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Abstract: A generalized fuzzy number (GFN), whose height is not necessarily 1, is used
in situations when expert opinions are not completely reliable. This subnormality com-
plicates operations based on the extension principle. Moreover, complexity is inherited
in non-standard fuzzy numbers (FNs). This paper aims to present a unified approach
for comparing generalized and trapezoidal types of FNs, intuitionistic FNs (IFNs), and
picture FNs (PFNs). If some of the hesitation, neutrality, and refusal are assumed to be
resolved, then the uncertainty is reduced while making a non-standard FN standardized.
The method uses the weighted average membership function (WAMF) to standardize
generalized IFNs (GIFNs) and generalized PFNs (GPFNs). WAMF employs parameters
describing the behavioral patterns when decision-makers encounter situations involving
risk. Then, the ranking process can be continued with the calculation of the centroid
point of the resulting GFN. One of the main advantages of this approach is that the com-
putations are straightforward due to the presence of piecewise linearity, enabling us to
employ numerical integration. Furthermore, we adapt operations for generalized trape-
zoidal PFNs (GTPFNs) to mitigate the counter-intuitive consequences resulting from
utilizing the minimum operator. The effectiveness of the method is discussed through
benchmarks and its implementation in multi-attribute decision-making (MADM).
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1. INTRODUCTION

Deterministic decision-making occasionally ignores the underlying uncertainty
of reality in practical contexts. It becomes too challenging to make decisions when
the data are collected insufficiently or are uncertain in numerical quantities. Fuzzy
sets only consider the grade of membership when modeling imprecise parameters;
they ignore the degree of hesitation and assume that the degree of non-membership
is the complement of one. In reality, the experts provide all or some of the data
with uncertainty and hesitancy because of fluctuations, inaccurate measurements,
or other factors. The intuitionistic fuzzy set (IFS), first proposed by Atanassov [1]
in 1978, is a more comprehensive version of a fuzzy set that includes an autonomous
non-membership function. Only the lower and upper memberships are known in
IFSs; the actual membership function is not known. Picture fuzzy sets (PFSs)
[2], which are more general forms than IFSs, introduce additional neutrality and
refusal degrees alongside the acceptance and rejection degrees. When individuals
are faced with decisions that require a broader range of responses, such as “accept,”
“abstain,” “reject,” and “refuse,” the utilization of PFSs can offer benefits. The
application of non-standard fuzzy set theory addresses the challenge of dealing
with imprecise and inadequate information.

For approximate reasoning and MADM in uncertain environments, fuzzy rank-
ing is an essential step in choosing the best alternative among several others.
Establishing ranking methods has been a challenging task, and none of the ex-
isting techniques are qualified as ideal since they yield inconsistent, misleading,
and counter-intuitive outcomes. Numerous studies on fuzzy ranking procedures
have been published in the past few decades. For both normal and subnormal
FNs, Cheng [3] developed a ranking method based on the Euclidian distance to
the origin. Chu and Tsao [4] proposed a method based on the area between the
centroid and origin points to avoid contradictions when ranking negative numbers.
Later, Wang et al. [5] revised these methods. See also [6], [7], and [8]. Due to the
extensive scope of this study, it is impractical to conduct an in-depth assessment
of the literature on generalized fuzzy ranking methods, and interested readers are
advised to refer to the most recent publication, [9], for further information.

Regarding the concept of generalized intuitionistic ordering, expected value,
score, and accuracy functions were utilized in [10] and [11]. Li [12] introduced the
concepts of the value and ambiguity associated with a triangular GIFN. Addition-
ally, the author proposed a ranking technique that incorporates the ratio of the
value index to the ambiguity index. Nishad et al. [13] presented a ranking approach
that satisfies the fundamental axioms of ranking functions. This method utilizes
the centroid and circumcenter of the membership and non-membership functions.
Additionally, refer to [14] for an application of how the suggested ranking function
can be used to address a fully intuitionistic fuzzy transportation problem. A signed
distance-based defuzzification method was introduced in [15] to solve solid trans-
portation problems with symmetrical generalized trapezoidal IFNs (GTIFNs) as
unit costs. Beg et al. [16] investigated an ordering mechanism founded on the index
of optimism-based expected value for the solution of the generalized triangular in-
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tuitionistic fuzzy transportation problem. In [17], the authors described a method
of ranking GTIFNs based on the area of both membership and non-membership
parts of the numbers. The same formula was used in [18] and [19]. In [20],
formulas for the weighted possibility means of membership and non-membership
functions were given for GTIFNs as well as an application for multi-attribute group
decision-making. See also [21, 22, 23, 24, 25] for different variations of aggrega-
tion processes. Other group decision-making applications can be found in [26] and
[27]. Su et al. [28] devised a weighted trapezoidal intuitionistic fuzzy Bonferroni
harmonic mean, analyzed its characteristics, and demonstrated its applicability
in multi-attribute group decision-making. See also [29] and [30]. Das and Guha
[31, 32] employed a centroidal ranking technique for comparing GTIFNs. They
also presented aggregation operators and related operational laws. Nyagam et al.
[33] discussed the shortcomings and limitations of the existing methods and sug-
gested improved indexes for comparing GTIFNs to overcome them. Area-based
parametric methods using cut-set representations were provided in [34] and [35].
By taking into account the decision-makers’ attitude when defuzzifying triangular
GIFNs, Wu et al. [36] constructed a decision framework for offshore wind power
site selection by combining the methods of ANP and PROMETHEE. The as-
signment problem in [37] involved GTIFN cost coefficients and utilized a ranking
technique based on the centroid of centroids. The same formulation was used in
[38]. Garai [39] developed the notions of possibilistic mean, standard deviation,
and magnitude within the context of GTIFNs. Also, the author proposed a rank-
ing technique that takes into account the decision-maker’s magnitude, which is
based on the mean and standard deviation. The paper [40] introduced the defini-
tions of various generalized intuitionistic fuzzy reliability characteristics, including
reliability, conditional reliability, hazard rate, and mean time to failure functions.
It also discussed a specific scenario called the two-parameter Pareto generalized
intuitionistic fuzzy reliability analysis. Wang [41] compared GTIFNs through the
extended fuzzy preference relation, which quantifies the preference degree of two
GTIFNs, not through defuzzification. The study in [42] focused on a generalized
intuitionistic fuzzy flow shop scheduling problem. The approach used the centroid
index, which calculates the geometric center based on the horizontal and vertical
axes. MADM applications can be found in [12], [43], [44], [45], [46], [47], [48], [49],
[50], and [39].

Mitchell [51] interpreted IFNs as an ensemble of standard FNs, while we sim-
ilarly consider GIFNs and GPFNs to consist of two or three GFNs, respectively.
The first step in our ranking process is the conversion of GIFNs and GPFNs into
GFNs by means of their WAMFs [52]. This dissolves hesitancy, neutrality, and
refusal with the help of risk behavior parameters, which are based on Yager’s
idea of incorporating indeterminacy into the membership function [53]. More pre-
cisely, GTIFNs can be transformed into linear generalized hexagonal FNs, whereas
GTPFNs can be simplified into linear generalized octagonal FNs [54]. The WAMF
framework utilizes criteria that characterize the behavioral tendencies of individ-
uals when they are confronted with situations that entail risk. To further explore
the topic of standardization, specifically in terms of reduction, readers are advised
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to consult [55], which is another study using the WAMF. A version of WAMF
that is similar but not normalized was designed for triangular GIFNs in [56]. It is
called the resultant membership function.

As far as we know, there is a limited amount of research in the existing lit-
erature about the sorting of trapezoidal PFNs. A formal definition of a GTPFN
was given in [57], along with some associated arithmetic operations and a rank-
ing function. See also [58] and [59] that used the same definition. This study
first aims to address the issue of unreasonable outcomes resulting from the use of
the minimum operator in determining the overall maximal membership value in
arithmetic operations. Thereby, we propose an alternative way of identifying the
maximal membership values with reduced error. The secondary objective of this
study is to propose a novel integrated methodology for the comparison of arbitrary
generalized trapezoidal FNs (GTFNs), GTIFNs, and/or GTPFNs. This gives us
a way to compare any two FNs, GIFNs, or GPFNs that are triangular, trape-
zoidal, normal, or subnormal. Additionally, this paper presents the 1-9 picture
fuzzy linguistic scale that experts use to express their opinions in a risk analysis
application. We apply the proposed ranking method to address MADM problems
in non-standard fuzzy environments.

Considering the research gap in the field, we briefly underscore our motivations
and technical contributions as follows:

� Most of the previous works have primarily focused on developing ranking
methods for GFNs and/or GIFNs. However, it is frequently observed that
there are degrees of neutrality and refusal in expert opinions. To address
this issue, we examine the processes of decision-making in situations that
involve a picture fuzzy environment.

� In the existing literature, it is observed that most of the papers employed
the minimum operator in all arithmetic operations to determine the overall
maximal membership value, or abandoned linearity and shape-preserving.
This has led to inconsistencies in rankings or complications in calculations.
To assist MADM processes, we extend existing arithmetic operations with
less error and information loss.

� When we have to deal with problems where people make decisions based
on their attitudes and there is hesitation, neutrality, and refusal, we reduce
non-standard FNs to GFNs using a parameterized membership function to
dissolve indeterminacy and/or refusal. This standardization enables us to
make use of the vast literature on generalized fuzzy ranking.

� We obtain a prevailing framework strategy for dealing with similar problems
whose parameters satisfy or do not satisfy the normality condition and/or
are a combination of several types.

� The literature already benefits from the merits of the centroidal methods
initially developed for GTFNs. We universalize the centroid-based ranking
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procedure. In this way, we have simplified the procedure for some fuzzy
extensions.

� We use normalization to rescale the domain because sorting negative values
using the centroid method produces inconsistent results.

� Considering failures and the severity of losses, the proposed method is ap-
plied to the risk analysis of production systems, where experts provide their
input in linguistic terms. The suggested picture fuzzy scale provides greater
flexibility and a broader range of alternatives regarding the number of lin-
guistic terms compared to fuzzy and intuitionistic scales.

The rest of this paper is constructed as follows: Section 2 presents some prelimi-
nary definitions of fuzzy sets. Section 3 outlines the arithmetic operations. Section
4 covers some existing, straightforward, and widely used generalized intuitionistic
fuzzy ranking methods. Section 5 introduces a ranking procedure founded on cen-
troids and provides straightforward benchmark instances for illustration purposes.
MADM applications are given to support the proposed approach in Section 6. The
paper draws some conclusions in Section 7.

2. PRELIMINARIES

In this section, we present some of the terminology and preliminary concepts
required for our discussion.

Definition 1 (Standard Fuzzy Set). A standard fuzzy set Ã on the universe
of discourse X is defined as:

Ã =
{〈

x, µÃ (x)
〉∣∣x ∈ X

}
,

where the membership function µÃ : X → [0, 1] denotes the grade of belonging of

the element x to the set Ã.

Ã is said to be normal if there exists ∃x ∈ X such that µÃ (x) = 1. If not, it
is referred to as subnormal. The membership function µ is said to be convex if
µÃ (λx1 + (1− λ)x2) ≥ min

(
µÃ(x1), µÃ(x2)

)
for ∀x1, x2 ∈ X and ∀λ ∈ [0, 1]. A

normal fuzzy subset of the real line with a convex membership function is referred
to as an FN.

Definition 2 (GFN). Let p,m, n, q ∈ R, p ≤ m ≤ n ≤ q, α ∈ (0, 1] . A GFN Ã
is a fuzzy subset of the real line R, whose membership function µÃ satisfies the
following conditions:

(i) µÃ : R→ [0, α] is continuous,

(ii) µÃ (x) = 0 for x < p or x > q,

(iii) µÃ (x) is strictly increasing on [p,m] and strictly decreasing on [n, q],
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(iv) µÃ (x) = α, for x ∈ [m,n] .

If normality holds, that is, if α = 1, then Ã is referred to as an FN. Otherwise, Ã
is called subnormal with the maximal membership value α ∈ (0, 1). The parameter

α, which determines the height of Ã and represents the level of confidence in expert
opinions, enables the adoption of a more comprehensive framework.

Definition 3 (IFS). A set

Ã =
{〈

x, µÃ (x) , νÃ (x)
〉∣∣x ∈ X

}
is said to be an IFS on a universal set X, in which the functions µÃ : X → [0, 1]

and νÃ : X → [0, 1] denote the membership and non-membership functions of Ã,
respectively, such that µÃ (x)+νÃ (x) ≤ 1 for all x ∈ X. πÃ (x) = 1−µÃ (x)−νÃ (x)
is called the degree of hesitancy.

An IFS Ã is said to be normal if there exists ∃x ∈ X such that µÃ (x) = 1.
The non-membership function ν is said to be concave if νÃ (λx1 + (1− λ)x2) ≤
max

(
νÃ(x1), νÃ(x2)

)
for ∀x1, x2 ∈ X and ∀λ ∈ [0, 1]. Ã is said to be convex if

µÃ (x) is convex, and νÃ (x) is concave. If an intuitionistic fuzzy subset of the real
line is normal and convex, then it is referred to as an IFN. On the other hand, each
GIFN Ã may be envisioned as a conjunction of two GFNs with the membership
functions µÃ (x) and (1− ν)Ã (x) = 1 − νÃ (x). If (1 − νÃ (x)) = µÃ (x) or the
degree of hesitancy πÃ (x) = 0 for all x ∈ X, then the GIFN reduces to a GFN.

Definition 4 (WAMF for a GIFN). [53] The WAMF for a GIFN Ã can be
given as:

µÃ (x) = µÃ (x) + λπÃ (x)

= (1− λ)µÃ (x) + λ
(
1− νÃ (x)

)
,

where λ ∈ [0, 1] (for risk-aversion λ ∈ [0, 1/2)) .

The value of λ denotes the amount of indeterminacy we can resolve in favor
of a positive answer. The higher the value of the degree of optimism λ, the
more indeterminacy is dissolved in favor of the membership degree, and the lower
the value, the more indeterminacy is eliminated in favor of the non-membership
degree. Here, the most sensible (and also risk-neutral) allocation is to all equally
by choosing λ = 1/2, but, if necessary, this distribution can be linked to the
parameter λ.

Definition 5 (PFS). A PFS Ã on X is of the form:

Ã =
{〈

x, µÃ (x) , ηÃ (x) , νÃ (x)
〉∣∣x ∈ X

}
,

where µÃ (x) , ηÃ (x) , νÃ (x) ∈ [0, 1] are independent positive, neutral, and negative
membership functions, respectively, and they follow the condition µÃ (x)+ηÃ (x)+
νÃ (x) ≤ 1 for all x ∈ X. πÃ (x) = 1−µÃ (x)− ηÃ (x)− νÃ (x) is called the degree
of refusal.
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A PFS Ã is said to be normal if there exist ∃x1, x2 ∈ X such that µÃ (x1) =

1, and ηÃ (x2) = 1. In this paper, each GPFN Ã with its positive, neutral,
and negative membership functions µÃ (x) , ηÃ (x) , and νÃ (x), is assumed to be
a combination of three GFNs with the membership functions µÃ (x) , ηÃ (x), and(
1− νÃ (x)

)
, defined as fuzzy subsets of the real line. If ηÃ (x) = 1−νÃ (x)−µÃ (x)

or ηÃ (x) = 0 for all x ∈ X, then the GPFN reduces to a GIFN. To summarize,
when the refusal or neutrality degree vanishes, a GPFN becomes a GIFN.

Definition 6 (WAMF for a GPFN). [52] The WAMF for a GPFN Ã can be
defined as:

µÃ (x) = µÃ (x) + λπÃ (x) + ωηÃ (x)

= (1− λ)µÃ (x) + λ
(
1− νÃ (x)

)
+ (ω − λ) ηÃ (x) ,

where 0 ≤ λ ≤ ω ≤ 1 (for risk-aversion, 2λ < ω ≤ 1).

The values of λ and ω represent the amount of refusal and neutrality that can
be resolved in favor of the positive membership, respectively.

Definition 7 (GTPFN). [57] Ã, which is a GTPFN with a convex neutrality
on the real line R, is characterized by its respective positive, neutral, and negative
membership functions:

µÃ (x) =



0, if x < p1
α(x−p1)
m−p1

, if p1 ≤ x < m

α, if m ≤ x < n
α(q1−x)
q1−n , if n ≤ x < q1

0, if x ≥ q1,

ηÃ (x) =



0, if x < p2
γ(x−p2)
m−p2

, if p2 ≤ x < m

γ, if m ≤ x < n
γ(q2−x)
q2−n , if n ≤ x < q2

0, if x ≥ q2,

and

νÃ (x) =



1, if x < p3
1− (1−β)(x−p3)

m−p3
, if p3 ≤ x < m

β, if m ≤ x < n

1− (1−β)(q3−x)
q3−n , if n ≤ x < q3

1, if x ≥ q3,

where p3 ≤ p2 ≤ p1 < m ≤ n < q1 ≤ q2 ≤ q3 and 0 < α + γ + β ≤ 1. It is
important to note that α and γ are referred to as the maximal positive and neutral
membership, respectively. Likewise, β represents the minimal negative member-
ship. We denote Ã = ⟨(p3, p2, p1,m, n, q1, q2, q3) ;α, γ, β⟩. If m = n, then we
obtain a triangular GPFN.
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Without the neutrality function, which means if γ = 0, we obtain a GTIFN for
arbitrary p2 ∈ [p3, p1] and q2 ∈ [q1, q3], in addition, without the hesitancy function,
i.e., if α+ β = 1, and p3 = p2 = p1, and q1 = q2 = q3, we obtain a GTFN.

Definition 8 (WAMF for a GTPFN). The WAMF for a GTPFN

Ã = ⟨(p3, p2, p1,m, n, q1, q2, q3) ;α, γ, β⟩

is defined as:

µÃ (x) =


0, if x < p3
fL
Ã
(x) , if p3 ≤ x ≤ m

(1− λ)α+ λ(1− β) + (ω − λ)γ, if m < x < n
fR
Ã
(x) , if n ≤ x ≤ q3

0, if q3 < x,

where

fL
Ã
: [p3,m]→ [0, (1− λ)α+ λ(1− β) + (ω − λ)γ]

and

fR
Ã

: [n, q3]→ [0, (1− λ)α+ λ(1− β) + (ω − λ)γ]

are piecewise continuous left-side (respectively right-side) functions which are strictly
increasing (respectively strictly decreasing) on their domain. Also,

fL
Ã
(x) = (1− λ)fµL

Ã
(x) + λf

(1−ν)L

Ã
(x) + (ω − λ)fηL

Ã
(x) ,

fR
Ã
(x) = (1− λ)fµR

Ã
(x) + λf

(1−ν)R

Ã
(x) + (ω − λ)fηR

Ã
(x) ,

where

fµL

Ã
(x) =

{
0, if p3 ≤ x < p1
α(x−p1)
m−p1

, if p1 ≤ x ≤ m,

fηL

Ã
(x) =

{
0, if p3 ≤ x < p2
γ(x−p2)
m−p2

, if p2 ≤ x ≤ m,

f
(1−ν)L

Ã
(x) =

(1− β) (x− p3)

m− p3
,

fµR

Ã
(x) =

{
α(q1−x)
q1−n , if n ≤ x < q1,

0, if q1 ≤ x ≤ q3,

fηR

Ã
(x) =

{
γ(q2−x)
q2−n , if n ≤ x < q2,

0, if q2 ≤ x ≤ q3,

and

f
(1−ν)R

Ã
(x) =

(1− β) (q3 − x)

q3 − n
.
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Example 9. Consider the GTPFN denoted by

Ã = ⟨(1, 1.5, 2, 2.5, 3, 3.5, 4, 4.5) ; 0.6, 0.2, 0.1⟩ .

Please refer to Figure 1 for the graphical representation of the membership func-
tions. The values of λ and ω are assumed to be 0.5 and 1, respectively. The
figure illustrates that WAMF is composed of three distinct segments. The left side
consists of a non-decreasing piecewise linear function, while the right side has a
non-increasing piecewise linear function. Both of those segments are characterized
by three breaking points. Located at the core, there exists a function that remains
constant.

Figure 1: Membership plots of Example 9

3. ARITHMETIC OPERATIONS

The minimum operator is commonly employed to determine the maximal mem-
bership values in all arithmetic operations defined for GTFNs. However, in this
case, representations with narrower most likely intervals of a GTFN not having the
lowest maximal membership value are not taken into account. Moreover, rankings
exhibit inconsistency in this manner. To offer a unified method, the subsequent
arithmetic operations are designed to function globally over GTFNs, GTIFNs,
GTPFNs, and the corresponding reductions between them. We do not desire to
give up shape preservation and use nonlinear extended fuzzy arithmetic [60] due to
its computational complexity. In order to address the limitations associated with
minimal operator usage, the following arithmetic operations are adapted from [61]
for GTPFNs. See also [62] and [63] for details. Also note that an outcome of
moderate reliability is obtained by adding a highly reliable non-negative value to
a somewhat less reliable non-negative value.

Definition 10. Let

Ã = ⟨(p3, p2, p1,m, n, q1, q2, q3) ;α1, γ1, β1⟩
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and

B̃ = ⟨(p′3, p′2, p′1,m′, n′, q′1, q
′
2, q

′
3) ;α2, γ2, β2⟩

be two GTPFNs, and c ∈ R, then we have the following shape-preserving and
error-reducing operations:

(i) Addition of two GTPFNs

Ã+B̃ = ⟨(p3 + p′3, p2 + p′2, p1 + p′1,m+m′, n+ n′, q1 + q′1, q2 + q′2, q3 + q′3) ;α, γ, β⟩ ,

where

α =

∥∥∥Ãµ

∥∥∥α1 +
∥∥∥B̃µ

∥∥∥α2∥∥∥Ãµ

∥∥∥+
∥∥∥B̃µ

∥∥∥ , γ =

∥∥∥Ãη

∥∥∥ γ1 + ∥∥∥B̃η

∥∥∥ γ2∥∥∥Ãη

∥∥∥+
∥∥∥B̃η

∥∥∥ , β =

∥∥∥Ã1−ν

∥∥∥β1 +
∥∥∥B̃1−ν

∥∥∥β2∥∥∥Ã1−ν

∥∥∥+
∥∥∥B̃1−ν

∥∥∥ ,

∥∥∥Ãµ

∥∥∥ =
|p1|+ |m|+ |n|+ |q1|

4
,

∥∥∥B̃µ

∥∥∥ =
|p′1|+ |m|+ |n|+ |q′1|

4
,∥∥∥Ãη

∥∥∥ =
|p2|+ |m|+ |n|+ |q2|

4
,

∥∥∥B̃η

∥∥∥ =
|p′2|+ |m|+ |n|+ |q′2|

4
,∥∥∥Ã1−ν

∥∥∥ =
|p3|+ |m|+ |n|+ |q3|

4
,

∥∥∥B̃1−ν

∥∥∥ =
|p′3|+ |m|+ |n|+ |q′3|

4
.

(ii) Scalar Multiplication

cÃ =

{ 〈
(cp3, cp2, cp1, cm, cn, cq1, cq2, cq3) ;α1, γ1, β1

〉
, if c ≥ 0〈

(cq3, cq2, cq1, cn, cm, cp1, cp2, cp3) ;α1, γ1, β1

〉
, if c < 0.

(iii) Multiplication of two GTPFNs

Ã× B̃ = ⟨(P3, P2, P1,M,N,Q1, Q2, Q3) ;α, γ, β⟩ ,

where

P3 = min {p3p′3, p3q′3, q3p′3, q3q′3} ,
P2 = min {p2p′2, p2q′2, q2p′2, q2q′2} ,
P1 = min {p1p′1, p1q′1, q1p′1, q1q′1} ,
M = min {mm′,mn′, nm′, nn′} ,
N = max {mm′,mn′, nm′, nn′} ,
Q1 = max {p1p′1, p1q′1, q1p′1, q1q′1} ,
Q2 = max {p2p′2, p2q′2, q2p′2, q2q′2} ,
Q3 = max {p3p′3, p3q′3, q3p′3, q3q′3} ,
α = α1α2,

γ = (α1 + γ1)(α2 + γ2)− α1α2,

β = β1 + β2 − β1β2.
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Interval arithmetic is used in division, similar to multiplication, and maximal
and minimal memberships are calculated in the same way.

Example 11. [60] Consider the following two GTFNs,

Ã = ⟨(1, 1, 1, 2, 3, 5, 5, 5) ; 0.3, 0, 0.7⟩

and

B̃ = ⟨(1, 1, 1, 2, 3, 5, 5, 5) ; 0.9, 0, 0.1⟩ .

Intuitively, we have Ã ≺ B̃. If Ã ≺ B̃, then 2Ã ≺ Ã + B̃ by adding Ã on both
sides. By using the addition and scalar multiplication defined in Definition 10, we
obtain as follows:

Ã+ B̃ = ⟨(2, 2, 2, 4, 6, 10, 10, 10) ; 0.6, 0, 0.4⟩ ,

2Ã = ⟨(2, 2, 2, 4, 6, 10, 10, 10) ; 0.3, 0, 0.7⟩

which gives a consistent ordering.

Here, since
∥∥∥Ãµ

∥∥∥ =
∥∥∥B̃µ

∥∥∥ and
∥∥∥Ã1−ν

∥∥∥ =
∥∥∥B̃1−ν

∥∥∥, we determine the overall

maximal membership (and minimal non-membership) of Ã + B̃ as 0.6 (and 0.4,
respectively), which is the average of the maximal memberships of 0.3 and 0.9 (and
the average of the minimal non-memberships of 0.7 and 0.1).

Example 12. [64] Consider the following three GTIFNs,

Ã = ⟨(10, 11, 12, 15, 15, 18, 19, 20) ; 0.6, 0, 0.4⟩ ,

B̃ = ⟨(3, 3, 4, 5, 5, 6, 7, 8) ; 0.7, 0, 0.3⟩ ,

and

C̃ = ⟨(3, 3, 4, 5, 5, 6, 7, 8) ; 0.9, 0, 0.1⟩ .

Intuitively, since B̃ ̸= C̃, then Ã + B̃ ̸= Ã + C̃. By using the addition defined in
Definition 10, we obtain as follows:

Ã+ B̃ = ⟨(13, 14, 16, 20, 20, 24, 26, 28) ; 0.6250, 0, 0.3741⟩ ,

Ã+ C̃ = ⟨(13, 14, 16, 20, 20, 24, 26, 28) ; 0.6750, 0, 0.3222⟩ .

The utilization of the minimum operator in the addition operation yields the afore-
mentioned counter-intuitive outcome.
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4. SOME EXISTING INTUITIONISTIC RANKING INDEXES

This section covers some straightforward and widely used ranking methods for
GTIFNs from the literature. They will be utilized in the benchmark examples for
comparison. Our notation is implemented here.

Definition 13. [20] Let

Ã = ⟨(p, p, p,m, n, q, q, q) ;α, 0, β⟩ ,

be a GTIFN. The weighted possibility means for the membership and non-membership
functions are:

mµ(Ã) =
1

6
(p+ 2m+ 2n+ q)α,

mν(Ã) =
1

6
(p+ 2m+ 2n+ q) (1− β), (1)

respectively. The lexicographic method for the ranking of Ã and B̃ is defined as
follows:

(i) if mµ(Ã) < mµ(B̃), then Ã ≺ B̃;

(ii) else if mµ(Ã) > mµ(B̃), then Ã ≻ B̃;

(iii) else

(a) if mν(Ã) < mν(B̃), then Ã ≺ B̃;

(b) else if mν(Ã) > mν(B̃), then Ã ≻ B̃;

(c) else Ã ∼ B̃.

Definition 14. [21, 26] Let

Ã = ⟨(p3, p2, p1,m, n, q1, q2, q3) ;α, 0, β⟩ ,

be a GTIFN. The risk-based defuzzification function can be given as follows:

h(Ã) =


1
6 (p3 + 2m+ 2n+ q3) (1− β) , if r → 0
1
18 [(p1 + 2m+ 2n+ q1)α+ (p3 + 2m+ 2n+ q3) 2 (1− β)] , if r = 1

2
1
12 [(p1 + 2m+ 2n+ q1)α+ (p3 + 2m+ 2n+ q3) (1− β)] , if r = 1
1
18 [(p1 + 2m+ 2n+ q1) 2α+ (p3 + 2m+ 2n+ q3) (1− β)] , if r = 2
1
6 (p1 + 2m+ 2n+ q1)α, if r →∞,

(2)

where r > 0 is the risk parameter. For values of r less than 1, greater than
1, or equal to 1, rankings can be classified as optimistic, pessimistic, or neutral,
respectively.
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Definition 15. [17] Consider a GTIFN:

Ã = ⟨(p3, p2, p1,m, n, q1, q2, q3) ;α, 0, β⟩ .

A defuzzification function can be given as follows:

R(Ã) =
αS(µÃ) + βS(νÃ)

α+ β
, (3)

where

S(µÃ) =

(
2p1 + 7m+ 7n+ 2q1

18

)(
7α

18

)
and

S(νÃ) =

(
2p3 + 7m+ 7n+ 2q3

18

)(
11 + 7β

18

)
.

Definition 16. [38] Consider a GTIFN:

Ã = ⟨(p3, p2, p1,m, n, q1, q2, q3) ;α, 0, β⟩ .

A defuzzification function can be given as follows:

R(Ã) =

(
p3 + p1 + 7m+ 7n+ q1 + q3

18

)(
4α+ 5β

18

)
. (4)

5. PROPOSED RANKING APPROACH

This present study introduces a novel methodology for ranking GTPFNs, which
builds upon the existing strategy based on ordering GTFNs by calculating the
Euclidean distance between the centroid point and the origin. We use Wang et
al.’s revised centroid calculation method [5] as a basis. Initially, we convert the
given GTPFN to a GTFN. Then, we determine the centroid point using numerical
integration. As a byproduct of the code used, we can also calculate the expected
value when we want to express GTPFNs with a singular numerical representation.

In order to rank negative values, the min-max normalization approach is em-
ployed, wherein the domain is rescaled using the formula x ← x−min

max−min . In this
context, min and max denote the minimal and maximum elements of the do-
main, respectively. This prevents the outcomes from becoming misleading. The
maximal and minimal membership values remain unchanged during the process of
normalization.

The computations are conducted on a PC running MSWindows 10 Pro, equipped
with an Intel Core i5-7400 CPU (3.00 GHz) and 4 GB of RAM, using MATLAB
R2019a. We particularly use the built-in function “trapz” for numerical integra-
tion.
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Definition 17 (Centroid distance method based on [5]). Let

Ã = ⟨(p3, p2, p1,m, n, q1, q2, q3) ;α, γ, β⟩

be a GTPFN. The centroid points and distance index are provided as follows:

x0(Ã) =

m∫
p3

xfL
Ã
(x) dx+

n∫
m

xθdx+
q3∫
n

xfR
Ã
(x) dx

m∫
p3

fL
Ã
(x) dx+

n∫
m

θdx+
q3∫
n

fR
Ã
(x) dx

,

y0(Ã) =

θ∫
0

ygR
Ã
(y) dy −

θ∫
0

ygL
Ã
(y) dy

θ∫
0

gR
Ã
(y) dy −

θ∫
0

gL
Ã
(y) dy

,

R(Ã, λ, ω) =

√
(x0(Ã))2 + (y0(Ã))2,

where θ = (1− λ)α+ λ(1− β) + (ω − λ)γ, gL
Ã
and gR

Ã
are the inverse functions of

fL
Ã

and fR
Ã

given in Definition 8, respectively. The ranking of Ã and B̃ is defined
as follows:

(i) If R(Ã, λ, ω) < R(B̃, λ, ω), then Ã ≺ B̃,

(ii) Else if R(Ã, λ, ω) > R(B̃, λ, ω), then Ã ≻ B̃,

(iii) Else Ã ∼ B̃.

Note that, according to the additive property of definite integrals, the integral:

m∫
p3

xfL
Ã
(x) dx

is the sum of three parts of integrals over [p3, p2], [p2, p1], and [p1,m]. The same
situation exists for the integrals:

q3∫
n

xfR
Ã
(x) dx,

m∫
p3

fL
Ã
(x) dx,

q3∫
n

fR
Ã
(x) dx,

θ∫
0

ygR
Ã
(y) dy,

θ∫
0

ygL
Ã
(y) dy,

θ∫
0

gR
Ã
(y) dy, and

θ∫
0

gL
Ã
(y) dy.

Regarding GTIFNs, due to the presence of two distinct breaking points, the
integrals are composed of two parts.



H. G. Akdemir and S. Aydın / A New Standardization-based Ranking 15

Definition 18 (Expected value of a GTPFN). [65, 66] Let

Ã = ⟨(p3, p2, p1,m, n, q1, q2, q3) ;α, γ, β⟩

be a GTPFN. The expected value, which is the midpoint of the expected interval,
has the following definition:

EV (Ã) =
1

2

 θ∫
0

gL
Ã
(y) dy +

θ∫
0

gR
Ã
(y) dy

 ,

where θ = (1− λ)α+ λ(1− β) + (ω − λ)γ, gL
Ã
and gR

Ã
are the inverse functions of

fL
Ã

and fR
Ã

given in Definition 8, respectively.

Akram et al. [57] derived this value as:

EV (Ã) =
1

4
(α (p1 +m+ n+ q1) + γ (p2 +m+ n+ q2) + (1− β) (p3 +m+ n+ q3))

(5)

and used it as a ranking function. Note that our expected value involves extra risk
parameters λ and ω, therefore, it is different from theirs.

Example 19. [67] Let

Ã1 = ⟨(3, 3, 3, 5, 6, 8, 8, 8) ; 1, 0, 0⟩ ,

Ã2 = ⟨(3, 3, 3, 5, 6, 8, 8, 8) ; 0.8, 0, 0.2⟩ ,

Ã3 = ⟨(3, 3, 3, 5, 6, 9, 9, 9) ; 1, 0, 0⟩ ,

and

Ã4 = ⟨(3, 3, 3, 5, 6, 9, 9, 9) ; 0.7, 0, 0.3⟩

be GTFNs. According to the ranking index values, which are given in Table 1,
Ã2 ≺ Ã1 ≺ Ã4 ≺ Ã3 with arbitrary λ = ω = 0.5. The risk parameters λ and ω are
not applicable for GTFNs. The ordering coincides with the one found in [67].

Let us now interpret the results obtained using the indexes given in Section 4.
According to Table 2, indexes (3) and (4) give irrational results. Intuitively, we

have Ã2 ≺ Ã1 and Ã4 ≺ Ã3. The result with indexes (1) and (2) is different from
ours, but it is acceptable.

Example 20. [68, 69] Let

Ã = ⟨(0.2, 0.2, 0.2, 0.4, 0.6, 0.8, 0.8, 0.8) ; 0.35, 0, 0.65⟩ ,
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Table 1: Ranking indexes of Example 19

EV x0 y0 R

Ã1 5.5000 5.5000 0.3889 5.5137

Ã2 4.4000 5.5000 0.3111 5.5088

Ã3 5.7500 5.8095 0.3810 5.8220

Ã4 4.0250 5.8095 0.2667 5.8156

Result Ã2 ≺ Ã1 ≺ Ã4 ≺ Ã3

Table 2: Defuzzifications of Example 19

Ã1 Ã2 Ã3 Ã4 Result

Index (1) 5.5000 4.4000 5.6667 3.9667 Ã4 ≺ Ã2 ≺ Ã1 ≺ Ã3

Index (2) 5.5000 4.4000 5.6667 3.9667 Ã4 ≺ Ã2 ≺ Ã1 ≺ Ã3

Index (3) 2.1389 2.1267 2.1821 2.2943 Ã2 ≺ Ã1 ≺ Ã3 ≺ Ã4

Index (4) 1.2222 1.2833 1.2469 1.3404 Ã1 ≺ Ã3 ≺ Ã2 ≺ Ã4

and

B̃ = ⟨(0.1, 0.1, 0.1, 0.2, 0.3, 0.4, 0.4, 0.4) ; 0.7, 0, 0.3⟩

be GTFNs with the same expected value of 0.1750. According to the ranking index
values of R(Ã, 1/2, 1/2) = 0.5208 and R(B̃, 1/2, 1/2) = 0.3841, so Ã ≻ B̃. The
ordering corresponds to the ones documented in references [68] and [69]. Moreover,

−Ã = ⟨(0, 0, 0, 2/7, 4/7, 6/7, 6/7, 6/7) ; 0.35, 0, 0.65⟩ ,

and

−B̃ = ⟨(4/7, 4/7, 4/7, 5/7, 6/7, 1, 1, 1) ; 0.7, 0, 0.3⟩

after normalization. The ranking indexes are 0.4527 and 0.8381, respectively,
which implies −Ã ≺ −B̃ consistently.

Example 21. [70] Let

Ã = ⟨(1, 1, 1, 3, 3, 5, 5, 5) ; 0.3, 0, 0.2⟩

and

B̃ = ⟨(4, 4, 4, 8, 8, 9, 9, 9) ; 0.4, 0, 0.1⟩
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Table 3: Ranking indexes of Example 21

EV x0 y0 R

λ = 0.25 Ã 1.2750 3.0000 0.1417 3.0033

ω = 0.5 B̃ 3.8063 7.0000 0.1750 7.0022

Risk-neutral ranking Ã ≺ B̃

λ = 0.2 Ã 1.2000 3.0000 0.1333 3.0030

ω = 0.5 B̃ 3.6250 7.0000 0.1667 7.0020

Pessimistic ranking Ã ≺ B̃

λ = 0.3 Ã 1.3500 3.0000 0.1500 3.0037

ω = 0.5 B̃ 3.9875 7.0000 0.1833 7.0024

Optimistic ranking Ã ≺ B̃

be two triangular GIFNs. According to the risk-attitude ranking index values,
which are given in Table 3, Ã ≺ B̃.

Using the arithmetic operations in Definition 10, we obtain:

Ã− B̃ = ⟨(−8,−8,−8,−5,−5, 1, 1, 1) ; 0.3707, 0, 0.1293⟩

and

B̃ − B̃ = ⟨(−5,−5,−5, 0, 0, 5, 5, 5) ; 0.4, 0, 0.1⟩ ,

and after normalization, we get:

Ã− B̃ = ⟨(0, 0, 0, 3/13, 3/13, 9/13, 9/13, 9/13) ; 0.3707, 0, 0.1293⟩

and

B̃ − B̃ = ⟨(3/13, 3/13, 3/13, 8/13, 8/13, 1, 1, 1) ; 0.4, 0, 0.1⟩ .

In conclusion, we obtain a consistent ranking as Ã − B̃ ≺ B̃ − B̃. The obtained
outcomes align with the findings presented in reference [70]. See also Table 4.

Example 22. [70] Let

Ã = ⟨(1, 1, 1, 4, 5, 8, 8, 8) ; 0.6, 0, 0.3⟩

and

B̃ = ⟨(1, 1, 1, 3, 6, 8, 8, 8) ; 0.7, 0, 0.2⟩
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Table 4: Ranking indexes of Example 21

EV x0 y0 R

λ = 0.25 Ã− B̃ 0.1430 0.3077 0.1652 0.3493

ω = 0.5 B̃ − B̃ 0.3231 0.6154 0.1750 0.6398

Risk-neutral ranking Ã− B̃ ≺ B̃ − B̃

λ = 0.2 Ã− B̃ 0.1358 0.3077 0.1569 0.3454

ω = 0.5 B̃ − B̃ 0.3077 0.6154 0.1667 0.6376

Pessimistic ranking Ã− B̃ ≺ B̃ − B̃

λ = 0.3 Ã− B̃ 0.1502 0.3077 0.1736 0.3533

ω = 0.5 B̃ − B̃ 0.3385 0.6154 0.1833 0.6421

Optimistic ranking Ã− B̃ ≺ B̃ − B̃

be two GTIFNs. According to the risk-attitude ranking index values, which are
given in Table 5, Ã ≺ B̃. But, Singh et al. [70] presented the ranking of these

GIFNs, which is denoted as Ã ∼ B̃. By using the weighted possibility means for
the membership function (1):

mµ(Ã) = 2.7,mµ(B̃) = 3.15⇒ Ã ≺ B̃.

See Table 6 for the results found with the defuzzification function (2). These results
coincide with ours, but they contradict the results obtained with indexes (3) and
(4).

Example 23. Let us now perform a sensitivity analysis on a synthetic example.
Suppose that

Ãi = ⟨(0.1, 0.1, 0.1, 0.3, 0.5, 0.8, 0.8, 0.8) ;αi, 0, βi⟩ , i = 1, 2, 3

are GTIFNs such that (α1, β1) = (0.5, 0.2), (α2, β2) = (0.6, 0.4), and (α3, β3) =
(0.4, 0.3). Additionally, we consider pessimistic, risk-neutral, and optimistic or-
derings, with a fixed ω = 0.8 and the corresponding parameter values being λ =
0.1, 0.4, 0.7. See Table 7 for results observed to be sensitive to the changes in the
λ parameter.

See also Table 8 for the results found with the defuzzification function (2). The
pessimistic (or respectively optimistic) results are similar for r > 1 (or respectively
r < 1). The neutral ranking is the same. However, the defuzzification function
(2) fails to compare different numbers for r = 1/2 and r = 2.

Example 24. [71] Let

Ã = ⟨(−2,−2,−1, 0, 0, 1, 1, 2) ; 1, 0, 0⟩
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Table 5: Ranking indexes of Example 22

EV x0 y0 R

λ = 0.25 Ã 2.8125 4.5000 0.2344 4.5061

ω = 0.5 B̃ 3.2625 4.5000 0.3142 4.5110

Risk-neutral ranking Ã ≺ B̃

λ = 0.2 Ã 2.7900 4.5000 0.2325 4.5060

ω = 0.5 B̃ 3.2400 4.5000 0.3120 4.5108

Pessimistic ranking Ã ≺ B̃

λ = 0.3 Ã 2.8350 4.5000 0.2362 4.5062

ω = 0.5 B̃ 3.2850 4.5000 0.3163 4.5111

Optimistic ranking Ã ≺ B̃

Table 6: Defuzzifications of Example 22

r → 0 r = 1
2 r = 1 r = 2 r →∞

Ã 3.150 3.000 2.925 2.850 2.700

B̃ 3.600 3.450 3.375 3.300 3.150

Result Ã ≺ B̃ Ã ≺ B̃ Ã ≺ B̃ Ã ≺ B̃ Ã ≺ B̃

Table 7: Ranking indexes of Example 23

λ = 0.1 λ = 0.4 λ = 0.7

Ã1 0.4808 0.4984 0.5179

Ã2 0.4943 0.4943 0.4943

Ã3 0.4640 0.4790 0.4963

Result Ã2 ≻ Ã1 ≻ Ã3 Ã1 ≻ Ã2 ≻ Ã3 Ã1 ≻ Ã3 ≻ Ã2

and

B̃ = ⟨(−3,−2,−2, 0, 0, 2, 3, 3) ; 1, 0, 0⟩

be two triangular IFNs. After normalization, we obtain:

Ã = ⟨(1/6, 1/6, 1/3, 1/2, 1/2, 2/3, 2/3, 5/6) ; 1, 0, 0⟩
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Table 8: Defuzzifications of Example 23

r → 0 r = 1
2 r = 1 r = 2 r →∞

Ã1 0.3333 0.2917 0.2708 0.2500 0.2083

Ã2 0.2500 0.2500 0.2500 0.2500 0.2500

Ã3 0.2917 0.2500 0.2292 0.2083 0.1667

and

B̃ = ⟨(0, 1/6, 1/6, 1/2, 1/2, 5/6, 1, 1) ; 1, 0, 0⟩ .

According to the risk-attitude ranking index values, which are given in Table 9,
Ã ≺ B̃. A distinct comparison is derived from the one presented in [71].

By using the weighted possibility means for the membership functions (1):

mµ(Ã) = mµ(B̃) = mν(Ã) = mν(B̃) = 0⇒ Ã ∼ B̃.

The process of representing a GTIFN as a GTPFN is not unique or singular
in nature. By varying the value of p2 within the range of [p3, p1] and q2 within
the range of [q1, q3], we can observe that various yet equivalent representations are

achieved. Here, as an IFN, Ã is the same as its negation, −Ã. This means that
Ã is symmetrical with respect to the y−axis. A similar situation exists for B̃. In
this particular scenario, the proposition asserting that if Ã ≺ B̃, then −Ã ≻ −B̃ is
deemed invalid. See [71] for more detail. In this case, the most reasonable result
is obtained with the lexicographic method (1).

Table 9: Ranking indexes of Example 24

EV x0 y0 R

λ = 0.25 Ã 0.5000 0.5000 0.3083 0.5874

ω = 0.5 B̃ 0.5000 0.5000 0.3241 0.5958

Risk-neutral ranking Ã ≺ B̃

λ = 0.2 Ã 0.5000 0.5000 0.3111 0.5889

ω = 0.5 B̃ 0.5000 0.5000 0.3253 0.5965

Pessimistic ranking Ã ≺ B̃

λ = 0.3 Ã 0.5000 0.5000 0.3064 0.5864

ω = 0.5 B̃ 0.5000 0.5000 0.3232 0.5954

Optimistic ranking Ã ≺ B̃
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Example 25. [72] Let us consider the following three GTPFNs:

Ã1 = ⟨(0.2, 0.2, 0.2, 0.4, 0.4, 0.5, 0.5, 0.5) ; 0.4, 0.2, 0.3⟩ ,

Ã2 = ⟨(0.6, 0.6, 0.6, 0.6, 0.6, 0.7, 0.7, 0.7) ; 0.5, 0.1, 0.4⟩ ,

and

Ã3 = ⟨(0.3, 0.3, 0.3, 0.6, 0.7, 0.8, 0.8, 0.8) ; 0.3, 0.2, 0.4⟩ .

It should be emphasized that the equivalent reduced GFN for Ã3 is trapezoidal
because p1 = p2 = p3 and q1 = q2 = q3. Similarly, it is triangular for Ã1.
According to the risk-attitude ranking index values, which are given in Table 10,
Ã1 ≺ Ã3 ≺ Ã2. The ordering is identical to that which is given in [72]. The same
ordering is obtained with the ranking function (5); expected values are 0.4875,
0.75, and 0.66, respectively.

Table 10: Ranking indexes of Example 25

EV x0 y0 R

λ = 0.4 Ã1 0.2250 0.3667 0.2000 0.4177

ω = 0.8 Ã2 0.1885 0.6333 0.2826 0.6935

Ã3 0.3000 0.5889 0.1944 0.6202

Risk-neutral ranking Ã1 ≺ Ã3 ≺ Ã2

λ = 0.1 Ã1 0.2138 0.3667 0.1900 0.4130

ω = 0.8 Ã2 0.1885 0.6333 0.2826 0.6935

Ã3 0.2820 0.5889 0.1828 0.6166

Pessimistic ranking Ã1 ≺ Ã3 ≺ Ã2

λ = 0.7 Ã1 0.2363 0.3667 0.2100 0.4225

ω = 0.8 Ã2 0.1885 0.6333 0.2826 0.6935

Ã3 0.3180 0.5889 0.2061 0.6239

Optimistic ranking Ã1 ≺ Ã3 ≺ Ã2

Example 26. [73] Let us consider two different reductions for triangular GIFNs

Ã and B̃, one involving the vanishing refusal and the other involving the vanishing
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neutrality. Suppose that

Case 1: Ã = ⟨(0.3, 0.3, 0.3, 0.5, 0.5, 0.7, 0.7, 0.7) ; 0.6, 0.1, 0.3⟩ ,

B̃ = ⟨(0.1, 0.1, 0.1, 0.5, 0.5, 0.9, 0.9, 0.9) ; 0.5, 0.3, 0.2⟩ ,

Case 2: Ã = ⟨(0.3, 0.3, 0.3, 0.5, 0.5, 0.7, 0.7, 0.7) ; 0.6, 0, 0.3⟩ ,

B̃ = ⟨(0.1, 0.1, 0.1, 0.5, 0.5, 0.9, 0.9, 0.9) ; 0.5, 0, 0.2⟩ .

x0(Ã) = x0(B̃) = 0.5 for both cases. Therefore, the ranking index is determined
only by y0; that is, it is sensitive to the maximal membership value. In the first
case, the ranking index is sensitive only to parameter ω. Likewise, in the second
case, the ranking index is sensitive only to parameter λ. For Case 1, the maximal
membership values are as follows:

θ = (1− λ)α+ λ(1− β) + (ω − λ)γ

= (1− λ)α+ λ(1− β) + (ω − λ)(1− α− β)

= (1− ω)α+ ω(1− β),

θÃ = 0.6 + 0.1ω,

θB̃ = 0.5 + 0.3ω.

Similarly, the maximal membership values for Case 2 are as follows:

θ = (1− λ)α+ λ(1− β),

θÃ = 0.6 + 0.1λ,

θB̃ = 0.5 + 0.3λ.

The optimistic, pessimistic, and neutral rankings of Ã and B̃ are respectively given
as:

(i) If ω > 0.5 (or λ > 0.5, respectively), then θÃ < θB̃, so Ã ≺ B̃,

(ii) Else if ω < 0.5 (or λ < 0.5, respectively), then θÃ > θB̃, so Ã ≻ B̃,

(iii) Else (if ω = 0.5 (or λ = 0.5, respectively), then) θÃ = θB̃, so Ã ∼ B̃.

See Table 11 for the results found with the defuzzification function (2). The
outcomes we achieve are identical to the ones acquired here.

6. MADM APPLICATIONS

This section contains two applications. The first one is characterized by the
GTIFN parameters, and the second one is characterized by the linguistic GTPFN
parameters.
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Table 11: Defuzzifications of Example 26

r → 0 r = 1
2 r = 1 r = 2 r →∞

Ã 0.350 0.333 0.325 0.317 0.300

B̃ 0.400 0.350 0.325 0.300 0.250

Result Ã ≺ B̃ Ã ≺ B̃ Ã ∼ B̃ Ã ≻ B̃ Ã ≻ B̃

6.1. Video monitoring system selection

This application is adapted from [47]. To improve campus security, it is im-
portant to establish a video monitoring system (VMS) in a school that intends
to procure surveillance systems from existing VMS providers (S1, S2, S3, or S4).
The decision-maker assesses the four prospective VMS providers based on com-
prehensive provider evaluations, considering five factors: product mobility (a1),
false positive rate (a2), real-time (a3), picture quality (a4), and security (a5). One
can find the normalized evaluations, represented as GTIFNs, of the possible VMS
providers with these characteristics in [47]. The decision-maker assigns weights
to the attributes based on their experience, expertise, and judgment. Let the
attribute weight vector be (0.36, 0.18, 0.05, 0.11, 0.30)T .

Table 12 displays the weighted average scores for each provider, which are
obtained using the arithmetic operations outlined in Definition 10. It is important
to remember that we do not employ the minimum operator to ascertain the overall
maximal membership value. The overall α and β values are rounded to four
decimal places in Table 12.

Table 12: Weighted average scores of VMS providers

p3 = p2 = p1 m = n q1 = q2 = q3 α β

S1 0.373 0.507 0.769 0.5650 0.2436

S2 0.410 0.510 0.904 0.5217 0.2497

S3 0.364 0.534 0.690 0.5691 0.2196

S4 0.404 0.520 0.744 0.5689 0.2090

We consider pessimistic, risk-neutral, and optimistic orderings, with a fixed
ω = 1 and the corresponding parameter values being λ = 0.01, 0.2, 0.5, 0.7, 0.99.
See Table 13 for results observed to be insensitive to the changes in the λ risk
parameter, even for its extreme values. Previous studies offered S4 as an option in
certain instances for varying risk attitudes. Refer to [47] for further information.

6.2. Risk analysis application

This risk analysis application is adapted from [71]. Here, the parameters of
the problem are the probability of failure and severity of loss, which are expressed
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Table 13: Ranking indexes of VMS providers

λ 0.01 0.2 0.5 0.7 0.99

S1 0.5812 0.5853 0.5921 0.5970 0.6045

S2 0.6326 0.6367 0.6439 0.6491 0.6571

S3 0.5625 0.5672 0.5751 0.5808 0.5895

S4 0.5877 0.5924 0.6004 0.6062 0.6150

Best Provider S2 S2 S2 S2 S2

as linguistic GTPFNs. It is aimed at identifying the highest risk of failure in the
production system for the decision-making process.

Consider three production systems in poultry farming: Ci, i = 1, 2, 3. Each
production system consists of eight sub-components, denoted as Aik, where k =
1, . . . , 8. These are availability of land, financial support, availability of expert
laborers, availability of clean water, transportation, availability of electricity, food
supply, and good poultry. The sub-component Aik is assessed in terms of two
factors: the probability of failure R̃ik and the severity of loss W̃ik, which are
represented as linguistic terms given in Table 14. Assessments are constructed in
Table 15 by the experts in a picture fuzzy environment.

Table 14: Linguistic scale and corresponding GTPFNs

Linguistic term GTPFNs

Absolutely-low ⟨(0, 0.01, 0.03, 0.06, 0.1, 0.13, 0.15, 0.16) ; 0.2, 0.4, 0.35⟩

Very-low ⟨(0.1, 0.13, 0.15, 0.16, 0.2, 0.21, 0.23, 0.26) ; 0.3, 0.35, 0.3⟩

Low ⟨(0.2, 0.21, 0.23, 0.26, 0.3, 0.33, 0.35, 0.36) ; 0.4, 0.3, 0.25⟩

Fairly-low ⟨(0.3, 0.32, 0.34, 0.36, 0.4, 0.42, 0.44, 0.46) ; 0.5, 0.25, 0.2⟩

Medium ⟨(0.4, 0.42, 0.44, 0.46, 0.5, 0.52, 0.54, 0.56) ; 0.6, 0.2, 0.15⟩

Fairly-high ⟨(0.5, 0.52, 0.54, 0.56, 0.6, 0.62, 0.64, 0.66) ; 0.7, 0.15, 0.1⟩

High ⟨(0.6, 0.62, 0.64, 0.66, 0.7, 0.72, 0.74, 0.76) ; 0.8, 0.1, 0.05⟩

Very-high ⟨(0.7, 0.72, 0.74, 0.76, 0.8, 0.82, 0.84, 0.86) ; 0.9, 0.05, 0⟩

Absolutely-high ⟨(0.8, 0.82, 0.84, 0.86, 0.9, 0.92, 0.94, 1) ; 1, 0, 0⟩

We search for the answer to which farmer will be at the greatest risk of fail-
ure under such conditions. The weighted average risk R̃i is calculated using the
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following formula:

R̃i =

8∑
k=1

W̃ik × R̃ik

8∑
k=1

W̃ik

, i = 1, 2, 3. (6)

By using Equation (6) and the arithmetic operations in Definition 10, the
weighted average risks are GTPFNs calculated as follows:

R̃1 = ⟨(0.04, 0.06, 0.09, 0.13, 0.24, 0.34, 0.46, 0.59) ; 0.05, 0.27, 0.60⟩ ,

R̃2 = ⟨(0.21, 0.24, 0.28, 0.33, 0.43, 0.50, 0.57, 0.65) ; 0.29, 0.28, 0.32⟩ ,

R̃3 = ⟨(0.15, 0.18, 0.22, 0.26, 0.37, 0.44, 0.52, 0.61) ; 0.21, 0.29, 0.40⟩ ,

where numbers are rounded to two decimal places. Given ω = 1 and λ = 0.5, the
ranking indexes are 0.2879, 0.4702, and 0.4069, respectively. This indicates that
C2 has the greatest weighted average risk, while C1 has the lowest. The results
coincide with the author’s findings in [71].

7. CONCLUSION

In real applications, it is common to have a limited amount of historical data.
Therefore, we depend on imprecise data that is derived from expert opinions and
estimations. On top of that, experts may exhibit hesitancy and lack of confidence
in their assessment or even decline to provide one. In such cases, the use of
non-standard FNs is required. Existing indeterminacy and/or reluctance have
to be somehow overcome to determine true membership value. When there is
hesitancy regarding belonging to an element in a fuzzy set, the actual membership
lies between the given membership value and 1 minus the non-membership value.
Hence, we calculate the true membership value as a convex combination of these
values or add some proportion of this indeterminacy to the given membership
value. This parametric calculation allows us to adjust risk aversion in some sense
while reducing uncertainty through standardization at the same time. This process
is similar in a picture fuzzy environment.

This study develops a new reduction-based ranking principle for a particular
class of generalized and/or non-standard FNs by employing their centroid point
and ranking index. Due to its general structure, the applicability of the suggested
ranking method for reductions and analogous structures is advantageous. We ob-
serve that our method is consistent with the risk-attitudinal methods described in
the literature. Two modifications are implemented, considering the critiques pre-
sented in the literature concerning the coherence of the rankings. These are ones
regarding arithmetic operations and the idea of applying normalization. Important
advantages include the elimination of inconsistencies in the rankings, the simplifi-
cation of calculations, and the generation of the expected value as a defuzzification
tool.
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Table 15: Linguistic terms of R̃ik and W̃ik for the sub-components Aik

Ci Sub-component R̃ik W̃ik

C1 A11 Very-low Absolutely-low

A12 Absolutely-low Very-low

A13 Very-low Absolutely-low

A14 Absolutely-low Fairly-low

A15 Low Fairly-low

A16 Low Very-low

A17 Very-low Absolutely-low

A18 Very-low Low

C2 A21 Very-low Absolutely-low

A22 High Fairly-high

A23 Fairly-high High

A24 Very-low Fairly-low

A25 Low Fairly-low

A26 Low High

A27 Very-low Absolutely-low

A28 Very-low Fairly-high

C3 A31 Very-low Absolutely-low

A32 Absolutely-low Very-low

A33 High Fairly-high

A34 Very-low Fairly-low

A35 Low Fairly-low

A36 Low Medium

A37 Very-low Absolutely-low

A38 Very-low Fairly-high

Furthermore, the picture fuzzy scaling proposed in this article allows us to use
a greater quantity of linguistic terms in MADM applications, as opposed to fuzzy
and intuitionistic scaling.

Unfortunately, the method has some limitations. Although the proposed rank-
ing technique claims it addresses the different risk perspectives of the decision-
maker, it has been observed that, in some cases, it lacks sensitivity to alterations
in risk parameters. Moreover, even though it finds the ranking index values very
close when comparing two numbers corresponding to the fuzzy zero, which are
symmetrical with respect to the y-axis, it does not successfully make the logical
comparison of equality.

Based on the results of this study, the suggested approach not only enhances
existing literature but also indicates other potential avenues for further investi-
gation. Future research involves the examination of mathematical programming
problems with hybrid generalized and/or non-standard parameters using newly
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defined arithmetic operations.
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