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Abstract: The present article provides aspiration level-based non-dominated sorting ge-
netic algorithm-II and III techniques for solving a fuzzymulti-objective shortest path prob-
lem utilizing an exponential membership function with a possibility distribution. Further-
more, in this study, using α-level sets, fuzzy judgement was categorized for the decision
maker to simultaneously optimize fuzzy objective functions scenarios as optimistic, most
likely, and pessimistic. A numerical illustration is presented together with a data set to
demonstrate the use of the suggested techniques. A comparison is performed between
the suggested methodology and several other approaches. The sensitivity of the objective
functions is also investigated using aspiration levels and shape parameters. The coverage
is computed to assess the effectiveness of the proposed methods. This research concludes
that the suggested approaches can manage fuzzy multi-objective shortest path problems
competently and efficiently with a solid yield, allowing the decision maker to make a
decision based on its aspiration level.
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1. INTRODUCTION

The challenge of discovering the Shortest Path (SP) between two vertices in a network
is one of graph theory’s most significant and crucial combinatorial network optimization
problems. It has several applications in routing, wireless networks, supply chain man-
agement, transportation, and communications. Thousands of people suffer every day to
navigate their cities’ sources and destinations. Many software applications tackle this
problem by representing the city as a graph and giving each arc on the graph a cost. Tradi-
tionally, it has been assumed that the arc traversal costs can be expressed as crisp numbers.
The SP Problem (SPP) with crisp weights is known as conventional SPP. In the 1950s and
1960s, the examination of conventional SPP reviewed some robust computations made by
Bellman [1], Dijkstra et al. [2], Floyd [3], and Dreyfus [4]. Edsger W. Dijkstra developed
the Dijkstra algorithm [2] in 1956 for identifying the SPs between vertices in a graph, and
it was published three years later. In most cases, the time required to complete a road
journey is a cost. Google Maps, Waze, and TomTom are all navigation apps that work
the same way. Another well-known component that can be gradually reduced using this
technique is distance. The disadvantage of the Dijkstra algorithm is that it can not handle
a negative weight edge graph. The Bellman-Ford algorithm [1] works on negative edges,
but when dealing with negative cycle graphs, it does not produce the expected results.
Floyd-Warshall algorithm [3] is used to compute the SP between each vertex, whereas
the Dijkstra algorithm is used to compute the SP between a single vertex and each of
the other vertices. Dijkstra algorithm has a significantly higher space overhead than the
Floyd-Warshall algorithm.

Reducing travel time (or distance) is not the only crucial factor. Most individuals wish
to reduce fuel expenses, travel on safer roads (risk), and simultaneously accomplish mul-
tiple objectives. As a result, in real-world situations, SPP relies on various factors; hence
it is referred to as a multi-objective SPP (MOSPP). Hansen [5] was the first to describe the
MOSPP in 1980. This work includes the primary label-setting algorithm for bi-objective
SPPs. Martins [6] summed up the previous algorithm for MOSPP. Serafini [7] conveyed
that the MOSPP is NP-complete. Later on, a few analysts contributed to the research of
MOSPP [8, 9, 10, 11]. These works have significantly contributed to enhancing the impor-
tance of single/multi-objective SPP, which is crucial to the network theory. Subsequently,
Sedeno-Noda and Colebrook [12] presented the bi-objective Dijkstra algorithm to reduce
the hypothetical running time compared to the Dijkstra algorithm for the bi-objective SPP.
The latter algorithm also exceeds the former algorithm in terms of computational studies.
Various ways to deal with MOSPP could be multi-stage approaches utilizing inclination-
based enhancement as in Pugliese et al. [13] or swarm intelligence graph-based algorithm
as introduced by Ntakolia and Iakovidis [14]. Recently, De las Cases et al. [15] pre-
sented an extension of bi-objective Dijkstra algorithm, a new label-setting algorithm that
is a multi-objective Dijkstra algorithm, to compute a minimum complete set of efficient
pathways for MOSPP.
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Various real-life instances demand us to deal with uncertain parameters, like strikes,
traffic congestion, flood, poor visibility in the winter, uneven roads, road accidents, or bad
human health travelling from one place to another. Consequently, the quantities time, cost,
distance, and risk are imprecise. Fuzzy sets address these sorts of imprecision in data. As
a result, the SPP has been converted into a Fuzzy SPP (FSPP) in which fuzzy numbers ex-
press objective weights. The FSPP was first examined by Dubois [16] in 1980. However,
even if the shortest distance can be found, a corresponding SP cannot be found. Okada
and Soper [17] invented an algorithm that uses multiple labelling to restrict the number of
paths depending on a possibility level. Researchers like Mahdavi et al. [18] and Tajdin
et al. [19] used a dynamic programming approach to develop a model and algorithm
for determining the SP in a network with various types of fuzzy arc lengths. Likewise,
Mukherjee [20] addressed FSPP by a methodology called the fuzzy programming tech-
nique. Ebrahimnejad et al. address FSPP by particle swarm optimization algorithm [21]
and artificial bee colony algorithm [22]. Several authors [23, 24, 25] etc. have worked
in the field of FSPP. Ebrahimnejad et al. solved SPP in various fuzzy environments like
interval-valued fuzzy networks [26], interval-valued Pythagorean fuzzy environment [27],
interval-valued triangular fuzzy network [28], and mixed interval-valued fuzzy environ-
ment [29]. Sori et al. [30] solved the robot’s fuzzy constrained routing problem by an
elite artificial bee colony algorithm. Ebrahimnejad [31] proposed a generalized Dijkstra
algorithm to solve SPP with interval weights. Recently, Lin et al. [32] solved FSPP by
genetic algorithm, and Di et al. [33] solved FSPP by ant colony optimization algorithm.

Fuzzy MOSPP (FMOSPP) is a MOSPP with at least one fuzzy parameter. There are
very few methods available for solving FMOSPPs. Rani and Reddy [34] examined the
FMOSPP, a bi-objective optimization problem with crisp and trapezoidal fuzzy values. It
is used to demonstrate the techniques depending on the priority and type of the problem so
that the DM can choose the most satisfactory or best solution. Some authors [35, 36, 37]
contributed their work in the field of extended fuzzy MO problems. Recently, Bagheri
et al. [38] solved FMOSPP dependent on the data envelopment analysis approach. They
converted FMOSPP into a single objective FSPP that can be solved using existing FSPP
methods. In literature, the FMOSPP was solved by converting it into a single objective
to get a single solution. However, in this case, the DM does not have the choice to select
other non-dominated solutions. Furthermore, suppose the network contains large num-
bers of vertices and edges. In that case, some existing methods become very complicated
for computation (for example, fuzzy programming technique), and they take more time
to solve this problem. Evolutionary genetic approaches are particularly effective in all
these regard since they evolve toward better solutions by utilizing genetic operators based
on natural genetic processes. The genetic algorithm-based hybrid approach gives us a
single solution. The methods Non-dominated Sorting Genetic Algorithm (NSGA)-II &
NSGA-III provide a Pareto frontier, i.e., all non-dominated solutions in the first front;
thus, DM also receives solutions below its Aspiration Level (AL). In order to overcome
these limitations of existing approaches, this article deals with modified solution tech-
niques for FMOSPP. This work proposes AL-based NSGA-II and AL-based NSGA-III.
These methods aim to find the Pareto frontier for FMOSPP, which satisfies the DM’s AL
so that the Decision Maker (DM) can choose the solution as per requirement.

This study aims to present an algorithmic approach forMOSPP in a fuzzy environment
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that is effective for practical problems. This article has contributed the following: (1)
FMOSPP has been formulated and solved by considering the arc weights as TFN in the
given network. (2) The initial population has been produced utilizing the new method.
(3) A significant modification has been made to the selection operator to minimize the
program’s execution time. (4) AL-based NSGA-II and AL-based NSGA-III evolutionary
techniques have been developed to overcome the limitations of Hybrid Genetic Algorithm
(HGA), NSGA-II, and NSGA-III, respectively.

The remaining paper is organized as follows. Section 2 represents the mathematical
model of FMOSPP. In Section 3, the preliminary concepts of the possibilistic program-
ming approach, triangular possibilistic distribution, α-level set, Positive Ideal Solution
(PIS) & Negative Ideal Solution (NIS), and Exponential Membership Function (EMF) are
discussed. Section 4 deals with the formulation of the Multi-Objective (MO) 0-1 pro-
gramming model. Section 5 describes solution methods of the auxiliary model, namely
the proposed AL-based NSGA-II, and AL-based NSGA-III. Section 6 presents benchmark
instances and computational complexity of proposed methods. A numerical example, its
solutions, and results & discussion are described in Section 7. Lastly, Section 8-11 repre-
sents the sensitivity analysis, comparison, performance measure, and conclusion, respec-
tively.

2. MATHEMATICAL MODEL OF FMOSPP

Let, G = (V,E) be a network, where V represents set of vertices and E represents
set of arcs. Assume that, the network contains s vertices & r arcs. Consider the starting
point is vertex 1, and the ending point is vertex s and our aim is to discover the SP between
these two vertices. A unit of flow enters from outside the network G at vertex 1 and exits
at vertex s. In any arc, only one unit of flow can be present at a time, so the decision
variable should expect binary qualities (0 or 1) in particular. There exists one restriction
that covers flow preservation at every vertex: total input flow equals to total output flow
for each vertex u ∈ V . Define, xuv amount of flow in arc (u, v) ∀ feasible u and v, ˜cuv
cost per unit of flow in the arc (u, v) ∀ feasible u and v in the form of TFN. Consider the
four objective functions: time ˜tuv , cost ˜cuv , distance ˜duv , and risk ˜ruv , which are in form
of TFN. Thus, the mathematical formulation of FMOSPP [39] is given by,

Formulation of objective function:

min
s∑

u=1

s∑
v=1,v ̸=u

˜tuvxuv, min
s∑

u=1

s∑
v=1,v ̸=u

˜cuvxuv,

min
s∑

u=1

s∑
v=1,v ̸=u

˜duvxuv, min
s∑

u=1

s∑
v=1,v ̸=u

˜ruvxuv
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Model constraints:
r∑

v=1

x1v −
s∑

k=1

xk1 = 1, (1)

r∑
v=1

xuv −
s∑

k=1

xku = 0, u ̸= 1, s , (2)

r∑
v=1

xsv −
s∑

k=1

xks = −1, (3)

xuv = 0 or 1, u, v = 1, 2, ..., s. (4)

xuv = 0 or 1, indices that arc (u,v) is in path or not respectively.
˜tuv = (touv, t

m
uv, t

p
uv), ˜cuv = (couv, c

m
uv, c

p
uv) , ˜duv = (douv, d

m
uv, d

p
uv), ˜ruv = (rouv, r

m
uv, r

p
uv),

denotes TFN for time, cost, distance, risk parameter respectively.

Decision Problem:
Model 1:
The FMOSPP is now formulated as follows:

min(z̃1, z̃2, z̃3, z̃4) =min
( s∑
u=1

s∑
v=1,v ̸=u

˜tuvxuv,

s∑
u=1

s∑
v=1,v ̸=u

˜cuvxuv,

s∑
u=1

s∑
v=1,v ̸=u

˜duvxuv,

s∑
u=1

s∑
v=1,v ̸=u

˜ruvxuv
)

subject to the constraints (1)-(4).

3. PRELIMINARIES

3.1. Possibilistic Programming Approach

In most cases, collecting data on real-world situations involves some level of risk. Be-
cause of their nature, many forms of data cannot be specified and are hence represented
by fuzzy numbers. A possibility distribution is used to model these sorts of fuzzy num-
bers [40]. The probabilistic distribution has been utilized for solving fuzzy advancement
models with uncertain coefficients in the objective function with a wide variety of key
applications. Using the possibilistic technique, the FMOSPP model was turned into an
auxiliary crisp MO Optimization (MOO) model [41].

3.2. Triangular Possibilistic Distribution (TPD)

Since the uncertain parameters are not defined precisely, the TPD is usually utilized
because of its effortlessness and computational viability in acquiring information. In sen-
sible conditions, a DM can build the TPD by utilizing the most optimistic value (o) (possi-
bility degree = 0), most likely value (m) (possibility degree = 1), and the most pessimistic
value (p) (possibility degree = 0) respectively which is generally denoted by (coi ), (cmi ),
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and (cpi ). From Figure 1, at three positions (cmi , 1), (coi , 0) and (c
p
i , 0) defined an objective

function cost which is minimized by moving the three places of TPD to the left since ver-
tical directions of the focuses are fixed by 0 or 1. Consequently, just the three horizontal
coordinates are assumed.
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Figure 1: TPD of c̃i

3.3. α-level Set
Zadeh [42] provided a α-level set which is the fundamental hypothesis for establish-

ing a relationship between traditional and fuzzy set theories. The α-level, also known as
the confidence level, represents the DM’s assurance regarding his fuzzy judgement. The
lowest α-value indicates a significant amount of pessimism and uncertainty by provid-
ing an interval judgement with huge savings. The greatest α-value results in a lower but
more optimistic judgement, with the lower and upper bounds having a higher degree of
membership in the original fuzzy sets. Some researchers, Lai and Hwang [43]; Tailor and
Dhodiya [44]; Rekh and Dhodiya [45] employed this α-level concept for addressing fuzzy
optimization problems. Similarly, this idea is utilized in the current article to decide the
DM’s confidence in his fuzzy judgement.

3.4. Positive and Negative Ideal Solution
The objective function’s minimum value is known as PIS, while its maximum value

is known as NIS. For every objective function, both values are utilized to derive the value
of the membership function.

3.5. Exponential Membership Function
The EMF µzk(x) can be used to normalize data relating to the given problem. If the

number zNIS
k and zPIS

k stands for NIS and PIS respectively for objective zk , then the
µzk(x) is represented as below,

µzk(x) =


1, if zk ≤ zPIS

k ,
e−skψk(x)−e−sk

1−e−sk
, if zPIS

k < zk < zNIS
k ,

0, if zk ≥ zNIS
k .

(5)
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where, ψk(x) =
zk−zPISk

zNISk −zPISk

, 0 ≤ µzk(x) ≤ 1 and sk ̸= 0 , the DM’s shape parameter.
Furthermore, themembership function will be convex and concave as appropriate for sk <
0 and sk > 0 in [zPIS

k , zNIS
k ].

4. FORMULATION OF MO 0-1 PROGRAMMINGMODEL

The TPD strategy handles fuzzy objectives to formulate the auxiliary crisp MOO
model of Model 1. The objective function of distance is represented as,

min z̃3 = min(zo3 , z
m
3 , z

p
3) =

s∑
u=1

s∑
v=1,v ̸=u

˜duvxuv

= min(

s∑
u=1

s∑
v=1,v ̸=u

douvxuv,

s∑
u=1

s∑
v=1,v ̸=u

dmuvxuv,

s∑
u=1

s∑
v=1,v ̸=u

dpuvxuv),

(6)

where ˜duv = (douv, d
m
uv, d

p
uv), this can be also written as,

(min z31,min z32,min z33) = min
( s∑
u=1

s∑
v=1,v ̸=u

douvxuv,

s∑
u=1

s∑
v=1,v ̸=u

dmuvxuv,

s∑
u=1

s∑
v=1,v ̸=u

dpuvxuv
)
, (7)

The equations (6) and (7) represented the optimistic, most likely, and pessimistic scenario.
Utilizing theα-level set scenario, each ˜duv can bewritten as ( ˜duv)α = ((duv)

o
α, (duv)

m
α ,

(duv)
p
α), where (duv)oα = (duv)

o + α((duv)
m − (duv)

o), (duv)
m
α = (duv)

m, (duv)
p
α =

(duv)
p − α((duv)p − (duv)

m). Hence equation (7) becomes:

(min z31,min z32,min z33) = min
( s∑
u=1

s∑
v=1,v ̸=u

(duv)
o
αxuv,

s∑
u=1

s∑
v=1,v ̸=u

(duv)
m
α xuv,

s∑
u=1

s∑
v=1,v ̸=u

(duv)
p
αxuv

)
(8)

Similarly, theMOOProblem (MOOP)model of time, cost, and risk objective functions
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are as follows:

(min z11,min z12,min z13) = min
( s∑
u=1

s∑
v=1,v ̸=u

(tuv)
o
αxuv,

s∑
u=1

s∑
v=1,v ̸=u

(tuv)
m
α xuv,

s∑
u=1

s∑
v=1,v ̸=u

(tuv)
p
αxuv

)
, (9)

(min z21,min z22,min z23) = min
( s∑
u=1

s∑
v=1,v ̸=u

(cuv)
o
αxuv,

s∑
u=1

s∑
v=1,v ̸=u

(cuv)
m
α xuv,

s∑
u=1

s∑
v=1,v ̸=u

(cuv)
p
αxuv

)
, (10)

(min z41,min z42,min z43) = min
( s∑
u=1

s∑
v=1,v ̸=u

(ruv)
o
αxuv,

s∑
u=1

s∑
v=1,v ̸=u

(ruv)
m
α xuv,

s∑
u=1

s∑
v=1,v ̸=u

(ruv)
p
αxuv

)
. (11)

Auxiliary MO 0-1 programming model: To formulate crisp MOSPP, known as auxil-
iary MO 0-1 programming model, from FMOSPP by utilizing α-level set to obtain the
optimistic, most likely, and pessimistic scenarios, which is represented by the following:

Model 2:

(min z11,min z12,min z13,min z21,min z22,min z23,

min z31,min z32,min z33,min z41,min z42,min z43) =

min

(
s∑

u=1

s∑
v=1,v ̸=u

(tuv)
o
αxuv,

s∑
u=1

s∑
v=1,v ̸=u

(tuv)
m
α xuv,

s∑
u=1

s∑
v=1,v ̸=u

(tuv)
p
αxuv,

s∑
u=1

s∑
v=1,v ̸=u

(cuv)
o
αxuv,

s∑
u=1

s∑
v=1,v ̸=u

(cuv)
m
α xuv,

s∑
u=1

s∑
v=1,v ̸=u

(cuv)
p
αxuv,

s∑
u=1

s∑
v=1,v ̸=u

(duv)
o
αxuv,

s∑
u=1

s∑
v=1,v ̸=u

(duv)
m
α xuv,

s∑
u=1

s∑
v=1,v ̸=u

(duv)
p
αxuv,

s∑
u=1

s∑
v=1,v ̸=u

(ruv)
o
αxuv,

s∑
u=1

s∑
v=1,v ̸=u

(ruv)
m
α xuv,

s∑
u=1

s∑
v=1,v ̸=u

(ruv)
p
αxuv

)
(12)

subject to the constraints (1)-(4).

5. SOLUTION METHODS FOR AUXILIARY MODEL

This section describes the proposed AL-based NSGA-II and III, which have been im-
plemented to solve an FMOSPP. These methods use a randomly generated population of
feasible solutions that “evolve” generation by generation toward a better solution. As a
result, the chromosome encoding and generation of the population are crucial for these
methods. Generally, these methods can be applied to a wide variety of multi-objective
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optimization problems such as assignment problems, transportation problems, travelling
salesman problems, etc. As some problems may require different chromosome encodings,
initial populations, and genetic operators (selection, crossover, and mutation), these may
change, but the procedure of methods will be the same.

5.0.1. Chromosome Encoding
Every chromosome specifies a path between the starting vertex and the ending vertex.

It is a feasible solution that may or may not be optimal. The binary encoding has been
utilized to create a chromosome for FMOSPP. Let xuv denote the arc from vertex u to
vertex v. Create a row vector that contains all the arcs from a given network orderwise.
Consider one feasible path; if arc xuv is present in the path, the entry is 1, otherwise 0.

Example: Consider the network in Figure 2, and 1 → 2 → 4 → 5 → 7 → 8 is one
feasible path. Generate a row vector that contains all the arcs order-wise from Figure 2
i.e. (x12, x23, x24, x34, x36, x45, x46, x57, x67, x78). In the above feasible path, the arcs
x12, x24, x45, x57 and x78 are present, so it is replaced by 1 and others are replaced by 0.
As a result, the chromosome becomes [1 0 1 0 0 1 0 1 0 1].

 

1 7 2 

5 

6 

4 

3 

8 

Figure 2: Network Diagram

5.0.2. Initial population
In this study, the initial population was randomly generated. For that, vectors of size

1 × (number of arcs) containing entries 0 & 1 are generated using MATLABR times (R
is a predefined number that is initially defined for a total number of randomly generated
vectors). Check whether the randomly generated vectors are feasible or not. The distinct
feasible vectors are directly included in the population, and others are discarded. If the
population size falls short, repeat the feasible vectors until the population size is satisfied.

5.1. AL-based NSGA-II

Srinivas and Deb [46] developed NSGA based on Goldberg’s ideas of applying the
non-dominated sorting concept in GAs [47]. The disadvantage of the NSGA method is
that the σshare parameter must be fixed when using the sharing function technique. The
performance of an NSGA has previously been shown to be sensitive to the parameter
σshare [46]. In order to overcome this, Deb et al. [48] developed a new method called
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NSGA-II. The NSGA-II approach provides a Pareto frontier. Therefore, DM also receives
solutions below its AL. Thus, the authors modify the NSGA-II to fulfill DM’s AL by
adding a AL-based constraint µ(x)−µ(x) ≥ 0, where µ(x) is given AL, so that DMmay
pick solutions that satisfy its AL, and this updated method is called AL-based NSGA-II.

For the sake of simplicity, few terms have been defined below in 5.1.1 and 5.1.2. The
crowded distance assignment and procedure of the above method is described in 5.1.3 and
5.1.4.

5.1.1. Feasibility test
This test determines whether the solution to the given problem is feasible or not.

5.1.2. Updation of population
Suppose I be the population of size N and x1 is any member of I . If x1 satisfies the

AL-based constraint, it is directly incorporated into updated I and denoted by I . If the
population size of I is not equal toN , then fulfil the remaining size by adding constraints
satisfying xi repeatedly.

5.1.3. Crowded distance assignment
A solution p wins a competition against another solution q if one of the below condi-

tions is valid:

1. If a solution p has a superior rank.
2. If they have a similar rank, however, solution p has a superior crowding distance

than solution q.

Crowded distance assignment procedure
1. Call l = Cardinality(F ) for the number of solutions in F . For every p in the set,

initially allot crowding distance dp = 0.
2. In worse order of Fr sort the set for every objective function r = 1, 2 · · ·R.
3. For r = 1, 2 · · ·R assign a high distance to the border solutions, then for all remain-

ing solutions from q = 2 to l − 1, assign

d(Irq ) = d(Irq ) +
f
(Irq+1)
r − f (I

r
q−1)

r

fmax
r − fmin

r

. (13)

The index Iq represents the solution index of the sorted list’s qth item.

5.1.4. AL-based NSGA-II procedure
A random initial population Io of size N is generated initially. Update the population

Io to Io using 5.1.2. The population Io is then divided into separate non-domination fronts,
and each individual of Io is assigned a fitness level corresponding to their non-domination
front. Following that, genetic operations like selection, crossover, and mutation generate
the offspring populationOo from Io of sizeN . Test the feasibilty ofOo and then update it
to Oo using 5.1.2. Combine Io and Oo to make the merging setMo. At generation t, the
parent population is It, the offspring population isOt, and the merge set isMt(= ItUOt)
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with a size of 2N . With the aid of the selection operator, i.e., crowding comparison opera-
tor, theN best individuals are chosen for the next generation among these 2N individuals.
This operator utilizes two criteria,

i) non-domination level/rank jrank
ii) crowding distance jdistance.
In order to achieve this, sort Mt into distinct non-domination fronts. The fitness of

individuals inMt is equivalent to their non-domination front. So, Fj is the distinct non-
domination front, and j = 1, 2, ...,& so on. Any individual’s non-domination front deter-
mines their jrank inMt. Assign a jrank to each individual inMt according to their fronts.
Individuals with a smaller jrank are favoured over those with higher jrank. Thus front F1
with individuals of jrank 1 is favoured over front F2 with individuals of jrank 2 and so
on for selection in next-generation It+1. Now, in It+1, add fronts F1, F2, ...,& so on one
by one until the size of It+1 equals or exceedsN for the first time. Assume that Fk is the
last front added in It+1 and that all fronts after Fk+1 are rejected. If the size of It+1 is
precisely N , then our It+1 = F1 ∪ F2 ∪ ... ∪ Fk. If the size of It+1 exceeds, then pick
solutions based on their crowding distance criteria (say jdistance) since jrank is the same
for all individuals in Fk. From the front Fk,N − |F1 ∪F2 ∪…∪Fk| individuals are now
required. If a and b are individuals in Fk and arank = brank, but adistance > bdistance,
then a is preferred over b in It+1. The individuals with the highest crowding distance
are eventually chosen from Fk to fill the remaining individuals in It+1. Finally, for the
following generation, the individuals of It are replaced with those of It+1. Repeat this
procedure till it arrives at the stopping criteria.

This manuscript slightly modified the selection operator to minimize the time fac-
tor. When applying genetic operators to generate the new chromosomes, increase the size
of the original population equal to the number of random vectors generated at the ini-
tial population (i.e., R) by taking chromosomes repeatedly. Later on, for the next step
of non-dominating sorting, the population first selects non-repeated chromosomes from
the original and newly formed child populations. To fulfill the original population size,
randomly select the non-repeating chromosomes again.
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Algorithm: The following is the algorithm of AL-based NSGA-II to solve Model 2:

Algorithm 1 AL-based NSGA-II
Require: Objective function, Population size, AL (µ), Shape parameter
Ensure: X,minZuv

1: Read: Model 2
2: Generation = 0; Generate random initial population I0
3: for x ∈ I0 do
4: Evaluate fitness values (f1) of x
5: Find PIS and NIS for every objective function of Model 2
6: Find EMF µ(x)
7: end for
8: Update I0 to I0 using 5.1.2
9: while Termination condition not met do
10: Generation← Generation+1;
11: Set f ← By applying selection procedure of NSGA-II on I0
12: for x1, x2 ∈ f do
13: x

′

1, x
′

2 ← new offsprings by utilizing crossover on x1 & x2
14: I

′

0 = ∪x′

u where x
′

u is new offsprings from above step
15: end for
16: for y1 ∈ f do
17: y

′

1 ← new offsprings by utilizing bit mutation on y1
18: I”0 = ∪y′

v where y
′

v is new offsprings from above step
19: end for
20: O0 ← I

′

0 ∪ I”0
21: O0 ← Check the feasibility test for O0

22: Update O0 to O0 using 5.1.2
23: At generation t, It ← parent population and Ot ← offspring population. Merge

setMt ← It ∪Ot

24: Do non-dominated sorting onMt

25: It+1 ← selection procedure of NSGA-II onMt to select N best solution
26: end while

5.2. AL-based NSGA-III
Deb and Jain [49] developed an NSGA-III algorithm for sustaining population diver-

sity that uses a reference-point strategy. NSGA-III generates the Pareto front. As a result,
DM gets solutions that are lower than its AL. This study proposes the AL-based NSGA-III
to prioritize the DM’s AL by adding an AL-based constraint in the NSGA-III method.

Definition 1. In objective space, a point specified by a DM and provides his/her ALs
toward objective functions is a Reference Point (RP). The RP-based algorithms seek to
provide a non-dominated solution set that is as close to an RP [50].

NSGA-III begins with a randomly generated population of size N and a collection
of broadly dispersed pre-specified M -dimensional RPs H on a unit hyper-plane with a
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normal vector of one’s spanning the whole RM+ area. The hyper-plane touches one
point of every objective axis configured. The Das and Dennies [51] approach is used to
locate H =

(
m+p+1

p

)
RPs on the hyper-plane with (p+ 1) points along every border. The

population size N is selected to be the lowest multiple of four greater than H , with each
RP having a chance of discovering one population member.

Consider at generation t, where the parent population is indicated by It with cardinal-
ity N . Update It to It using 5.1.2. The offspring population is denoted by Ot, which is
generated from It using genetic operations like crossover and mutation. Check the feasi-
bility test for Ot and update Ot to Ot using 5.1.2. Now, merge the parent population It
and offspring population Ot to form Mt ( i.e. Mt = It ∪ Ot ) of cardinality 2N . The
main goal of this method is to determine how to choose N members from Mt for the
next generation. To get non-domination fronts, do Pareto-based non-dominating sorting
onMt, i.e., F1, F2, ...,& so on. At this point, an empty population St is established. An
individual from non-domination levels is added to St one by one, starting with F1, un-
til the size of St approaches or surpasses N for the first time. Assume the latest level
added to St is Fl, and all fronts from the level (l + 1)th onwards are rejected. The final
level accepted is  lth, which is only partially accepted in certain instances. The members
of the St/Fl population are added to the new population It+1, and the diversity mainte-
nance operator selects the remaining individuals from Fl. Use the normalization operator
to prepare the environment selection, keeping the RP and objective points in the same unit
range. The zero vector is the ideal population point St after normalization and specified
RPs lie on this normalized hyper-plane. The perpendicular distance of every individual in
St from each RP line (connecting the RP with the origin) was computed. It was concluded
that individuals are associated with RPs with the shortest perpendicular distance. A niche
preservation process was utilized to select individuals from Fl. ρj is the niche count for
the jth RP and is defined as number of individuals associated with jth RP from St/Fl.
First, identified the minimum ρj value from the RPs set Jmin = {j : argminjρj}. If
|Jmin| > 1 then randomly choose j− ∈ J .
The following two situations are then utilized:

• If, with the jth RP, some individuals in Fl are associated then assume two cases:

1. If ρj = 0, the one individual from Fl having minimum perpendicular distance
from jth reference line add up into It+1. After that count of ρj is increased
by one.

2. If ρj > 0, randomly choose one individual from Fl which is associated with
jth RP and add up into It+1. After that count of ρj is increased by one.

• If, with the jth RP, no individuals in Fl are associated, then exclude the present RP
for the current generation, for themoment Jmin is recalculated, and j− is reselected.

Repeated this procedure until the remaining individuals of It+1 are filled up. In this man-
ner, we keep evolving better solutions over generations till we arrive at stopping criteria.
Algorithm:
The algorithm for the AL-based NSGA-III to solve Model 2 is the same as AL-based
NSGA-II; the only difference is that the selection procedure which occcures in steps 11
and 25.
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Flow chart of the solution procedure of FMOSPP by proposed methods AL-based NSGA-
II & III are given in Figure 3.

Start

Prepare the fuzzy optimization model of FMOSPP, utilizing suitable TPD

Convert FMOSPP into crisp MOSPP as per confidence level α

Calculate the NIS and PIS for every objective function

Using EMF and different shape parameter values, com-
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Figure 3: Flow chart of the solution procedure of FMOSPP
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Figure 3: Flow chart of the solution procedure of FMOSPP

6. BENCHMARK INSTANCES AND COMPLEXITY OF PROPOSED
METHODS

6.1. Benchmark instances

To assess the validity and effectiveness of the suggested methods, we solved some
benchmark instances and compared their solutions with existing ones. Themulti-objective
constrained optimization test problem OSY from Deb [52] is considered to demonstrate
the efficiency of AL-based NSGA-II. The AL-based NSGA-II result is compared to the
previous NSGA-II result. The method suggested provides exact solutions. The only dif-
ference is that solutions below DM’s AL are discarded. We have taken the DM’s AL is
[0.95 0.95]. The Pareto fronts of both approaches are provided in Figure 4 for comparison
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purposes. The FON benchmark example from Deb et al. [53] is solved to evaluate the per-
formance of AL-based NSGA-III. For this example we have taken AL is [0.85 0.85]. The
Pareto fronts for both approaches are shown in Figure 5. The proposed method provides
optimal solutions that meet DM’s AL.
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Figure 4: Pareto fronts for OSY problem [52]
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Figure 5: Pareto fronts for FON problem [53]

6.2. Computational Complexity

The primary criticism against multi-objective evolutionary algorithms that utilize shar-
ing focuses and non-dominated sorting on their computational complexity, i.e., O(MN3)
(whereM stands for the number of objectives andN for the size of the population). NSGA-
II has a computational complexity of O(MN2), as described by Deb et al. [48], whereas
NSGA-III offers the same computational complexity, as stated in Deb and Jain [49]. An
AL-based constraint is incorporated into NSGA-II and NSGA-III, “if” loop with a com-
putational complexity of 1 is utilized. It does not affect the complexity of the original.
Thus, the complexity of AL-based NSGA-II and AL-based NSGA-III is O(MN2).

7. NUMERICAL ILLUSTRATION FOR FMOSPP

In this section, FMOSPP is considered. This network diagram is taken from Rekh and
Dhodiya [45] for solving SPP with factors time, cost, distance, and risk. This network has
10 vertices and 13 arcs, as shown in Figure 6. Every arc xuv denotes the travelled time,
cost, distance, and risk from vertex u to vertex v. Here time, cost, distance, and risk are
in the form of TFNs (auv, buv, cuv), where auv , buv , and cuv represent optimistic value,
most likely value, and pessimistic value respectively. The aggregated fuzzy values for
criteria time, cost, distance, and risk are given in Table 1.
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Figure 6: Network Diagram from Rekh and Dhodiya [45]

Table 1: Aggregated fuzzy values of time, cost, distance, and risk
Activity Criteria

C1(Time) C2(Cost) C3(Distance) C4(Risk)
0-1 (1,4.333,7) (1200,1833.33,2400) (0,1.67,5) (0,2.33,5)
0-2 (1,3,5) (400,916.67,1450) (1,3.67,7) (1,4.33,7)
0-3 (5,9,14) (250,733.33,1300) (3,7,10) (3,6.33,9)
1-4 (3,6.667,10) (1300,1966.67,2700) (1,4.33,7) (1,3.67,7)
2-4 (9,12.667,18) (1300,1966.67,2700) (3,6.33,9) (5,7.67,10)
2-5 (6,9.333,12) (5000,6166.67,7000) (1,4.33,7) (3,5.67,9)
3-5 (12,16,20) (1200,2000,2800) (1,3,5) (1,5.67,9)
3-7 (10,13.667,17) (1400,2066.67,2700) (1,4.33,7) (1,4.33,7)
4-6 (9,14,19) (700,1166.67,1750) (3,6.33,9) (1,5,9)
5-9 (5,8.33,11) (900,1466.67,2100) (3,5.67,9) (3,6.33,9)
6-9 (6,10.333,16) (1400,2016.16,2600) (5,7.67,10) (5,8.33,10)
7-8 (13,17.667,21) (3000,4000,5000) (5,8.33,10) (5,8.33,10)
8-9 (14,17,20) (2400,3000,3600) (5,7,9) (5,7.67,10)

The model is coded to determine the FMOSPP solution. It is solved using MATLAB,
and all tests are performed on a hp laptop equipped with an Intel(R) Core i5 10th gen-
eration processor operating at 2.60 GHz and 8 GB of RAM. The following are the key
characteristics for addressing the problems: The number of decision variables (13), the
population size (50), the random number population generation (2000), and the iteration
(20).

For α = 0, 0.1, 0.5, and 0.9, Table 2 shows the PIS and NIS for every objective
function. The exponential membership function is defined using these values. The shortest
routes for FMOSPP are presented in table 8 using TPD, with varying values of the shape
parameters and ALs set by the DM. Different values of α (= 0, 0.1, 0.5 & 0.9) are used
here to indicate distinct scenarios of DM’s confidence in fuzzy decisions. The results
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are calculated by estimating cases of different AL, and the different shape parameters are
listed in Table 3. The notations φ, ϖ, & ϱ are from Table 8. The notation φ indicates the
shortest path 0 → 1 → 4 → 6 → 9. ϖ indicates the shortest path 0 → 2 → 5 → 9, and
ϱ indicates the shortest path 0 → 3 → 5 → 9. Table 8 also indicates the corresponding
objective values of the above-mentioned shortest path for α = 0, 0.1, 0.5, & 0.9.

Table 2: PIS and NIS values of fuzzy objectives
α-Level Solutions Objectives

z11 z12 z13 z21 z22 z23 z31 z32 z33 z41 z42 z43
0 PIS 14 22.66 30 2350 4200 6200 5 13.67 23 7 16.33 25

NIS 42 57.33 67 7050 9800 12600 14 26.66 36 14 26.66 36
0.1 PIS 14.87 22.66 29.27 2535 4200 6400 5.87 13.67 22.07 7.93 16.33 24.13

NIS 43.54 57.33 70.53 7325 9800 12880 15.23 26.66 35.07 15.27 26.66 35.07
0.5 PIS 18.33 22.66 26.33 3275.01 4200 7200.01 9.335 13.67 18.34 11.67 16.33 20.67

NIS 49.67 57.33 64.66 8425.01 9800 14000 20.33 26.66 31.33 20.33 26.66 31.33
0.9 PIS 21.8 22.66 23.4 4015 4200 8000 18.9 13.67 14.6 15.4 16.33 17.2

NIS 55.8 57.33 58.8 9525 9800 15118 3422.4 26.66 27.59 25.39 26.66 27.59

Table 3: Distinct values of shape parameters and ALs
Case Shape parameter AL

(K1,K2,K3,K4) (µ̃z1j (X), µ̃z2j (X), µ̃z3j (X), µ̃z4j(X))

I (-5,-10,-15,-20) (0.6,0.7,0.8,0.9)
II (-10,-15,-20,-5) (0.7,0.8,0.9,0.6)
III (-15,-20,-5,-10) (0.8,0.9,0.6,0.7)
IV (-20,-5,-10,-15) (0.9,0.6,0.7,0.8)

7.1. The convergence rate of various methods for FMOSPP

This section discusses the case α = 0, (-5,-10,-15,-20) shape parameter and (0.6, 0.7,
0.8, 0.9) AL.

In HGA, the above FMOSPP solution converges after 14 iterations with a population
size of 50. It takes approximately 5 seconds to run the program and obtain unique optimal
SP, i.e., ϱ from Table 8. This method always gives a unique solution. Figures 7, 8, 9 and
10 depict efficient solutions for time, cost, distance, and risk objective values for various
shape parameter and AL combinations. In addition, these graphs depict the solution of
time, cost, distance, and risk objectives as (22,33.33,45), (2350,4200,6200), (7,15.67,24)
and (7,18.33,27), respectively.
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Figure 7: Efficient solution of time objective at distinct combination of shape parameter and AL
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Figure 8: Efficient solution of cost objective at distinct combination of shape parameter and AL
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Figure 9: Efficient solution of distance objective at distinct combination of shape parameter and
AL
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Figure 10: Efficient solution of risk objective at distinct combination of shape parameter and AL

The NSGA-II and NSGA-III approaches do not include the shape parameter and AL.
The solution obtained using these approaches of the above FMOSPP for α = 0 converges
after 20 iterations with a population size of 50, and it takes approximately 10 seconds to
run the program. These methods produce Pareto front with their corresponding optimal
SPs, i.e., φ, ϖ, ϱ from Table 8. These methods provide the Pareto frontier.

In the proposed AL-based NSGA-II and AL-based NSGA-III approaches, the solution
of the above FMOSPP is converging after 20 iterations with a population size of 50, and
it takes approximately 3 seconds to run the program. A Pareto frontier is obtained, which
satisfies the DM’s AL with their corresponding optimal SPs, i.e., φ, ϖ, and ϱ from Table
8. These proposed methods give the Pareto frontier, which satisfies the DM’s AL (i.e., the
additional constraint of AL). Figures 11, 12, 13 and 14 depict the variance in goals (time,
cost, distance, and risk objective) associated with distinct shape parameter preferences for
α = 0. Figures show that the resulting solutions have amore substantial effect of optimism
than pessimism, reflecting the possibilistic distribution for each objective function.
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Figure 11: The level of satisfaction of the time objective for α = 0
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Figure 12: The level of satisfaction of the cost objective for α = 0
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Figure 13: The level of satisfaction of the distance objective for α = 0
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Figure 14: The level of satisfaction of the risk objective for α = 0

7.2. Results and Discussion

For α = 0 & case-I to case-IV of Table 3, HGA provides the solution ϱ, at the same
time NSGA-II & NSGA-III give the solutions φ, ϖ, & ϱ. Proposed methods produce the
solution φ,ϖ, & ϱ for cases I to III. However, in case-IV, solutionϖ does not satisfy AL
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of DM; therefore, in this case, these methods generate the solutions φ & ϱ. Similarly, for
α = 0.1 & case-I to case-IV of Table 3, HGA yields solution ϱ, NSGA-II & NSGA-III
provide solutions φ, ϖ, & ϱ. However, proposed methods produce the solutions φ, ϖ, &
ϱ for case-I to case-III while in case-IV solutions are φ & ϱ because ϖ do not satisfy AL
of DM. For α = 0.5 & case-I to case-IV of Table 3, HGA generates the solution ϱ and
NSGA-II, NSGA-III & proposed methods give the solutions φ, ϖ,& ϱ. For α = 0.9 &
case-I to case-IV of Table 3, HGA provides the solution ϱ while NSGA-II, NSGA-III &
proposed methods yield the solutions ϖ, & ϱ.

According to the preceding findings, the solutions found using the suggested approaches
are Pareto-optimal solutions that fulfill DM’s AL. As a result, the suggested approaches
are best for DM concerning AL.

8. SENSITIVITY ANALYSIS

The Tables 4, 5, 6, and 7 provide the result for sensitivity analysis for given FMOSPP
concerning shape parameter and AL for α = 0, 0.1, 0.5,& 0.9 respectively.

In Table 4, case-I, II, VII, and IX give us ϖ as a solution of given FMOSPP from
proposed AL-based NSGA-II and AL-based NSGA-III. For case-III, IV, VIII, and X, the
proposed approaches provide ϱ as a solution, and for case-V, VI, and XI, they generate
solution φ & ϱ. Lastly, for case-XII, the above-mentioned techniques yield no solution
(NaN ) because there is no feasible path for that pair of shape parameters and AL for the
given FMOSPP. These are the results for α = 0, different shape parameters, and ALs.
Similarly, it has been observed that the different results were obtained in Tables 5, 6, and
7.

Table 4: The results for sensitivity analysis at α = 0

Case Shape parameter AL AL-based NSGA-II AL-based NSGA-III
Route Route

I (1,−1, 0.2, 0.5) (0.5, 0.2, 0.6, 0.3) ϖ ϖ
II (0.4, 0.2, 0.3, 0.6) ϖ ϖ
III (0.2, 0.4, 0.6, 0.3) ϱ ϱ
IV (0.2, 0.4, 0.3, 0.6) ϱ ϱ
V (−8,−1,−3,−5) (0.9, 0.8, 0.7, 0.6) φ,ϱ φ,ϱ
VI (0.0, 0.3, 0.6, 0.9) φ, ϱ φ, ϱ
VII (1.0, 0.2, 0.6, 1.0) ϖ ϖ
VIII (0.9, 0.8, 0.75, 0.9) ϱ ϱ
IX (0.5,−1, 5,−0.2) (0.4, 0.2, 0.6, 0.3) ϖ ϖ
X (0.2, 0.4, 0.3, 0.4) ϱ ϱ
XI (0.2, 0.6, 0.0, 0.4) φ, ϱ φ, ϱ
XII (0.8, 0.25, 0.3, 0.4) NaN NaN

Thus, from all the previous results, it has been seen that the solution of FMOSPP
changes for different shape parameters and ALs. It signifies that the solution of FMOSPP
depends on the choice of shape parameter and AL. Thus, the solution of FMOSPP is sen-
sitive concerning shape parameters and AL. Hence, DM can choose the shape parameter
and AL as per the necessity of the solution.
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Table 5: The results for sensitivity analysis at α = 0.1

Case Shape parameter AL AL-based NSGA-II AL-based NSGA-III
Route Route

I (1,−1, 0.2, 0.5) (0.5, 0.2, 0.6, 0.3) ϖ,ϱ ϖ,ϱ
II (0.4, 0.2, 0.3, 0.6) ϖ ϖ
III (0.2, 0.4, 0.6, 0.3) ϱ ϱ
IV (0.2, 0.4, 0.3, 0.6) ϱ ϱ
V (−8,−1,−3,−5) (0.9, 0.8, 0.7, 0.6) φ,ϱ φ,ϱ
VI (0.0, 0.3, 0.6, 0.9) φ, ϱ φ, ϱ
VII (1.0, 0.2, 0.6, 1.0) ϖ ϖ
VIII (0.9, 0.8, 0.75, 0.9) ϱ ϱ
IX (0.5,−1, 5,−0.2) (0.4, 0.2, 0.6, 0.3) ϖ ϖ
X (0.2, 0.4, 0.3, 0.4) ϱ ϱ
XI (0.2, 0.6, 0.0, 0.4) φ, ϱ φ, ϱ
XII (0.8, 0.25, 0.3, 0.4) NaN NaN

Table 6: The results for sensitivity analysis at α = 0.5

Case Shape parameter AL AL-based NSGA-II AL-based NSGA-III
Route Route

I (1,−1, 0.2, 0.5) (0.5, 0.2, 0.6, 0.3) ϖ,ϱ ϖ,ϱ
II (0.4, 0.2, 0.3, 0.6) ϖ ϖ
III (0.2, 0.4, 0.6, 0.3) ϱ ϱ
IV (0.2, 0.4, 0.3, 0.6) ϱ ϱ
V (−8,−1,−3,−5) (0.9, 0.8, 0.7, 0.6) φ,ϱ φ,ϱ
VI (0.0, 0.3, 0.6, 0.9) φ, ϱ φ, ϱ
VII (1.0, 0.2, 0.6, 1.0) ϖ ϖ
VIII (0.9, 0.8, 0.75, 0.9) φ, ϱ φ, ϱ
IX (0.5,−1, 5,−0.2) (0.4, 0.2, 0.6, 0.3) ϖ ϖ
X (0.2, 0.4, 0.3, 0.4) ϱ ϱ
XI (0.2, 0.6, 0.0, 0.4) φ, ϱ φ, ϱ
XII (0.8, 0.25, 0.3, 0.4) ϖ ϖ

Table 7: The results for sensitivity analysis at α = 0.9

Case Shape parameter AL AL-based NSGA-II AL-based NSGA-III
Route Route

I (1,−1, 0.2, 0.5) (0.5, 0.2, 0.6, 0.3) ϖ ϖ,ϱ
II (0.4, 0.2, 0.3, 0.6) ϖ ϖ
III (0.2, 0.4, 0.6, 0.3) ϱ ϱ
IV (0.2, 0.4, 0.3, 0.6) ϱ ϱ
V (−8,−1,−3,−5) (0.9, 0.8, 0.7, 0.6) ϱ φ,ϱ
VI (0.0, 0.3, 0.6, 0.9) φ,ϖ,ϱ φ,ϖ,ϱ
VII (1.0, 0.2, 0.6, 1.0) ϖ ϖ
VIII (0.9, 0.8, 0.75, 0.9) ϱ φ, ϱ
IX (0.5,−1, 5,−0.2) (0.4, 0.2, 0.6, 0.3) ϖ ϖ
X (0.2, 0.4, 0.3, 0.4) ϱ ϱ
XI (0.2, 0.6, 0.0, 0.4) ϱ φ, ϱ
XII (0.8, 0.25, 0.3, 0.4) ϖ ϖ
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9. COMPARISON
Table 9 shows that HGA generates a unique SP for each case described in Table 3 at

α = 0, 0.1, 0.5, & 0.9. Thus, it cannot find other non-dominated solutions. Conse-
quently, NSGA-II and NSGA-III produce the Pareto front, i.e., the non-dominated solu-
tions in the first front. Therefore it can get the solutions that are below DM’s AL. Ac-
cording to columns 4 & 5 of Table 9, NSGA-II and NSGA-III have the same solutions for
α = 0, 0.1, 0.5, & 0.9. Furthermore, the AL-based NSGA-II and AL-based NSGA-III
generate the non-dominated solutions in the first front, which satisfy DM’s AL. The SPs
produced by the solution of the suggested methods are addressed in column 6 and column
7 for cases I to IV of Table 3 with α = 0, 0.1, 0.5, & 0.9. The solutions show that the AL-
based NSGA-II and AL-based NSGA-III offers the same solutions for the specific given
example. To obtain the solution of FMOSPP, HGA takes 5 seconds, NSGA-II & NSGA-
III require 20 seconds, and AL-based NSGA-II & AL-based NSGA-III take 3 seconds,
which is indicated in the last row of Table 9. AL-based techniques are faster than their
predecessors. The methodologies suggested are the best for discovering optimal solutions
in a short period concerning AL.

Therefore, the comparison, illustrated in Table 9, shows that the proposed techniques
with possibility distribution can effectively tackle uncertainty in the objective function of
the FMOSPP. Also, these techniques give a set of FMOSPP’s non-dominated solutions
based on DM’s AL, choice of the shape parameter, and confidence level, which makes it
easier for DM to make a decision.

10. PERFORMANCE MEASURE
The coverage performance measure [54] can be used to assess the performance of any

multi-objective optimization algorithm, which is as follows::

10.1. Coverage
This performance measure compares two sets of non-dominated solutions, P and Q,

and provides the percentage of individuals in one set who individuals in the other domi-
nate. Rao [54] defines coverage as follows:

Cov(P,Q) =
| {q ∈ Q/ ∃ p ∈ P : p ≺= q} |

| Q |
.

Where P and Q are the two non-dominated sets of solutions being compared, p ≺= q
indicates that p dominates q or is equal to q. For α = 0 with the case I of Table 3,
coverage is calculated for the above-solved example. Consider P is a solution set of HGA
method andQ is a solution set of NSGA-II, NSGA-III, AL-based NSGA-II, and AL-based
NSGA-III methods one by one, then Cov(P,Q) = 1

3 , ∀ Q and Cov(Q,Y ) = 1, ∀ Q.
This shows that the performance of NSGA-II, NSGA-III, AL-based NSGA-II and AL-
based NSGA-III is superior to that of HGA. Coverage between NSGA-II and NSGA-III
solutions isCov(X,Y ) = 1 andCov(Y,X) = 1. These values indicate that the NSGA-II
and NSGA-III provide the same solutions and perform equally for this particular example.
Consequently, the coverage computed for AL-based NSGA-II and AL-based NSGA-III
solutions is Cov(X,Y ) = 1 and Cov(Y,X) = 1. It is interpreted that AL-based NSGA-
II and AL-based NSGA-III offer the same solutions and perform equally well for this
specific example.



158 A.S. Todkar and J.M. Dhodiya / AL-based NSGA II & III to solve FMOSPP
Ta
bl
e
8:

N
om

en
cl
at
ur
e
of
di
ffe
re
nt
va
lu
es
of

α
w
ith

ro
ut
e
an
d
its

co
rr
os
po
nd
in
g
ob
je
ct
iv
e
va
lu
es

N
am

e
R
ou
te

O
bj
ec
tiv
e
Va
lu
e
at
α
=

0
O
bj
ec
tiv
e
Va
lu
e
at
α
=

0
.1

O
bj
ec
tiv
e
Va
lu
e
at
α
=

0
.5

O
bj
ec
tiv
e
Va
lu
e
at
α
=

0
.9

φ
0
→

1
→

4
→

6
→

9
(1
9,
35
.3
3,
52
),(
35
00
,5
74
9.
49
,8
05
0)
,

(2
0.
63
,3
5.
33
,5
0.
33
),(
37
24
.9
4,
57
49
.4
9,
82
80
.0
5.
27
)

(2
7.
17
,3
5.
33
,4
3.
67
),(
46
24
.7
6,
57
49
.4
9,
92
00
.2
7)

(3
3.
7,
35
.3
3,
37
),(
55
24
.5
4,
57
49
.4
9,
10
12
0.
49
)

(9
,2
0,
31
)&

(7
,1
9.
33
,3
1)

(1
0.
01
,2
0,
29
.0
9)
&
(8
.2
3,
19
.3
3,
29
.8
3)

(1
4.
52
,2
0,
25
.5
2)
&
(1
3.
18
,1
9.
33
,2
5.
18
)

(1
8.
9,
20
,2
1.
1)
&
(1
8.
1,
19
.3
3,
20
.5
)

ϖ
0
→

2
→

5
→

9
(1
4,
22
.6
6,
30
),(
63
00
,8
55
0.
01
,1
05
50
)

(1
4.
86
,2
2.
66
,2
9.
26
),(
65
25
.0
1,
85
50
.0
1,
10
74
9.
99
)

(1
8.
34
,2
2.
66
,2
6.
34
),(
74
25
.0
2,
85
50
.0
1,
11
55
0.
01
)

(2
1.
8,
22
.6
6,
23
.4
),(
83
25
,8
55
0.
01
,1
23
50
)

(5
,1
3.
67
,2
3)
&
(7
,1
6.
33
,2
5)

(5
.8
7,
13
.6
7,
20
.0
7)
&
(7
.9
3,
16
.3
3,
24
.1
3)

(9
.3
5,
13
.6
7,
18
.3
5)
&
(1
1.
68
,1
6.
33
,2
0.
68
)

(1
2.
8,
13
.6
7,
14
.6
)&

(1
5.
4,
16
.3
3,
17
.2
)

ϱ
0
→

3
→

5
→

9
(2
2,
33
.3
3,
45
),(
23
50
,4
20
0,
62
00
),

(2
3.
13
,3
3.
33
,4
3.
83
),(
25
35
,4
20
0,
64
00
)

(2
7.
67
,3
3.
33
,3
9.
17
),(
32
75
.0
1,
42
00
,7
20
0.
01
)

(3
2.
2,
33
.3
3,
34
.5
),(
40
15
,4
20
0,
80
00
)

(7
,1
5.
67
,2
4)
&
(7
,1
8.
33
,2
7)

(7
.8
7,
15
.6
7,
23
.1
7)
&
(8
.1
3,
18
.3
3,
26
.1
3)

(1
1.
34
,1
5.
67
,1
9.
84
)&

(1
2.
68
,1
8.
33
,2
2.
68
)

(1
4.
8,
15
.6
7,
16
.5
)&

(1
7.
2,
18
.3
3,
19
.2
)

Ta
bl
e
9:

C
om

pa
ris
io
n
of
pr
op
os
ed

m
et
ho
d
w
ith

ex
is
tin
g
m
et
ho
ds

α
C
as
e

H
G
A

N
SG

A
-I
I

N
SG

A
-I
II

A
L-
ba
se
d
N
SG

A
-I
I

A
L-
ba
se
d
N
SG

A
-I
II

R
ou
te

R
ou
te

R
ou
te

R
ou
te

R
ou
te

0
I

ϱ
φ
,ϖ
,ϱ

φ
,ϖ
,ϱ

φ
,ϖ
,ϱ

φ
,ϖ
,ϱ

II
ϱ

φ
,ϖ
,ϱ

φ
,ϖ
,ϱ

φ
,ϖ
,ϱ

φ
,ϖ
,ϱ

II
I

ϱ
φ
,ϖ
,ϱ

φ
,ϖ
,ϱ

φ
,ϖ
,ϱ

φ
,ϖ
,ϱ

IV
ϱ

φ
,ϖ
,ϱ

φ
,ϖ
,ϱ

φ
,ϱ

φ
,ϱ

0.
1

I
ϱ

φ
,ϖ
,ϱ

φ
,ϖ
,ϱ

φ
,ϖ
,ϱ

φ
,ϖ
,ϱ

II
ϱ

φ
,ϖ
,ϱ

φ
,ϖ
,ϱ

φ
,ϖ
,ϱ

φ
,ϖ
,ϱ

II
I

ϱ
φ
,ϖ
,ϱ

φ
,ϖ
,ϱ

φ
,ϖ
,ϱ

φ
,ϖ
,ϱ

IV
ϱ

φ
,ϖ
,ϱ

φ
,ϖ
,ϱ

φ
,ϱ

φ
,ϱ

0.
5

I
ϱ

φ
,ϖ
,ϱ

φ
,ϖ
,ϱ

φ
,ϖ
,ϱ

φ
,ϖ
,ϱ

II
ϱ

φ
,ϖ
,ϱ

φ
,ϖ
,ϱ

φ
,ϖ
,ϱ

φ
,ϖ
,ϱ

II
I

ϱ
φ
,ϖ
,ϱ

φ
,ϖ
,ϱ

φ
,ϖ
,ϱ

φ
,ϖ
,ϱ

IV
ϱ

φ
,ϖ
,ϱ

φ
,ϖ
,ϱ

φ
,ϖ
,ϱ

φ
,ϖ
,ϱ

0.
9

I
ϱ

ϖ
,ϱ

ϖ
,ϱ

ϖ
,ϱ

ϖ
,ϱ

II
ϱ

ϖ
,ϱ

ϖ
,ϱ

ϖ
,ϱ

ϖ
,ϱ

II
I

ϱ
ϖ
,ϱ

ϖ
,ϱ

ϖ
,ϱ

ϖ
,ϱ

IV
ϱ

ϖ
,ϱ

ϖ
,ϱ

ϖ
,ϱ

ϖ
,ϱ

ru
n
tim

e:
5
se
co
nd
s

20
se
co
nd
s

20
se
co
nd
s

3
se
co
nd
s

3
se
co
nd
s



A.S. Todkar and J.M. Dhodiya / AL-based NSGA II & III to solve FMOSPP 159

11. CONCLUSION

In order to develop solutions for the FMOSPP, the suggested AL-based NSGA-II
and AL-based NSGA-III techniques have optimized the optimistic, most likely, and pes-
simistic scenarios of fuzzy objective functions with TPD using the EMF with specific,
realistic constraints. The suggested approaches have solved a numerical example with ten
vertices and thirteen arcs. AL-based NSGA-II and AL-based NSGA-III offer the same
solutions within a short time other than previous methods for the provided example. For
this above-solved specific example, the performance of both methods is similar. However,
AL-based NSGA-III is faster than AL-based NSGA-II concerning time to get an optimal
solution. Additionally, the DM now has greater flexibility for ALs, shape parameters, and
effective SPs. This study concluded that AL-based NSGA-II and AL-based NSGA-III are
appropriate for DM concerns with AL.

The proposed study investigated MOSPP in a fuzzy environment. This problem can
also be extended to other uncertain environments, such as uncertain environments, uncer-
tain interval environments, type-2 uncertain environments, etc. The suggested approaches
can be used to address a variety of optimization problems, such as those relating to trans-
portation, travelling salesmen, assignments, etc.
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