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Abstract: The paper considers the recently introduced distance-edge-monitoring prob-
lem. For a given graph G = (V,E), the set M is called distance-edge-monitoring if it is a
subset of V and for every edge e of E there is a vertex x of M and a vertex y of V such
that e belongs to all the shortest paths between x and y. The goal is to find the smallest
distance-edge-monitoring set of the graph. We propose the first-ever integer program-
ming model for this problem and present empirical results for five instance classes with
graphs up to 4096 vertices and 1599797 edges. The proposed model was able to solve
all instances of four instance classes optimally, while the remaining fifth class of graphs
proves to be more difficult for the proposed model.
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1. INTRODUCTION

The concept of distance-edge-monitoring was introduced in [1]. The motivation
arises from computer networks, where the vertices represent computers/routers
and the edges represent communication links. It is well known that computer
networks are complex systems that use heterogeneous devices and interconnection
technologies, such as optical fibers, copper wires, wireless microwave transmission,
etc. Using explicit mechanisms of detecting link failures requires expensive mea-
surement equipment. An alternative approach would be to implicitly detect link
failures based on the routing distances readily available to the computers/routers,
e.g. via the traceroute command. More specifically, goal is to localize the broken
communication link when the failure occurs. This is done by selecting a subset of
vertices, called probes, that can measure the distance (the length of the shortest
path) to any other vertex in the network. Once an edge fails, some of the distances
change, which in turn allows the probes to detect this situation. Real-world appli-
cations of such probes are reported in papers on routing and network verification
[2, 3, 4, 5, 6].

In this paper, we provide an exact procedure (integer linear programming
model) to propose the probe set with the smallest cardinality, i.e. the one with
the cheapest price. The applicability of this approach is demonstrated on ran-
dom graphs that resemble some real networks, as shown in this paper. However,
we emphasize that this approach does not target a specific type of graphs and is
therefore applicable in a general case.

Let G = (V (G), E(G)) be a simple connected graph. By dG(x, y) we denote
the distance in the graph, i.e., the length of the shortest path between the vertices
x and y.

Definition 1. Given a set M ⊆ V of vertices and an edge e ∈ E, let P (M, e)
be the set of pairs (x, y) such that x ∈ M and y ∈ V and dG(x, y) ̸= dG−e(x, y),
i.e., removing the edge e from G changes the distances between x and y. In other
words, that the edge e must belong to all shortest paths between x and y.
Definition 2. Given a vertex x, EM(x) is the set of edges e such that (x, y) ∈
P (x, e) for any y ∈ V . In other words, the edges of EM(x) are all monitored by
x.
Definition 3. A set M ⊆ V (G) is called distance-edge-monitoring set if every
edge e ∈ E is monitored by some vertex of M . More precisely,

⋃
x∈M EM(x) = E.

The cardinality of the minimal M is called the distance-edge-monitoring number
of the graph and is denoted by dem(G).

Note that V is itself a distance-edge-monitoring set. From the previous defini-
tion, it can be seen that the selection of probes using the distance-edge-monitoring
set guarantees the detection of edge defects. This is because each edge belongs
to all the shortest paths between certain pair of vertices, one of which is within
the probe set. Therefore, the faulty edge will increase the distance to at least one
other vertex observed by this probe. In [1], the authors even proved that it is
possible to determine exactly which edge has failed.
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Another result from this work, important for our model, is the following lemma:
Lemma 1. ([1]) Let x be a vertex of a connected graph G. Then, an edge {u, v}
belongs to EM(x) if and only if u ∈ Li(x) and v is the only neighbor of u in
Li−1(x), for some integer i, where Li(x) denotes the set of vertices at distance i
of x [1].

2. RELATED WORK

Distance-edge-monitoring is a relatively new concept in the literature. The
2022 paper [1] formally introduces the problem. Since then, a number of papers
have appeared that examine the problem from both theoretical and practical per-
spectives.

In [7] the authors propose lower and upper bounds for Cartesian graph prod-
ucts, and they also characterize the graphs that reach these lower and upper
bounds. Moreover, they prove the exact dem-values for join, corona, cluster and
some other specific graphs. Paper [8] gives some lower and upper bounds for
P (M, e), EM(x), and dem(G), and characterizes extreme graphs that reach these
bounds. It also characterizes graphs with dem(G) = 3. In [9] it has been shown
that dem(G \ e) − dem(G) ≤ 2. There are some other results in this paper, for
example, the authors propose the algorithm that evaluates whether the distance-
edge-monitoring set still remains in the resulting graph when an edge of the graph
is deleted. Paper [10] is concerned with lower bounds of distance edge monitor-
ing number for hierarchical and corona graphs. In [11], the author proposes an
algorithm for solving the distance-edge-monitoring problem. The algorithm is pa-
rameterized by the vertex cover number and feedback edge set number. This is
not the first algorithm for the dem problem, as the authors of the original pa-
per [1] have already proposed a polynomial algorithm based on the set cover that
approximates within a factor of ln(|E(G)|+ 1).

It should be noted that there is also an ongoing research [12, 13, 14] on a
similar problem called edge-geodetic-monitoring (or monitoring of edge-geodetic
sets). Here the goal is to find, for the given graph G(V,E), a set S ⊆ V such that
for every e ∈ E there is a pair (x, y) ∈ S×S that it monitors. The difference with
distance-edge-monitoring is that both endpoints are in the selected subset S. The
corresponding size of the smallest such S is called the monitoring edge-geodesic
set number or meg(G) for short.

3. THE PROPOSED INTEGER PROGRAMMING MODEL

The proposed integer programming model has the following form:
min

∑
v∈V

xv (1)

s.t.∑
v∈V

Cv,e · xv ≥ 1, for e ∈ E (2)

xv ∈ {0, 1}, for v ∈ V (3)
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The variable xv for v ∈ V takes the value 1 if the vertex v is within the
distance-edge-monitoring set, otherwise it takes the value 0. Thus, if xv = 1 for
some v ∈ V , then v ∈ M . Clearly, the objective function (1) corresponds to the
formulation of a distance-edge-monitoring set problem.

The constant Cv,e for (v, e) ∈ V × E takes the value 1 if for a pair (v, e)
there exists a vertex u ∈ V such that e belongs to all the shortest paths between
vertices v and u. Effectively, Cv,e = 1 when e ∈ EM(v) and conversely Cv,e = 0
when e /∈ EM(v). Constraints (2) therefore enforce the distance-edge-monitoring
condition, i.e., for every e ∈ E there must be at least one v ∈ M that monitors it.

Due to the small number (|V |) of binary variables and only |E| constraints,
the model can be solved quite well with ILP solvers, such as CPLEX. Note that
for large graphs, the direct computation of the Cv,e-matrix can be very time con-
suming. Fortunately, we have used the Lemma 1 to improve the efficiency of
this preparation phase. The pseudocode of the C-matrix calculation procedure is
shown in Algorithm 1.

Algorithm 1 Calculation of C-matrix
1: C

|V (G)|×|E(G)|
← false

|V (G)|×|E(G)|
2: dG ← FloydWarshall(G)
3: for e = {u, v} ∈ E(G) do
4: for x ∈ V (G) do
5: if dG(x, v) = dG(x, u) then
6: continue
7: end if
8: if dG(x, v) = dG(x, u) + 1 then
9: xmonitors ← true
10: for w ∈ V (G) \ {u} do
11: if dG(x, v) = dG(x,w) + 1 then
12: xmonitors ← false
13: break
14: end if
15: end for
16: if not xmonitors then
17: continue
18: end if
19: end if
20: if dG(x, u) = dG(x, v) + 1 then
21: xmonitors ← true
22: for w ∈ V (G) \ {v} do
23: if dG(x, u) = dG(x,w) + 1 then
24: xmonitors ← false
25: break
26: end if
27: end for
28: if not xmonitors then
29: continue
30: end if
31: end if
32: Cx,e ← true
33: end for
34: end for
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Namely, for each edge e = {v, u} and each vertex x in graph G, one needs to
compare the distances dG(x, v) and dG(x, u). If dG(x, v) = dG(x, u), the vertex x
cannot monitor the edge e because if the optimal path passes through this edge,
the distances to its endpoints cannot be equal (one distance should be greater
than the other by one). Therefore, the remaining interesting cases are when
dG(x, v) = dG(x, u) + 1 or dG(x, v) + 1 = dG(x, u). For these two cases, one
should check whether v is the only neighbor of u at distance dG(x, u) − 1 from
x and, conversely, whether u is the only neighbor of v at distance d(x, v) − 1
from x. For the calculation of the distances between the vertices we used the
Floyd-Warshall algorithm, with a computational complexity of O(|V (G)|3). As
can be seen from the presented pseudocode, the total computational complexity
is O(|V (G)|2 · |E(G)|).

4. EXPERIMENTAL RESULTS

In this section, we present the results obtained by solving the proposed IP
model using IBM CPLEX 22.1.0 solver in 64-bit mode with 16 threads. All tests
were performed on an Intel i9-9900KF CPU @3.6 GHz with 64 GB of memory
running the Windows 10 operating system. The maximum runtime was set to one
hour.

Instance classes are shown in Table 1, where each row corresponds to an in-
stance class, while the columns contain the full name, abbreviation, number of in-
stances, minimum and maximum number of vertices, and minimum and maximum
number of edges. All instances, except the random ones, are already known from
the literature. They are all available in the public GitHub repository dedicated to
the paper https://github.com/kartelj/distance_edge_monitoring_public.
This repository also contains binaries and scripts needed to run and reproduce the
results reported in this paper.

Table 1: Instance classes characteristics
Instance class Abbreviation #Instances |V |min |V |max |E|min |E|max

Crew scheduling mcsp 10 50 500 173 16695
Graph coloring mgcol 30 100 300 2420 22601
Pseudo boolean frb 40 450 1534 17794 127011
Hypercubes hypercube 12 2 4096 1 24576
Erdős-Rényi random 24 200 2000 539 1599797

The tables 2-6 contain results for tested instance classes. Each of these tables
is organized in the same way, with rows corresponding to different instances within
their instance class, while columns correspond to the instance name (label), the
number of vertices, the number of edges, the dem value obtained from CPLEX,
the CPLEX runtime, and the CPLEX exit status (opt means that optimality was
verified, while empty ”” means that the time limit was reached).

Table 2 contains the results for mcsp instances. It can be observed that CPLEX
found all optimal solutions in 5 seconds or less.

https://github.com/kartelj/distance_edge_monitoring_public
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Table 2: DEM results for mcsp instances
Dimension CPLEX

Instance |V | |E| dem T (sec) Status

mcsp50 50 173 23 0.047 opt
mcsp100 100 715 58 0.178 opt
mcsp150 150 1355 83 0.391 opt
mcsp200 200 2543 116 0.653 opt
mcsp250 250 4152 145 1.108 opt
mcsp300 300 6108 170 1.638 opt
mcsp350 350 7882 216 2.641 opt
mcsp400 400 10760 251 3.360 opt
mcsp450 450 13510 273 5.001 opt
mcsp500 500 16695 318 4.014 opt

For mgcol instances listed in Table 3 optimality is verified in all 30 instances.
The instances with 300 vertices took several hundred seconds, while the smaller
instances with 100 vertices finished within 1 second. There also appears to be
certain regularity in the dem(G) values, as they are 90 or 91 for instances with
100 vertices, while they are 288 for all instances with 300 vertices.

Table 3: DEM results for mgcol instances
Dimension CPLEX

Instance |V | |E| dem T (sec) Status

mgcol1 100 2487 91 0.952 opt
mgcol2 100 2487 91 0.969 opt
mgcol3 100 2482 91 0.848 opt
mgcol4 100 2503 91 0.903 opt
mgcol5 100 2450 91 0.978 opt
mgcol6 100 2537 91 0.878 opt
mgcol7 100 2505 91 0.876 opt
mgcol8 100 2479 90 0.827 opt
mgcol9 100 2486 90 0.811 opt
mgcol10 100 2506 91 0.883 opt
mgcol11 100 2467 91 0.886 opt
mgcol12 100 2531 91 0.917 opt
mgcol13 100 2467 91 0.849 opt
mgcol14 100 2524 91 0.903 opt
mgcol15 100 2528 91 0.914 opt
mgcol16 100 2493 91 0.840 opt
mgcol17 100 2503 91 0.881 opt
mgcol18 100 2472 91 0.861 opt
mgcol19 100 2527 91 0.767 opt
mgcol20 100 2420 91 0.903 opt
mgcol21 300 22482 288 215.6 opt
mgcol22 300 22569 288 636.2 opt
mgcol23 300 22393 288 257.9 opt
mgcol24 300 22446 288 806.2 opt
mgcol25 300 22360 288 293.0 opt
mgcol26 300 22601 288 798.0 opt
mgcol27 300 22327 288 666.9 opt
mgcol28 300 22472 288 695.7 opt
mgcol29 300 22520 288 187.8 opt
mgcol30 300 22543 288 655.5 opt

The frb instances proved to be the most difficult for CPLEX in solving the IP
model. As can be seen from Table 4, the optimal solutions were achieved in only
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8 out of 40 cases – in all of these cases the number of vertices was either 450 or
595.

Table 4: DEM results for frb instances
Dimension CPLEX

Instance |V | |E| dem T (sec) Status

frb30-15-1 450 17827 420 425.4 opt
frb30-15-2 450 17874 420 231.7 opt
frb30-15-3 450 17809 420 442.9 opt
frb30-15-4 450 17831 420 225.2 opt
frb30-15-5 450 17794 420 50.50 opt
frb35-17-1 595 27856 562 3616
frb35-17-2 595 27847 560 1633 opt
frb35-17-3 595 27931 560 1193 opt
frb35-17-4 595 27842 560 2663 opt
frb35-17-5 595 28143 562 3616
frb40-19-1 760 41314 722 3622
frb40-19-2 760 41263 723 3642
frb40-19-3 760 41095 722 3642
frb40-19-4 760 41605 723 3620
frb40-19-5 760 41619 721 3609
frb45-21-1 945 59186 903 3623
frb45-21-2 945 58624 903 3620
frb45-21-3 945 58245 903 3624
frb45-21-4 945 58549 903 3626
frb45-21-5 945 58579 905 3627
frb50-23-1 1150 80072 1103 3630
frb50-23-2 1150 80851 1105 3634
frb50-23-3 1150 81068 1104 3637
frb50-23-4 1150 80258 1103 3627
frb50-23-5 1150 80035 1103 3633
frb53-24-1 1272 94227 1225 3642
frb53-24-2 1272 94289 1223 3636
frb53-24-3 1272 94127 1224 3631
frb53-24-4 1272 94308 1225 3642
frb53-24-5 1272 94226 1224 3634
frb56-25-1 1400 109676 1350 3641
frb56-25-2 1400 109401 1349 3638
frb56-25-3 1400 109379 1349 3639
frb56-25-4 1400 110038 1348 3648
frb56-25-5 1400 109601 1350 3650
frb59-26-1 1534 126555 1482 3647
frb59-26-2 1534 126163 1481 3647
frb59-26-3 1534 126082 1483 3655
frb59-26-4 1534 127011 1480 3650
frb59-26-5 1534 125982 1480 3653

Hypercubes can be easily solved with CPLEX applied to the proposed IP
model. As Table 5 shows, all instances were solved within ≈ 1 minute.
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Table 5: DEM results for hypercube instances
Dimension CPLEX

Instance |V | |E| dem T (sec) Status

hypercube-1 2 1 1 0.005 opt
hypercube-2 4 4 2 0.010 opt
hypercube-3 8 12 4 0.009 opt
hypercube-4 16 32 8 0.030 opt
hypercube-5 32 80 16 0.026 opt
hypercube-6 64 192 32 0.055 opt
hypercube-7 128 448 64 0.128 opt
hypercube-8 256 1024 128 0.334 opt
hypercube-9 512 2304 256 0.749 opt
hypercube-10 1024 5120 512 2.514 opt
hypercube-11 2048 11264 1024 12.72 opt
hypercube-12 4096 24576 2048 65.97 opt

The instances denoted as random were generated using the parametric model
G(n, p) of Erdős-Rényi, in which a graph with n vertices is constructed by ran-
domly drawing edges with probability p. Table 6 shows that all instances consid-
ered were solved optimally. It is also interesting to observe that dem(G) ≈ |V |/2
holds for all instances, regardless of graph density.

Table 6: DEM results for random instances
Dimension CPLEX

Instance |V | |E| dem T (sec) Status

random-v200-p0.025 200 539 92 0.093 opt
random-v200-p0.05 200 1068 97 0.209 opt
random-v200-p0.1 200 2009 98 0.343 opt
random-v200-p0.2 200 3948 101 0.788 opt
random-v200-p0.5 200 9873 100 1.931 opt
random-v200-p0.8 200 15931 100 3.337 opt
random-v500-p0.025 500 3130 248 2.669 opt
random-v500-p0.05 500 6262 249 2.573 opt
random-v500-p0.1 500 12562 250 3.867 opt
random-v500-p0.2 500 25076 249 7.522 opt
random-v500-p0.5 500 62475 250 18.19 opt
random-v500-p0.8 500 99716 250 31.25 opt
random-v1000-p0.025 1000 12485 495 7.873 opt
random-v1000-p0.05 1000 24928 496 15.67 opt
random-v1000-p0.1 1000 50020 497 21.78 opt
random-v1000-p0.2 1000 100101 499 43.45 opt
random-v1000-p0.5 1000 250082 500 124.3 opt
random-v1000-p0.8 1000 399551 500 148.3 opt
random-v2000-p0.025 2000 50100 997 32.50 opt
random-v2000-p0.05 2000 100030 995 54.55 opt
random-v2000-p0.1 2000 200160 1000 100.5 opt
random-v2000-p0.2 2000 400478 1000 183.0 opt
random-v2000-p0.5 2000 999844 1000 865.5 opt
random-v2000-p0.8 2000 1599797 1000 1867 opt

As can be seen from the results presented, CPLEX works well with the pro-
posed IP model. This is a consequence of the relatively small number of model
variables. It can also be observed that it works slightly better on sparse graphs
than on dense graphs. Although the frb instances are not the largest instances
tested in terms of graph dimensions, they proved to be the most difficult. There-
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fore, instance dimensions and instance density are not the only factors influencing
instance hardness. For example, there are frb40 instances with 760 nodes and a
density of ≈ 0.15 that are not solved optimally, while random instances with 2000
nodes and a density of 0.2 or more are solved optimally. The other factors that
may influence the instance hardness are based on the internal structure of frb

graphs, which may be of interest for future research.

5. CONCLUSION

We have proposed the first integer programming model for the recently intro-
duced distance-edge-monitoring problem. The model appears to be very efficient
for a variety of graph classes. It can be used as a tool for understanding dem(G)
regularities in some other graph classes as well.

In further research, it would be interesting to characterize difficult-to-solve
graphs, starting from the pseudo-Boolean graphs that have been empirically shown
to be difficult, and to understand why dem(G) ≈ |V |/2 in case of Erdős-Rényi
graphs. In addition, it would be interesting to explore the possibilities of various
exact and non-exact solving methods, such as A*, Beam search, Variable neigh-
borhood search, Genetic algorithm, etc. Non-exact methods would be suitable
for large graphs, common in practical applications. Other ways to solve large
graphs could be to combine exact and non-exact methods to take advantage of
both worlds. For example, there are metaheuristics based on ILP models, such as
Construct, Merge, Solve & Adapt, VNS+ILP hybrids and others.

Funding. A. Kartelj and V. Filipović are supported by grant 451-03-47/2023-
01/200104 from the Ministry of Science Technological Development and Innova-
tions of the Republic of Serbia.
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