The main contribution of the study is as follows: 

 Three new similarity measures of the PFS are proposed. 

 The desirable combinations and their features are studied in detail.  

 To show the efficiency of the proposed similarity measures, we give some numerical 

examples which show the new similarity measures can effectively overcome the 

limitations of the existing similarity measures. 

 The application to pattern recognition and medical diagnosis has been determined. 

 A comparative analysis of the suggested similarity measures with the existing ones is 

provided to determine the efficacy of the proposed measures. 

 

Similarity measures are recommended to address vulnerabilities in the data and have 

applications in a variety of disciplines, especially in risk analysis problems, investment 

problems, selection problems, etc. We will also investigate the utility of established 

similarity measures in other areas including multi-criteria decision-making, clustering, 

medical image registration, etc. The PFS has been extended, such as the Pythagorean fuzzy 

linguistic set. 

 Alex Chris James Mika Shawn 

𝑆1(𝐴, 𝐵) Malaria Malaria 
Stomach 

pain 
Typhoid Typhoid 

𝑆2(𝐴, 𝐵) Chest pain Malaria Chest pain Typhoid Chest pain 

𝑆3(𝐴, 𝐵) Malaria Malaria 
Stomach 

pain 
Typhoid Typhoid 

𝑆4(𝐴, 𝐵) Malaria Malaria 
Stomach 

pain 
Typhoid Typhoid 

Proposed  

𝑆1(𝐴, 𝐵) 
Typhoid 

Stomach 

pain 

Stomach 

pain 
Chest pain Chest pain 

Proposed 

𝑆2(𝐴, 𝐵) 
Typhoid 

Stomach 

pain 

Stomach 

pain 
Chest pain Chest pain 

Proposed 

𝑆3(𝐴, 𝐵) 
Malaria 

Stomach 

pain 

Stomach 

pain 
Malaria 

Stomach 

pain 
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