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Abstract: In real-world games, players may face an uncertain environment where fuzzi-
ness and randomness coexist. The main difficulty in dealing with games involving fuzzi-
ness and randomness arises when comparing the payoffs. The purpose of this paper is
to introduce a new approach to deal with constrained matrix games where the entries
of the constraint matrices are LR-fuzzy random variables. Our methodology is based
on constructing a new matrix game using the chance constraint method adapted to the
probability-possibility measures. First, a specific type of saddle point is defined as an
equilibrium solution. Then, conditions for the existence of the proposed solution are es-
tablished. Further, a technique based on second-order programming for computing the
saddle point is presented. Finally, a numerical illustration of the approach is provided.
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1. INTRODUCTION

Game theory is employed to resolve conflict situations and was originally developed
by John von Neumann and Oskar Morgenstern [1] in their book ”The Theory of Games
and Economic Behavior”. They applied Neumann’s theory of games of strategy [2] to
competitive business. Game theory finds applications in various fields, including artificial
intelligence, engineering, economics, computer science, psychology, and more.

One of the basic models in game theory is the matrix game. It is a zero-sum two-person
game in normal form, with a finite set of pure strategies for each player. A mixed strategy
is defined by enabling a player to randomly select his strategy based on a probability dis-
tribution on his pure strategy set. The particular structure and simplicity of matrix games
make them interesting in many ways, and their analysis is tractable. Minimax theorem
[2] is the fundamental basis for both the game structure and its resolution. Thus, in mixed
strategies, any matrix game has at least one saddle point equilibrium. The computation of
the saddle point is obtained by solving a primal-dual pair of linear programs [3]. How-
ever, in real life, usually games occur in uncertain (fuzzy, random, fuzzy random etc.)
environments.

Fuzzy Set theory [4, 5] provides effective techniques and approaches for handling
fuzzy games. Fuzzy set theory was introduced in noncooperative games in the paper of
Butnariu [6]. Later, Compos [7] considered matrix games where the payoffs are triangular
fuzzy numbers. Since then, games involving fuzziness have been thoroughly investigated
(e.g., [8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19]). The work of Kumar[8] investigates a
multi-objective matrix game with fuzzy goals. Under the assumption that each player has
a fuzzy goal for each of the payoffs, he formulated the max-min solution. Later, Roy and
Bhaumik [9] examined Triangular Type-2 Intuitionistic Fuzzy Matrix Game (TT2IFMG).
A new ranking function is used to get relevant solutions of TT2IFMG and an application
to water management is presented. In [10], Deli developed some models for games, where
the payoffs are represented with simplified neutrosophic sets. He gives an application of
simplified neutrosophic sets to two-person zero-sum matrix games. In Seikh et al [11], a
new methodology is proposed to solve matrix games with payoffs of triangular hesitant
fuzzy type, and an application to the market share problem is presented. Jana and Roy
[12], transformed a Multiple Attribute Decision Making problem under hesitant fuzzy
information into a matrix game. They developed the technique for order preference by
similarity to an ideal solution based on an ordered weighted aggregation operator and hy-
brid hesitant fuzzy normalized Euclidean distance. The superiority of their approaches is
established. Seikh et al. [13] developed a mathematical model of a matrix game triangular
dense fuzzy lock sets payoffs. A new defuzzification function is used to solve the consid-
ered game. Seikh and Karmakar [14] examined matrix games with payoffs of triangular
dense fuzzy lock sets (TDFLSs) type. First, they defined the possibility, necessity, and
credibility measures of triangular dense fuzzy lock sets. Using the credibility expectation,
the authors developed two linear programming models to find the credibility equilibrium
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strategies for the players and the value of the game. In Seikh et al. [15] a matrix game with
rough interval pay-offs is considered. They investigated two different solution method-
ologies to solve such a game. Seikh et al. [17] formulated a new defuzzification model
of triangular type-2 fuzzy variables (TT2FVs). They showed its superiority compared to
other existing models and developed a matrix game in a type-2 fuzzy environment to show
the applicability of their defuzzification method in a real-world situation. In the paper of
Karmakar et al. [16], the Minkowski distance of Type-2 intuitionistic fuzzy sets based on
the Hausdorff metric is proposed. Then a similarity measure of the Type-2 intuitionistic
fuzzy set is formed. Next, they solved the matrix games by utilizing the proposed dis-
tance measure. Jangid and Kumar [20] proposed a novel way to deal with uncertainty in a
two-person zero-sum matrix game with payoffs expressed as fuzzy rough numbers. They
obtained complete and reasonable solutions to these games. More recently, Karmakar et
al. [19] considered the payoffs of a bimatrix game in the form of dense fuzzy lock sets.
They defined the weighted average defuzzification function. The Nash equilibrium strate-
gies are computed using an auxiliary dense fuzzy non-linear programming problem. An
application to a natural disaster management problem.

Two methods commonly used in games with probabilistic uncertainty are the chance-
constrained approach and the expected value approach. The main idea of the expected
value approach is that, by computing the expected values of payoffs, the original uncer-
tain game is transformed into a deterministic game (e.g., [21, 22, 23, 24]). The chance-
constrained approach, pioneered by Charnes and Cooper [25] in stochastic optimization
problems, is one of the most widely used methods for handling uncertain parameters in
optimization problems. It was extended to game theory by Charnes et al. (1968) [25].
The authors analyzed chance-constrained matrix games. These games, along with bima-
trix chance-constrained games, have been extensively examined by Cassidy et al. [26],
Singh and Lisser [27], Singh et al. [28], and Peng et al. [29]. More recently, Achemine
and Larbani [30] studied the Z-equilibrium in bimatrix games with random payoffs using
chance constraints.

On the other hand, fuzzy random variables [31, 32, 33] play a significant role in opti-
mization problems where model parameters are subject to both randomness and fuzziness.
In the literature, two types of finite two-person games involving fuzzy random variables
have been investigated: matrix games and bimatrix games, and corresponding equilibrium
solutions are introduced [34, 24, 35, 36, 37, 38]. To deal with matrix games with fuzzy ran-
dom payoffs, Mondal and Roy [35], Xu and Li [24], and Xu et al.[34], used the expected
value operator to define the fuzzy random expected minimax equilibrium and investigated
its existence and computation. Yano [36] focused on bimatrix games with fuzzy random
variables payoffs. Using possibility and necessity measures, he introduced equilibrium
solution concepts and proposed two algorithms to compute the proposed solutions. Yano
[38] further proposed an extension of this approach to multi-objective fuzzy random bi-
matrix games. Achemine and Larbani [37] considered a bimatrix game where the payoffs
are fuzzy random variables. Using chance constraints, the authors proposed an approach
based on probability and possibility measures. In their approach, they investigated the
existence and computation of Nash equilibrium.

In some real-world game situations, the players’ choice of strategies is constrained by
linear inequalities. We refer to these games as constrained games. Charnes [39] conducted
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the initial research on constrained matrix games, showing that these games can be solved
by the resolution of a pair of primal-dual linear programming problems. In [40], an ex-
ample of the constrained matrix game is provided. According to Owen [41], any classical
constrained matrix game always has optimal strategies and game value. Li and Cheng
[42] pointed out that there is no existing methodology in the literature for constrained ma-
trix games where payoffs are represented by fuzzy numbers. They used multi-objective
programming techniques to study these games. A method for solving constrained matrix
games with payoffs represented by triangular fuzzy numbers is proposed by Li and Hong
[43]. Later, Nan and Li [44] introduced an effective linear programming technique for
constrained matrix games with interval payoffs. An α-cut linear programming approach
for dealing with fuzzy constrainedmatrix games is developed by Li andHong [45]. Apply-
ing the concept of recurrent neural networks, Mansoori et al. [46] investigated constrained
matrix games with fuzzy payoffs and fuzzy constraints. The book by Verma and Kumar
[47] provides an overview of the literature on constrained matrix games with fuzzy pay-
offs. The authors addressed several current approaches, identified some flaws in earlier
studies on these games, and proposed a novel approach to solving them. A novel approach
to finding a complete solution for constrainedmatrix games with fuzzy payoffs is proposed
in Verma [48]. More recently, Djebara et al. examined the constrained matrix game with
fuzzy payoffs and fuzzy linear constraints.[49]. The authors proposed an innovative ap-
proach based on a ranking function [50, 51] and the chance-constrained method. They
introduced a kind of saddle point, provided sufficient existence conditions, and reduced
the computation of this solution to the resolution of primal-dual linear programs.

In 2019, Singh and Lisser [52] explored a stochastic variant of the constrained matrix
game originally studied by Charnes [39]. The authors formulated each player’s stochastic
linear constraints as chance constraints and demonstrated that the saddle point can be ob-
tained by solving a primal-dual pair of programs. However, to the best of our knowledge,
no research has been conducted on constrained matrix games where the constraints are
fuzzy random variables.

In this paper, we focus on a constrained matrix game where strategy sets are subject to
fuzzy random linear constraints. We propose a new approach to deal with this game. The
main contributions of this study are summarized as follows:

• Developing a new type of constrained matrix games.
• Formulating a simplified mathematical model, more suitable for numerical com-
putations of saddle point. Indeed, since the fuzzy random constraints do not de-
fine crisp feasible sets, we assume that the constraints will hold with probability-
possibility levels.

• Giving sufficient conditions to obtain an equivalent deterministic constrainedmatrix
game.

• Solving the derived constrained matrix game using second-order cone program-
ming.

• Illustrating the methodology using an example of a competitive situation between
two firms.

Apart from the introductory section, the present paper is organized as follows. Section
2 provides a review of notations and definitions related to constrained matrix games and
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fuzzy random variables. The third section presents the constrained matrix game, where
the strategy sets are subject to fuzzy random linear constraints. Then, a new constrained
matrix game with respect to probability-possibility constraints is proposed and a kind of
saddle point is introduced. In the fourth section, sufficient existence conditions of the
proposed solution are given. In section 5, a second-order cones programs method is pre-
sented to compute this solution. In Section 6, an illustrative example is discussed to show
the effectiveness of our study. Section 7discusses related work. Finally, a conclusion is
made in Section 8.

2. PRELIMINARY DEFINITIONS

In this section, we will review fundamental definitions related to matrix games, con-
strained matrix games, fuzzy sets, and fuzzy numbers.

2.1. Constrained Matrix Games (CMG)

This subsection reviews some of the fundamental terms and definitions used in our
paper, particularly in the context of matrix games and constrained matrix games. The
reader is referred to the work of Verma and Kumar [47] and Bector and Chandra [53] for
different notations, terminology, and fundamentals related to this subject.

Let Rn denote the n-dimensional euclidean space and Rn
+ be its non-negative orthant.

Assume that A = [aij ] ∈ Rm×n be an (m × n) real matrix and eT = (1, 1, ..., 1) be a
vector of ‘ones’ whose dimension is specified as per the specific context.

The triplet G = (P,Q,A), where P = {p ∈ Rm
+ , eT p = 1} and Q = {q ∈

Rn
+, e

T q = 1}, is referred to as a crisp two-person zero-sum matrix game G.
P (respectively Q) is said the strategy space for player I (respectively player II) and

A is called the payoff matrix. Hence, for Player I (or Player II), the elements of P (or
Q) that have the form p = (0, 0, · · · , 1, · · · , 0)T = ei, where 1 is at the ith position (or,
alternatively, q = (0, 0, · · · , 1, · · · , 0)T = ej , where 1 is at the jth place) are referred to
be pure strategies.

In a situation where player I selects ith pure strategy and player II selects jth pure
strategy, the amount that player II pays player I is denoted by aij . In a zero-sum game,
player I’s payment to player II equals −aij ; that is, one player’s gain is another player’s
loss.

Since elements of P (respectively Q) are set of all probability distribution over I =
{1, 2, ...,m} (respectively J = {1, 2, ..., n}), the quantity E(p, q) = pTAq is termed the
expected payoff of player I by player II .

Furthermore, it is a common assumption to assume that player I maximizes while
player II minimizes. The expected payoff for player I is equal to the expected loss for
player II since player I is the maximizing player and player II is the minimizing player.
The triplet PG = (I, J,A) is called the pure form of the game G, whenever G is the
mixed extension of the pure game PG.

The triplet G = (P,Q,A) represents a two-person zero-sum game, often known as
a matrix game. Where P refers to the mixed strategy space of player I , Q refers to the
mixed strategy space of player II , and A refers to the payoff matrix which introduces the
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function E : P ×Q → R given by E(p, q) = pTAq =

n∑
j=1

(

m∑
i=1

piaij)qj , which is known

as the expected payoff function, where T represents the transpose operator.
In some real-world matrix game problems, player strategies are constrained by linear

inequalities, rather than being in P or Q. These situations involve constrained matrix
games, a model initialy examined by Charnes [39]. The mathematical description of this
game is as follows. Players I and II must select their mixed strategies, p and q, from
constrained sets defined by linear inequalities. Assuming that B ∈ Rr×m, b ∈ Rr, and
r is a positive integer, let S1 = {p ∈ P, Bp ≤ b} represent the constrained set of
strategies for player I . The constrained set of strategies for player II is represented as
S2 = {q ∈ Q|Dq ≥ d}, where d ∈ Rs, D ∈ Rs×n, and s is a positive integer. The
expected payoff for player I , if he chooses any mixed strategy p ∈ S1 and player II
chooses any mixed strategy q ∈ S2 is defined as follows

pTAq =

i=m∑
i=1

j=n∑
j=1

piaijqj .

We denote this game by CMG = (S1, S2, A).
The purpose of player I (resp. player II) in this game is to find a strategy p (resp. q)

that solves the linear programming problem (P1)(resp. (P2)) given a strategy q (resp. p)
of player II (resp. player I).

(P1)


max
p

pTAq

subject to
Bp ≤ b
p ∈ P

, (P2)


min
q

pTAq

subject to
Dq ≥ d
q ∈ Q

Definition 2.1. (Owen,1982) Assume that there exist a mixed strategies p∗ ∈ S1 and
q∗ ∈ S2 so that

p∗TAq∗ = max
p∈S1

min
q∈S2

(pTAq) = min
q∈S2

max
p∈S1

(pTAq).

Then, (p∗, q∗) and v = p∗TAq∗ are said a saddle point and a value of the constrained
matrix game CMG, respectively.

2.2. LR-Fuzzy Numbers

We review some properties and concepts of fuzzy set theory in this section since they
are crucial to understanding the proposed approach.

Definition 2.2. [4] Let U be a universe set. A fuzzy set Ã in U is a set of ordered pairs,
Ã = {(x, µÃ(x))/x ∈ U}, where the function µÃ : U 7→ [0, 1] is called membership
function, which assigns to each elements x ∈ U a real number µÃ(x) in the interval
[0, 1]. The value µÃ(x) is the degree of membership of x in Ã.
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A fuzzy set that is convex and normal is called a fuzzy number [4]. In the following
definition, we recall an important class of fuzzy numbers.

Definition 2.3. [5] (Dubois& Prade, 1979) A LR-fuzzy number is a fuzzy number ã with
membership function µã given as

µã(t) =

{
L(a−t

α ) if t ≤ a,
R( t−a

β ) if t ≥ a,

where a is the mean value of ã, α and β (non negative) are its left and right spreads,
respectively,L andR are the left and right shape functions, respectively, defined as follows
L,R : [0, 1] −→ [0, 1] with L(1) = R(1) = 0 and L(0) = R(0) = 1 are decreasing and
continuous.
Using its mean value, left and right spreads, and shape functions, a LR-fuzzy number ã
is written as ã = (a, α, β)LR.

In the following, we recall an important concept for fuzzy numbers ranking.

Definition 2.4. [54] (Dubois&Prade, 1978) Theα-cut, α ∈ [0, 1], of aLR-fuzzy number
ã = (a, α1, β1) is a closed interval defined by

aα = {x|µA(x) ≥ α} = [aLα, a
R
α ],

For a LR-fuzzy number with invertible and non-increasing functions L and R, the α-cut
is given as

[aLα, a
R
α ] = [a− α1L

−1(α), a+ β1R
−1(α)].

We recall Sakawa’s [55] lemma for ranking fuzzy numbers.

Lemma 2.1. (Sakawa, 1993) Let λ̃1 and λ̃2 be two fuzzy numbers with continuous mem-
bership functions. For a given confidence level α ∈ [0, 1] :
Pos{λ̃1 ≥ λ̃2} ≥ α if and only if λR

1,α ≥ λL
2,α,

Nec{λ̃1 ≥ λ̃2} ≥ α if and only if λL
1,1−α ≥ λR

2,α,

where λR
1,α, λ

L
1,α and λR

2,α, λ
L
2,α are the left and the right side endpoints of the α-level sets

(α-cuts) [λR
1,α, λ

L
1,α] and [λR

2,α, λ
L
2,α], of λ̃1 and λ̃2, respectively.

The concept of a fuzzy random variable was initially introduced by Feron [31]. Subse-
quently, many scholars have extended and applied this concept to model situations where
both fuzziness and randomness coexist. In this work, we will use the definition of Liu and
Liu liu [33].

Definition 2.5. [33] Let (Ω,A, P r) be a probability space. A fuzzy random variable ξ
is a mapping function ω −→ ξ(ω), ω ∈ Ω, from (Ω,A, P) to the set of fuzzy numbers
P(R) in the set of real line. such that for any Borel set B of R, and pos{ξ(ω) ∈ B} is a
measurable function of ω.

We consider the following definition of a LR-fuzzy random variable [56].
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Definition 2.6. [56] Let a be a random variable, the realization of which, for a given
event ω ∈ Ω is a(ω). Then, a fuzzy random variable Z is said to be a L-R fuzzy random
variable, denoted by Z = (a, α, β)LR, if its realized values Z(ω) = (a(ω), α, β)LR for
any event ω ∈ Ω are L-R fuzzy numbers defined by

µZ(t) =

{
L(a(ω)−t

α ) if t ≤ a(ω),

R( t−a(ω)
β ) if a(ω) ≤ t,

where α and β are positive constants.

3. CONSTRAINED MATRIX GAMES WITH FUZZY RANDOM LINEAR
CONSTRAINTS

In the constrained matrix game CMG = (S1, S2, A), assume that the entries of the
matricesB andD that define, respectively, the player I and player II constraints are fuzzy
random variables and are denoted by B̃w and D̃w, respectively. We take into consideration
the scenario where each player wants to maximize his payoff such that each of his fuzzy
random constraint is satisfied with a given probability-possibility. So, the fuzzy random
constraints of each player are replaced with the individual chance constraints.

For a given strategy q (resp. p) of player II (resp. player I), player I (resp. player II)
is searching for a strategy p (resp. q ) that solves an optimization problem (P3) (resp. (P4)
).

(P3)


max pTAq
subject to

Pr{ω|Pos{B̃w
k p ≤ bk} ≥ δ1k} ≥ γ1

k, k ∈ J1,
p ∈ P,

(P4)


min pTAq
subject to

Pr{ω|Pos{D̃w
l q ≥ dl} ≥ δ2l } ≥ γ2

l , l ∈ J2,
q ∈ Q,

where Pos is a fuzzy number possibility measure and Pr is a probability measure.
The kth row of the fuzzy random matrix B̃ω is B̃ω

k = (B̃ω
k1, B̃

ω
k2, ..., B̃

ω
km), k ∈ J1

The lth row of the fuzzy random matrix D̃ω ,D̃ω
l = (D̃ω

l1, D̃
ω
l2, ..., D̃

ω
ln), l ∈ J2

δ1k ∈ [0, 1] is the possibility level for kth constraint of player I , and δ2l ∈ [0, 1] is the
possibility level for lth constraint of player II;
γ1
k ∈ [0, 1] is the probability level for kth constraint of player I , and γ2

l ∈ [0, 1] is the
probability level for lth constraint of player II .
Let δ1 = (δ1k)

r
k=1, δ2 = (δ2k)

s
l=1, δ = (δ1, δ2), γ1 = (γ1

k)
r
k=1, γ2 = (γ2

k)
s
l=1 and

γ = (γ1, γ2).
The above matrix game with individual chance constraints is denoted by Γ(δ, γ). Denote
the player’s strategies sets by
Sm(δ1, γ1) = {p ∈ Rm|p ∈ P, Pr{ω|Pos{B̃ω

k p ≤ bk} ≥ δ1k} ≥ γ1
k, ∀k ∈ J1},

and Sn(δ2, γ2) = {q ∈ Rn|q ∈ Q,Pr{ω|Pos{D̃ω
l q ≥ dl} ≥ δ2l } ≥ γ

(2)
l , ∀l ∈ J2}.
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Remark 3.1. A strategy profile (p∗, q∗) ∈ Sm(δ1, γ1) × Sn(δ2, γ2) is said to be sad-
dle point of the matrix game Γ(δ, γ) if and only if p∗ and q∗ simultaneously solve the
optimization problems (P3) and (P4).

Definition 3.1. A strategy profile (p∗, q∗) ∈ Sm(δ1, γ1)× Sn(δ2, γ2) is saddle point at
δ = (δ1, δ1) ∈ [0, 1]r × [0, 1]s possibility levels and γ = (γ1, γ2) ∈ [0, 1]r × [0, 1]s

probability levels of the game Γ(δ, γ) if

pTAq∗ ≤ p∗TAq∗ ≤ p∗TAq, ∀p ∈ Sm(δ1, γ1), q ∈ Sn(δ2, γ2).

4. EXISTENCE CONDITIONS OF A SADDLE POINT

In Lemma 2, we reformulate the sets strategies of the players under some conditions
on constraint matrices.

Lemma 4.1. Assume that B̃ki(ω) and D̃lj(ω), i = 1, 2, · · · ,m, j = 1, 2, · · · , n, k ∈ J1

and l ∈ J2, are characterized by the following membership functions :

µB̃ki(ω)(t) =

 L(Bki(ω)−t

α
(1)
ki

) if t ≤ Bki(ω), ω ∈ Ω,

R( t−Bki(ω)

β
(1)
ki

) if Bki(ω) ≥ t,

µD̃lj(ω)(t) =

 L(
Dlj(ω)−t

α
(2)
lj

) if t ≤ Dlj(ω), ω ∈ Ω,

R(
t−Dlj(ω)

β
(2)
lj

) if Dlj(ω) ≥ t,

where the row vector Bω
k = (Bω

k1, B
ω
k2, ..., B

ω
km) ∼ N(µ1

k,Σ
1
k), k ∈ J1 follows a multi-

variate normal distribution with location parameter µ1
k ∈ Rm and positive definite scale

matrix Σ1
k. And Dω

l = (Dω
l1, D

ω
l2, ..., D

ω
ln) ∼ N(µ2

l ,Σ
2
l ), l ∈ J2 follow a multivariate

normal distribution with location parameter µ2
l ∈ Rn and positive definite scale matrix

Σ2
l .
Then, for all δ = (δ1, δ2) ∈ [0, 1]r × [0, 1]s and γ = (γ1, γ2) ∈ [0, 1]r × [0, 1]s, we

have

Sm(δ1, γ1) = {p ∈ Rm|p ∈ P, pT (µ1
k − L−1(δ1k)α

(1)
k ) + ϕ−1(γ1

k)||(Σ1
k)

1
2 p|| ≤ bk, ∀k ∈ J1},

Sn(δ2, γ2) = {q ∈ Rn|q ∈ Q, qT (−µ2
l −R−1(δ2l )β

(2)
l )+ϕ−1(γ2

l )||(Σ2
l )

1
2 q|| ≤ −dl, ∀l ∈ J2},

where β
(1)
k = (β

(1)
k1 , β

(1)
k2 , ..., β

(1)
km)T , k ∈ J1, β(2)

l = (β
(2)
l1 , β

(2)
l2 , ..., β

(2)
ln )T , l ∈ J2, α(1)

k =

(α
(1)
k1 , α

(1)
k2 , ..., α

(1)
km)T , k ∈ J1 and α(2)

l = (α
(2)
l1 , α

(2)
l2 , ..., α

(2)
ln )T , l ∈ J2.

Proof. 1) For all k ∈ J1 and l ∈ J2, we have the equivalence Pos{B̃ω
k p ≤ bk} ≥

δ1k ⇐⇒ Pos{
m∑
i=1

B̃ω
kipi ≤ bk} ≥ δ1k. Due to Lemma 2.1, we write
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Pos{
m∑
i=1

B̃ω
kipi ≤ bk} ≥ δ1k

⇐⇒
m∑
i=1

piB
ω
ki − L−1(δ1k)

n∑
i=1

piα
(1)
ki ≤ bk.

Consequently,
Pr{ω ∈ Ω|Bω

k p− L−1(δ1k)α
(1)
k p ≤ bk} ≥ γ1

k

⇐⇒ Pr

(
Bω

k p− pTµ1
k√

pTΣ1
kp

≤
bk + L−1(δ1k)p

Tα
(1)
k − pTµ1

k√
pTΣ1

kp

)
≥ γ1

k.

Since Bω
k p−pTµ1

k√
pTΣ1

kp
follows a univariate normal distribution with parameters 0 and 1 and

ϕ(.) is the distribution function of the normal random variable N(0, 1), we obtain

Pr
(
Bω

k p− L−1(δ1k)p
Tα

(1)
k ≤ bk

)
≥ γ1

k ⇐⇒ ϕ(
bk+L−1(δ1k)α

(1)
k p−pTµ1

k√
pTΣ1

kp
) ≥ γ1

k.

Since Σ1
k � 0, then pTΣ1

kp =‖ (Σ1
k)

1
2 p ‖, hence

Pr
(
Bω

k p− L−1(δ1k)p
Tα

(1)
k ≤ bk

)
≥ γ1

k ⇐⇒

pTµ1
k − L−1(δ1k)p

Tα
(1)
k + ϕ−1(γ1

k)||(Σ1
k)

1
2 p|| ≤ bk,

where ϕ−1(.) is a quantile function of a normal random variable N(0, 1),
Sm(δ1, γ1) = {p ∈ Rm|p ∈ P, pT (µ1

k−L−1(δ1k)α
(1)
k )+ϕ−1(γ1

k)||(Σ1
k)

1
2 p|| ≤ bk, ∀k ∈

J1},
2) For the second player, for all l ∈ J2, similarly as in 1),

−Dω
l q+qTµ2

l√
qTΣ2

l q
is the univariate

normal distribution with parameters 0 and 1 and we show that

Sm(δ2, γ2) = {q ∈ Rn|q ∈ Q, qT (−µ2
l −R−1(δ2l )β

(2)
l )+ϕ−1(γ2

l )||(Σ2
l )

1
2 q|| ≤ −dl, ∀l ∈ J2}.

In the sequel, we assume that the following assumption holds. It guarantees a strong
duality result.
Assumption 1. The sets Sm(δ1, γ1) and Sn(δ2, γ2) are strictly feasible.
Theorem 4.1. Assume that B̃ki(ω) and D̃lj(ω), i ∈ I , j ∈ J , k ∈ J1 and l ∈ J2, are
LR-fuzzy random variables characterized by the following membership functions :

µB̃ki(ω)(t) =

 L(Bki(ω)−t

α
(1)
ki

) if t ≤ Bki(ω), ω ∈ Ω,

R( t−Bki(ω)

β
(1)
ki

) if Bki(ω) ≥ t,

µD̃lj(ω)(t) =

 L(
Dlj(ω)−t

α
(2)
lj

) if t ≤ Dlj(ω), ω ∈ Ω,

R(
t−Dlj(ω)

β
(2)
lj

) if Dlj(ω) ≥ t,
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where
Bω

k = (Bω
k1, B

ω
k2, · · · , Bω

km) ∼ N(µ1
k,Σ

1
k), k ∈ J1 follows a multivariate normal distri-

bution with location parameter µ1
k ∈ Rm and scale matrix Σ1

k ∈ Rm×m (σ1
k � 0);

Dω
l = (Dω

l1, D
ω
l2, · · · , Dω

ln) ∼ Ellip(µ2
l ,Σ

2
l ), l ∈ J2 follows a multivariate normal

distribution with location parameter µ2
l ∈ Rn and scale matrix Σ2

l ∈ Rn×n (Σ2
l � 0).

Then, there exists a saddle point at δ possibility levels and γ probability levels for the
game Γ(δ, γ) for all δ ∈ [0, 1]r × [0, 1]s and γ ∈ (0.5, 1]r × (0.5, 1]s.

Proof. For any δ ∈ [0, 1]r × [0, 1]s and γ ∈ (0.5, 1]r × (0.5, 1]s. For all k ∈ J1, we have
• Sm(δ1, γ1) and Sn(δ2, γ2) non empty and are compact sets;
• ϕ−1(γ1

k) ⩾ 0 and using the property of norm ||.||2,
we deduce that the function

F 1
k (p) = +pTµ1

k + L−1(δ
(1)
k )pTα1

k + ϕ−1(γ1
k)||(Σ1

k)
1
2 p||

is a convex function of p. Then Sm(δ1, γ1) is convex.
We follow the same reasoning to show the convexity of Sn(δ2, γ2). Using the mini-

max theorem [2], we can deduce the existence of at least a saddle point since the function
pTAq is continuous.

5. COMPUTATION OF THE SADDLE POINT

By solving two primal-dual programs, as will be detailed below, one may obtain a
saddle point of the game Γ(δ, γ).
Theorem 5.1. Assume that the fuzzy random variables B̃ki(ω) and D̃lj(ω), i = 1, 2, · · · ,m,
j = 1, 2, · · · , n,k ∈ J1 and l ∈ J2, are characterized by the following membership func-
tions :

µB̃ki(ω)(t) =

 L(Bki(ω)−t

γ
(1)
ki

) if t ≤ Bki(ω), ω ∈ Ω,

R( t−Bki(ω)

β
(1)
ki

) if Bki(ω) ≥ t,

µD̃lj(ω)(t) =

 L(
Dlj(ω)−t

γ
(2)
lj

) if t ≤ Dlj(ω), ω ∈ Ω,

R(
t−Dlj(ω)

β
(2)
lj

) if Dlj(ω) ≥ t,

where the row vector Bω
k = (Bω

k1, B
ω
k2, · · · , Bω

km) ∼ N(µ1
k,Σ

1
k), k ∈ J1 follows a

multivariate normal distribution with location parameter µ1
k ∈ Rm and positive definite

scale matrix Σ1
k ∈ Rm×m (σ1

k � 0). And Dω
l = (Dω

l1, D
ω
l2, ..., D

ω
ln) ∼ N(µ2

l ,Σ
2
l ),

l ∈ J2 follows a multivariate normal distribution with location parameter µ2
l ∈ Rn and

positive definite scale matrix Σ2
l ∈ Rn×n (Σ2

l � 0).
Then, for a given δ ∈ [0, 1]r× [0, 1]s, γ ∈ (0.5, 1]r×(0.5, 1]s, (p∗, q∗) is a saddle point of
the game Γ(δ, γ) if and only if there exists (υ1∗, (ρ1∗k )pk=1, λ

1∗) and (υ2∗, (ρ2∗l )ql=1, λ
2∗)

such that (q∗, υ1∗, (ρ1∗k )pk=1, λ
1∗)) and (p∗, υ2∗, (ρ2∗l )ql=1, λ

2∗) are optimal solutions of
primal-dual pair of SOCPs (P) and (D) respectively.
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(P )



min
υ1,(ρ1

k)
r
k=1

υ1 −
r∑

k=1

λ1
kbk

s.t. (i) Aq +

r∑
k=1

λ1
k(µ

1
k − L−1(δ1k)α

(2)
k )−

r∑
k=1

(
Σ1

k

) 1
2 (ρ1k) ≥ υ11m,

(ii) − qT (µ2
l −R−1(δ

(2)
l )β

(2)
l ) + ϕ−1(γ2

l )||(Σ2
l )

1
2 q|| ≤ −dl, ∀l ∈ J2,

(iii) ||ρ1k|| ≥ λ1
kϕ

−1(γ1
k), ∀k ∈ J1,

(iv)
∑
j∈J

qj = 1,

(v) qj ≥ 0, ∀j ∈ J ,

(vi) λ1
k ≥ 0, ∀k ∈ J1,

where 1m = (1, · · · , 1) ∈ Rm.

(D)



max
υ2,(ρ2

l )
s
l=1

υ2 +

r∑
l=1

λ2
l dl

s.t. (i) AT p−
s∑

l=1

λ2
l (µ

2
l −R−1(δ2l )β

(2)
l )−

s∑
l=1

(
Σ2

l

) 1
2 (ρ2l ) ≤ υ21n,

(ii) pT (µ1
k − L−1(δ1k)α

(1)
k ) + ϕ−1(γ1

k)||(Σ1
k)

1
2 p|| ≤ bk, ∀k ∈ J1,

(iii) ||ρ2l || ≤ λ2
l ϕ

−1(γ2
l ), ∀l ∈ J2,

(iv)
∑
i∈I

pi = 1,

(v) pi ≥ 0, ∀i ∈ I,
(vi) λ2

l ≥ 0, ∀l ∈ J2,

where 1n = (1, · · · , 1) ∈ Rn.

Proof. Assume that γ ∈ (0.5, 1]r × (0.5, 1]s and δ ∈ [0, 1]r × [0, 1]s. According to
Definition 2.1, a strategy profile (p∗, q∗) is a saddle point for game Γ(δ, γ) if and only if

p∗Aq∗ = max
p∈Sm(δ1,γ1)

min
q∈Sn(δ2,γ2)

pTAq = min
q∈Sn(δ2,γ2)

max
p∈Sm(δ1,γ1)

pTAq,

and
p∗ ∈ arg max

p∈Sm(δ1,γ1)
pTAq∗,

p∗ ∈ arg min
q∈Sn(δ2,γ2)

p∗
T

Aq.

Considering δ ∈ [0, 1]p × [0, 1]q and γ ∈ (0.5, 1]r × (0.5, 1]s, the constraints
pT (µ1

k − L−1(δ1k)α
(1)
k ) + ϕ−1(γ1

k)||(Σ1
k)

1
2 p|| ≤ bk, k ∈ J1, and

qT (−µ2
l − R−1(δ2l )β

(2)
l ) + ϕ−1(γ2

l )||(Σ2
l )

1
2 q|| ≤ −dl, l ∈ J2 are, as noted in [57],

second-order cone constraints.
Based on the second-order cone programming (SOCP) dual formulation provided in

[57], the Lagrangian dual of the SOCP max
p∈Sm(δ1,γ1)

pTAq is also SOCP [58].
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According to Assumption 1, the duality gap is zero. Therefore, the
max

p∈Sm(δ1,γ1)
min

q∈Sn(δ2,γ2)
pTAq problem is equivalent to the following SOCP :

(P )



min
υ1,(ρ1

k)
r
k=1

υ1 −
r∑

k=1

λ1
kbk

s.t. (i) Aq +

r∑
k=1

λ1
k(µ

1
k − L−1(δ1k)α

(2)
k )−

r∑
k=1

(
Σ1

k

) 1
2 (ρ1k) ≥ υ11m,

(ii) − qT (µ2
l −R−1(δ

(2)
l )β

(2)
l ) + ϕ−1(γ2

l )||(Σ2
l )

1
2 q|| ≤ −dl, ∀l ∈ J2,

(iii) ||ρ1k|| ≥ λ1
kϕ

−1(γ1
k), ∀k ∈ J1,

(iv)
∑

j∈J qj = 1,

(v) qj ≥ 0, ∀j ∈ J ,

(vi) λ1
k ≥ 0, ∀k ∈ J1,

where 1m = (1, · · · , 1) ∈ Rm.
Applying the same argument to the player II model, the max

q∈Sm(δ1,γ1)
min

q∈Sn(δ2,γ2)
pTAq

problem is equivalent to the following SOCP :

(D)



max
υ2,(ρ2

l )
q
l=1

υ2 +

s∑
l=1

λ2
l dl

s.t. (i) AT p−
s∑

l=1

λ2
l (µ

2
l −R−1(δ2l )β

(2)
l )−

s∑
l=1

(
Σ2

l

) 1
2 (ρ2l ) ≤ υ21n,

(ii) pT (µ1
k − L−1(δ1k)α

(1)
k ) + ϕ−1(γ1

k)||(Σ1
k)

1
2 p|| ≤ bk, ∀k ∈ J1,

(iii) ||ρ2l || ≤ λ2
l ϕ

−1(γ2
l ), ∀l ∈ J2,

(iv)
∑
i∈I

pi = 1,

(v) pi ≥ 0, ∀i ∈ I,
(vi) λ2

l ≥ 0, ∀l ∈ J2,

where 1n = (1, · · · , 1) ∈ Rn.
The SOCPs (P) and (D) are primal-dual pair of optimization problems.
Let (p∗, q∗) be a saddle point of game Γ(δ, γ).
With respect to Assumption 1, there is (υ1∗, (ρ1∗k )rk=1, λ

1∗) and (υ2∗, (ρ2∗l )sl=1, λ
2∗)

such as (q∗, (υ1∗, (ρ1∗k )rk=1, λ
1∗)) and (p∗, υ2∗, (ρ2∗l )sl=1, λ

2∗) are optimal solutions of
primal-dual pair (P) and (D) respectively.

Consider (q∗, υ1∗, (ρ1∗k )rk=1, λ
1∗) and (p∗, υ2∗, (ρ2∗l )sl=1, λ

2∗) be optimal solutions of
the primal-dual pair (P) and (D), respectively.

Assumption 1 states that (P) and (D) are strictly feasible. Thus, for the primal-dual
pair (P)-(D), strong duality holds [57]. Next up, we have

υ1∗ −
r∑

k=1

λ1∗
k bk = υ2∗ −

s∑
l=1

λ2∗
l dl.
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Multiplying the constraint (i) from (P) by the vector p∗T from the left, we obtain

p∗TAq∗ +

r∑
k=1

λ1
kp

∗Tµ1
k −

r∑
k=1

λ1
kL

−1(δk1)p∗Tα
(1)
k −

r∑
k=1

(
Σ1

k

) 1
2 p∗T (ρ1∗k ) ≤ υ1∗

⇐⇒ p∗TAq∗ ≤ υ1∗ −
r∑

k=1

λ1∗
k p∗Tµ1

k +

r∑
k=1

λ1
kL

−1(δ1k)p
∗Tα

(1)
k +

r∑
k=1

(
Σ1

k

) 1
2 p∗T (ρ1∗k )

⇐⇒ p∗TAq∗ ≤ υ1∗−
r∑

k=1

λ1∗
k p∗Tµ1

k+

r∑
k=1

λ1
kL

−1(δ1k)p
∗Tα

(1)
k +

r∑
k=1

λ1∗ϕ−1(γ1
k)||(Σ1

k)
1
2 p∗||

⇐⇒ p∗TAq∗ ≤ υ1∗ −
r∑

k=1

λ1∗
k bk.

Let us consider the constraint (i) of (D)

AT p∗ −
s∑

l=1

λ2∗
l µ2

l −
s∑

l=1

λ1
lR

−1(δ2l )β
(2)
l −

s∑
l=1

(
Σ2

l

) 1
2 (ρ2∗l )T ≥ υ∗21n.

By using the argumentation shown above, we arrive at

p∗TAq∗ ≥ υ2∗ −
s∑

l=1

λ2∗
l dl.

Thus
p∗TAq∗ = υ1∗ −

r∑
k=1

λ1∗
k bk = υ2∗ −

s∑
l=1

λ2∗
l dl.

It is clear that, pTAq∗ ≤ pT∗Aq∗, ∀p ∈ Sm(δ1, γ1)) and, pT∗Aq∗ ≤ pT∗Aq, ∀q ∈
Sn(δ2, γ2)). (p∗, q∗) is a saddle point of the game Γ(δ, γ).

6. NUMERICAL ILLUSTRATION

In this section, inspired by the idea in [43], we provide an example to illustrate the
feasibility of the proposed approach.

Consider a situation where two competing companies are about to launch a new prod-
uct with similar functionalities. In the target market, the demand for this innovative prod-
uct remains essentially constant. This implies that any increase in one company’s market
share directly corresponds to an equivalent decrease in the market share of the other com-
pany. Each company aims to attract as many customers as possible by choosing a strategy
from its set of marketing strategies, such as advertising, offering free samples, special
promotions, etc.

For the sake of simplicity, let’s assume that each company has two marketing strate-
gies. Specifically, I = {1, 2} represents the pure strategy set for player I (firm f1), and
J = {1, 2} represents the pure strategy set for player II (firm f2).
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The allocation of funds amongmarketing strategies within a company is determined by
its mixed strategy. Due to the imprecision of the available information, the management
of firm f1 (resp. f2) cannot provide the exact amount of money required by the imple-
mentation of strategies 1 and 2. Therefore, LR-fuzzy random variables are appropriate to
represent these funds.

Let B̃ω
11 = (N(62, 2), 26, 41)LR and B̃12 = (N(43, 3), 28, 22)LR be the funds which

firm f1 needswhen it selects strategy 1 and 2, respectively. And the firm f2 needs the funds
D̃11 = (N(28, 3), 31, 30)LR and D̃12 = (N(2, 0.5), 15, 40)LR when it takes strategy 1
and 2, respectively.

Furthermore, because of financial constraints, firm f1 has a limited budget of 40, 000
(thousand dollars). As a result, the mixed strategies used by firm f1 must satisfy the
constraint condition B̃ω11p1 + B̃ω12p2 ≤ 40. The firm f2 only provides 17 (thousand
dollars), the mixed strategies of the firm f2 may satisfy the constraint conditions D̃ω

11q1+
D̃ω

12q2 ≤ 17 or −D̃ω
11q1 − D̃ω

12q2 ≥ −17.
Assuming that the payoff matrix and the data for this game are provided as follows:

A=
(
18 23
16 14

)
∑1

1 =

(
14 2
2 14

)
,
∑2

1 =

(
9 7
7 9

)
,

µ1
1 =

(
16
18

)
, µ2

1 =

(
10
12

)
, α1

1 =

(
3
2

)
, β1

1 =

(
12
2

)
, α2

1 =

(
13
5

)
, β2

1 =

(
7
12

)
,

b =
(
16
)
, d =

(
14
)
.

The saddle point (p∗, q∗) = (0.4989, 0.5011), (0.3943, 0.6057) is obtained by selecting
(δ11 , δ

2
1) = (0.8, 0.8), (γ1

1 , γ
2
1) = (0.6, 0.6), and solving the primal-dual programs in

equations (P ) and (D). Additionally, v∗(δ, γ) = 17.9015 is the game’s value.

7. RELATEDWORK

Finite two-person games involving fuzziness and randomness are analysed in [34, 24,
35, 36, 38, 37]. In the present work, following the methodology proposed by Achemine
and Larbani [37], it is assumed that the realizations of the fuzzy random variables are
LR-fuzzy numbers whereas the works [34, 24, 35, 36, 38] deal with the uncertainty of
basic type, the triangular fuzzy numbers. Further, the works in [34, 24, 35, 36, 38, 37]
analyze matrix games and bimatrix games where the payoffs are fuzzy random variables,
while in the present approach, we focus on constrained matrix games, where the payoffs
are deterministic, and the entries of the constraint matrices are fuzzy random variables. To
deal with matrix games with fuzzy random payoffs, Mondal and Roy [35], Xu and Li [24],
and Xu et al. [34], used the expected value operator to define the fuzzy random expected
minimax equilibrium and examine its existence and computation whereas our proposed
methodology, as the approach outlined in [37], relies on chance constraints utilizing both
probability and possibility measures. A noteworthy advantage of our suggested method
is its flexibility, enabling the players to select both probability and possibility confidence
levels at which they desire the constraints to be satisfied.
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8. CONCLUDING REMARKS AND FUTUREWORK

In the theory of constrained matrix games introduced by Charnes [39], the linear con-
straints on the sets of strategies are assumed to be known with certainty. However, in
many real-life situations, this assumption is not realistic. In this paper, we focus on matrix
games where strategy sets are subject to fuzzy random linear constraints. Each player aims
to maximize his payoff. Given that fuzzy random constraints do not define a crisp feasible
set, we assume that the constraints hold at probability-possibility levels.The main results
of this paper can be summarized in the following four aspects: (i) A new deterministic
game is formulated considering probability-possibility constraints, and a specific type of
saddle point equilibrium is introduced (ii) Sufficient existence conditions for this concept
are derived; (iii) a second order cone programmingmethod is provided to compute the pro-
posed solution; (iv) an example of an application is presented to illustrate our approach.
Remarkably little attention has been given to fuzzy random matrix games, and to the best
of our knowledge, our approach is the first in the literature to address constrained matrix
games with fuzzy random constraints. The present study theoretically presents a novel
method for addressing fuzzy random constrained matrix games. However, the proposed
methodology is highly reliant on the selection of confidence levels, potentially leading to
a loss of valuable fuzzy random information. Moreover, within this approach, we deal
with a normal distribution where the realizations are LR-fuzzy numbers. Consequently,
further research and development are necessary to elaborate models and approaches that
better reflect fuzziness and randomness. Moreover, as matrix games with fuzzy random
constraints are a relatively new class of games, their further exploration is a worthy direc-
tion of research.
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