Yugoslav Journal of Operations Research xx (20xx), Number xx, xxx–xxx DOI: https://doi.org/10.2298/YJOR230815016K # INTEGER PROGRAMMING MODEL FOR DISTANCE-EDGE-MONITORING PROBLEM ### Aleksandar KARTELJ Faculty of Mathematics, University of Belgrade, Studentski trg 16, 11 000 Belgrade, Serbia aleksandar.kartelj@gmail.com ## Vladimir FILIPOVIĆ Faculty of Mathematics, University of Belgrade, Studentski trg 16, 11 000 Belgrade, Serbia vladofilipovic@hotmail.com #### Jozef KRATICA Mathematical Institute, Serbian Academy of Sciences and Arts, Kneza Mihaila 36, 11 000 Belgrade, Serbia jkratica@mi.sanu.ac.rs Received: August 2023 / Accepted: April 2024 **Abstract:** The paper considers the recently introduced distance-edge-monitoring problem. For a given graph G=(V,E), the set M is called distance-edge-monitoring if it is a subset of V and for every edge e of E there is a vertex x of M and a vertex y of V such that e belongs to all the shortest paths between x and y. The goal is to find the smallest distance-edge-monitoring set of the graph. We propose the first-ever integer programming model for this problem and present empirical results for five instance classes with graphs up to 4096 vertices and 1599797 edges. The proposed model was able to solve all instances of four instance classes optimally, while the remaining fifth class of graphs proves to be more difficult for the proposed model. **Keywords:** Distance-edge-monitoring problem, network monitoring, *dem* number, integer programming, combinatorial optimization. MSC: 90C10, 90C27. ## 1. INTRODUCTION The concept of distance-edge-monitoring was introduced in [1]. The motivation arises from computer networks, where the vertices represent computers/routers and the edges represent communication links. It is well known that computer networks are complex systems that use heterogeneous devices and interconnection technologies, such as optical fibers, copper wires, wireless microwave transmission, etc. Using explicit mechanisms of detecting link failures requires expensive measurement equipment. An alternative approach would be to implicitly detect link failures based on the routing distances readily available to the computers/routers, e.g. via the traceroute command. More specifically, goal is to localize the broken communication link when the failure occurs. This is done by selecting a subset of vertices, called probes, that can measure the distance (the length of the shortest path) to any other vertex in the network. Once an edge fails, some of the distances change, which in turn allows the probes to detect this situation. Real-world applications of such probes are reported in papers on routing and network verification [2, 3, 4, 5, 6]. In this paper, we provide an exact procedure (integer linear programming model) to propose the probe set with the smallest cardinality, i.e. the one with the cheapest price. The applicability of this approach is demonstrated on random graphs that resemble some real networks, as shown in this paper. However, we emphasize that this approach does not target a specific type of graphs and is therefore applicable in a general case. Let G = (V(G), E(G)) be a simple connected graph. By $d_G(x, y)$ we denote the distance in the graph, i.e., the length of the shortest path between the vertices x and y. **Definition 1.** Given a set $M \subseteq V$ of vertices and an edge $e \in E$, let P(M,e) be the set of pairs (x,y) such that $x \in M$ and $y \in V$ and $d_G(x,y) \neq d_{G-e}(x,y)$, i.e., removing the edge e from G changes the distances between x and y. In other words, that the edge e must belong to all shortest paths between x and y. **Definition 2.** Given a vertex x, EM(x) is the set of edges e such that $(x, y) \in P(x, e)$ for any $y \in V$. In other words, the edges of EM(x) are all monitored by x. **Definition 3.** A set $M \subseteq V(G)$ is called distance-edge-monitoring set if every edge $e \in E$ is monitored by some vertex of M. More precisely, $\bigcup_{x \in M} EM(x) = E$. The cardinality of the minimal M is called the distance-edge-monitoring number of the graph and is denoted by dem(G). Note that V is itself a distance-edge-monitoring set. From the previous definition, it can be seen that the selection of probes using the distance-edge-monitoring set guarantees the detection of edge defects. This is because each edge belongs to all the shortest paths between certain pair of vertices, one of which is within the probe set. Therefore, the faulty edge will increase the distance to at least one other vertex observed by this probe. In [1], the authors even proved that it is possible to determine exactly which edge has failed. Another result from this work, important for our model, is the following lemma: **Lemma 1.** ([1]) Let x be a vertex of a connected graph G. Then, an edge $\{u,v\}$ belongs to EM(x) if and only if $u \in L_i(x)$ and v is the only neighbor of u in $L_{i-1}(x)$, for some integer i, where $L_i(x)$ denotes the set of vertices at distance i of x [1]. #### 2. RELATED WORK Distance-edge-monitoring is a relatively new concept in the literature. The 2022 paper [1] formally introduces the problem. Since then, a number of papers have appeared that examine the problem from both theoretical and practical perspectives. In [7] the authors propose lower and upper bounds for Cartesian graph products, and they also characterize the graphs that reach these lower and upper bounds. Moreover, they prove the exact dem-values for join, corona, cluster and some other specific graphs. Paper [8] gives some lower and upper bounds for P(M,e), EM(x), and dem(G), and characterizes extreme graphs that reach these bounds. It also characterizes graphs with dem(G) = 3. In [9] it has been shown that $dem(G \setminus e) - dem(G) \leq 2$. There are some other results in this paper, for example, the authors propose the algorithm that evaluates whether the distanceedge-monitoring set still remains in the resulting graph when an edge of the graph is deleted. Paper [10] is concerned with lower bounds of distance edge monitoring number for hierarchical and corona graphs. In [11], the author proposes an algorithm for solving the distance-edge-monitoring problem. The algorithm is parameterized by the vertex cover number and feedback edge set number. This is not the first algorithm for the dem problem, as the authors of the original paper [1] have already proposed a polynomial algorithm based on the set cover that approximates within a factor of $\ln(|E(G)|+1)$. It should be noted that there is also an ongoing research [12, 13, 14] on a similar problem called edge-geodetic-monitoring (or monitoring of edge-geodetic sets). Here the goal is to find, for the given graph G(V, E), a set $S \subseteq V$ such that for every $e \in E$ there is a pair $(x,y) \in S \times S$ that it monitors. The difference with distance-edge-monitoring is that both endpoints are in the selected subset S. The corresponding size of the smallest such S is called the monitoring edge-geodesic set number or meg(G) for short. ## 3. THE PROPOSED INTEGER PROGRAMMING MODEL The proposed integer programming model has the following form: $$\min \sum_{v \in V} x_v \tag{1}$$ s.t. $$\sum_{v \in V} C_{v,e} \cdot x_v \ge 1, \quad for \ e \in E \tag{2}$$ $$x_v \in \{0, 1\}, for v \in V$$ (3) The variable x_v for $v \in V$ takes the value 1 if the vertex v is within the distance-edge-monitoring set, otherwise it takes the value 0. Thus, if $x_v = 1$ for some $v \in V$, then $v \in M$. Clearly, the objective function (1) corresponds to the formulation of a distance-edge-monitoring set problem. The constant $C_{v,e}$ for $(v,e) \in V \times E$ takes the value 1 if for a pair (v,e) there exists a vertex $u \in V$ such that e belongs to all the shortest paths between vertices v and u. Effectively, $C_{v,e} = 1$ when $e \in EM(v)$ and conversely $C_{v,e} = 0$ when $e \notin EM(v)$. Constraints (2) therefore enforce the distance-edge-monitoring condition, i.e., for every $e \in E$ there must be at least one $v \in M$ that monitors it. Due to the small number (|V|) of binary variables and only |E| constraints, the model can be solved quite well with ILP solvers, such as CPLEX. Note that for large graphs, the direct computation of the $C_{v,e}$ -matrix can be very time consuming. Fortunately, we have used the Lemma 1 to improve the efficiency of this preparation phase. The pseudocode of the C-matrix calculation procedure is shown in Algorithm 1. ## Algorithm 1 Calculation of C-matrix ``` \begin{array}{ccc} 1: & C & \leftarrow & \textbf{false} \\ & |V(G)| \times |E(G)| & & |V(G)| \times |E(G)| \\ 2: & d_G \leftarrow FloydWarshall(G) \end{array} 3: for e = \{u, v\} \in E(G) do for x \in V(G) do if d_G(x,v) = d_G(x,u) then 5: 6: continue 7: end if if d_G(x, v) = d_G(x, u) + 1 then 8: 9: x_{monitors} \leftarrow \mathbf{true} 10: for w \in V(G) \setminus \{u\} do if d_G(x,v) = d_G(x,w) + 1 then 11: x_{monitors} \leftarrow \mathbf{false} 12: 13: break 14: end if 15: end for 16: if not x_{monitors} then 17: continue end if 18: 19: end if if d_G(x, u) = d_G(x, v) + 1 then 20: 21: x_{monitors} \leftarrow \mathbf{true} 22: for w \in V(G) \setminus \{v\} do 23: if d_G(x, u) = d_G(x, w) + 1 then 24: x_{monitors} \leftarrow \mathbf{false} 25: break 26: end if 27: end for 28: if not x_{monitors} then 29: continue 30: end if 31: end if 32: C_{x,e} \leftarrow \mathbf{true} 33: end for 34: end for ``` Namely, for each edge $e = \{v, u\}$ and each vertex x in graph G, one needs to compare the distances $d_G(x,v)$ and $d_G(x,u)$. If $d_G(x,v) = d_G(x,u)$, the vertex x cannot monitor the edge e because if the optimal path passes through this edge, the distances to its endpoints cannot be equal (one distance should be greater than the other by one). Therefore, the remaining interesting cases are when $d_G(x,v) = d_G(x,u) + 1$ or $d_G(x,v) + 1 = d_G(x,u)$. For these two cases, one should check whether v is the only neighbor of u at distance $d_G(x,u) - 1$ from x and, conversely, whether u is the only neighbor of v at distance d(x,v) - 1 from x. For the calculation of the distances between the vertices we used the Floyd-Warshall algorithm, with a computational complexity of $O(|V(G)|^3)$. As can be seen from the presented pseudocode, the total computational complexity is $O(|V(G)|^2 \cdot |E(G)|)$. #### 4. EXPERIMENTAL RESULTS In this section, we present the results obtained by solving the proposed IP model using IBM CPLEX 22.1.0 solver in 64-bit mode with 16 threads. All tests were performed on an Intel i9-9900KF CPU @3.6 GHz with 64 GB of memory running the Windows 10 operating system. The maximum runtime was set to one hour. Instance classes are shown in Table 1, where each row corresponds to an instance class, while the columns contain the full name, abbreviation, number of instances, minimum and maximum number of vertices, and minimum and maximum number of edges. All instances, except the random ones, are already known from the literature. They are all available in the public GitHub repository dedicated to the paper https://github.com/kartelj/distance_edge_monitoring_public. This repository also contains binaries and scripts needed to run and reproduce the results reported in this paper. | Table 1: Instance classes characteristics | | | | | | | | | |-------------------------------------------|--------------|------------|-------------|-------------|-------------|-------------|--|--| | Instance class | Abbreviation | #Instances | $ V _{min}$ | $ V _{max}$ | $ E _{min}$ | $ E _{max}$ | | | | Crew scheduling | mcsp | 10 | 50 | 500 | 173 | 16695 | | | | Graph coloring | mgcol | 30 | 100 | 300 | 2420 | 22601 | | | | Pseudo boolean | frb | 40 | 450 | 1534 | 17794 | 127011 | | | | Hypercubes | hypercube | 12 | 2 | 4096 | 1 | 24576 | | | | Erdős-Rényi | random | 24 | 200 | 2000 | 539 | 1599797 | | | The tables 2-6 contain results for tested instance classes. Each of these tables is organized in the same way, with rows corresponding to different instances within their instance class, while columns correspond to the instance name (label), the number of vertices, the number of edges, the *dem* value obtained from CPLEX, the CPLEX runtime, and the CPLEX exit status (*opt* means that optimality was verified, while empty "" means that the time limit was reached). Table 2 contains the results for mcsp instances. It can be observed that CPLEX found all optimal solutions in 5 seconds or less. Table 2: DEM results for mcsp instances | Dimension CPLEX | | | | | | | | |-----------------|-----------|-------|-----|---------|--------|--|--| | | Dimension | | | | | | | | Instance | | E | dem | T (sec) | Status | | | | mcsp50 | 50 | 173 | 23 | 0.047 | opt | | | | mcsp100 | 100 | 715 | 58 | 0.178 | opt | | | | mcsp150 | 150 | 1355 | 83 | 0.391 | opt | | | | mcsp200 | 200 | 2543 | 116 | 0.653 | opt | | | | mcsp250 | 250 | 4152 | 145 | 1.108 | opt | | | | mcsp300 | 300 | 6108 | 170 | 1.638 | opt | | | | mcsp350 | 350 | 7882 | 216 | 2.641 | opt | | | | mcsp400 | 400 | 10760 | 251 | 3.360 | opt | | | | mcsp450 | 450 | 13510 | 273 | 5.001 | opt | | | | mcsp500 | 500 | 16695 | 318 | 4.014 | opt | | | For mgcol instances listed in Table 3 optimality is verified in all 30 instances. The instances with 300 vertices took several hundred seconds, while the smaller instances with 100 vertices finished within 1 second. There also appears to be certain regularity in the dem(G) values, as they are 90 or 91 for instances with 100 vertices, while they are 288 for all instances with 300 vertices. Table 3: DEM results for mgcol instances | | Dim | ension | CPLEX | | | |----------|-----|--------|-------|---------|-------------| | Instance | V | E | dem | T (sec) | Status | | mgcol1 | 100 | 2487 | 91 | 0.952 | opt | | mgcol2 | 100 | 2487 | 91 | 0.969 | opt | | mgcol3 | 100 | 2482 | 91 | 0.848 | opt | | mgcol4 | 100 | 2503 | 91 | 0.903 | opt | | mgcol5 | 100 | 2450 | 91 | 0.978 | $_{ m opt}$ | | mgcol6 | 100 | 2537 | 91 | 0.878 | $_{ m opt}$ | | mgcol7 | 100 | 2505 | 91 | 0.876 | opt | | mgcol8 | 100 | 2479 | 90 | 0.827 | $_{ m opt}$ | | mgcol9 | 100 | 2486 | 90 | 0.811 | opt | | mgcol10 | 100 | 2506 | 91 | 0.883 | $_{ m opt}$ | | mgcol11 | 100 | 2467 | 91 | 0.886 | opt | | mgcol12 | 100 | 2531 | 91 | 0.917 | opt | | mgcol13 | 100 | 2467 | 91 | 0.849 | $_{ m opt}$ | | mgcol14 | 100 | 2524 | 91 | 0.903 | opt | | mgcol15 | 100 | 2528 | 91 | 0.914 | opt | | mgcol16 | 100 | 2493 | 91 | 0.840 | opt | | mgcol17 | 100 | 2503 | 91 | 0.881 | opt | | mgcol18 | 100 | 2472 | 91 | 0.861 | opt | | mgcol19 | 100 | 2527 | 91 | 0.767 | opt | | mgcol20 | 100 | 2420 | 91 | 0.903 | $_{ m opt}$ | | mgcol21 | 300 | 22482 | 288 | 215.6 | opt | | mgcol22 | 300 | 22569 | 288 | 636.2 | opt | | mgcol23 | 300 | 22393 | 288 | 257.9 | opt | | mgcol24 | 300 | 22446 | 288 | 806.2 | opt | | mgcol25 | 300 | 22360 | 288 | 293.0 | opt | | mgcol26 | 300 | 22601 | 288 | 798.0 | opt | | mgcol27 | 300 | 22327 | 288 | 666.9 | opt | | mgcol28 | 300 | 22472 | 288 | 695.7 | opt | | mgcol29 | 300 | 22520 | 288 | 187.8 | opt | | mgcol30 | 300 | 22543 | 288 | 655.5 | opt | The frb instances proved to be the most difficult for CPLEX in solving the IP model. As can be seen from Table 4, the optimal solutions were achieved in only $8~\mathrm{out}$ of $40~\mathrm{cases}$ – in all of these cases the number of vertices was either $450~\mathrm{or}$ 595. | Table 4: DEM results for frb instances | | | | | | | | |----------------------------------------|------|--------|-------|---------|--------|--|--| | | Dim | ension | CPLEX | | | | | | Instance | | E | dem | T (sec) | Status | | | | frb30-15-1 | 450 | 17827 | 420 | 425.4 | opt | | | | frb30-15-2 | 450 | 17874 | 420 | 231.7 | opt | | | | frb30-15-3 | 450 | 17809 | 420 | 442.9 | opt | | | | frb30-15-4 | 450 | 17831 | 420 | 225.2 | opt | | | | frb30-15-5 | 450 | 17794 | 420 | 50.50 | opt | | | | frb35-17-1 | 595 | 27856 | 562 | 3616 | | | | | frb35-17-2 | 595 | 27847 | 560 | 1633 | opt | | | | frb35-17-3 | 595 | 27931 | 560 | 1193 | opt | | | | frb35-17-4 | 595 | 27842 | 560 | 2663 | opt | | | | frb35-17-5 | 595 | 28143 | 562 | 3616 | | | | | frb40-19-1 | 760 | 41314 | 722 | 3622 | | | | | frb40-19-2 | 760 | 41263 | 723 | 3642 | | | | | frb40-19-3 | 760 | 41095 | 722 | 3642 | | | | | frb40-19-4 | 760 | 41605 | 723 | 3620 | | | | | frb40-19-5 | 760 | 41619 | 721 | 3609 | | | | | frb45-21-1 | 945 | 59186 | 903 | 3623 | | | | | frb45-21-2 | 945 | 58624 | 903 | 3620 | | | | | frb45-21-3 | 945 | 58245 | 903 | 3624 | | | | | frb45-21-4 | 945 | 58549 | 903 | 3626 | | | | | frb45-21-5 | 945 | 58579 | 905 | 3627 | | | | | frb50-23-1 | 1150 | 80072 | 1103 | 3630 | | | | | frb50-23-2 | 1150 | 80851 | 1105 | 3634 | | | | | frb50-23-3 | 1150 | 81068 | 1104 | 3637 | | | | | frb50-23-4 | 1150 | 80258 | 1103 | 3627 | | | | | frb50-23-5 | 1150 | 80035 | 1103 | 3633 | | | | | frb53-24-1 | 1272 | 94227 | 1225 | 3642 | | | | | frb53-24-2 | 1272 | 94289 | 1223 | 3636 | | | | | frb53-24-3 | 1272 | 94127 | 1224 | 3631 | | | | | frb53-24-4 | 1272 | 94308 | 1225 | 3642 | | | | | frb53-24-5 | 1272 | 94226 | 1224 | 3634 | | | | | frb56-25-1 | 1400 | 109676 | 1350 | 3641 | | | | | frb56-25-2 | 1400 | 109401 | 1349 | 3638 | | | | | frb56-25-3 | 1400 | 109379 | 1349 | 3639 | | | | | frb56-25-4 | 1400 | 110038 | 1348 | 3648 | | | | | frb56-25-5 | 1400 | 109601 | 1350 | 3650 | | | | | frb59-26-1 | 1534 | 126555 | 1482 | 3647 | | | | | frb59-26-2 | 1534 | 126163 | 1481 | 3647 | | | | | frb59-26-3 | 1534 | 126082 | 1483 | 3655 | | | | | frb59-26-4 | 1534 | 127011 | 1480 | 3650 | | | | | ${\rm frb} 59 \text{-} 26 \text{-} 5$ | 1534 | 125982 | 1480 | 3653 | | | | Hypercubes can be easily solved with CPLEX applied to the proposed IP model. As Table 5 shows, all instances were solved within ≈ 1 minute. Table 5: DEM results for hypercube instances | Table 6. DE | VI ICS | hypercube mistances | | | | | |--------------|--------|---------------------|-------|---------|--------|--| | | Dime | ension | CPLEX | | | | | Instance | V | E | dem | T (sec) | Status | | | hypercube-1 | 2 | 1 | 1 | 0.005 | opt | | | hypercube-2 | 4 | 4 | 2 | 0.010 | opt | | | hypercube-3 | 8 | 12 | 4 | 0.009 | opt | | | hypercube-4 | 16 | 32 | 8 | 0.030 | opt | | | hypercube-5 | 32 | 80 | 16 | 0.026 | opt | | | hypercube-6 | 64 | 192 | 32 | 0.055 | opt | | | hypercube-7 | 128 | 448 | 64 | 0.128 | opt | | | hypercube-8 | 256 | 1024 | 128 | 0.334 | opt | | | hypercube-9 | 512 | 2304 | 256 | 0.749 | opt | | | hypercube-10 | 1024 | 5120 | 512 | 2.514 | opt | | | hypercube-11 | 2048 | 11264 | 1024 | 12.72 | opt | | | hypercube-12 | 4096 | 24576 | 2048 | 65.97 | opt | | The instances denoted as random were generated using the parametric model G(n,p) of Erdős-Rényi, in which a graph with n vertices is constructed by randomly drawing edges with probability p. Table 6 shows that all instances considered were solved optimally. It is also interesting to observe that $dem(G) \approx |V|/2$ holds for all instances, regardless of graph density. | Table 6: DEM results for random instances | | | | | | | | | |-------------------------------------------|-----------|---------|-------|---------|--------|--|--|--| | | Dimension | | CPLEX | | | | | | | Instance | V | E | dem | T (sec) | Status | | | | | random-v200-p0.025 | 200 | 539 | 92 | 0.093 | opt | | | | | random-v200-p0.05 | 200 | 1068 | 97 | 0.209 | opt | | | | | random-v200-p0.1 | 200 | 2009 | 98 | 0.343 | opt | | | | | random-v200-p0.2 | 200 | 3948 | 101 | 0.788 | opt | | | | | random-v200-p0.5 | 200 | 9873 | 100 | 1.931 | opt | | | | | random-v200-p0.8 | 200 | 15931 | 100 | 3.337 | opt | | | | | random-v500-p0.025 | 500 | 3130 | 248 | 2.669 | opt | | | | | random-v500-p0.05 | 500 | 6262 | 249 | 2.573 | opt | | | | | random-v500-p0.1 | 500 | 12562 | 250 | 3.867 | opt | | | | | random-v500-p0.2 | 500 | 25076 | 249 | 7.522 | opt | | | | | random-v500-p0.5 | 500 | 62475 | 250 | 18.19 | opt | | | | | random-v500-p0.8 | 500 | 99716 | 250 | 31.25 | opt | | | | | random-v1000-p0.025 | 1000 | 12485 | 495 | 7.873 | opt | | | | | random-v1000-p0.05 | 1000 | 24928 | 496 | 15.67 | opt | | | | | random-v1000-p0.1 | 1000 | 50020 | 497 | 21.78 | opt | | | | | random-v1000-p0.2 | 1000 | 100101 | 499 | 43.45 | opt | | | | | random-v1000-p0.5 | 1000 | 250082 | 500 | 124.3 | opt | | | | | random-v1000-p0.8 | 1000 | 399551 | 500 | 148.3 | opt | | | | | random-v2000-p0.025 | 2000 | 50100 | 997 | 32.50 | opt | | | | | random-v2000-p0.05 | 2000 | 100030 | 995 | 54.55 | opt | | | | | random-v2000-p0.1 | 2000 | 200160 | 1000 | 100.5 | opt | | | | | random-v2000-p0.2 | 2000 | 400478 | 1000 | 183.0 | opt | | | | | random-v2000-p0.5 | 2000 | 999844 | 1000 | 865.5 | opt | | | | | random-v2000-p0.8 | 2000 | 1599797 | 1000 | 1867 | opt | | | | As can be seen from the results presented, CPLEX works well with the proposed IP model. This is a consequence of the relatively small number of model variables. It can also be observed that it works slightly better on sparse graphs than on dense graphs. Although the frb instances are not the largest instances tested in terms of graph dimensions, they proved to be the most difficult. There- fore, instance dimensions and instance density are not the only factors influencing instance hardness. For example, there are frb40 instances with 760 nodes and a density of ≈ 0.15 that are not solved optimally, while random instances with 2000 nodes and a density of 0.2 or more are solved optimally. The other factors that may influence the instance hardness are based on the internal structure of frb graphs, which may be of interest for future research. #### 5. CONCLUSION We have proposed the first integer programming model for the recently introduced distance-edge-monitoring problem. The model appears to be very efficient for a variety of graph classes. It can be used as a tool for understanding dem(G)regularities in some other graph classes as well. In further research, it would be interesting to characterize difficult-to-solve graphs, starting from the pseudo-Boolean graphs that have been empirically shown to be difficult, and to understand why $dem(G) \approx |V|/2$ in case of Erdős-Rényi graphs. In addition, it would be interesting to explore the possibilities of various exact and non-exact solving methods, such as A*, Beam search, Variable neighborhood search, Genetic algorithm, etc. Non-exact methods would be suitable for large graphs, common in practical applications. Other ways to solve large graphs could be to combine exact and non-exact methods to take advantage of both worlds. For example, there are metaheuristics based on ILP models, such as Construct, Merge, Solve & Adapt, VNS+ILP hybrids and others. **Funding.** A. Kartelj and V. Filipović are supported by grant 451-03-47/2023-01/200104 from the Ministry of Science Technological Development and Innovations of the Republic of Serbia. #### REFERENCES - [1] F. Foucaud, S.-S. Kao, R. Klasing, M. Miller, and J. Ryan, "Monitoring the edges of a graph using distances," *Discrete Appl. Math.*, vol. 319, pp. 424–438, 2022. - [2] R. Govindan and H. Tangmunarunkit, "Heuristics for internet map discovery," in *Proc IEEE INFOCOM 2000*, vol. 3. IEEE, 2000, pp. 1371–1380. - [3] L. Dall'Asta, I. Alvarez-Hamelin, A. Barrat, A. Vázquez, and A. Vespignani, "Exploring networks with traceroute-like probes: Theory and simulations," *Theor. Comput. Sci.*, vol. 355, no. 1, pp. 6–24, 2006. - [4] Z. Beerliova, F. Eberhard, T. Erlebach, A. Hall, M. Hoffmann, M. Mihal'ak, and L. S. Ram, "Network discovery and verification," *IEEE J. Sel. Areas Commun.*, vol. 24, no. 12, pp. 2168–2181, 2006. - [5] D. Bilò, T. Erlebach, M. Mihalák, and P. Widmayer, "Discovery of network properties with all-shortest-paths queries," *Theor. Comput. Sci.*, vol. 411, no. 14-15, pp. 1626–1637, 2010. - [6] E. Bampas, D. Bilò, G. Drovandi, L. Gualà, R. Klasing, and G. Proietti, "Network verification via routing table queries," J. Comput. Syst. Sci., vol. 81, no. 1, pp. 234–248, 2015. - [7] W. Li, R. Klasing, Y. Mao, and B. Ning, "Monitoring the edges of product networks using distances," arXiv preprint arXiv:2211.10743, 2022. - [8] C. Yang, R. Klasing, Y. Mao, and X. Deng, "On the distance-edge-monitoring numbers of graphs," Discrete Appl. Math., vol. 342, pp. 153–167, 2024. doi: https://doi.org/10.1016/j.dam.2023.09.012 - [9] C. Yang, R. Klasing, C. He, and Y. Mao, "Perturbation results for distance-edge-monitoring numbers," arXiv preprint arXiv:2301.02507, 2023. - [10] G. Yang and C. He, "Distance-edge-monitoring sets in hierarchical and corona graphs," J. Interconnect. Netw., vol. 23, no. 02, p. 2250003, 2023. - [11] L. Václav, "Distance edge monitoring set problem with respect to structural parameters," B.S. thesis, Faculty of Information Technology CTU in Prague, Department of Theoretical Computer Science, 2022. - [12] F. Foucaud, K. Narayanan, and L. Ramasubramony Sulochana, "Monitoring edge-geodetic sets in graphs," in *Conf. Algorithms Discrete Appl. Math.* Springer, 2023, pp. 245–256. [13] J. Haslegrave, "Monitoring edge-geodetic sets: hardness and graph products," *Discrete* - Appl. Math., vol. 340, pp. 79–84, 2023. - [14] A. Tan, W. Li, X. Wang, and X. Li, "Monitoring edge-geodetic numbers of convex polytopes and four networks," Int. J. Parallel Emergent Distrib. Syst., pp. 1-12, 2023.