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1. INTRODUCTION

In many queueing systems now in use, servers may become unavailable for an arbi-
trary amount of time while the system is empty. This random period of server absence,
known as a server vacation, could indicate that the server is doing a secondary activity.
When the server finishes a vacation and there is no customer in the system, the server may
take another vacation. This type of vacation called Multiple vacations. In some situa-
tions servers can work in vacation also, this type of vacations is called working vacation.
Queuing systems with vacations have been established over the past 20 years for many dif-
ferent kinds of uses such as production and computer communication systems. Doshi [1]
and Takagi [2] carried out several great surveys on vacation models. Laxmi [3] analysed
the single working vacation with impatience customers. A working vacation queue with
server breakdown is researched by Madhu Jain [4], and Agarwal[5]. Ammar [6] gives a
matrix geometric solution to the single server queueing system with discouraged arrivals
and reneging.Several researchers have studied multi-server queues with vacation. In the
beginning, the M/M/c queue with exponentially distributed vacation times was exam-
ined by Levy [7] and Vinod [8]. Tian [9] deeply discused aboutM/M/c queueing system
with vacation, and gives conditional stochastic decomposition results for waiting time and
queue length. Numerous researchers, including Kao and Narayanan [10], Igaki [11], Chao
and Zhao [12], Zhang and Tian [13], and Houalef [14], have studied multi-server queueing
systems with vacations. Also Shanmugasundaram [15], Yang [16] are analysed about the
mullti server queueing systems with working vacations.

The above-discussed research on multi-server queueing systems make the assumption
that all of the servers are homogenous, meaning that they all offer the same rates of service
throughout the system. This premise might only be true in particular places. In a queue-
ing system with human servers, it is difficult to recognise the aforementioned assumption.
Few studies on multi-server queueing system with server vacation and varying service
rates among different servers can be found. Madan et al. [17] studied Bernoulli schedules
with a single vacation policy in theM/M/2 queue, where two servers offer heterogeneous
exponential service to customers. For different server states, they were able to derive
steady-state probability generating functions for the system size. Using matrix-geometric
method, a study on two heterogenous servers with multiple vacations is given by Kumar
andMadheswari [18]. Singh [19] discusses the two server Markovian queues with balking
and provides a comparison between heterogeneous and homogeneous servers. Mahalak-
shmi [20] examined the two server queueing systems in conjunction with server failure.
Balasubramanian [21] also analysed about the two server Queues with server breakdown.
A study on a heterogeneous servers with server breakdown is given by Reni sagayaraj
[22]. Recently Liu et al. [23] studied single server queueing model with server break-
down, Karthick and Suvitha [24] analysed about multi server vacation queueing models
with breakdown. Sudhesh et al. [25] has done a time dependent analysis of a two server
vacation queueing model. However, no comprehensive study exists on the multiserver
working vacation queueing model encompassing various breakdown possibilities. As a
result, we have proposed this model.
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2. THE MODEL DESCRIPTION

The system under consideration is a two-server, multiple-working vacation queueing
system subject to server breakdown. It is important to note that the servers’ service rates
vary.

Figure 1: Transition Diagram

The assumptions of the model are described as following:
1. Customers arrive at a rate of λ according to a Poisson. Customers arrive and join

the waiting line in order of their arrival. It is assumed that both the system capacity
and the total number of potential customers are infinite.

2. Based on First-Come, First-Served (FCFS) principles, the two servers provide het-
erogeneous exponential service to customers at service rates of µ1 and µ2.

3. Every server is allowed to take an independent vacation when there are no customers
waiting in queue.When a vacation period expires and there is a customer in the
system, service will start. If not, the server takes another vacation right away and
keeps doing so until it returns and discovers that at least one customer is still waiting.

4. If there’s at least one customer in the system after the vacation ends, server 1 gets
busy, and server 2 goes into a working vacation mode. During the working vacation
server 2 provides service to customers with slow service rateµv2. The vacation rates
are θ1 for server 1 and pθ2 for server 2. The rate for server 2 from working vacation
to busy is qθ2. Vacation follows an exponential distribution.

5. In addition, there are three possibles for breakdown.
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• In a single server busy state, there are two possibilities for breakdown. One is
that server 1 gets a breakdown while server 2 is still working on working va-
cation, second is that server 2 gets a breakdown while server 1 is still working
during a regular busy period.

• Servers may breakdown in both servers busy state.
The breakdown follows exponential distribution with rates α1 and α2 for servers 1
and 2 respectively.

6. Also the repair of the servers starts immediately, repairs follow exponential distri-
bution with rates β1 and β2.

2.1. Practical Application

The proposed model is motivated by the following scenario in a wireless communi-
cation network: Consider a wireless communication network with two types of signal
transmitters, one being a high-powered master transmitter and the other a lower-powered
assistant transmitter. The master transmitter can transmit data quickly and over long dis-
tances, while the slave transmitter is slower and has a shorter range. Both transmitters
decide to enter a low-power mode or standby mode if no users are waiting for service.
The standby mode will continue until at least one user needs service. After completion
of the standby mode, if at least one user is waiting for service, the master transmitter will
transmit data with regular coverage, while the assistant transmitter serves at a slower rate.
If the network detects at least two active users requiring a strong signal, it will instantly
reactivate both transmitters to provide their primary, high-powered services. Addition-
ally, the network may experience temporary outages, initiating an immediate restoration
process.

2.2. The Quasi-Birth-and-Death (QBD) process

The number of customers in the system at time t is indicated by L(t) and let

I(t) =



0, Both servers are on vacation
1, Server 1 being busy and server 2 being in a working vacation
2, Both servers being busy
3, Server 1 is breakdown and server 2 being in a working vacation
4, Server 2 is breakdown and Server 1 being busy
5, Both servers are on breakdown

Consequently, X(t) = {L(t); I(t)} is a QBD process with the state space indicated
by Ω as shown below:

Ω = {(0, 0)} ∪ {(1, j), j = 0, 1, 3, 4}∪ {(n, j),n ≥2, j=0,1,2,3,4,5}

Using lexicographical sequence for the states, The Markov chain’s infinitesimal gen-
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erator, Q is defined as follows:

Q =



B00 B01 . . .
B10 B11 B12 . . .
... B21 B22 A0 . . .

... A2 A1 A0 . . .
... A2 A1 A0 . . .
...

...
...

...


where
B00 =

[
−λ

]
, B01 =

[
λ 0 0 0

]
, B10 =

[
0 µ1 µv2 µ1

]T
,

B11 =


V1 θ1 + pθ2 0 0
0 −(λ+ α1 + α2 + µ1) α1 α2

0 β1 V2 0
0 β2 0 V3

 ,

B12 =


λ 0 0 0 0 0
0 λ 0 0 0 0
0 0 0 λ 0 0
0 0 0 0 λ 0

 , B21 =


0 0 0 0
0 µ1 0 0
0 µ1 0 0
0 0 µv2 0
0 0 0 µ1

0 0 0 0

 ,

B22 =


V1 θ1 + pθ2 0 0 0 0
0 V4 + µ1 qθ2 α1 α2 0
0 0 V5 + µ1 0 0 −(α1 + α2)
0 β1 0 V2 0 0
0 β2 0 0 V3 0
0 0 β1 + β2 0 0 −(λ+ β1 + β2)

 ,

A0 = λI6, A1 =


V1 θ1 + pθ2 0 0 0 0
0 V4 qθ2 α1 α2 0
0 0 V5 0 0 −(α1 + α2)
0 β1 0 V2 0 0
0 β2 0 0 V3 0
0 0 β1 + β2 0 0 −(λ+ β1 + β2)

 ,

A2 =


0 0 0 0 0 0
0 (µ1 + µv2) 0 0 0 0
0 0 (µ1 + µ2) 0 0 0
0 0 0 µv2 0 0
0 0 0 0 µ1 0
0 0 0 0 0 0

 ,

V1 = −(λ+ θ1 + pθ2), V2 = −(λ+ β1 + µv2)
V3 = −(λ+ β2 + µ1), V4 = −(λ+ α1 + α2 + µ1 + µv2 + qθ2)
V5 = −(λ+ α1 + α2 + µ1 + µ2)
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3. THE STEADY STATE ANALYSIS

In order for the system to reach a steady state, we need to first find the stability condi-
tion. Then, a matrix geometric solution approach is used to calculate the system’s steady-
state probabilities. Furthermore provided are the rate matrix and boundary probability
vector computations.

3.1. Stability Condition

We first define the matrix A = A0 +A1 +A2 in order to derive the stationary condi-
tion. Then the matrix A can be written as

A =


−(θ1 + pθ2) (θ1 + pθ2) 0 0 0 0

0 −(α1 + α2 + qθ2) qθ2 α1 α2 0
0 0 −(α1 + α2) 0 0 α1 + α2

0 β1 0 −β1 0 0
0 β2 0 0 −β2 0
0 0 β1 + β2 0 0 −(β1 + β2)


It is clear that A is a generator of irreducible Markov processes. Let π be the stationary

probability vector for this Markov process, with π = (π0, π1, π2, π3, π4, π5). The linear
equations are thus satisfied by π:

πA = 0, πe = 1

Neuts (1981) asserted that the system is stable if and only if πA0e < πA2e.
Specifically, the system is stable if and only if ρ < 1 where

ρ =
λ(α1 + α2 + β1 + β2)

(µ1 + µ2)(β1 + β2)

3.2. Matrix geometric Solution

The stationary random variables L(t) and I(t) should represent the system’s customer
base and the status of its servers, respectively. We use to represent the stationary proba-
bility

Pn,i = lim
t→∞

P{L(t) = n, I(t) = i}, (n, i) ∈ Ω.

The boundary probability vectorP of the generatorQ exists under the stationary condi-
tion ρ < 1. The partitioning for this stationary probability vectorP isP = (p0, p1, p2, ......),
where p0 = p00, p1 = (p10, p11, p13, p14), pi = (pi0, pi1, pi2, pi3, pi4, pi5) for i ≥ 2. The
following equations generate the sub vectors pi,

p0B00 + p1B10 = 0, (1)

p0B01 + p1B11 + p2B21 = 0, (2)

p1B12 + p2B22 + p3A2 = 0, (3)
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piA0 + pi+1A1 + pi+2A2 = 0 for i ≥ 2,

pi = p2R
(i−2) for i ≥ 3, (4)

According to Neuts [26], there exists a minimal non-negative solution for the rate matrix
R. Substituting the (4) in (3) we have

p1B12 + p2(B22 +RA2) = 0 (5)

and the normalizing condition is

p0e1 + p1e2 + p2(I −R)
−1

e3 = 1 (6)

where the column vectors e1, e2, and e3 each have one element in the correct sequence.
The matrix R is the minimum non-negative answer to the following matrix quadratic equa-
tion:

R2A2 +RA1 +A0 = 0. (7)

According to Netus and Lucantoni [27],consider the sequence of matrices {R(n),
k ≥ 0} with initial value R(0) = 0. From (7) we arrive at

R(n+ 1) = −[A0 +R2(n)A2]A
−1
1 , n ≥ 0. (8)

The above equation (8) monotonically converges to the minimal non negative solution
to (7) with spectral radius less than 1. Using R(0) = 0, we compute first iteration of R
matrix i.e., R(1) then using first iteration of R Matrix we can compute second iteration of
R matrix i.e., R(2). Similarly, we can compute the further iterations of R matirx. Due to
the positive values of −A−1

1 and A0 + R2A2, the value of R will converge. As a result,
the components of R will rise monotonically after each repetition.

3.3. Boundary Probability Vectors
To obtain the boundary probability vectors p0, p1, and p2, equations (1) to (6) must be

solved. We can also define the matrices

D = B10B
−1
00 B01 −B11,

we have

D =


λ+ θ1 + pθ2 −(θ1 + pθ2) 0 0

−µ1 λ+ µ1 + α1 + α2 −α1 −α2

−µv2 −β1 λ+ β1 + µv2 0
−µ1 −β2 0 λ+ µ1 + β2


Here, the D matrix that is shown above is invertible. The following theorem yields

the boundary probability vectors p0, p1, and p2.

Theorem 1. The following are the boundary probability vectors:
p0 = −p2B21D

−1B10B
−1
00

p1 = p2B21D
−1

and as shown in the following equations, p2 is calculated:{
p2(B21D

−1B12 +B22 +RA2) = 0

p2[−B21D
−1B10B

−1
00 e1 +B21D

−1e2 + (I −R)−1e3] = 1
(9)
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Proof. We know B00 is invertable and from (1) we get

p0 = −p1B10B
−1
00 (10)

from (2) we get

p1 = p2B21D
−1 (11)

using (11) in equation (10) we get

p0 = −p2B21D
−1B10B

−1
00 (12)

using (10) and (11) in (5) and (6) we arrive (9).
This gives the required proof.

3.4. Remark

If αi = βi = 0 for i = 1, 2 in the current model, the stability condition is reduced to
the stability condition of theM/M/2multiple vacation queueing system, which is studied
by Krishnamoorthy and Sreenivasan [28].

4. TRANSIENT ANALYSIS

4.1. Govering Equations

Let Pn,j(t) be the time-dependent probability for the system to be in state j with n
customers at time t.

P
′

0,0(t) = −λP0,0(t) + µ1P1,1(t) + µv2P1,3(t) + µ1P1,1(t) (13)

P
′

n,0(t) = −(λ+ θ1 + pθ2)Pn,0(t) + λPn−1,0(t) for n ≥ 1 (14)

P
′

1,1(t) = −(λ+ µ1 + α1 + α2)P1,1(t) + (θ1 + pθ2)P1,0(t) + µv2P2,1(t)

+ µ2P2,2(t) + β1P1,3(t) + β2P1,4(t) (15)

P
′

2,1(t) = −(λ+ µv2 + α1 + α2 + qθ1)P2,1(t) + (θ1 + pθ2)P2,0(t) + (µ1

+ µv2)P3,1(t) + β1P2,3(t) + β2P2,4(t) + λP1,1(t) (16)

P
′

n,1(t) = −(λ+ µ1 + µv2 + α1 + α2 + qθ2)Pn,1(t) + (θ1 + pθ2)Pn,0(t)

+ β1Pn,3(t) + β2Pn,4(t) + λPn−1,1(t) + (µ1 + µv2)Pn+1,1(t) for n ≥ 3
(17)

P
′

2,2(t) = −(λ+ µ2 + α1 + α2)P2,2(t) + qθ2P2,1(t) + (β1 + β2)P2,5(t)

+ (µ1 + µ2)P3,2(t) (18)

P
′

n,2(t) = −(λ+ µ1 + µ2 + α1 + α2)Pn,2(t) + qθ2Pn,1(t) + (β1 + β2)Pn,5(t)

+ λPn−1,2(t) + (µ1 + µ2)Pn+1,2(t) for n ≥ 3 (19)

P
′

1,3(t) = −(λ+ µv2 + β1)P1,3(t) + α1P1,1(t) + µv2P2,3(t) (20)
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P
′

n,3(t) = −(λ+ µv2 + β1)Pn,3(t) + α1Pn,1(t) + µv2Pn+1,3(t) + λPn−1,3(t)

for n ≥ 2 (21)

P
′

1,4(t) = −(λ+ µ1 + β2)P1,4(t) + α2P1,1(t) + µ1P2,4(t) (22)

P
′

n,4(t) = −(λ+ µ1 + β2)Pn,4(t) + α2Pn,1(t) + µ1Pn+1,4(t) + λPn−1,4(t)

for n ≥ 2 (23)

P
′

2,5(t) = −(λ+ β1 + β2)P2,5(t) + (α1 + α2)P2,2(t) (24)

P
′

n,5(t) = −(λ+ β1 + β2)Pn,5(t) + (α1 + α2)Pn,2(t) + λPn−1,5(t) for n ≥ 3

(25)

with the initial state probabilities given by, all probabilities should be zero apart from
P0,0(0).

4.2. The Solution Approach

Most queuing systems utilise a set of differential equations as their governing equa-
tions. There are several techniques to analyse the model involving steady state govern-
ing equations. Techniques like the matrix analytical approach and probability generating
methods are used frequently. However, often it is difficult to discover the analytical so-
lution because of the transient and complex character of the differential equations using
the queuing models. In this study, we take into account a numerical method based on the
Runge-Kutta method for finding the answers to the set of differential equations. The tran-
sient numerical results corresponding to the differential-difference equation of the model
can be found using the MATLAB ode45 function.

5. PERFORMANCE MEASURES

We have computed the following performance metrics for the proposed model.

1. Mean number of customers in the system
E(L) = p1e2 + p2(I −R)−2R−1e3 − p2R

−1e3.
2. The probability that

• both servers are on vacation Pv=P0 + P1e
1
4 + P2(I −R)−1e16

• server 1 being busy and server 2 being in a working vacation
P 2WV
1b = P1e

2
4 + P2(I −R)−1e26

• both servers are on busy Pb = P2(I −R)−1e36

• server 1 is breakdown and server 2 being in a working vacation
P1br = P1e

3
4 + P2(I −R)−1e46

• server 2 is breakdown and Server 1 being busy
P2br = P1e

4
4 + P2(I −R)−1e56

• the both servers are breakdown Pb = P2(I −R)−1e66
Here eml is a column vector of order l× 1 withmth element equal to one and
other elements are zero. Where l = 4, 6,m = 1, 2, 3, 4, 5, 6.
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3. The following cost components that are incurred per unit of time are considered
while formulating the cost function:

• C1 : Cost associated with holding each customer in the system
• C2 : Costs associated with the system when both servers are on vacation
• C3 : Costs associated with the system server 1 being busy and server 2 being
working vacation on the system

• C4 : Costs associated with the system when both servers are busy
• C5 : Costs associated with the system when it is in a server 1 breakdown
• C6 : Costs associated with the system when it is in a server 2 breakdown
• C7 : Costs associated with maintaining the system when both servers are
breakdown

• CR1 : Costs associated with repairing server 1
• CR2 : Costs associated with repairing server 2
• Cs : Costs associated with providing customer service

The whole cost at time t is then calculated as

TC(t) =C1E(L(t)) + C2Pn,0(t) + C3Pn,1(t) + C4Pn,2(t) + C5Pn,3(t)

+ C6Pn,4(t) + C7Pn,5(t) + CR1β1 + CR2β2 + Cs(µ1 + µ2 + µv2).

6. NUMERICAL ILLUSTRATIONS

In this section, numerical results are provided to demonstrate the proposed model’s
practical functionality. Here tables and graphs are formulated using the MATLAB soft-
ware. We splitted this section into two subsections for steady state numerical analaysis
and transient state numerical analysis. The cost elements and default parameters for both
subsections are taken as C1 = 90, C2 = 20, C3 = 30, C4 = 40, C5 = 25, C6 = 35,
C7 = 45, CR1 = 60, CR2 = 50, Cs = 55, λ = 0.5, µ1 = 2.0, µ2 = 1.5, µv1 = 1.2,
θ1 = 0.9, θ2 = 0.8, p = 0.4, q = 0.6, α1 = 0.3, α2 = 0.2, β1 = 0.7, β2 = 0.5.

6.1. For Steady State

Table 1 displays the steady state probabilities for various states corresponding to the
number of customers in the system. In table 1 its observed that if the number of customers
increases, steady state probability values decrease. Figures 2 and 3 demonstrate that the
variation of the expected system size depends on the arrival rate for various breakdown and
repair rates for servers 1 and 2. From Figures 2 and 3 we observed that if the breakdown
rates for server 1 and server 2 increase, the expected system size increases, and if the repair
rates for server 1 and 2 increase, the expected system size decreases.6.2. For Transient Analysis

Figures 4-9 depicts the time dependent behaviour ofPn,0(t), Pn,1(t), Pn,2(t), Pn,3(t),
Pn,4(t),Pn,5(t). Its evident that all the probability curves starts with 0 and reach the steady
state as t increases. From the Figures 4 - 9 we observed that if the number of customers
increases, then the probability values decrease. Tables 2 and 3 displays the variation of
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Table 1: Steady state probabilities

n pn0 pn1 pn2 pn3 pn4 pn5

0 00.4896614 - - - - -
1 0.1423434 0.0982361 - 0.0213276 0.0113827 -
2 0.0442454 0.0646550 0.0129519 0.0180962 0.0089578 0.0045275
3 0.0128620 0.0141960 0.0051370 0.0066343 0.0026745 0.0024161
4 0.0037390 0.0036358 0.0017720 0.0021795 0.0007539 0.0010470
5 0.0010869 0.0010086 0.0005971 0.0006857 0.0002118 0.0004110
6 0.0003160 0.0002896 0.0002001 0.0002112 0.0000601 0.0001528
7 0.0000918 0.0000843 0.0000667 0.0000642 0.0000172 0.0000549
8 0.0000267 0.0000246 0.0000222 0.0000194 0.0000050 0.0000193
9 0.0000078 0.0000072 0.0000073 0.0000058 0.0000014 0.0000066
10 0.0000023 0.0000021 0.0000024 0.0000017 0.0000004 0.0000023
11 0.0000007 0.0000006 0.0000008 0.0000005 0.0000001 0.0000008
12 0.0000002 0.0000002 0.0000003 0.0000002 0.0000000 0.0000003
13 0.0000001 0.0000001 0.0000001 0.0000000 0.0000000 0.0000001

Figure 2: Arival rate Vs Expected system
size

Figure 3: Arival rate Vs Expected system
size

expected system size by breakdown and repair rate of server 1 and server 2. From these two
tables, we notice that if the breakdown rate increases, the expected system size increases,
and if the repair rate increases, the expected system size decreases. Table 4 establishes
the total cost of the system for different values of breakdown and repair rates. Tables 4
and 5 displays the variation of total cost by breakdown and repair rate for server 1 and
server 2. From these tables, we observed that if the breakdown rate increases, the total
cost increases, and if the repair rate increases, the total cost decreases. Figures 10 - 13
dipicts the effect of time on total cost for differet values of λ, µ1, µ2, µv2. From these
figures, we notice that the total cost reaches a steady state after some time.
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Table 2: Expected system size for different values of α1, β1

(α1, β1) t = 2 t = 4 t = 6 t = 8 t = 10 t = 12

(0.2, 0.7) 0.62809 0.76143 0.78218 0.78492 0.78460 0.78355
(0.3, 0.7) 0.63039 0.76965 0.79440 0.79877 0.79901 0.79811
(0.4, 0.7) 0.63256 0.77724 0.80572 0.81175 0.81263 0.81197
(0.5, 0.6) 0.63501 0.78698 0.82170 0.83126 0.83386 0.83397
(0.5, 0.7) 0.63461 0.78427 0.81623 0.82394 0.82555 0.82517
(0.5, 0.8) 0.63423 0.78181 0.81140 0.81762 0.81849 0.81777

Table 3: Expected system size for different values of α2, β2

(α2, β2) t = 2 t = 4 t = 6 t = 8 t = 10 t = 12

(0.2, 0.5) 0.63461 0.78427 0.81623 0.82394 0.825 0.82517
(0.3, 0.5) 0.63399 0.78355 0.81660 0.82530 0.82753 0.82750
(0.4, 0.5) 0.63338 0.78283 0.81688 0.82656 0.82945 0.82980
(0.2, 0.6) 0.63460 0.78363 0.81439 0.82112 0.82215 0.82148
(0.2, 0.7) 0.63459 0.78305 0.81276 0.81868 0.81927 0.81839
(0.2, 0.8) 0.63458 0.78251 0.81130 0.81655 0.81679 0.81578

Figure 4: Probabilities Pn,0(t) Vs Time Figure 5: Probabilities Pn,1(t) Vs Time

Figure 6: Probabilities Pn,2(t) Vs Time Figure 7: Probabilities Pn,3(t) Vs Time
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Figure 8: Probabilities Pn,4(t) Vs Time Figure 9: Probabilities Pn,5(t) Vs Time

Figure 10: Time versus Total cost for different
values of λ

Figure 11: Time versus Total cost for different
values of µ1

Figure 12: Time versus Total cost for different
values of µ2

Figure 13: Time versus Total cost for different
values of µv2
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Table 4: Total cost for different values of α1, β1

(α1, β1) t = 2 t = 4 t = 6 t = 8 t = 10 t = 12

(0.2, 0.7) 377.1833 390.0673 392.1094 392.3633 392.3054 392.1737
(0.3, 0.7) 377.3656 390.7888 393.2108 393.6234 393.6198 393.5027
(0.4, 0.7) 377.5378 391.4540 394.2305 394.8041 394.8634 394.7678
(0.5, 0.6) 377.7317 392.3047 395.6700 396.5806 396.8057 396.7851
(0.5, 0.7) 377.7006 392.0688 395.1769 395.9122 396.0421 395.9744
(0.5, 0.8) 377.6711 391.8539 394.7407 395.3344 395.3927 395.2926

Table 5: Total cost for different values of α2, β2

(α2, β2) t = 2 t = 4 t = 6 t = 8 t = 10 t = 12

(0.2, 0.5) 377.4100 391.1630 394.0213 394.7261 394.8709 394.8201
(0.3, 0.5) 377.3936 391.2199 394.2484 395.0826 395.3041 395.2941
(0.4, 0.5) 377.3766 391.2632 394.4463 395.4070 395.7096 395.7468
(0.2, 0.6) 377.4065 391.0931 393.8225 394.4202 394.5011 394.4177
(0.2, 0.7) 377.4032 391.0295 393.6483 394.1606 394.1946 394.0898
(0.2, 0.8) 377.4001 390.9715 393.4950 393.9384 393.9377 393.8190

7. CONCLUSION

This paper examines a two-server heterogeneous multiple vacation queueing model
that accounts for server breakdown. We have given the stationary condition and boundary
probability vectors for our model using the matrix geometric technique. This study also
discusses the proposed queueing model’s time-dependent behavior and cost analysis of the
system. In the future, this work will be extended to a multi-server heterogeneous queueing
system with multiple vacations and different kinds of breakdowns.
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