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The model also takes into account the possibility of a breakdown happening when server
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restoration procedure starting right away. The stability condition is established through
the use of matrix geometric technique, and the steady-state probability vector of the
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process. Some system performance measures are obtained. Numerical analysis for both
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1. INTRODUCTION

In many queueing systems now in use, servers may become unavailable for an
arbitrary amount of time while the system is empty. This random period of server
absence, known as a server vacation, could indicate that the server is doing a sec-
ondary activity. When the server finishes a vacation and there is no customer in
the system, the server may take another vacation. This type of vacation called
Multiple vacations. In some situations servers can work in vacation also, this type
of vacations is called working vacation. Queuing systems with vacations have been
established over the past 20 years for many different kinds of uses such as produc-
tion and computer communication systems. Doshi [1] and Takagi [2] carried out
several great surveys on vacation models. Laxmi [3] analysed the single working
vacation with impatience customers. A working vacation queue with server break-
down is researched by Madhu Jain [4], and Agarwal[5]. Ammar [6] gives a matrix
geometric solution to the single server queueing system with discouraged arrivals
and reneging.Several researchers have studied multi-server queues with vacation.
In the beginning, the M/M/c queue with exponentially distributed vacation times
was examined by Levy [7] and Vinod [8]. Tian [9] deeply discused about M/M/c
queueing system with vacation, and gives conditional stochastic decomposition re-
sults for waiting time and queue length. Numerous researchers, including Kao and
Narayanan [10], Igaki [11], Chao and Zhao [12], Zhang and Tian [13], and Houalef
[14], have studied multi-server queueing systems with vacations. Also Shanmuga-
sundaram [15], Yang [16] are analysed about the mullti server queueing systems
with working vacations.

The above-discussed research on multi-server queueing systems make the as-
sumption that all of the servers are homogenous, meaning that they all offer the
same rates of service throughout the system. This premise might only be true
in particular places. In a queueing system with human servers, it is difficult to
recognise the aforementioned assumption. Few studies on multi-server queueing
system with server vacation and varying service rates among different servers can
be found. Madan et al. [17] studied Bernoulli schedules with a single vacation
policy in the M/M/2 queue, where two servers offer heterogeneous exponential
service to customers. For different server states, they were able to derive steady-
state probability generating functions for the system size. Using matrix-geometric
method, a study on two heterogenous servers with multiple vacations is given
by Kumar and Madheswari [18]. Singh [19] discusses the two server Markovian
queues with balking and provides a comparison between heterogeneous and homo-
geneous servers. Mahalakshmi [20] examined the two server queueing systems in
conjunction with server failure. Balasubramanian [21] also analysed about the two
server Queues with server breakdown. A study on a heterogeneous servers with
server breakdown is given by Reni sagayaraj [22]. Recently Liu et al. [23] studied
single server queueing model with server breakdown, Karthick and Suvitha [24]
analysed about multi server vacation queueing models with breakdown. Sudhesh
et al. [25] has done a time dependent analysis of a two server vacation queueing
model. However, no comprehensive study exists on the multiserver working vaca-
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tion queueing model encompassing various breakdown possibilities. As a result,
we have proposed this model.

2. THE MODEL DESCRIPTION

The system under consideration is a two-server, multiple-working vacation
queueing system subject to server breakdown. It is important to note that the
servers’ service rates vary. The assumptions of the model are described as follow-
ing:

1. Customers arrive at a rate of λ according to a Poisson. Customers arrive
and join the waiting line in order of their arrival. It is assumed that both the
system capacity and the total number of potential customers are infinite.

2. Based on First-Come, First-Served (FCFS) principles, the two servers pro-
vide heterogeneous exponential service to customers at service rates of µ1

and µ2.

3. Every server is allowed to take an independent vacation when there are no
customers waiting in queue.When a vacation period expires and there is a
customer in the system, service will start. If not, the server takes another
vacation right away and keeps doing so until it returns and discovers that at
least one customer is still waiting.

4. If there’s at least one customer in the system after the vacation ends, server
1 gets busy, and server 2 goes into a working vacation mode. During the
working vacation server 2 provides service to customers with slow service
rate µv2. The vacation rates are θ1 for server 1 and pθ2 for server 2. The
rate for server 2 from working vacation to busy is qθ2. Vacation follows an
exponential distribution.

5. In addition, there are three possibles for breakdown.

� In a single server busy state, there are two possibilities for breakdown.
One is that server 1 gets a breakdown while server 2 is still working on
working vacation, second is that server 2 gets a breakdown while server
1 is still working during a regular busy period.

� Servers may breakdown in both servers busy state.

The breakdown follows exponential distribution with rates α1 and α2 for
servers 1 and 2 respectively.

6. Also the repair of the servers starts immediately, repairs follow exponential
distribution with rates β1 and β2.
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Figure 1: Transition Diagram

2.1. Practical Application

The proposed model is motivated by the following scenario in a wireless
communication network: Consider a wireless communication network with
two types of signal transmitters, one being a high-powered master trans-
mitter and the other a lower-powered assistant transmitter. The master
transmitter can transmit data quickly and over long distances, while the
slave transmitter is slower and has a shorter range. Both transmitters de-
cide to enter a low-power mode or standby mode if no users are waiting for
service. The standby mode will continue until at least one user needs ser-
vice. After completion of the standby mode, if at least one user is waiting
for service, the master transmitter will transmit data with regular cover-
age, while the assistant transmitter serves at a slower rate. If the network
detects at least two active users requiring a strong signal, it will instantly
reactivate both transmitters to provide their primary, high-powered services.
Additionally, the network may experience temporary outages, initiating an
immediate restoration process.

2.2. The Quasi-Birth-and-Death (QBD) process

The number of customers in the system at time t is indicated by L(t) and
let
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I(t) =



0, Both servers are on vacation

1, Server 1 being busy and server 2 being in a working vacation

2, Both servers being busy

3, Server 1 is breakdown and server 2 being in a working vacation

4, Server 2 is breakdown and Server 1 being busy

5, Both servers are on breakdown

Consequently, X(t) = {L(t); I(t)} is a QBD process with the state space in-
dicated by Ω as shown below:
Ω = {(0, 0)} ∪ {(1, j), j = 0, 1, 3, 4}∪ {(n, j),n ≥2, j=0,1,2,3,4,5}
Using lexicographical sequence for the states, The Markov chain’s infinitesi-
mal generator, Q is defined as follows:

Q =



B00 B01 . . .
B10 B11 B12 . . .
... B21 B22 A0 . . .

... A2 A1 A0 . . .
... A2 A1 A0 . . .
...

...
...

...


where
B00 =

[
−λ

]
, B01 =

[
λ 0 0 0

]
, B10 =

[
0 µ1 µv2 µ1

]T
,

B11 =


V1 θ1 + pθ2 0 0
0 −(λ+ α1 + α2 + µ1) α1 α2

0 β1 V2 0
0 β2 0 V3

 ,
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B12 =


λ 0 0 0 0 0
0 λ 0 0 0 0
0 0 0 λ 0 0
0 0 0 0 λ 0

 , B21 =


0 0 0 0
0 µ1 0 0
0 µ1 0 0
0 0 µv2 0
0 0 0 µ1

0 0 0 0

 ,

B22 =


V1 θ1 + pθ2 0 0 0 0
0 V4 + µ1 qθ2 α1 α2 0
0 0 V5 + µ1 0 0 −(α1 + α2)
0 β1 0 V2 0 0
0 β2 0 0 V3 0
0 0 β1 + β2 0 0 −(λ+ β1 + β2)

 ,

A0 = λI6, A1 =


V1 θ1 + pθ2 0 0 0 0
0 V4 qθ2 α1 α2 0
0 0 V5 0 0 −(α1 + α2)
0 β1 0 V2 0 0
0 β2 0 0 V3 0
0 0 β1 + β2 0 0 −(λ+ β1 + β2)

 ,

A2 =


0 0 0 0 0 0
0 (µ1 + µv2) 0 0 0 0
0 0 (µ1 + µ2) 0 0 0
0 0 0 µv2 0 0
0 0 0 0 µ1 0
0 0 0 0 0 0

 ,

V1 = −(λ+ θ1 + pθ2), V2 = −(λ+ β1 + µv2)
V3 = −(λ+ β2 + µ1), V4 = −(λ+ α1 + α2 + µ1 + µv2 + qθ2)
V5 = −(λ+ α1 + α2 + µ1 + µ2)

3. THE STEADY STATE ANALYSIS

In order for the system to reach a steady state, we need to first find the stability
condition. Then, a matrix geometric solution approach is used to calculate the
system’s steady-state probabilities. Furthermore provided are the rate matrix and
boundary probability vector computations.

3.1. Stability Condition

We first define the matrix A = A0 +A1 +A2 in order to derive the stationary
condition. Then the matrix A can be written as

A =


−(θ1 + pθ2) (θ1 + pθ2) 0 0 0 0

0 −(α1 + α2 + qθ2) qθ2 α1 α2 0
0 0 −(α1 + α2) 0 0 α1 + α2

0 β1 0 −β1 0 0
0 β2 0 0 −β2 0
0 0 β1 + β2 0 0 −(β1 + β2)


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It is clear that A is a generator of irreducible Markov processes. Let π be the sta-
tionary probability vector for this Markov process, with π = (π0, π1, π2, π3, π4, π5).
The linear equations are thus satisfied by π:

πA = 0, πe = 1

Neuts (1981) asserted that the system is stable if and only if πA0e < πA2e.
Specifically, the system is stable if and only if ρ < 1 where

ρ =
λ(α1 + α2 + β1 + β2)

(µ1 + µ2)(β1 + β2)

3.2. Matrix geometric Solution

The stationary random variables L(t) and I(t) should represent the system’s
customer base and the status of its servers, respectively. We use to represent the
stationary probability
Pn,i = lim

t→∞
P{L(t) = n, I(t) = i}, (n, i) ∈ Ω. The boundary probability vector P

of the generator Q exists under the stationary condition ρ < 1. The partitioning
for this stationary probability vector P is P = (p0, p1, p2, ......), where p0 = p00,
p1 = (p10, p11, p13, p14), pi = (pi0, pi1, pi2, pi3, pi4, pi5) for i ≥ 2. The following
equations generate the sub vectors pi,

p0B00 + p1B10 = 0, (1)

p0B01 + p1B11 + p2B21 = 0, (2)

p1B12 + p2B22 + p3A2 = 0, (3)

piA0 + pi+1A1 + pi+2A2 = 0 for i ≥ 2,

pi = p2R
(i−2) for i ≥ 3, (4)

According to Neuts [26], there exists a minimal non-negative solution for the rate
matrix R. Substituting the (4) in (3) we have

p1B12 + p2(B22 +RA2) = 0 (5)

and the normalizing condition is

p0e1 + p1e2 + p2(I −R)
−1

e3 = 1 (6)

where the column vectors e1, e2, and e3 each have one element in the correct
sequence. The matrix R is the minimum non-negative answer to the following
matrix quadratic equation:

R2A2 +RA1 +A0 = 0. (7)

According to Netus and Lucantoni [27],consider the sequence of matrices {R(n),
k ≥ 0} with initial value R(0) = 0. From (7) we arrive at

R(n+ 1) = −[A0 +R2(n)A2]A
−1
1 , n ≥ 0. (8)
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The above equation (8) monotonically converges to the minimal non negative
solution to (7) with spectral radius less than 1. Using R(0) = 0, we compute
first iteration of R matrix i.e., R(1) then using first iteration of R Matrix we can
compute second iteration of R matrix i.e., R(2). Similarly, we can compute the
further iterations of R matirx. Due to the positive values of −A−1

1 and A0 +
R2A2, the value of R will converge. As a result, the components of R will rise
monotonically after each repetition.

3.3. Boundary Probability Vectors

To obtain the boundary probability vectors p0, p1, and p2, equations (1) to (6)
must be solved. We can also define the matrices

D = B10B
−1
00 B01 −B11,

we have

D =


λ+ θ1 + pθ2 −(θ1 + pθ2) 0 0

−µ1 λ+ µ1 + α1 + α2 −α1 −α2

−µv2 −β1 λ+ β1 + µv2 0
−µ1 −β2 0 λ+ µ1 + β2


Here, the D matrix that is shown above is invertible. The following theorem

yields the boundary probability vectors p0, p1, and p2.

Theorem 1. The following are the boundary probability vectors:
p0 = −p2B21D

−1B10B
−1
00

p1 = p2B21D
−1

and as shown in the following equations, p2 is calculated:{
p2(B21D

−1B12 +B22 +RA2) = 0

p2[−B21D
−1B10B

−1
00 e1 +B21D

−1e2 + (I −R)−1e3] = 1
(9)

Proof. We know B00 is invertable and from (1) we get

p0 = −p1B10B
−1
00 (10)

from (2) we get

p1 = p2B21D
−1 (11)

using (11) in equation (10) we get

p0 = −p2B21D
−1B10B

−1
00 (12)

using (10) and (11) in (5) and (6) we arrive (9).
This gives the required proof.

3.4. Remark

If αi = βi = 0 for i = 1, 2 in the current model, the stability condition is reduced
to the stability condition of the M/M/2 multiple vacation queueing system, which
is studied by Krishnamoorthy and Sreenivasan [28].
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4. TRANSIENT ANALYSIS

4.1. Govering Equations

Let Pn,j(t) be the time-dependent probability for the system to be in state j
with n customers at time t.

P
′

0,0(t) = −λP0,0(t) + µ1P1,1(t) + µv2P1,3(t) + µ1P1,1(t) (13)

P
′

n,0(t) = −(λ+ θ1 + pθ2)Pn,0(t) + λPn−1,0(t) for n ≥ 1 (14)

P
′

1,1(t) = −(λ+ µ1 + α1 + α2)P1,1(t) + (θ1 + pθ2)P1,0(t) + µv2P2,1(t)

+ µ2P2,2(t) + β1P1,3(t) + β2P1,4(t) (15)

P
′

2,1(t) = −(λ+ µv2 + α1 + α2 + qθ1)P2,1(t) + (θ1 + pθ2)P2,0(t) + (µ1

+ µv2)P3,1(t) + β1P2,3(t) + β2P2,4(t) + λP1,1(t) (16)

P
′

n,1(t) = −(λ+ µ1 + µv2 + α1 + α2 + qθ2)Pn,1(t) + (θ1 + pθ2)Pn,0(t)

+ β1Pn,3(t) + β2Pn,4(t) + λPn−1,1(t) + (µ1 + µv2)Pn+1,1(t) for n ≥ 3
(17)

P
′

2,2(t) = −(λ+ µ2 + α1 + α2)P2,2(t) + qθ2P2,1(t) + (β1 + β2)P2,5(t)

+ (µ1 + µ2)P3,2(t) (18)

P
′

n,2(t) = −(λ+ µ1 + µ2 + α1 + α2)Pn,2(t) + qθ2Pn,1(t) + (β1 + β2)Pn,5(t)

+ λPn−1,2(t) + (µ1 + µ2)Pn+1,2(t) for n ≥ 3 (19)

P
′

1,3(t) = −(λ+ µv2 + β1)P1,3(t) + α1P1,1(t) + µv2P2,3(t) (20)

P
′

n,3(t) = −(λ+ µv2 + β1)Pn,3(t) + α1Pn,1(t) + µv2Pn+1,3(t) + λPn−1,3(t)

for n ≥ 2 (21)

P
′

1,4(t) = −(λ+ µ1 + β2)P1,4(t) + α2P1,1(t) + µ1P2,4(t) (22)

P
′

n,4(t) = −(λ+ µ1 + β2)Pn,4(t) + α2Pn,1(t) + µ1Pn+1,4(t) + λPn−1,4(t)

for n ≥ 2 (23)

P
′

2,5(t) = −(λ+ β1 + β2)P2,5(t) + (α1 + α2)P2,2(t) (24)

P
′

n,5(t) = −(λ+ β1 + β2)Pn,5(t) + (α1 + α2)Pn,2(t) + λPn−1,5(t) for n ≥ 3

(25)

with the initial state probabilities given by, all probabilities should be zero apart
from P0,0(0).

4.2. The Solution Approach

Most queuing systems utilise a set of differential equations as their governing
equations. There are several techniques to analyse the model involving steady



10 V. Karthick, and V. Suvitha / Analysis of Heterogeneous Two Server

state governing equations. Techniques like the matrix analytical approach and
probability generating methods are used frequently. However, often it is difficult
to discover the analytical solution because of the transient and complex character
of the differential equations using the queuing models. In this study, we take
into account a numerical method based on the Runge-Kutta method for finding
the answers to the set of differential equations. The transient numerical results
corresponding to the differential-difference equation of the model can be found
using the MATLAB ode45 function.

5. PERFORMANCE MEASURES

We have computed the following performance metrics for the proposed model.

1. Mean number of customers in the system
E(L) = p1e2 + p2(I −R)−2R−1e3 − p2R

−1e3.

2. The probability that

� both servers are on vacation Pv=P0 + P1e
1
4 + P2(I −R)−1e16

� server 1 being busy and server 2 being in a working vacation
P 2WV
1b = P1e

2
4 + P2(I −R)−1e26

� both servers are on busy Pb = P2(I −R)−1e36

� server 1 is breakdown and server 2 being in a working vacation
P1br = P1e

3
4 + P2(I −R)−1e46

� server 2 is breakdown and Server 1 being busy
P2br = P1e

4
4 + P2(I −R)−1e56

� the both servers are breakdown Pb = P2(I −R)−1e66
Here eml is a column vector of order l × 1 with mth element equal to
one and other elements are zero. Where l = 4, 6,m = 1, 2, 3, 4, 5, 6.

3. The following cost components that are incurred per unit of time are con-
sidered while formulating the cost function:

� C1 : Cost associated with holding each customer in the system

� C2 : Costs associated with the system when both servers are on vacation

� C3 : Costs associated with the system server 1 being busy and server 2
being working vacation on the system

� C4 : Costs associated with the system when both servers are busy

� C5 : Costs associated with the system when it is in a server 1 breakdown

� C6 : Costs associated with the system when it is in a server 2 breakdown

� C7 : Costs associated with maintaining the system when both servers
are breakdown

� CR1 : Costs associated with repairing server 1

� CR2 : Costs associated with repairing server 2
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� Cs : Costs associated with providing customer service

The whole cost at time t is then calculated as

TC(t) =C1E(L(t)) + C2Pn,0(t) + C3Pn,1(t) + C4Pn,2(t) + C5Pn,3(t)

+ C6Pn,4(t) + C7Pn,5(t) + CR1β1 + CR2β2 + Cs(µ1 + µ2 + µv2).

6. NUMERICAL ILLUSTRATIONS

In this section, numerical results are provided in order to demonstrate the
proposed model’s practical functionality. Here tables and graphs are formulated
using the MATLAB software. We splitted this section into two subsections for
steady state numerical analaysis and transient state numerical analysis. The cost
elements and default parameters for both subsections are taken as C1 = 90, C2 =
20, C3 = 30, C4 = 40, C5 = 25, C6 = 35, C7 = 45, CR1 = 60, CR2 = 50, Cs = 55,
λ = 0.5, µ1 = 2.0, µ2 = 1.5, µv1 = 1.2, θ1 = 0.9, θ2 = 0.8, p = 0.4, q = 0.6,
α1 = 0.3, α2 = 0.2, β1 = 0.7, β2 = 0.5.

6.1. For Steady State

Table 1 displays the steady state probabilities for various states corresponding
to the number of customers in the system. In table 1 its observed that if the
number of customers increases, steady state probability values decrease. Figures
2 and 3 demonstrate that the variation of expected system size depends on the
arrival rate for various breakdown and repair rates for servers 1 and 2. From the
Figures 2 and 3 we observed that if the breakdown rates for server 1 and server
2 increase, the expected system size increases, and if the repair rates for server 1
and 2 increase, the expected system size decreases.
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Table 1: Steady state probabilities

n pn0 pn1 pn2 pn3 pn4 pn5

0 00.4896614 - - - - -

1 0.1423434 0.0982361 - 0.0213276 0.0113827 -

2 0.0442454 0.0646550 0.0129519 0.0180962 0.0089578 0.0045275

3 0.0128620 0.0141960 0.0051370 0.0066343 0.0026745 0.0024161

4 0.0037390 0.0036358 0.0017720 0.0021795 0.0007539 0.0010470

5 0.0010869 0.0010086 0.0005971 0.0006857 0.0002118 0.0004110

6 0.0003160 0.0002896 0.0002001 0.0002112 0.0000601 0.0001528

7 0.0000918 0.0000843 0.0000667 0.0000642 0.0000172 0.0000549

8 0.0000267 0.0000246 0.0000222 0.0000194 0.0000050 0.0000193

9 0.0000078 0.0000072 0.0000073 0.0000058 0.0000014 0.0000066

10 0.0000023 0.0000021 0.0000024 0.0000017 0.0000004 0.0000023

11 0.0000007 0.0000006 0.0000008 0.0000005 0.0000001 0.0000008

12 0.0000002 0.0000002 0.0000003 0.0000002 0.0000000 0.0000003

13 0.0000001 0.0000001 0.0000001 0.0000000 0.0000000 0.0000001

Figure 2: Arival rate Vs Expected system size
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Figure 3: Arival rate Vs Expected system size

6.2. For Transient Analysis

Figures 4-9 depicts the time dependent behaviour of Pn,0(t), Pn,1(t), Pn,2(t),
Pn,3(t), Pn,4(t), Pn,5(t). Its evident that all the probability curves starts with 0
and reach the steady state as t increases. From the Figures 4 - 9 we observed
that if the number of customers increases, then the probability values decrease.
Tables 2 and 3 displays the variation of expected system size by breakdown and
repair rate of server 1 and server 2. From these two tables, we notice that if the
breakdown rate increases, the expected system size increases, and if the repair rate
increases, the expected system size decreases. Table 4 establishes the total cost
of the system for different values of breakdown and repair rates. Tables 4 and 5
displays the variation of total cost by breakdown and repair rate for server 1 and
server 2. From these tables, we observed that if the breakdown rate increases,
the total cost increases, and if the repair rate increases, the total cost decreases.
Figures 10 - 13 dipicts the effect of time on total cost for differet values of λ, µ1,
µ2, µv2. From these figures, we notice that the total cost reaches a steady state
after some time.
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Figure 4: Probabilities Pn,0(t) Vs Time

Figure 5: Probabilities Pn,1(t) Vs Time

Figure 6: Probabilities Pn,2(t) Vs Time
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Figure 7: Probabilities Pn,3(t) Vs Time

Figure 8: Probabilities Pn,4(t) Vs Time

Figure 9: Probabilities Pn,5(t) Vs Time
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Figure 10: Time versus Total cost for different values of λ

Figure 11: Time versus Total cost for different values of µ1
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Figure 12: Time versus Total cost for different values of µ2

Figure 13: Time versus Total cost for different values of µv2

Table 2: Expected system size for different values of α1, β1

(α1, β1) t = 2 t = 4 t = 6 t = 8 t = 10 t = 12

(0.2, 0.7) 0.62809 0.76143 0.78218 0.78492 0.78460 0.78355

(0.3, 0.7) 0.63039 0.76965 0.79440 0.79877 0.79901 0.79811

(0.4, 0.7) 0.63256 0.77724 0.80572 0.81175 0.81263 0.81197

(0.5, 0.6) 0.63501 0.78698 0.82170 0.83126 0.83386 0.83397

(0.5, 0.7) 0.63461 0.78427 0.81623 0.82394 0.82555 0.82517

(0.5, 0.8) 0.63423 0.78181 0.81140 0.81762 0.81849 0.81777
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Table 3: Expected system size for different values of α2, β2

(α2, β2) t = 2 t = 4 t = 6 t = 8 t = 10 t = 12

(0.2, 0.5) 0.63461 0.78427 0.81623 0.82394 0.825 0.82517

(0.3, 0.5) 0.63399 0.78355 0.81660 0.82530 0.82753 0.82750

(0.4, 0.5) 0.63338 0.78283 0.81688 0.82656 0.82945 0.82980

(0.2, 0.6) 0.63460 0.78363 0.81439 0.82112 0.82215 0.82148

(0.2, 0.7) 0.63459 0.78305 0.81276 0.81868 0.81927 0.81839

(0.2, 0.8) 0.63458 0.78251 0.81130 0.81655 0.81679 0.81578

Table 4: Total cost for different values of α1, β1

(α1, β1) t = 2 t = 4 t = 6 t = 8 t = 10 t = 12

(0.2, 0.7) 377.1833 390.0673 392.1094 392.3633 392.3054 392.1737

(0.3, 0.7) 377.3656 390.7888 393.2108 393.6234 393.6198 393.5027

(0.4, 0.7) 377.5378 391.4540 394.2305 394.8041 394.8634 394.7678

(0.5, 0.6) 377.7317 392.3047 395.6700 396.5806 396.8057 396.7851

(0.5, 0.7) 377.7006 392.0688 395.1769 395.9122 396.0421 395.9744

(0.5, 0.8) 377.6711 391.8539 394.7407 395.3344 395.3927 395.2926

Table 5: Total cost for different values of α2, β2

(α2, β2) t = 2 t = 4 t = 6 t = 8 t = 10 t = 12

(0.2, 0.5) 377.4100 391.1630 394.0213 394.7261 394.8709 394.8201

(0.3, 0.5) 377.3936 391.2199 394.2484 395.0826 395.3041 395.2941

(0.4, 0.5) 377.3766 391.2632 394.4463 395.4070 395.7096 395.7468

(0.2, 0.6) 377.4065 391.0931 393.8225 394.4202 394.5011 394.4177

(0.2, 0.7) 377.4032 391.0295 393.6483 394.1606 394.1946 394.0898

(0.2, 0.8) 377.4001 390.9715 393.4950 393.9384 393.9377 393.8190

7. CONCLUSION

This paper examines a two-server heterogeneous multiple vacation queueing
model that accounts for server breakdown. We have given the stationary condition
and boundary probability vectors for our model using the matrix geometric tech-
nique. This study also discusses the proposed queueing model’s time-dependent
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behavior and cost analysis of the system. In the future, this work will be ex-
tended to a multi-server heterogeneous queueing system with multiple vacations
and different kinds of breakdowns.
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