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concludes that the suggested approaches can manage fuzzy multi-objective shortest path
problems competently and efficiently with a solid yield, allowing the decision maker to
make a decision based on its aspiration level.
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1. INTRODUCTION

The challenge of discovering the Shortest Path (SP) between two vertices in a
network is one of graph theory’s most significant and crucial combinatorial network
optimization problems. It has several applications in routing, wireless networks,
supply chain management, transportation, and communications. Thousands of
people suffer every day to navigate their cities’ sources and destinations. Many
software applications tackle this problem by representing the city as a graph and
giving each arc on the graph a cost. Traditionally, it has been assumed that the
arc traversal costs can be expressed as crisp numbers. The SP Problem (SPP)
with crisp weights is known as conventional SPP. In the 1950s and 1960s, the
examination of conventional SPP reviewed some robust computations made by
Bellman [1], Dijkstra et al. [2], Floyd [3], and Dreyfus [4]. Edsger W. Dijkstra
developed the Dijkstra algorithm [2] in 1956 for identifying the SPs between ver-
tices in a graph, and it was published three years later. In most cases, the time
required to complete a road journey is a cost. Google Maps, Waze, and TomTom
are all navigation apps that work the same way. Another well-known component
that can be gradually reduced using this technique is distance. The disadvantage
of the Dijkstra algorithm is that it can not handle a negative weight edge graph.
The Bellman-Ford algorithm [1] works on negative edges, but when dealing with
negative cycle graphs, it does not produce the expected results. Floyd-Warshall
algorithm [3] is used to compute the SP between each vertex, whereas the Dijkstra
algorithm is used to compute the SP between a single vertex and each of the other
vertices. Dijkstra algorithm has a significantly higher space overhead than the
Floyd-Warshall algorithm.

Reducing travel time (or distance) is not the only crucial factor. Most individ-
uals wish to reduce fuel expenses, travel on safer roads (risk), and simultaneously
accomplish multiple objectives. As a result, in real-world situations, SPP relies
on various factors; hence it is referred to as a multi-objective SPP (MOSPP).
Hansen [5] was the first to describe the MOSPP in 1980. This work includes
the primary label-setting algorithm for bi-objective SPPs. Martins [6] summed
up the previous algorithm for MOSPP. Serafini [7] conveyed that the MOSPP is
NP -complete. Later on, a few analysts contributed to the research of MOSPP
[8, 9, 10, 11]. These works have significantly contributed to enhancing the im-
portance of single/multi-objective SPP, which is crucial to the network theory.
Subsequently, Sedeno-Noda and Colebrook [12] presented the bi-objective Dijk-
stra algorithm to reduce the hypothetical running time compared to the Dijkstra
algorithm for the bi-objective SPP. The latter algorithm also exceeds the former
algorithm in terms of computational studies. Various ways to deal with MO-
SPP could be multi-stage approaches utilizing inclination-based enhancement as
in Pugliese et al. [13] or swarm intelligence graph-based algorithm as introduced
by Ntakolia and Iakovidis [14]. Recently, De las Cases et al. [15] presented an
extension of bi-objective Dijkstra algorithm, a new label-setting algorithm that
is a multi-objective Dijkstra algorithm, to compute a minimum complete set of
efficient pathways for MOSPP.
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Various real-life instances demand us to deal with uncertain parameters, like
strikes, traffic congestion, flood, poor visibility in the winter, uneven roads, road
accidents, or bad human health travelling from one place to another. Consequently,
the quantities time, cost, distance, and risk are imprecise. Fuzzy sets address these
sorts of imprecision in data. As a result, the SPP has been converted into a Fuzzy
SPP (FSPP) in which fuzzy numbers express objective weights. The FSPP was
first examined by Dubois [16] in 1980. However, even if the shortest distance can
be found, a corresponding SP cannot be found. Okada and Soper [17] invented an
algorithm that uses multiple labelling to restrict the number of paths depending on
a possibility level. Researchers like Mahdavi et al. [18] and Tajdin et al. [19] used a
dynamic programming approach to develop a model and algorithm for determining
the SP in a network with various types of fuzzy arc lengths. Likewise, Mukherjee
[20] addressed FSPP by a methodology called the fuzzy programming technique.
Ebrahimnejad et al. address FSPP by particle swarm optimization algorithm [21]
and artificial bee colony algorithm [22]. Several authors [23, 24, 25] etc. have
worked in the field of FSPP. Ebrahimnejad et al. solved SPP in various fuzzy en-
vironments like interval-valued fuzzy networks [26], interval-valued Pythagorean
fuzzy environment [27], interval-valued triangular fuzzy network [28], and mixed
interval-valued fuzzy environment [29]. Sori et al. [30] solved the robot’s fuzzy
constrained routing problem by an elite artificial bee colony algorithm. Ebrahim-
nejad [31] proposed a generalized Dijkstra algorithm to solve SPP with interval
weights. Recently, Lin et al. [32] solved FSPP by genetic algorithm, and Di et al.
[33] solved FSPP by ant colony optimization algorithm.

Fuzzy MOSPP (FMOSPP) is a MOSPP with at least one fuzzy parameter.
There are very few methods available for solving FMOSPPs. Rani and Reddy
[34] examined the FMOSPP, a bi-objective optimization problem with crisp and
trapezoidal fuzzy values. It is used to demonstrate the techniques depending on the
priority and type of the problem so that the DM can choose the most satisfactory
or best solution. Some authors [35, 36, 37] contributed their work in the field
of extended fuzzy MO problems. Recently, Bagheri et al. [38] solved FMOSPP
dependent on the data envelopment analysis approach. They converted FMOSPP
into a single objective FSPP that can be solved using existing FSPP methods. In
literature, the FMOSPP was solved by converting it into a single objective to get
a single solution. However, in this case, the DM does not have the choice to select
other non-dominated solutions. Furthermore, suppose the network contains large
numbers of vertices and edges. In that case, some existing methods become very
complicated for computation (for example, fuzzy programming technique), and
they take more time to solve this problem. Evolutionary genetic approaches are
particularly effective in all these regard since they evolve toward better solutions
by utilizing genetic operators based on natural genetic processes. The genetic
algorithm-based hybrid approach gives us a single solution. The methods Non-
dominated Sorting Genetic Algorithm (NSGA)-II & NSGA-III provide a Pareto
frontier, i.e., all non-dominated solutions in the first front; thus, DM also receives
solutions below its Aspiration Level (AL). In order to overcome these limitations
of existing approaches, this article deals with modified solution techniques for
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FMOSPP. This work proposes AL-based NSGA-II and AL-based NSGA-III. These
methods aim to find the Pareto frontier for FMOSPP, which satisfies the DM’s
AL so that the Decision Maker (DM) can choose the solution as per requirement.

This study aims to present an algorithmic approach for MOSPP in a fuzzy
environment that is effective for practical problems. This article has contributed
the following: (1) FMOSPP has been formulated and solved by considering the
arc weights as TFN in the given network. (2) The initial population has been
produced utilizing the new method. (3) A significant modification has been made
to the selection operator to minimize the program’s execution time. (4) AL-based
NSGA-II and AL-based NSGA-III evolutionary techniques have been developed
to overcome the limitations of Hybrid Genetic Algorithm (HGA), NSGA-II, and
NSGA-III, respectively.

The remaining paper is organized as follows. Section 2 represents the math-
ematical model of FMOSPP. In Section 3, the preliminary concepts of the pos-
sibilistic programming approach, triangular possibilistic distribution, α-level set,
Positive Ideal Solution (PIS) & Negative Ideal Solution (NIS), and Exponential
Membership Function (EMF) are discussed. Section 4 deals with the formulation
of the Multi-Objective (MO) 0-1 programming model. Section 5 describes solu-
tion methods of the auxiliary model, namely the proposed AL-based NSGA-II, and
AL-based NSGA-III. Section 6 presents benchmark instances and computational
complexity of proposed methods. A numerical example, its solutions, and results
& discussion are described in Section 7. Lastly, Section 8-11 represents the sensi-
tivity analysis, comparison, performance measure, and conclusion, respectively.

2. MATHEMATICAL MODEL OF FMOSPP

Let, G = (V,E) be a network, where V represents set of vertices and E repre-
sents set of arcs. Assume that, the network contains s vertices & r arcs. Consider
the starting point is vertex 1, and the ending point is vertex s and our aim is to
discover the SP between these two vertices. A unit of flow enters from outside the
network G at vertex 1 and exits at vertex s. In any arc, only one unit of flow can
be present at a time, so the decision variable should expect binary qualities (0 or
1) in particular. There exists one restriction that covers flow preservation at every
vertex: total input flow equals to total output flow for each vertex u ∈ V . Define,
xuv amount of flow in arc (u, v) ∀ feasible u and v, ˜cuv cost per unit of flow in
the arc (u, v) ∀ feasible u and v in the form of TFN. Consider the four objective
functions: time ˜tuv, cost ˜cuv, distance ˜duv, and risk ˜ruv, which are in form of TFN.
Thus, the mathematical formulation of FMOSPP [39] is given by,
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Formulation of objective function:

min

s∑
u=1

s∑
v=1,v ̸=u

˜tuvxuv, min

s∑
u=1

s∑
v=1,v ̸=u

˜cuvxuv,

min

s∑
u=1

s∑
v=1,v ̸=u

˜duvxuv, min

s∑
u=1

s∑
v=1,v ̸=u

˜ruvxuv

Model constraints:
r∑

v=1

x1v −
s∑

k=1

xk1 = 1, (1)

r∑
v=1

xuv −
s∑

k=1

xku = 0, u ̸= 1, s , (2)

r∑
v=1

xsv −
s∑

k=1

xks = −1, (3)

xuv = 0 or 1, u, v = 1, 2, ..., s. (4)

xuv = 0 or 1, indices that arc (u,v) is in path or not respectively.
where, ˜tuv = (touv, t

m
uv, t

p
uv), ˜cuv = (couv, c

m
uv, c

p
uv) , ˜duv = (douv, d

m
uv, d

p
uv), ˜ruv =

(rouv, r
m
uv, r

p
uv), denotes TFN for time, cost, distance, risk parameter respectively.

Decision Problem:
Model 1:
The FMOSPP is now formulated as follows:

min(z̃1, z̃2, z̃3, z̃4) =min
( s∑
u=1

s∑
v=1,v ̸=u

˜tuvxuv,

s∑
u=1

s∑
v=1,v ̸=u

˜cuvxuv,

s∑
u=1

s∑
v=1,v ̸=u

˜duvxuv,

s∑
u=1

s∑
v=1,v ̸=u

˜ruvxuv
)

subject to the constraints (1)-(4).

3. PRELIMINARIES

3.1. Possibilistic Programming Approach

In most cases, collecting data on real-world situations involves some level of
risk. Because of their nature, many forms of data cannot be specified and are
hence represented by fuzzy numbers. A possibility distribution is used to model
these sorts of fuzzy numbers [40]. The probabilistic distribution has been utilized
for solving fuzzy advancement models with uncertain coefficients in the objective
function with a wide variety of key applications. Using the possibilistic technique,
the FMOSPP model was turned into an auxiliary crisp MO Optimization (MOO)
model [41].
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3.2. Triangular Possibilistic Distribution (TPD)

Since the uncertain parameters are not defined precisely, the TPD is usually
utilized because of its effortlessness and computational viability in acquiring in-
formation. In sensible conditions, a DM can build the TPD by utilizing the most
optimistic value (o) (possibility degree = 0), most likely value (m) (possibility
degree = 1), and the most pessimistic value (p) (possibility degree = 0) respec-
tively which is generally denoted by (coi ), (c

m
i ), and (cpi ). From Figure 1, at three

positions (cmi , 1), (c
o
i , 0) and (cpi , 0) defined an objective function cost which is min-

imized by moving the three places of TPD to the left since vertical directions of
the focuses are fixed by 0 or 1. Consequently, just the three horizontal coordinates
are assumed.

                                

                            

1 
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o

 Ci
m 

 

Ci
p 

 

𝐶̃𝑖 

µ𝑐𝑖̃  

 

 

 

Figure 1: TPD of c̃i

3.3. α-level Set

Zadeh [42] provided a α-level set which is the fundamental hypothesis for estab-
lishing a relationship between traditional and fuzzy set theories. The α-level, also
known as the confidence level, represents the DM’s assurance regarding his fuzzy
judgement. The lowest α-value indicates a significant amount of pessimism and
uncertainty by providing an interval judgement with huge savings. The greatest
α-value results in a lower but more optimistic judgement, with the lower and up-
per bounds having a higher degree of membership in the original fuzzy sets. Some
researchers, Lai and Hwang [43]; Tailor and Dhodiya [44]; Rekh and Dhodiya [45]
employed this α-level concept for addressing fuzzy optimization problems. Simi-
larly, this idea is utilized in the current article to decide the DM’s confidence in
his fuzzy judgement.

3.4. Positive and Negative Ideal Solution

The objective function’s minimum value is known as PIS, while its maximum
value is known as NIS. For every objective function, both values are utilized to
derive the value of the membership function.
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3.5. Exponential Membership Function

The EMF µzk(x) can be used to normalize data relating to the given problem.
If the number zNIS

k and zPIS
k stands for NIS and PIS respectively for objective zk

, then the µzk(x) is represented as below,

µzk(x) =


1, if zk ≤ zPIS

k ,
e−skψk(x)−e−sk

1−e−sk
, if zPIS

k < zk < zNIS
k ,

0, if zk ≥ zNIS
k .

(5)

where, ψk(x) =
zk−zPISk

zNISk −zPISk

, 0 ≤ µzk(x) ≤ 1 and sk ̸= 0 , the DM’s shape pa-

rameter. Furthermore, the membership function will be convex and concave as
appropriate for sk < 0 and sk > 0 in [zPIS

k , zNIS
k ].

4. FORMULATION OF MO 0-1 PROGRAMMING MODEL

The TPD strategy handles fuzzy objectives to formulate the auxiliary crisp
MOO model of Model 1. The objective function of distance is represented as,

min z̃3 = min(zo3 , z
m
3 , z

p
3) =

s∑
u=1

s∑
v=1,v ̸=u

˜duvxuv

= min(

s∑
u=1

s∑
v=1,v ̸=u

douvxuv,

s∑
u=1

s∑
v=1,v ̸=u

dmuvxuv,

s∑
u=1

s∑
v=1,v ̸=u

dpuvxuv),

(6)

where ˜duv = (douv, d
m
uv, d

p
uv), this can be also written as,

(min z31,min z32,min z33) = min
( s∑
u=1

s∑
v=1,v ̸=u

douvxuv ,

s∑
u=1

s∑
v=1,v ̸=u

dmuvxuv ,

s∑
u=1

s∑
v=1,v ̸=u

dpuvxuv
)
, (7)

The equations (6) and (7) represented the optimistic, most likely, and pessimistic
scenario.
Utilizing the α-level set scenario, each ˜duv can be written as ( ˜duv)α = ((duv)

o
α, (duv)

m
α ,

(duv)
p
α), where (duv)

o
α = (duv)

o +α((duv)
m− (duv)

o), (duv)
m
α = (duv)

m, (duv)
p
α =

(duv)
p − α((duv)p − (duv)

m).
Hence equation (7) becomes:

(min z31,min z32,min z33) = min
( s∑
u=1

s∑
v=1,v ̸=u

(duv)
o
αxuv ,

s∑
u=1

s∑
v=1,v ̸=u

(duv)
m
α xuv ,

s∑
u=1

s∑
v=1,v ̸=u

(duv)
p
αxuv

)
(8)
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Similarly, the MOO Problem (MOOP) model of time, cost, and risk objective
functions are as follows:

(min z11,min z12,min z13) = min
( s∑
u=1

s∑
v=1,v ̸=u

(tuv)
o
αxuv ,

s∑
u=1

s∑
v=1,v ̸=u

(tuv)
m
α xuv ,

s∑
u=1

s∑
v=1,v ̸=u

(tuv)
p
αxuv

)
, (9)

(min z21,min z22,min z23) = min
( s∑
u=1

s∑
v=1,v ̸=u

(cuv)
o
αxuv ,

s∑
u=1

s∑
v=1,v ̸=u

(cuv)
m
α xuv ,

s∑
u=1

s∑
v=1,v ̸=u

(cuv)
p
αxuv

)
, (10)

(min z41,min z42,min z43) = min
( s∑
u=1

s∑
v=1,v ̸=u

(ruv)
o
αxuv ,

s∑
u=1

s∑
v=1,v ̸=u

(ruv)
m
α xuv ,

s∑
u=1

s∑
v=1,v ̸=u

(ruv)
p
αxuv

)
. (11)

Auxiliary MO 0-1 programming model: To formulate crisp MOSPP, known
as auxiliary MO 0-1 programming model, from FMOSPP by utilizing α-level set to
obtain the optimistic, most likely, and pessimistic scenarios, which is represented
by the following:
Model 2:

(min z11,min z12,min z13,min z21,min z22,min z23,

min z31,min z32,min z33,min z41,min z42,min z43) =

min

(
s∑

u=1

s∑
v=1,v ̸=u

(tuv)
o
αxuv,

s∑
u=1

s∑
v=1,v ̸=u

(tuv)
m
α xuv,

s∑
u=1

s∑
v=1,v ̸=u

(tuv)
p
αxuv,

s∑
u=1

s∑
v=1,v ̸=u

(cuv)
o
αxuv,

s∑
u=1

s∑
v=1,v ̸=u

(cuv)
m
α xuv,

s∑
u=1

s∑
v=1,v ̸=u

(cuv)
p
αxuv,

s∑
u=1

s∑
v=1,v ̸=u

(duv)
o
αxuv,

s∑
u=1

s∑
v=1,v ̸=u

(duv)
m
α xuv,

s∑
u=1

s∑
v=1,v ̸=u

(duv)
p
αxuv,

s∑
u=1

s∑
v=1,v ̸=u

(ruv)
o
αxuv,

s∑
u=1

s∑
v=1,v ̸=u

(ruv)
m
α xuv,

s∑
u=1

s∑
v=1,v ̸=u

(ruv)
p
αxuv

)
(12)

subject to the constraints (1)-(4).

5. SOLUTION METHODS FOR AUXILIARY MODEL

This section describes the proposed AL-based NSGA-II and III, which have
been implemented to solve an FMOSPP. These methods use a randomly generated
population of feasible solutions that “evolve” generation by generation toward a
better solution. As a result, the chromosome encoding and generation of the
population are crucial for these methods. Generally, these methods can be applied
to a wide variety of multi-objective optimization problems such as assignment
problems, transportation problems, travelling salesman problems, etc. As some
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problems may require different chromosome encodings, initial populations, and
genetic operators (selection, crossover, and mutation), these may change, but the
procedure of methods will be the same.

5.0.1. Chromosome Encoding

Every chromosome specifies a path between the starting vertex and the ending
vertex. It is a feasible solution that may or may not be optimal. The binary
encoding has been utilized to create a chromosome for FMOSPP. Let xuv denote
the arc from vertex u to vertex v. Create a row vector that contains all the arcs
from a given network orderwise. Consider one feasible path; if arc xuv is present
in the path, the entry is 1, otherwise 0.
For example: Consider the network in Figure 2, and 1→ 2→ 4→ 5→ 7→ 8 is
one feasible path. Generate a row vector that contains all the arcs order-wise from
Figure 2 i.e. (x12, x23, x24, x34, x36, x45, x46, x57, x67, x78). In the above feasible
path, the arcs x12, x24, x45, x57 and x78 are present, so it is replaced by 1 and
others are replaced by 0. As a result, the chromosome becomes [1 0 1 0 0 1 0 1 0 1].

 

1 7 2 

5 

6 

4 

3 

8 

Figure 2: Network Diagram

5.0.2. Initial population:

In this study, the initial population was randomly generated. For that, vectors
of size 1 × (number of arcs) containing entries 0 & 1 are generated using MATLAB
R times (R is a predefined number that is initially defined for a total number of
randomly generated vectors). Check whether the randomly generated vectors are
feasible or not. The distinct feasible vectors are directly included in the population,
and others are discarded. If the population size falls short, repeat the feasible
vectors until the population size is satisfied.

5.1. AL-based NSGA-II
Srinivas and Deb [46] developed NSGA based on Goldberg’s ideas of applying

the non-dominated sorting concept in GAs [47]. The disadvantage of the NSGA
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method is that the σshare parameter must be fixed when using the sharing function
technique. The performance of an NSGA has previously been shown to be sensitive
to the parameter σshare [46]. In order to overcome this, Deb et al. [48] developed
a new method called NSGA-II. The NSGA-II approach provides a Pareto frontier.
Therefore, DM also receives solutions below its AL. Thus, the authors modify the
NSGA-II to fulfill DM’s AL by adding a AL-based constraint µ(x) − µ(x) ≥ 0,
where µ(x) is given AL, so that DM may pick solutions that satisfy its AL, and
this updated method is called AL-based NSGA-II.
For the sake of simplicity, few terms have been defined below in 5.1.1 and 5.1.2.
The crowded distance assignment and procedure of the above method is described
in 5.1.3 and 5.1.4.

5.1.1. Feasibility test

This test determines whether the solution to the given problem is feasible or
not.

5.1.2. Updation of population

Suppose I be the population of size N and x1 is any member of I. If x1 satisfies
the AL-based constraint, it is directly incorporated into updated I and denoted
by I. If the population size of I is not equal to N , then fulfil the remaining size
by adding constraints satisfying xi repeatedly.

5.1.3. Crowded distance assignment

A solution p wins a competition against another solution q if one of the below
conditions is valid:

1. If a solution p has a superior rank.
2. If they have a similar rank, however, solution p has a superior crowding

distance than solution q.

Crowded distance assignment procedure

1. Call l = Cardinality(F ) for the number of solutions in F . For every p in
the set, initially allot crowding distance dp = 0.

2. In worse order of Fr sort the set for every objective function r = 1, 2 · · ·R.
3. For r = 1, 2 · · ·R assign a high distance to the border solutions, then for all

remaining solutions from q = 2 to l − 1, assign

d(Irq ) = d(Irq ) +
f
(Irq+1)
r − f (I

r
q−1)

r

fmax
r − fmin

r

. (13)

The index Iq represents the solution index of the sorted list’s qth item.
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5.1.4. AL-based NSGA-II procedure

A random initial population Io of size N is generated initially. Update the
population Io to Io using 5.1.2. The population Io is then divided into separate
non-domination fronts, and each individual of Io is assigned a fitness level corre-
sponding to their non-domination front. Following that, genetic operations like
selection, crossover, and mutation generate the offspring population Oo from Io of
size N . Test the feasibilty of Oo and then update it to Oo using 5.1.2. Combine Io
and Oo to make the merging set Mo. At generation t, the parent population is It,
the offspring population is Ot, and the merge set isMt(= ItUOt) with a size of 2N .
With the aid of the selection operator, i.e., crowding comparison operator, the N
best individuals are chosen for the next generation among these 2N individuals.
This operator utilizes two criteria,
i) non-domination level/rank jrank
ii) crowding distance jdistance.
In order to achieve this, sort Mt into distinct non-domination fronts. The fitness
of individuals in Mt is equivalent to their non-domination front. So, Fj is the
distinct non-domination front, and j = 1, 2, ...,& so on. Any individual’s non-
domination front determines their jrank in Mt. Assign a jrank to each individual
in Mt according to their fronts. Individuals with a smaller jrank are favoured over
those with higher jrank. Thus front F1 with individuals of jrank 1 is favoured
over front F2 with individuals of jrank 2 and so on for selection in next-generation
It+1. Now, in It+1, add fronts F1, F2, ...,& so on one by one until the size of It+1

equals or exceeds N for the first time. Assume that Fk is the last front added
in It+1 and that all fronts after Fk+1 are rejected. If the size of It+1 is precisely
N , then our It+1 = F1 ∪ F2 ∪ ... ∪ Fk. If the size of It+1 exceeds, then pick
solutions based on their crowding distance criteria (say jdistance) since jrank is
the same for all individuals in Fk. From the front Fk, N − |F1 ∪ F2 ∪ . . . ∪ Fk|
individuals are now required. If a and b are individuals in Fk and arank = brank,
but adistance > bdistance, then a is preferred over b in It+1. The individuals with
the highest crowding distance are eventually chosen from Fk to fill the remaining
individuals in It+1. Finally, for the following generation, the individuals of It are
replaced with those of It+1. Repeat this procedure till it arrives at the stopping
criteria.

This manuscript slightly modified the selection operator to minimize the time
factor. When applying genetic operators to generate the new chromosomes, in-
crease the size of the original population equal to the number of random vectors
generated at the initial population (i.e., R) by taking chromosomes repeatedly.
Later on, for the next step of non-dominating sorting, the population first selects
non-repeated chromosomes from the original and newly formed child populations.
To fulfill the original population size, randomly select the non-repeating chromo-
somes again.
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Algorithm: The following is the algorithm of AL-based NSGA-II to solve
Model 2:

Algorithm 1 AL-based NSGA-II

Require: Objective function, Population size, AL (µ), Shape parameter
Ensure: X,minZuv

1: Read: Model 2
2: Generation = 0; Generate random initial population I0
3: for x ∈ I0 do
4: Evaluate fitness values (f1) of x
5: Find PIS and NIS for every objective function of Model 2
6: Find EMF µ(x)
7: end for
8: Update I0 to I0 using 5.1.2
9: while Termination condition not met do

10: Generation ← Generation+1;
11: Set f ← By applying selection procedure of NSGA-II on I0
12: for x1, x2 ∈ f do
13: x

′

1, x
′

2 ← new offsprings by utilizing crossover on x1 & x2
14: I

′

0 = ∪x′

u where x
′

u is new offsprings from above step
15: end for
16: for y1 ∈ f do
17: y

′

1 ← new offsprings by utilizing bit mutation on y1
18: I”0 = ∪y′

v where y
′

v is new offsprings from above step
19: end for
20: O0 ← I

′

0 ∪ I”0
21: O0 ← Check the feasibility test for O0

22: Update O0 to O0 using 5.1.2
23: At generation t, It ← parent population and Ot ← offspring population.

Merge set Mt ← It ∪Ot

24: Do non-dominated sorting on Mt

25: It+1 ← selection procedure of NSGA-II on Mt to select N best solution
26: end while

5.2. AL-based NSGA-III

Deb and Jain [49] developed an NSGA-III algorithm for sustaining population
diversity that uses a reference-point strategy. NSGA-III generates the Pareto front.
As a result, DM gets solutions that are lower than its AL. This study proposes the
AL-based NSGA-III to prioritize the DM’s AL by adding an AL-based constraint
in the NSGA-III method.

Definition 1. In objective space, a point specified by a DM and provides his/her
ALs toward objective functions is a Reference Point (RP). The RP-based algo-
rithms seek to provide a non-dominated solution set that is as close to an RP
[50].
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NSGA-III begins with a randomly generated population of size N and a collec-
tion of broadly dispersed pre-specifiedM -dimensional RPsH on a unit hyper-plane
with a normal vector of one’s spanning the whole RM+ area. The hyper-plane
touches one point of every objective axis configured. The Das and Dennies [51]
approach is used to locate H =

(
m+p+1

p

)
RPs on the hyper-plane with (p+1) points

along every border. The population size N is selected to be the lowest multiple of
four greater than H, with each RP having a chance of discovering one population
member.

Consider at generation t, where the parent population is indicated by It with
cardinality N . Update It to It using 5.1.2. The offspring population is denoted
by Ot, which is generated from It using genetic operations like crossover and
mutation. Check the feasibility test for Ot and update Ot to Ot using 5.1.2.
Now, merge the parent population It and offspring population Ot to formMt ( i.e.
Mt = It∪Ot ) of cardinality 2N . The main goal of this method is to determine how
to choose N members from Mt for the next generation. To get non-domination
fronts, do Pareto-based non-dominating sorting on Mt, i.e., F1, F2, ...,& so on.
At this point, an empty population St is established. An individual from non-
domination levels is added to St one by one, starting with F1, until the size of
St approaches or surpasses N for the first time. Assume the latest level added
to St is Fl, and all fronts from the level (l + 1)th onwards are rejected. The
final level accepted is lth, which is only partially accepted in certain instances.
The members of the St/Fl population are added to the new population It+1,
and the diversity maintenance operator selects the remaining individuals from Fl.
Use the normalization operator to prepare the environment selection, keeping the
RP and objective points in the same unit range. The zero vector is the ideal
population point St after normalization and specified RPs lie on this normalized
hyper-plane. The perpendicular distance of every individual in St from each RP
line (connecting the RP with the origin) was computed. It was concluded that
individuals are associated with RPs with the shortest perpendicular distance. A
niche preservation process was utilized to select individuals from Fl. ρj is the
niche count for the jth RP and is defined as number of individuals associated
with jth RP from St/Fl. First, identified the minimum ρj value from the RPs set
Jmin = {j : argminjρj}. If |Jmin| > 1 then randomly choose j− ∈ J .
The following two situations are then utilized:

� If, with the jth RP, some individuals in Fl are associated then assume two
cases:

1. If ρj = 0, the one individual from Fl having minimum perpendicular
distance from jth reference line add up into It+1. After that count of
ρj is increased by one.

2. If ρj > 0, randomly choose one individual from Fl which is associated
with jth RP and add up into It+1. After that count of ρj is increased
by one.

� If, with the jth RP, no individuals in Fl are associated, then exclude the
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present RP for the current generation, for the moment Jmin is recalculated,
and j− is reselected.

Repeated this procedure until the remaining individuals of It+1 are filled up. In
this manner, we keep evolving better solutions over generations till we arrive at
stopping criteria.
Algorithm:
The algorithm for the AL-based NSGA-III to solve Model 2 is the same as AL-
based NSGA-II; the only difference is that the selection procedure which occcures
in steps 11 and 25.
Flow chart of the solution procedure of FMOSPP by proposed methods AL-based
NSGA-II & III are given in Figure 3.

Start

Prepare the fuzzy optimization model of FMOSPP, utilizing suitable TPD

Convert FMOSPP into crisp MOSPP as per confidence level α

Calculate the NIS and PIS for every objective function

Using EMF and different shape parameter values, com-
pute the fuzzy membership value for every objective

According to DM, define AL of every fuzzy membership function

Solve the Crisp MOSPP by using
NSGA-II or NSGA-III with one addi-
tional constraint µ(x) − µ(x) = 0

To DM, Represent the solution

Change α level

Is the
solution

acceptable
by DM ?

Is DM
looking

to change
aspiration

level?

Does DM
want to
change
shape

parmeter?

StopYes

No No

Yes

Yes

No

Figure 3: Flow chart of the solution procedure of FMOSPP

17Figure 3: Flow chart of the solution procedure of FMOSPP
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6. BENCHMARK INSTANCES AND COMPLEXITY OF
PROPOSED METHODS

6.1. Benchmark instances

To assess the validity and effectiveness of the suggested methods, we solved
some benchmark instances and compared their solutions with existing ones. The
multi-objective constrained optimization test problem OSY from Deb [52] is con-
sidered to demonstrate the efficiency of AL-based NSGA-II. The AL-based NSGA-
II result is compared to the previous NSGA-II result. The method suggested
provides exact solutions. The only difference is that solutions below DM’s AL
are discarded. We have taken the DM’s AL is [0.95 0.95]. The Pareto fronts of
both approaches are provided in Figure 4 for comparison purposes. The FON
benchmark example from Deb et al. [53] is solved to evaluate the performance
of AL-based NSGA-III. For this example we have taken AL is [0.85 0.85]. The
Pareto fronts for both approaches are shown in Figure 5. The proposed method
provides optimal solutions that meet DM’s AL.
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Figure 4: Pareto fronts for OSY problem [52]
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Figure 5: Pareto fronts for FON problem [53]

6.2. Computational Complexity

The primary criticism against multi-objective evolutionary algorithms that uti-
lize sharing focuses and non-dominated sorting on their computational complexity,
i.e., O(MN3) (where M stands for the number of objectives and N for the size
of the population). NSGA-II has a computational complexity of O(MN2), as
described by Deb et al. [48], whereas NSGA-III offers the same computational
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complexity, as stated in Deb and Jain [49]. An AL-based constraint is incorpo-
rated into NSGA-II and NSGA-III, “if” loop with a computational complexity of 1
is utilized. It does not affect the complexity of the original. Thus, the complexity
of AL-based NSGA-II and AL-based NSGA-III is O(MN2).

7. NUMERICAL ILLUSTRATION FOR FMOSPP

In this section, FMOSPP is considered. This network diagram is taken from
Rekh and Dhodiya [45] for solving SPP with factors time, cost, distance, and risk.
This network has 10 vertices and 13 arcs, as shown in Figure 6. Every arc xuv
denotes the travelled time, cost, distance, and risk from vertex u to vertex v. Here
time, cost, distance, and risk are in the form of TFNs (auv, buv, cuv), where auv,
buv, and cuv represent optimistic value, most likely value, and pessimistic value
respectively. The aggregated fuzzy values for criteria time, cost, distance, and risk
are given in Table 1.
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Figure 6: Source: Network Diagram from Rekh and Dhodiya [45]
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Table 1: Aggregated fuzzy values of time, cost, distance, and risk

Activity Criteria
C1(Time) C2(Cost) C3(Distance) C4(Risk)

0-1 (1,4.333,7) (1200,1833.33,2400) (0,1.67,5) (0,2.33,5)
0-2 (1,3,5) (400,916.67,1450) (1,3.67,7) (1,4.33,7)
0-3 (5,9,14) (250,733.33,1300) (3,7,10) (3,6.33,9)
1-4 (3,6.667,10) (1300,1966.67,2700) (1,4.33,7) (1,3.67,7)
2-4 (9,12.667,18) (1300,1966.67,2700) (3,6.33,9) (5,7.67,10)
2-5 (6,9.333,12) (5000,6166.67,7000) (1,4.33,7) (3,5.67,9)
3-5 (12,16,20) (1200,2000,2800) (1,3,5) (1,5.67,9)
3-7 (10,13.667,17) (1400,2066.67,2700) (1,4.33,7) (1,4.33,7)
4-6 (9,14,19) (700,1166.67,1750) (3,6.33,9) (1,5,9)
5-9 (5,8.33,11) (900,1466.67,2100) (3,5.67,9) (3,6.33,9)
6-9 (6,10.333,16) (1400,2016.16,2600) (5,7.67,10) (5,8.33,10)
7-8 (13,17.667,21) (3000,4000,5000) (5,8.33,10) (5,8.33,10)
8-9 (14,17,20) (2400,3000,3600) (5,7,9) (5,7.67,10)

The model is coded to determine the FMOSPP solution. It is solved using
MATLAB, and all tests are performed on a hp laptop equipped with an Intel(R)
Core i5 10th generation processor operating at 2.60 GHz and 8 GB of RAM. The
following are the key characteristics for addressing the problems: The number of
decision variables (13), the population size (50), the random number population
generation (2000), and the iteration (20).

For α = 0, 0.1, 0.5, and 0.9, Table 2 shows the PIS and NIS for every objective
function. The exponential membership function is defined using these values. The
shortest routes for FMOSPP are presented in table 8 using TPD, with varying
values of the shape parameters and ALs set by the DM. Different values of α (=
0, 0.1, 0.5 & 0.9) are used here to indicate distinct scenarios of DM’s confidence
in fuzzy decisions. The results are calculated by estimating cases of different AL,
and the different shape parameters are listed in Table 3. The notations φ, ϖ, & ϱ
are from Table 8. The notation φ indicates the shortest path 0→ 1→ 4→ 6→ 9.
ϖ indicates the shortest path 0 → 2 → 5 → 9, and ϱ indicates the shortest path
0 → 3 → 5 → 9. Table 8 also indicates the corresponding objective values of the
above-mentioned shortest path for α = 0, 0.1, 0.5, & 0.9.
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Table 2: PIS and NIS values of fuzzy objectives
α-Level Solutions Objectives

z11 z12 z13 z21 z22 z23 z31 z32 z33 z41 z42 z43
0 PIS 14 22.66 30 2350 4200 6200 5 13.67 23 7 16.33 25

NIS 42 57.33 67 7050 9800 12600 14 26.66 36 14 26.66 36
0.1 PIS 14.87 22.66 29.27 2535 4200 6400 5.87 13.67 22.07 7.93 16.33 24.13

NIS 43.54 57.33 70.53 7325 9800 12880 15.23 26.66 35.07 15.27 26.66 35.07
0.5 PIS 18.33 22.66 26.33 3275.01 4200 7200.01 9.335 13.67 18.34 11.67 16.33 20.67

NIS 49.67 57.33 64.66 8425.01 9800 14000 20.33 26.66 31.33 20.33 26.66 31.33
0.9 PIS 21.8 22.66 23.4 4015 4200 8000 18.9 13.67 14.6 15.4 16.33 17.2

NIS 55.8 57.33 58.8 9525 9800 15118 3422.4 26.66 27.59 25.39 26.66 27.59

Table 3: Distinct values of shape parameters and ALs

Case Shape parameter AL
(K1,K2,K3,K4) (µ̃z1j (X), µ̃z2j (X), µ̃z3j (X), µ̃z4j(X))

I (-5,-10,-15,-20) (0.6,0.7,0.8,0.9)
II (-10,-15,-20,-5) (0.7,0.8,0.9,0.6)
III (-15,-20,-5,-10) (0.8,0.9,0.6,0.7)
IV (-20,-5,-10,-15) (0.9,0.6,0.7,0.8)

7.1. The convergence rate of various methods for FMOSPP

This section discusses the case α = 0, (-5,-10,-15,-20) shape parameter and
(0.6,0.7,0.8,0.9) AL.

In HGA, the above FMOSPP solution converges after 14 iterations with a pop-
ulation size of 50. It takes approximately 5 seconds to run the program and obtain
unique optimal SP, i.e., ϱ from Table 8. This method always gives a unique solu-
tion. Figures 7, 8, 9 and 10 depict efficient solutions for time, cost, distance, and
risk objective values for various shape parameter and AL combinations. In addi-
tion, these graphs depict the solution of time, cost, distance, and risk objectives
as (22,33.33,45), (2350,4200,6200), (7,15.67,24) and (7,18.33,27), respectively.

The NSGA-II and NSGA-III approaches do not include the shape parameter
and AL. The solution obtained using these approaches of the above FMOSPP
for α = 0 converges after 20 iterations with a population size of 50, and it takes
approximately 10 seconds to run the program. These methods produce Pareto
front with their corresponding optimal SPs, i.e., φ, ϖ, ϱ from Table 8. These
methods provide the Pareto frontier.

In the proposed AL-based NSGA-II and AL-based NSGA-III approaches, the
solution of the above FMOSPP is converging after 20 iterations with a population
size of 50, and it takes approximately 3 seconds to run the program. A Pareto
frontier is obtained, which satisfies the DM’s AL with their corresponding optimal
SPs, i.e., φ, ϖ, and ϱ from Table 8. These proposed methods give the Pareto
frontier, which satisfies the DM’s AL (i.e., the additional constraint of AL). Figures
11, 12, 13 and 14 depict the variance in goals (time, cost, distance, and risk
objective) associated with distinct shape parameter preferences for α = 0. Figures
show that the resulting solutions have a more substantial effect of optimism than
pessimism, reflecting the possibilistic distribution for each objective function.
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Figure 7: Efficient solution of time objective at distinct combination of shape parameter and AL
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Figure 8: Efficient solution of cost objective at distinct combination of shape parameter and AL
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Figure 9: Efficient solution of distance objective at distinct combination of shape parameter and
AL



20 AS Todkar and JM Dhodiya / AL-based NSGA II & III to solve FMOSPP

 Value of risk objective Z
4

o

6 8 10 12 14

M
em

be
rs

hi
p 

va
lu

es

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
S

1
=-5

S
1
=-5

S
2
=-10

S
2
=-10

S
3
=-15

S
3
=-15

S
4
=-20

S
4
=-20

 Value of risk objective Z
4

m

16 18 20 22 24 26 28

M
em

be
rs

hi
p 

va
lu

es

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

 Value of risk objective Z
4

p

24 26 28 30 32 34 36

M
em

be
rs

hi
p 

va
lu

es

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 10: Efficient solution of risk objective at distinct combination of shape parameter and AL
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Figure 11: The level of satisfaction of the time objective for α = 0
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Figure 12: The level of satisfaction of the cost objective for α = 0
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Figure 13: The level of satisfaction of the distance objective for α = 0
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Figure 14: The level of satisfaction of the risk objective for α = 0

7.2. Results and Discussion

For α = 0 & case-I to case-IV of Table 3, HGA provides the solution ϱ, at the
same time NSGA-II & NSGA-III give the solutions φ, ϖ, & ϱ. Proposed methods
produce the solution φ, ϖ, & ϱ for cases I to III. However, in case-IV, solution
ϖ does not satisfy AL of DM; therefore, in this case, these methods generate the
solutions φ & ϱ. Similarly, for α = 0.1 & case-I to case-IV of Table 3, HGA yields
solution ϱ, NSGA-II & NSGA-III provide solutions φ, ϖ, & ϱ. However, proposed
methods produce the solutions φ, ϖ, & ϱ for case-I to case-III while in case-IV
solutions are φ & ϱ because ϖ do not satisfy AL of DM. For α = 0.5 & case-I
to case-IV of Table 3, HGA generates the solution ϱ and NSGA-II, NSGA-III &
proposed methods give the solutions φ, ϖ,& ϱ. For α = 0.9 & case-I to case-IV
of Table 3, HGA provides the solution ϱ while NSGA-II, NSGA-III & proposed
methods yield the solutions ϖ, & ϱ.

According to the preceding findings, the solutions found using the suggested
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approaches are Pareto-optimal solutions that fulfill DM’s AL. As a result, the
suggested approaches are best for DM concerning AL.

8. SENSITIVITY ANALYSIS

The Tables 4, 5, 6, and 7 provide the result for sensitivity analysis for given
FMOSPP concerning shape parameter and AL for α = 0, 0.1, 0.5,& 0.9 respec-
tively.

In Table 4, case-I, II, VII, and IX give us ϖ as a solution of given FMOSPP
from proposed AL-based NSGA-II and AL-based NSGA-III. For case-III, IV, VIII,
and X, the proposed approaches provide ϱ as a solution, and for case-V, VI, and XI,
they generate solution φ & ϱ. Lastly, for case-XII, the above-mentioned techniques
yield no solution (NaN) because there is no feasible path for that pair of shape
parameters and AL for the given FMOSPP. These are the results for α = 0,
different shape parameters, and ALs. Similarly, it has been observed that the
different results were obtained in Tables 5, 6, and 7.

Thus, from all the previous results, it has been seen that the solution of FMO-
SPP changes for different shape parameters and ALs. It signifies that the solution
of FMOSPP depends on the choice of shape parameter and AL. Thus, the solu-
tion of FMOSPP is sensitive concerning shape parameters and AL. Hence, DM
can choose the shape parameter and AL as per the necessity of the solution.

Table 4: The results for sensitivity analysis at α = 0

Case Shape parameter AL AL-based NSGA-II AL-based NSGA-III
Route Route

I (1,−1, 0.2, 0.5) (0.5, 0.2, 0.6, 0.3) ϖ ϖ
II (0.4, 0.2, 0.3, 0.6) ϖ ϖ
III (0.2, 0.4, 0.6, 0.3) ϱ ϱ
IV (0.2, 0.4, 0.3, 0.6) ϱ ϱ
V (−8,−1,−3,−5) (0.9, 0.8, 0.7, 0.6) φ,ϱ φ,ϱ
VI (0.0, 0.3, 0.6, 0.9) φ, ϱ φ, ϱ
VII (1.0, 0.2, 0.6, 1.0) ϖ ϖ
VIII (0.9, 0.8, 0.75, 0.9) ϱ ϱ
IX (0.5,−1, 5,−0.2) (0.4, 0.2, 0.6, 0.3) ϖ ϖ
X (0.2, 0.4, 0.3, 0.4) ϱ ϱ
XI (0.2, 0.6, 0.0, 0.4) φ, ϱ φ, ϱ
XII (0.8, 0.25, 0.3, 0.4) NaN NaN
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Table 5: The results for sensitivity analysis at α = 0.1

Case Shape parameter AL AL-based NSGA-II AL-based NSGA-III
Route Route

I (1,−1, 0.2, 0.5) (0.5, 0.2, 0.6, 0.3) ϖ,ϱ ϖ,ϱ
II (0.4, 0.2, 0.3, 0.6) ϖ ϖ
III (0.2, 0.4, 0.6, 0.3) ϱ ϱ
IV (0.2, 0.4, 0.3, 0.6) ϱ ϱ
V (−8,−1,−3,−5) (0.9, 0.8, 0.7, 0.6) φ,ϱ φ,ϱ
VI (0.0, 0.3, 0.6, 0.9) φ, ϱ φ, ϱ
VII (1.0, 0.2, 0.6, 1.0) ϖ ϖ
VIII (0.9, 0.8, 0.75, 0.9) ϱ ϱ
IX (0.5,−1, 5,−0.2) (0.4, 0.2, 0.6, 0.3) ϖ ϖ
X (0.2, 0.4, 0.3, 0.4) ϱ ϱ
XI (0.2, 0.6, 0.0, 0.4) φ, ϱ φ, ϱ
XII (0.8, 0.25, 0.3, 0.4) NaN NaN

Table 6: The results for sensitivity analysis at α = 0.5

Case Shape parameter AL AL-based NSGA-II AL-based NSGA-III
Route Route

I (1,−1, 0.2, 0.5) (0.5, 0.2, 0.6, 0.3) ϖ,ϱ ϖ,ϱ
II (0.4, 0.2, 0.3, 0.6) ϖ ϖ
III (0.2, 0.4, 0.6, 0.3) ϱ ϱ
IV (0.2, 0.4, 0.3, 0.6) ϱ ϱ
V (−8,−1,−3,−5) (0.9, 0.8, 0.7, 0.6) φ,ϱ φ,ϱ
VI (0.0, 0.3, 0.6, 0.9) φ, ϱ φ, ϱ
VII (1.0, 0.2, 0.6, 1.0) ϖ ϖ
VIII (0.9, 0.8, 0.75, 0.9) φ, ϱ φ, ϱ
IX (0.5,−1, 5,−0.2) (0.4, 0.2, 0.6, 0.3) ϖ ϖ
X (0.2, 0.4, 0.3, 0.4) ϱ ϱ
XI (0.2, 0.6, 0.0, 0.4) φ, ϱ φ, ϱ
XII (0.8, 0.25, 0.3, 0.4) ϖ ϖ
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Table 7: The results for sensitivity analysis at α = 0.9

Case Shape parameter AL AL-based NSGA-II AL-based NSGA-III
Route Route

I (1,−1, 0.2, 0.5) (0.5, 0.2, 0.6, 0.3) ϖ ϖ,ϱ
II (0.4, 0.2, 0.3, 0.6) ϖ ϖ
III (0.2, 0.4, 0.6, 0.3) ϱ ϱ
IV (0.2, 0.4, 0.3, 0.6) ϱ ϱ
V (−8,−1,−3,−5) (0.9, 0.8, 0.7, 0.6) ϱ φ,ϱ
VI (0.0, 0.3, 0.6, 0.9) φ,ϖ,ϱ φ,ϖ,ϱ
VII (1.0, 0.2, 0.6, 1.0) ϖ ϖ
VIII (0.9, 0.8, 0.75, 0.9) ϱ φ, ϱ
IX (0.5,−1, 5,−0.2) (0.4, 0.2, 0.6, 0.3) ϖ ϖ
X (0.2, 0.4, 0.3, 0.4) ϱ ϱ
XI (0.2, 0.6, 0.0, 0.4) ϱ φ, ϱ
XII (0.8, 0.25, 0.3, 0.4) ϖ ϖ

9. COMPARISON

Table 9 shows that HGA generates a unique SP for each case described in
Table 3 at α = 0, 0.1, 0.5, & 0.9. Thus, it cannot find other non-dominated
solutions. Consequently, NSGA-II and NSGA-III produce the Pareto front, i.e.,
the non-dominated solutions in the first front. Therefore it can get the solutions
that are below DM’s AL. According to columns 4 & 5 of Table 9, NSGA-II and
NSGA-III have the same solutions for α = 0, 0.1, 0.5, & 0.9. Furthermore, the
AL-based NSGA-II and AL-based NSGA-III generate the non-dominated solutions
in the first front, which satisfy DM’s AL. The SPs produced by the solution of
the suggested methods are addressed in column 6 and column 7 for cases I to IV
of Table 3 with α = 0, 0.1, 0.5, & 0.9. The solutions show that the AL-based
NSGA-II and AL-based NSGA-III offers the same solutions for the specific given
example. To obtain the solution of FMOSPP, HGA takes 5 seconds, NSGA-II
& NSGA-III require 20 seconds, and AL-based NSGA-II & AL-based NSGA-III
take 3 seconds, which is indicated in the last row of Table 9. AL-based techniques
are faster than their predecessors. The methodologies suggested are the best for
discovering optimal solutions in a short period concerning AL.

Therefore, the comparison, illustrated in Table 9, shows that the proposed
techniques with possibility distribution can effectively tackle uncertainty in the
objective function of the FMOSPP. Also, these techniques give a set of FMOSPP’s
non-dominated solutions based on DM’s AL, choice of the shape parameter, and
confidence level, which makes it easier for DM to make a decision.

10. PERFORMANCE MEASURE

The coverage performance measure [54] can be used to assess the performance
of any multi-objective optimization algorithm, which is as follows::
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10.1. Coverage

This performance measure compares two sets of non-dominated solutions, P
and Q, and provides the percentage of individuals in one set who individuals in
the other dominate. Rao [54] defines coverage as follows:

Cov(P,Q) =
| {q ∈ Q/ ∃ p ∈ P : p ≺= q} |

| Q | .

Where P and Q are the two non-dominated sets of solutions being compared,
p ≺= q indicates that p dominates q or is equal to q. For α = 0 with the case I
of Table 3, coverage is calculated for the above-solved example. Consider P is a
solution set of HGA method and Q is a solution set of NSGA-II, NSGA-III, AL-
based NSGA-II, and AL-based NSGA-III methods one by one, then Cov(P,Q) =
1
3 , ∀ Q and Cov(Q,Y ) = 1, ∀ Q. This shows that the performance of NSGA-
II, NSGA-III, AL-based NSGA-II and AL-based NSGA-III is superior to that of
HGA. Coverage between NSGA-II and NSGA-III solutions is Cov(X,Y ) = 1 and
Cov(Y,X) = 1. These values indicate that the NSGA-II and NSGA-III provide
the same solutions and perform equally for this particular example. Consequently,
the coverage computed for AL-based NSGA-II and AL-based NSGA-III solutions
is Cov(X,Y ) = 1 and Cov(Y,X) = 1. It is interpreted that AL-based NSGA-II
and AL-based NSGA-III offer the same solutions and perform equally well for this
specific example.
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11. CONCLUSION

In order to develop solutions for the FMOSPP, the suggested AL-based NSGA-
II and AL-based NSGA-III techniques have optimized the optimistic, most likely,
and pessimistic scenarios of fuzzy objective functions with TPD using the EMF
with specific, realistic constraints. The suggested approaches have solved a numer-
ical example with ten vertices and thirteen arcs. AL-based NSGA-II and AL-based
NSGA-III offer the same solutions within a short time other than previous methods
for the provided example. For this above-solved specific example, the performance
of both methods is similar. However, AL-based NSGA-III is faster than AL-based
NSGA-II concerning time to get an optimal solution. Additionally, the DM now
has greater flexibility for ALs, shape parameters, and effective SPs. This study
concluded that AL-based NSGA-II and AL-based NSGA-III are appropriate for
DM concerns with AL.

The proposed study investigated MOSPP in a fuzzy environment. This prob-
lem can also be extended to other uncertain environments, such as uncertain en-
vironments, uncertain interval environments, type-2 uncertain environments, etc.
The suggested approaches can be used to address a variety of optimization prob-
lems, such as those relating to transportation, travelling salesmen, assignments,
etc.
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