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Abstract: The assignment problem (AP) is a fundamental challenge in linear pro-
gramming and operations research focused on optimizing assignments to minimize costs
or maximize profits. This study extends the traditional AP to address uncertainties and
ambiguities through the neutrosophic assignment problem (NAP). Further advancing
this concept, the triangular fuzzy neutrosophic assignment problem (TFNAP) is intro-
duced, utilizing triangular fuzzy neutrosophic numbers (TFNNs) to represent fuzziness
and neutrosophy, thus offering a more comprehensive depiction of uncertainty and in-
determinacy. The primary aim of this research is to identify the optimal assignment
that either minimizes cost or maximizes profit within the TFNAP framework, a task
known for its computational complexity. The TFNAP is represented through a triangu-
lar fuzzy neutrosophic assignment matrix (TFNAM), which employs TFNNs as its core
elements. This study develops and refines algorithms tailored to address these complexi-
ties, ensuring originality through a stepwise procedure that simplifies computations in a
neutrosophic manner. The methodology includes resolving the problem using a neutro-
sophic approach and incorporating a score function to convert triangular fuzzy neutro-
sophic values to their equivalent crisp numbers for comparative purposes. The proposed
method’s effectiveness is validated through its application to real-world problems, with
the results compared against previously established solutions. The findings demonstrate
that the TFNAP framework provides more accurate and insightful outcomes in dealing
with uncertainties compared to traditional methods. This study introduces significant
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innovations in handling ambiguity and indeterminacy in assignment problems, offering
a robust tool for optimization in complex, uncertain environments. Conclusively, the
developed approach not only enhances the understanding of neutrosophic assignments
but also presents a practical solution for real-world applications.

Keywords: Neutrosophic number, triangular fuzzy neutrosophic number, triangular

fuzzy Neutrosophic Assignment problem, score function, range, optimal solution.

MSC: 03E72, 90B99.

1. INTRODUCTION

In the course of our daily lives, we frequently encounter a range of vague,
confusing, and inadequate situations. As a result, Zadeh [1] proposed the idea
of fuzzy sets (FS) in 1965 as an extension of classical sets that permits partial
membership, i.e., assigns a membership grade for each element. The fuzzy set
theory has had remarkable success in a variety of domains because of its capacity to
handle inconsistency. In 1983, Atanassov [2] developed the concept of intuitionistic
fuzzy sets(IFS) as an enhancement of fuzzy sets. Due to certain constraints, these
sets include both the membership grade and the non-membership grade of each
element. The membership grades for each element’s truth (T), indeterminacy (I),
and falsity (F) are included in neutrosophic sets (NS), an extension of intuitionistic
fuzzy sets. In 1995, Smarandache [3] first put forward the concept.

Numerous neutrosophic theories and applications have been established as a
consequence of the introduction of neutrosophic numbers (NNs), including those
in the areas of mathematics, decision-making, artificial intelligence, and linguis-
tics. It offers a more adaptable and thorough framework to deal with ambiguous
and imprecise data, making it useful in a variety of academic fields and real-world
problem-solving. Fuzzy sets, neutrosophic sets, and triangular fuzzy numbers
are all combined in the idea of triangular fuzzy neutrosophic numbers (TFNNs),
bringing about a more comprehensive and customizable framework for managing
uncertainty and ambiguity in modeling and decision-making. It is more expressive
and flexible to real-world issues owing to its hybrid character. It is an effective
tool for handling intricate and unclear data. De and Nandi [4] developed the exact
defuzzification method under polynomial approximation of various fuzzy sets. A
promising approach for decision modeling with single-valued neutrosophic proba-
bilistic hesitant fuzzy Dombi operators was provided by Kamran et al [5]. Biswas
[6] aggregated the triangular fuzzy neutrosophic set information and applied it to
MADM. An extended MABAC method for multiple-criteria group decision mak-
ing problems based on triangular fuzzy neutrosophic numbers was introduced by
Irvanizam [7]. Das and Edalatpanah [8] proposed a new ranking function of tri-
angular neutrosophic number and applied it in integer programming. Geetha and
Narayanamoorthy [9] solved the MCDM problems by employing superiority and
inferiority ranking method with hesitant Pythagorean fuzzy sets. An integrating
model with DEMATEL and VIKOR methods was proposed by Narayanamoorthy
et al [10] to identify and evaluate the criteria and alternatives in the selection of
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renewable energy resources. A score function was devised by Chakraborty et al
[11] and was applied to defuzzify triangular fuzzy neutrosophic numbers to tackle
neutrosophic assignment challenges as well as a few other issues.

Research on the transportation problem and travelling salesman problem has
focused on developing efficient algorithms and methodologies to solve large-scale
instances and adapt to real-world complexities. The Dhouib-matrix-TP1 heuris-
tic was first put forward by Dhouib [12] to address the trapezoidal fuzzy trans-
portation difficulties. Sikkannanl and Shanmugavel [13] answered the fuzzy trans-
portation problems using ECCT and standard deviation. Narayanamoorthy and
Kalyani [14] proposed a new method for obtaining the initial basic feasible solution
of a fuzzy transportation problem. Pratihar [15] investigated the transportation
issue in a neutrosophic setting. Using the Ones Assignment Method, Subasri and
Selvakumari [16] answered the Neutrosophic Travelling Salesman Problem in tri-
angular fuzzy numbers. Employing the Dhouib-Matrix-TSP1 Heuristic, Dhouib
[17] optimized the travelling salesman problem for single-valued triangular neutro-
sophic numbers. The Neutrosophic Travelling Salesman Problem built on trape-
zoidal fuzzy numbers was solved by Subasri and Selvakumari [18] utilizing the
Branch and Bound technique. Dhouib [19] fixed the travelling salesman problem
in triangular neutrosophic numbers.

The American mathematician Harold W. Kuhn originally stated and addressed
the assignment issue in 1955. Determining the most effective and economical ap-
proach to match each task with a resource is the ultimate goal of the assignment
problem, which aims to minimize or maximize the overall cost or benefit. The
assignment issue was a ground-breaking research project by Kuhn that later be-
came a central theme in the field of operations research and optimization. Due to
its extensive applicability and significance in several real-world settings, including
workforce scheduling, transportation optimization, project planning, and more,
the assignment issue has drawn a lot of attention. In addition to the multiple
locations already indicated, the AP can also be resolved using the neutrosophic
numbers. Due in large part to Kuhn’s outstanding work, several techniques and
approaches have been developed to effectively tackle the assignment problem. As
a result of the triangular fuzzy neutrosophic numbers’ ability to represent a wide
range of uncertainty (mentioned above), it may be utilized in a variety of ac-
tivities in a multitude of fields, including decision-making, artificial intelligence,
and expert systems. This sparks curiosity and encourages exploration and exper-
imentation with the triangular fuzzy neutrosophic assignment issue. Afroz and
Hossen [20] adopted the Divide Column and Subtract One Assignment Method
for solving the assignment problem. Mass - A New Ones Assignment Method was
implemented by Esakkiammal and Murugesan [21] for finding the optimal solu-
tion of assignment problems. Kar and Shaw [22] constructed a new approach to
obtain the optimal solution of triangular fuzzy assignment problem using Hungar-
ian method. The fully fuzzy assignment problem was resolved by Muruganandam
and Hema [23] utilizing Branch and Bound Technique. Dhouib [24] unravelled the
intuitionistic triangular fuzzy assignment problem by the novel heuristic Dhouib-
Matrix-AP1. Lone et al [25] handled the intuitionistic fuzzy assignment problem
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and applied it to agriculture. The intuitionistic fuzzy assignment problem was
fixed by a method involving Branch and Bound method by Srinivas and Ganesan
[26]. Bera and Mahapatra [27] explored the neutrosophic assignment problem by
offering its solution methodology. Prabha and Vimala [28] evaluated the neutro-
sophic assignment problem through the BnB algorithm.

The applications of TFNNs are indeed diverse, reflecting their versatility and ef-
fectiveness in complex decision-making and analysis tasks. By integrating TFNNs
into different domains, organizations and researchers can achieve more accurate,
reliable, and informed results. The neutrosophic MAGDM was dealt by Mallick et
al [29] based on critic-EDAS strategy using geometric aggregation operator. Abdel-
Basset et al [30] designed a novel group decision-making model based on triangular
neutrosophic numbers. The triangular single-valued neutrosophic data was ana-
lyzed and applied by Yang [31] to hospital performance measurement. Hamza et
al [32] studied cryptography interms of triangular neutrosophic numbers with real
life applications. Xie [33] developed the Modified GRA methodology for MADM
under triangular fuzzy neutrosophic sets and applied it to blended teaching effect
evaluation of college English courses.

Here comes a small discussion about the limitations along with the gaps of
the existing algorithms related to this study, which has lead to the need for using
the proposed algorithm for solving the triangular fuzzy neutrosophic assignment
problem (TFNAP): The current literature on the assignment problem (AP) under
fuzzy and neutrosophic environments have several limitations that create gaps in
their applicability and effectiveness and needs more comprehensive exploration,
particularly when dealing with the complexities of triangular fuzzy neutrosophic
assignment problems (TFNAP) (which requires utilizing the advanced represen-
tation capabilities of triangular fuzzy neutrosophic numbers (TFNNs)) as given
below:

Limitations and Gaps in the Existing Research:

� Handling Combined Uncertainty and Indeterminacy.

� Scalability and Efficiency.

� Adaptability to Real-World Variability.

� Accuracy and Optimality.

� Integration of Triangular Fuzzy Neutrosophic Numbers.

� Comparative Analysis and Validation.

� Application to Diverse Domains.

The above limitations and gaps highlight the need for developing a more robust
and tailored algorithm. Hence, this research aims to address the aforementioned
gap by investigating the assignment problem within a neutrosophic framework and
leveraging the distinctive features of TFNNs to develop a more efficient and precise
solution methodology.
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Need for the Proposed Algorithm/Objectives: To address these limita-
tions and gaps, the proposed algorithm for solving the triangular fuzzy neutro-
sophic assignment problem (TFNAP) is designed with the following objectives:

� Comprehensive Modeling of TFNNs: To offer unique features of TFNNs
for assignment problems, effectively managing combined uncertainty and in-
determinacy for accurate real-world representation.

� Improved Efficiency: The algorithm aims to enhance scalability and ef-
ficiency for large-scale applications through optimized computational pro-
cesses and advanced techniques.

� Develop and Propose TFNAP Methodology: To formulate various
kinds of TFNAPs and present a step-by-step algorithm to solve these prob-
lems using TFNNs.

� Compare and Validate: To formulate the TFNAP as a matrix called the
TFNAM, apply the method for the optimal solution, and compare results to
showcase efficacy and improvements.

Contribution: This research paper contributes to the field in a few significant
ways:

� Novel Formulation: The TFNAP is formulated as a matrix with TFNNs,
providing a more comprehensive representation of uncertainty and indeter-
minacy in assignment problems.

� Proposed Algorithm: An algorithm is developed to solve TFNAPs, em-
ploying a score function to compare TFNNs and derive the optimal solution
efficiently.

� Practical Application: The considered TFNAM is solved using the sug-
gested method, and the results are compared to earlier findings, demonstrat-
ing the practical advantages and improvements over traditional approaches.

� Enhanced Decision-Making: By applying the proposed methodology,
this research will enhance decision-making processes (like the illustration
solved in this paper, which itself is a decision-making problem) in various
domains, including logistics, resource allocation, and project management,
where uncertainty and indeterminacy are prevalent.

By addressing these critical areas, the proposed algorithm aims to fill the
gaps in the existing literature and overcome the limitations of current approaches,
achieves its objectives of developing and validating a more robust and effective ap-
proach and solution for triangular fuzzy neutrosophic assignment problems, and
makes substantial contributions to the field of optimization under uncertainty.
The paper is structured as follows: Section 1 comprises the abstract and introduc-
tion. In Section 2’s Preliminaries section, we provide a few basic definitions. In
Section 3, we discuss neutrosophic numbers (NNs), triangular fuzzy neutrosophic
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numbers, and both their properties and operations. The triangular fuzzy neutro-
sophic assignment issue is addressed in Section 4, along with its traits, kinds, and
solutions, as well as the necessary score function. In Section 5, a technique is
offered for tackling the triangular fuzzy neutrosophic assignment problem. This
procedure requires defuzzifying the neutrosophic data and employing the recom-
mended algorithm step-by-step to arrive at the optimal solution. In Section 6, the
proposed approach (PA) for solving the triangular fuzzy neutrosophic assignment
issue is demonstrated. This article is concluded in Section 7, which highlights the
key observations and outcomes.

2. PRELIMINARIES

Fuzzy set: Let X be a non-empty set. A fuzzy set H in X is characterized by
its membership function µH : X −→ [0, 1] and µH(x) is interpreted as the degree
of membership of element x in fuzzy set H, for each x ∈ X, given by,

H = {(x, µH(x)) : x ∈ X}

Fuzzy number: The fuzzy set H defined on the set of real numbers is said to be
a fuzzy number(FN) if H and its membership function µH(X) has the following
properties:

1. H is normal and convex

2. H is bounded

3. µH(X) is piece - wise continuous

Neutrosophic set: Let X be a non empty set. A Neutrosophic set H ∈ X
is of the form H = {(x, TH(x), IH(x), FH(x)) : x ∈ X}, where the functions
TH , IH , FH : X −→−]0, 1[+ define respectively the degree of truth membership,
the degree of indeterminacy and the degree of falsity membership for every element
x ∈ X to the set H, which is a subset of X.

−0 ≤ TH(x) + IH(x) + FH(x) ≤ 3+.

3. NEUTROSOPHIC NUMBERS AND ITS PROPERTIES

3.1. Neutrosophic numbers

A neutrosophic set H defined on the universal set of real numbers R is called
a neutrosophic number, if it has the following properties:

1. H is normal if there exists x0 ∈ R, such that TH(x0) = 1, IH(x0) = FH(x0) =
0.

2. H is a convex set for the truth function TH(x), i.e., TH(µx1 + (1− µ)x2) ≥
min(TH(x1), TH(x2)), ∀x1, x2 ∈ R and µ ∈ [0, 1].
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3. H is a concave set for the indeterministic function and false function IH(x)
and FH(x), i.e., IH(µx1 + (1 − µ)x2) ≥ max(IH(x1), IH(x2)), ∀x1, x2 ∈ R
and µ ∈ [0, 1] and FH(µx1+(1−µ)x2) ≥ max(FH(x1), FH(x2)), ∀x1, x2 ∈ R
and µ ∈ [0, 1].

Remark 1. If H is a neutrosophic set in a non empty set X, then for convenience,
we denote a neutrosophic number by, H = (TH(x), IH(x), FH(x)).

3.1.1. Properties of Neutrosophic numbers
Let G,H ∈ X. Then their operations are defined as,

1. (TG(x), IG(x), FG(x))+(TH(x), IH(x), FH(x)) = (TG(x)+TH(x)−TG(x)TH(x), IG(x)IH(x),
FG(x)FH(x))

2. (TG(x), IG(x), FG(x)).(TH(x), IH(x), FH(x)) = (TG(x)TH(x), IG(x)+IH(x)−IG(x)IH(x),
FG(x) + FH(x)− FG(x)FH(x))

3. k(TG(x), IG(x), FG(x)) = (1− (1− TG(x))k, IG(x)k, FG(x)k), (k ∈ R)

4. (TG(x), IG(x), FG(x))k = (TG(x)k, 1− (1− IG(x))k, 1− (1− FG(x))k), (k ∈ R)

3.2. Triangular fuzzy neutrosophic number

Let X be the universal set and let the set of all triangular fuzzy numbers on
[0, 1] be denoted by F [0, 1]. A triangular fuzzy neutrosophic set, H in X is written
as,

H = {x : (TH(x), IH(x), FH(x)), x ∈ X},

where, TH(x), IH(x), FH(x) : X −→ F [0, 1]. The triangular fuzzy numbers TH(x) =

(T 1
H(x), T 2

H(x), T 3
H(x)), IH(x) = (I1H(x), I2H(x), I3H(x)) and FH(x) = (F 1

H(x), F 2
H(x), F 3

H(x))

denote respectively the truth-membership, indeterminacy-membership and falsity-
membership of x in H and for every x ∈ X, 0 ≤ T 3

H(x) + I3H(x) + F 3
H(x) ≤ 3.

For convenience, we indicate the triangular fuzzy neutrosophic number H as,
H = ((h1, h2, h3), (h4, h5, h6), (h7, h8, h9)), where, (T 1

H(x), T 2
H(x), T 3

H(x)) = (h1, h2, h3),

(I1H(x), I2H(x), I3H(x)) = (h4, h5, h6), (F 1
H(x) and F 2

H(x), F 3
H(x)) = (h7, h8, h9).

3.2.1. Operations on Triangular fuzzy neutrosophic numbers
Let G = ((g1, g2, g3), (g4, g5, g6), (g7, g8, g9)) and H = ((h1, h2, h3), (h4, h5, h6), (h7, h8, h9))

be two triangular fuzzy neutrosophic numbers in the set of real numbers and λ > 0.
Then, the operations involving them are listed as follows:

1. G+H = ((min(g1 + h1, Ul),min(g2 + h2, Ul),min(g3 + h3, Ul)), (min(g4 + h4, Ul),
min(g5+h5, Ul),min(g6+h6, Ul)), (min(g7+h7, Ul),min(g8+h8, Ul),min(g9+h9, Ul))).

2. G−H = ((max(g1 − h3, Ll),max(g2 − h2, Ll),max(g3 − h1, Ll)), (max(g4 − h6, Ll),
max(g5−h5, Ll),max(g6−h4, Ll)), (max(g7−h9, Ll),max(g8−h8, Ll),max(g9−h7, Ll))).

3. −G = ((−g3,−g2,−g1), (−g6,−g5,−g4), (−g9,−g8,−g7)).

4. λG = ((λg1, λg2, λg3), (λg4, λg5, λg6), (λg7, λg8, λg9)),

where, Ll and Ul denote the lower limit and the upper limit of the considered
triangular fuzzy neutrosophic number.
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4. TRIANGULAR FUZZY NEUTROSOPHIC ASSIGNMENT
PROBLEM (TFNAP)-ATTRIBUTES, KINDS AND SOLUTIONS

4.1. Attributes of the TFNAP

4.1.1. Description of TFNAP

The assignment issue is a particular instance of the linear programming prob-
lem, and its primary objective is to assign m resources (often workers/people) to
n tasks (typically jobs) in such a way as to minimize the total assignment cost
or maximize the total assignment profit. In other words, “Given m persons, n
jobs, and the effectiveness of each person for each job, the problem is to assign
every resource to one and only one job in such a way that the measure of effec-
tiveness is optimized (maximized or minimized)”. If there are as many people as
there are jobs, the situation is/becomes fixed. The assignment problem is referred
to as a neutrosophic assignment problem if it is examined in a neutrosophic set-
ting. Additionally, the problem can more exactly be called as a triangular fuzzy
neutrosophic assignment problem if the components of the specified neutrosophic
assignment problem are triangular fuzzy neutrosophic numbers.

4.1.2. A few basic notations

1. m - number of persons/workers (i = 1, 2, ...m).

2. n - number of jobs (j = 1, 2, ...n).

3. cNij - neutrosophic unit cost of assigning worker i to job j.

4. xij - worker i assigned to job j (1 if assigned, 0 otherwise).

4.1.3. Mathematical formulation of TFNAP

The Triangular Fuzzy Neutrosophic Assignment Problem (TFNAP) is a type of
assignment problem that deals with assigning tasks to agents under conditions of
uncertainty, imprecision, and indeterminacy. It is a complex assignment problem
that utilizes the concepts of fuzzy logic, neutrosophic sets and triangular fuzzy neu-
trosophic numbers, extending the traditional assignment problem to better model
real-world scenarios in cost evaluations where data may be vague or incomplete.
This formulation aids in making more robust and flexible decisions by account-
ing for the truth, indeterminacy, and falsity in cost evaluations. Parameters -

cNij = (c
(T )
ij

N
, c

(I)
ij

N
, c

(F )
ij

N
): Triangular fuzzy neutrosophic cost of assigning task j

to agent i.
Decision Variables - xij : Binary variable indicating whether task j is assigned
to agent i (1 if assigned, 0 otherwise).
Objective Function: The objective is to minimize the overall fuzzy neutrosophic
cost of assignments, ensuring each task is assigned exactly once and each agent
handles at most one task, which can be expressed as:

Minimize Z =

m∑
i=1

n∑
j=1

cNijxij
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This involves minimizing the aggregate cost considering the truth, indeterminacy,
and falsity components. Constraints:
1. Assignment Constraints: Ensure each task is assigned to exactly one agent.

m∑
i=1

xij = 1, ∀j = 1, 2, . . . , n

2. Capacity Constraints: Ensure each agent is assigned to at most one task.

n∑
j=1

xij ≤ 1, ∀i = 1, 2, . . . ,m

3. Binary Constraints: Ensure xij is binary.

xij ∈ {0, 1}, ∀i = 1, 2, . . . ,m, ∀j = 1, 2, . . . , n

Hence, the TFNAP can be formulated mathematically as follows:

MinZ =
m∑
i=1

n∑
j=1

cNij xij ,

subject to,
n∑

i=1

xij = 1, ∀j = 1, 2, ...n

m∑
j=1

xij ≤ 1, ∀i = 1, 2, ...m

where, xij ∈ {0, 1}, ∀i = 1, 2, . . . , n, ∀j = 1, 2, . . . ,m and all the components
cNij are triangular fuzzy neutrosophic numbers. TFNAP models the assignment
of tasks to agents while dealing with uncertainties in the cost estimates through
the use of TFNNs, that seeks to find the optimal assignment that minimizes the
total neutrosophic cost, respecting the constraints. This approach is beneficial
in scenarios where costs are not precisely known. This problem can be solved
using advanced optimization techniques that handle fuzzy and neutrosophic data,
providing a robust framework for decision-making under uncertainty.

4.1.4. The Structure of the Problem

Assume there are n jobs that need to be done and there are m people available
to complete them. Assume that each individual is capable of performing each
task, albeit to various degrees of efficiency. The neutrosophic cost of placing the
ith employee in the jth position is represented by cNij . Let xij represent the worker i
who is working on job j. Identifying a work assignment (which task should be given
to which individual on a one-on-one basis) is the challenge in order to keep the
cost of carrying out all tasks to a minimum. The triangular fuzzy neutrosophic
assignment issue may be expressed as follows in the form of a matrix, which is
termed the triangular fuzzy neutrosophic assignment matrix:
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A =



1 2 3 .. j .. n

1 cN11 cN12 cN13 .. cN1j .. cN1n
2 cN21 cN22 cN23 .. cN2j .. cN2n
3 cN31 cN32 cN33 .. cN3j .. cN3n
: : : : .. : .. :
i cNi1 cNi2 cNi3 .. cNij .. cNin
: : : : .. : .. :
m cNm1 cNm2 cNm3 .. cNmj .. cNmn


4.2. Kinds of triangular fuzzy neutrosophic assignment problem

Depending on the number of columns and rows that are present in the triangu-
lar fuzzy neutrosophic assignment matrix, situations can be generally categorized
as balanced or unbalanced.

1. Balanced triangular fuzzy neutrosophic assignment problem: A bal-
anced triangular fuzzy neutrosophic assignment problem is what occurs when
the number of rows (workers) equals the number of columns (jobs).

2. Unbalanced triangular fuzzy neutrosophic assignment problem: The
term “unbalanced triangular fuzzy neutrosophic assignment problem” de-
scribes a situation in which the number of employees (rows) and the number
of jobs (columns) are not equal.

� When there exist more rows than columns, a dummy column with zero
cost components is included to the triangular fuzzy neutrosophic as-
signment matrix to bring the number of rows and columns to an even
number.

� On the other hand, if the number of columns exceeds the number of
rows, a dummy row with zero cost components is included to the tri-
angular fuzzy neutrosophic assignment matrix to make it equal to the
number of columns.

Remark 2. It is necessary and sufficient for a TFNAP to contain the identical
number of rows and columns, or to be a balanced TFNAP. The TFNAM comprises
a dummy row or a dummy column, depending on the necessity, to balance an
imbalanced problem. Following this, the problem can be resolved in a manner
similar to the balanced problem.

4.3. Solutions of the TFNAP

4.3.1. Different types of solutions of the TFNAP

The possible forms of solutions for a specific triangular fuzzy neutrosophic
assignment issue include the following:
Triangular Fuzzy Neutrosophic Feasible Solution: A “triangular fuzzy neu-
trosophic feasible solution” in TFNAP ensures that each job is assigned to a valid
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resource and each resource to a valid task, meeting all constraints and require-
ments.
Triangular Fuzzy Neutrosophic Basic Feasible Solution: A “triangular
fuzzy neutrosophic basic feasible solution” in TFNAP initially assigns tasks to re-
sources, ensuring all jobs are assigned, all resources utilized without overload, and
each task assigned exactly one resource. It can be classified as degenerate or non-
degenerate based on resource-task assignments and zero entries in the TFNAM.

� Triangular Fuzzy Neutrosophic Degenerate Basic Feasible Solu-
tion: Triangular fuzzy neutrosophic degenerate basic feasible solutions arise
when a resource is assigned multiple tasks, violating the one-task-per-resource
requirement. Strategies are employed to resolve degeneracy and ensure con-
vergence to an ideal solution.

� Triangular Fuzzy Neutrosophic Non-Degenerate Basic Feasible So-
lution: Triangular fuzzy neutrosophic non-degenerate basic feasible solu-
tions adhere closely to the requirement of assigning one resource to each
job and one task to each resource. They offer a balanced and direct assign-
ment of tasks without resource duplication or underutilization, making them
preferred choices.

Triangular Fuzzy Neutrosophic Optimal Solution: The triangular fuzzy
neutrosophic optimal solution of a TFNAP is the assignment of tasks to resources
that minimizes total cost or maximizes total benefit, depending on the objective.
It’s the best assignment, achieved through specialized algorithms like the Hungar-
ian algorithm (which is listed in the next sub-section).

4.3.2. Some common methods for solving a triangular fuzzy neutrosophic assign-
ment problem

Numerous methods have been devised to address the assignment problem, each
with distinct advantages tailored to various types of assignment scenarios. These
methods are effective for both small-scale, straightforward tasks and large-scale,
intricate problems. The selection of an appropriate method hinges on the specific
characteristics and demands of the given problem. Here are some commonly used
methods:

� Hungarian method [19]

� One’s assignment method [18]

� Divide column and subtract method [17]

� Mass - A New One’s assignment method [18] and

� Branch and bound technique [20].
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Remark 3. The Hungarian method [19] is versatile and adaptable, allowing for
extensions to handle variations such as fuzzy or neutrosophic data, which enhances
its applicability across diverse fields and complex problem settings. This fact makes
it a widely favored approach to solve various problems involving assignments, neu-
trosophic assignments, and triangular fuzzy neutrosophic assignments.

4.3.3. Score function

The score function employed here to transform the neutrosophic data of the
triangular fuzzy neutrosophic assignment issue into crisp data (the same as that
in [11]), is as follows:

S(H) =
1

12
[(h1 + 2h2 + h3) + (h4 + 2h5 + h6) + (h7 + 2h8 + h9)] (1)

5. AN APPROACH FOR RESOLVING THE TRIANGULAR
FUZZY NEUTROSOPHIC ASSIGNMENT PROBLEM (TFNAP)

5.1. Defuzzification of the neutrosophic data

Each entry (a triangular fuzzy neutrosophic number) of the given triangular
fuzzy neutrosophic assignment problem, which is expressed in the form of a trian-
gular fuzzy neutrosophic assignment matrix, is defuzzified using the above score
function (1) as the first step in solving the problem, as given below:

S(H) = 1
12 [(h1 + 2h2 + h3) + (h4 + 2h5 + h6) + (h7 + 2h8 + h9)],

hence being converted into their respective crisp numbers.

5.2. The proposed technique for tackling the triangular fuzzy neutro-
sophic assignment problem (TFNAP)

The phases of the suggested approach to solving the triangular fuzzy neutro-
sophic assignment issue are as follows:
Step 1 : From the provided triangular fuzzy neutrosophic assignment matrix
(TFNAM), the first step is to verify if the considered triangular fuzzy neutrosophic
assignment problem (TFNAP) is balanced (i.e., to check whether the number of
rows(m) is equal to the number of columns (n)).

� If yes, go to step 2.

� Orelse, if it is unbalanced, make it a balanced one, by either including a
dummy row or a dummy column, appropriate to the situation’s requirement
and then go to step 2.

Step 2 : Now, after making the problem balanced., i.e., after making the overall
number of rows (m) meet the overall number of columns (n), the next step is
to include a row underneath, called the Range Demand Column (RDC) and a
column at the right, called the Range Supply Row (RSR), in the triangular fuzzy
neutrosophic assignment matrix.
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Step 3 : Now, after introducing the above mentioned row (RDC) and column
(RSR), find out the corresponding values for the newly added row and column,
by calculating the range value, for every row and column, utilizing the formula,
Range = Highest value - Least value (Here, since all the elements are in the form
of triangular fuzzy neutrosophic numbers, we have to first convert all the neu-
trosophic data into their respective crisp data using the above score function (1),
because, only then, we would be able to compare them and find out the maximum
and minimum values among the found out crisp data, take their corresponding
neutrosophic data and perform their required operations (as provided in section
3) to calculate the range).
Step 4 : On having obtained all the values of the RSR and the RDC, now, spot
and select the highest value among all the found out new entries of the RSR and
the RDC (Here, again since all the elements are in the form of triangular fuzzy
neutrosophic numbers, we have to first convert all the neutrosophic data into their
respective crisp data using the above score function (1), because, only then, we
would be able to compare them and find out the maximum value among all the
found out crisp data and select the corresponding neutrosophic data as the highest
value).

� If this selected value is in the RSR, then, choose the least element cNij of its
corresponding row (which is again found out after defuzzifying the neutro-
sophic data of that considered row using the above score function (1) and
comparing their respective crisp values) and make an assignment to that
chosen element by boxing it.

� Else, if this highest value lies in the RDC, then, choose the least element cNij
of its corresponding column (which is again found out after defuzzifying the
neutrosophic data of that considered column using the above score function
(1) and comparing their respective crisp values) and make an assignment to
that chosen element by boxing it.

Step 5 : The next task after spotting the minimal element either through the RSR
or the RDC and making an assignment to it is to delete both the corresponding
row and column in which it is present.
Step 6 : Now, with the resulting matrix, re - perform steps 2 - 5, until all columns
disappear. Then, verify if the overall number of assignments precisely equals the
total number of rows (m) and columns (n) and in addition to it, if every row
and column has exactly one assignment, which guarantees the prevalence of a
triangular fuzzy neutrosophic non-degenerate basic feasible solution to the given
triangular fuzzy neutrosophic assignment problem.

� If yes, move forward to step 7.

� Orelse, make it non - degenerate, by making the overall number of assign-
ments equal to the total number of rows and columns and also by making
every row and column have exactly one assignment and then proceed to step
7.
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Step 7 : Now, compute the triangular fuzzy neutrosophic assignment sched-
ule (TFNAS) as well as the total minimal triangular fuzzy neutrosophic assign-
ment cost (TMTFNAC), for the given triangular fuzzy neutrosophic assignment
problem, from the considered triangular fuzzy neutrosophic assignment matrix,
which will themselves serve as the triangular fuzzy neutrosophic optimal solu-
tion (TFNOS) and the triangular fuzzy neutrosophic optimal assignment cost
(TFNOAC) respectively.
Step 8 : Finally, obtain the respective crisp assignment schedule (CAS) and the
total minimal crisp assignment cost (TMCAC)(which is calculated by defuzzifying
the already obtained total minimal triangular fuzzy neutrosophic assignment cost
using the score function (1)), for the given triangular fuzzy neutrosophic assign-
ment problem, which will themselves serve as the crisp optimal solution (COS)
and the crisp optimal assignment cost (COAC) respectively.

6. ILLUSTRATIONS FOR THE SUGGESTED APPROACH

6.1. Illustration 1

Let us consider a problem of assigning three trucks (T1, T2 and T3) to three
destinations (D1, D2 and D3) as in [11] under a neutrosophic environment as
follows:

R =


D1 D2 D3

T1 cN11 cN12 cN13
T2 cN21 cN22 cN23
T3 cN31 cN32 cN33


Furthermore, since the components involved here are in the form of triangular
fuzzy neutrosophic numbers (TFNNs), it can be explicitly expressed through the
following triangular fuzzy neutrosophic assignment matrix (TFNAM), taken from
[11]:

R =



D1 D2 D3

T1 (1, 4, 7), (0.5, 2.5, 4.5), (1, 3, 5),
(1, 3, 5), (1, 2, 3), (0.5, 1.5, 3.5),

(3.5, 6, 7.5) (1.5, 3.5, 5.5) (2, 4, 6)
T2 (1, 2, 3), (1, 1.5, 4), (1.5, 2.5, 3.5),

(0.5, 1.5, 2.5), (0.5, 1, 2.5), (1, 1.5, 3),
(1.5, 2.5, 3.5) (1.25, 3, 4.25) (2, 3, 4)

T3 (2, 4, 6), (1, 5, 8), (1, 5, 8),
(1.5, 2.5, 4.5), (1.5, 4.5, 7.5), (1.5, 4.5, 7.5),

(3, 5, 7) (4, 6.5, 9) (4, 6.5, 9)


The assignment costs which include travel expenses are listed here in rupees. How
should the trucks be routed such that the overall cost of the assignment is reduced?
Step 1 : From the above considered TFNAM, the first step is to verify if it is
balanced. Here, we see that, the number of rows and columns are equal, since it is
a 3× 3 square matrix. Hence, the considered TFNAP is balanced. Thus, we can
move forward to step 2.
Step 2 : Now, after knowing that the problem is balanced, the next step is to
include a row underneath, called the Range Demand Column (RDC) and a column
at the right, called the Range Supply Row (RSR), in the TFNAM as shown below:
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D1 D2 D3 RSR
T1 (1, 4, 7), (0.5, 2.5, 4.5), (1, 3, 5),

(1, 3, 5), (1, 2, 3), (0.5, 1.5, 3.5),
(3.5, 6, 7.5) (1.5, 3.5, 5.5) (2, 4, 6)

T2 (1, 2, 3), (1, 1.5, 4), (1.5, 2.5, 3.5),
(0.5, 1.5, 2.5), (0.5, 1, 2.5), (1, 1.5, 3),
(1.5, 2.5, 3.5) (1.25, 3, 4.25) (2, 3, 4)

T3 (2, 4, 6), (1, 5, 8), (1, 5, 8),
(1.5, 2.5, 4.5), (1.5, 4.5, 7.5), (1.5, 4.5, 7.5),

(3, 5, 7) (4, 6.5, 9) (4, 6.5, 9)
RDC



Step 3 : Now, after having introduced the above mentioned row (RDC) and
column (RSR), the next task is to find out the corresponding values for the newly
added row and column, by calculating the range value, for every row and column,
utilizing the formula, Range = Highest value - Least value.
Hence, now since all the elements are in the form of TFNNs, for calculating the
range of the first row, the first task is to defuzzify the neutrosophic data (cN11, c

N
12

and cN13) of that row into their respective crisp values (c11, c12 and c13) using the
above score function (1) for comparing them and find their maximum and mini-
mum values. After performing the above task, they are found to be c11 and c12
respectively. Now, take the corresponding original neutrosophic data of the found
out maximum and minimum values (cN11 and cN12) and thereby, calculate the range
of that row by performing the required operations (as given in section 3) as follows:

R(T1)N = ((1, 4, 7), (1, 3, 5), (3.5, 6, 7.5))− ((0.5, 2.5, 4.5), (1, 2, 3), (1.5, 3.5, 5.5))

= ((max(1−4.5, 0),max(4−2.5, 0),max(7−0.5, 0)), (max(1−3, 0),max(3−2, 0),max(5−1, 0)),

(max(3.5−5.5, 0),max(6−3.5, 0),max(7.5−1.5, 0))) = ((max(−3.5, 0),max(1.5, 0),max(6.5, 0)),

(max(−2, 0),max(1, 0),max(4, 0)), (max(−2, 0),max(2.5, 0),max(6, 0))) = ((0, 1.5, 6.5), (0, 1, 4),

(0, 2.5, 6))

Similarly, calculate the range for the other rows and columns of the RSR and
RDC respectively in the same way as mentioned above, after which the respec-
tive required neutrosophic range values (R(T2)

N , R(T3)
N , R(D1)

N , R(D2)
N and

R(D3)
N ) for all the rows and columns are obtained as shown below:



D1 D2 D3 RSR

T1 (1, 4, 7), (0.5, 2.5, 4.5), (1, 3, 5), R(T1)
N

(1, 3, 5), (1, 2, 3), (0.5, 1.5, 3.5),
(3.5, 6, 7.5) (1.5, 3.5, 5.5) (2, 4, 6)

T2 (1, 2, 3), (1, 1.5, 4), (1.5, 2.5, 3.5), R(T2)
N

(0.5, 1.5, 2.5), (0.5, 1, 2.5), (1, 1.5, 3),
(1.5, 2.5, 3.5) (1.25, 3, 4.25) (2, 3, 4)

T3 (2, 4, 6), (1, 5, 8), (1, 5, 8), R(T3)
N

(1.5, 2.5, 4.5), (1.5, 4.5, 7.5), (1.5, 4.5, 7.5),
(3, 5, 7) (4, 6.5, 9) (4, 6.5, 9)

RDC R(D1)
N R(D2)

N R(D3)
N



where, the neutrosophic values of both RSR and RDC are as follows:
R(T1)N = ((0, 1.5, 6.5), (0, 1, 4), (0, 2.5, 6)) ; R(T2)N = ((0, 1, 2.5), (0, 0.5, 2.5), (0, 0, 2.75))

R(T3)N = ((0, 1, 6), (0, 2, 6), (0, 1.5, 6)) ; R(D1)N = ((0, 2, 6), (0, 1.5, 4.5), (0, 3.5, 6))

R(D2)N = ((0, 3.5, 7), (0, 3.5, 7), (0, 3.5, 7.75)) ; R(D3)N = ((0, 2.5, 6.5), (0, 1.5, 5.5), (0, 4, 9))
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Step 4 : On having obtained all the values of the RSR and the RDC, our next
work is to spot and select the highest value among all the found out new entries
of the RSR and the RDC.
Hence, now again since all the elements of the RSR and the RDC are in the form of
TFNNs, the first task is to defuzzify all the neutrosophic data (R(T1)

N , R(T2)
N ,

R(T3)
N , R(D1)

N , R(D2)
N and R(D3)

N ) into their respective crisp values (R(T1),
R(T2), R(T3), R(D1), R(D2) and R(D3)) using the above score function (1) for
comparing them and find the maximum value among them. After performing
the above task, it is found to be R(D2). Now, take the corresponding original
neutrosophic data of the found out maximum value, which is R(D2)

N and thereby,
select it as the highest value among all the neutrosophic values of the RSR and
RDC as shown in the following matrix:



D1 D2 D3 RSR

T1 (1, 4, 7), (0.5, 2.5, 4.5), (1, 3, 5), R(T1)
N

(1, 3, 5), (1, 2, 3), (0.5, 1.5, 3.5),
(3.5, 6, 7.5) (1.5, 3.5, 5.5) (2, 4, 6)

T2 (1, 2, 3), (1, 1.5, 4), (1.5, 2.5, 3.5), R(T2)
N

(0.5, 1.5, 2.5), (0.5, 1, 2.5), (1, 1.5, 3),
(1.5, 2.5, 3.5) (1.25, 3, 4.25) (2, 3, 4)

T3 (2, 4, 6), (1, 5, 8), (1, 5, 8), R(T3)
N

(1.5, 2.5, 4.5), (1.5, 4.5, 7.5), (1.5, 4.5, 7.5),
(3, 5, 7) (4, 6.5, 9) (4, 6.5, 9)

RDC R(D1)
N R(D2)

N
R(D3)

N



Now, since this highest value (R(D2)
N ) lies in the RDC, we have to now choose

the least element cNi2 of its corresponding column (i.e., column 2) (which is again
found out after defuzzifying the neutrosophic data of column 2 (cN12, c

N
22 and cN32)

using the above score function (1) and comparing their respective crisp values (c12,
c22 and c32)). The required least value is found to be c22 and hence, we select its
corresponding neutrosophic value, which is cN22 and box it as an act of making an
assignment to it as shown below:



D1 D2 D3 RSR

T1 (1, 4, 7), (0.5, 2.5, 4.5), (1, 3, 5), R(T1)
N

(1, 3, 5), (1, 2, 3), (0.5, 1.5, 3.5),
(3.5, 6, 7.5) (1.5, 3.5, 5.5) (2, 4, 6)

T2 (1, 2, 3), (1, 1.5, 4), (1.5, 2.5, 3.5), R(T2)
N

(0.5, 1.5, 2.5), (0.5, 1, 2.5), (1, 1.5, 3),

(1.5, 2.5, 3.5) (1.25, 3, 4.25) (2, 3, 4)

T3 (2, 4, 6), (1, 5, 8), (1, 5, 8), R(T3)
N

(1.5, 2.5, 4.5), (1.5, 4.5, 7.5), (1.5, 4.5, 7.5),
(3, 5, 7) (4, 6.5, 9) (4, 6.5, 9)

RDC R(D1)
N R(D2)

N R(D3)
N



Step 5 : The next task after spotting the minimal element either through the RSR
or the RDC and making an assignment to it is to delete both the corresponding
row and column in which it is present. Here, since the chosen minimal element
is cN22, we thereby delete both the row 2 and column 2, after which the resulting
matrix looks like the one shown below:
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D1 D3

T1 (1, 4, 7), (1, 3, 5),
(1, 3, 5), (0.5, 1.5, 3.5),

(3.5, 6, 7.5) (2, 4, 6)
T3 (2, 4, 6), (1, 5, 8),

(1.5, 2.5, 4.5), (1.5, 4.5, 7.5),
(3, 5, 7) (4, 6.5, 9)


Step 6 : Now, with the resulting matrix, re - perform steps 2 - 5, until all columns
disappear. Hence, here since not all columns are discarded, from the above matrix,
we again have to start the same procedure from step 2 and carry on till step 5.
Thus, we first include a row underneath (RDC) and a column at the right (RSR), in
the triangular fuzzy neutrosophic assignment matrix with their respective required
values (which are calculated in the same way as mentioned previously in step - 3,
by defuzzifying the neutrosophic data into their respective crisp values using the
above score function (1), finding the maximum and minimum values by comparing
their corresponding crisp values, taking their respective neutrosophic values and
then, computing their corresponding range values) as provided below:



D1 D3 RSR

T1 (1, 4, 7), (1, 3, 5), R(T1)
N

(1, 3, 5), (0.5, 1.5, 3.5),
(3.5, 6, 7.5) (2, 4, 6)

T3 (2, 4, 6), (1, 5, 8), R(T3)
N

(1.5, 2.5, 4.5), (1.5, 4.5, 7.5),
(3, 5, 7) (4, 6.5, 9)

RDC R(D1)
N R(D3)

N



where, the values of both the RSR and RDC are as follows:
R(T1)N = ((0, 1, 6), (0, 1.5, 4.5), (0, 2, 5.5)) ; R(T3)N = ((0, 1, 6), (0, 0.5, 5), (0, 2, 6))

R(D1)N = ((0, 0, 5), (0, 0.5, 3.5), (0, 1, 4.5)) ; R(D3)N = ((0, 2, 7), (0, 1.5, 6), (0, 3, 7))

Our next work is to spot and select the highest value among all the found out new
entries of the RSR and the RDC, which is done by first defuzzifying the considered
neutrosophic data (R(T1)

N , R(T3)
N , R(D1)

N and R(D3)
N ) into their respective

crisp values (R(T1), R(T3), R(D1) and R(D3)) using the above score function (1),
in order to be able to compare them and then find the maximum value among
them. After performing the above task, it is found to be R(D3). Now, take the
corresponding original neutrosophic data of the found out maximum value, which
is R(D3)

N and thereby, select it as the highest value among all the neutrosophic
values of the RSR and RDC as shown in the following matrix:



D1 D3 RSR

T1 (1, 4, 7), (1, 3, 5), R(T1)
N

(1, 3, 5), (0.5, 1.5, 3.5),
(3.5, 6, 7.5) (2, 4, 6)

T3 (2, 4, 6), (1, 5, 8), R(T3)
N

(1.5, 2.5, 4.5), (1.5, 4.5, 7.5),
(3, 5, 7) (4, 6.5, 9)

RDC R(D1)
N R(D3)

N



Now, since this highest value (R(D3)
N ) lies in the RDC, we have to now choose the

least element cNi3 of its corresponding column (i.e., column 3) (which is again found
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out after defuzzifying the neutrosophic data of column 3(cN13 and cN33) using the
above score function (1) and comparing their respective crisp values (c13 and c33)).
The required least value is found to be c13 and hence, we select its corresponding
neutrosophic value, which is cN13 and box it as an act of making an assignment to
it as shown below:



D1 D3 RSR

T1 (1, 4, 7), (1, 3, 5), R(T1)
N

(1, 3, 5), (0.5, 1.5, 3.5),

(3.5, 6, 7.5) (2, 4, 6)

T3 (2, 4, 6), (1, 5, 8), R(T3)
N

(1.5, 2.5, 4.5), (1.5, 4.5, 7.5),
(3, 5, 7) (4, 6.5, 9)

RDC R(D1)
N R(D3)

N



The next task after spotting the minimal element either through the RSR or the
RDC and making an assignment to it is to delete both the corresponding row and
column in which it is present. Here, since the chosen minimal element is cN13, we
thereby delete both the row 1 and column 3, after which the resulting matrix looks
like the one shown below:


D1

T3 (2, 4, 6),
(1.5, 2.5, 4.5),

(3, 5, 7)


Now, since all columns are discarded (since there is only one element left out,
which is cN31), we can stop repeating steps 2 - 5, select it and box it as an act of
making an assignment to it in the resulting TFNAM as shown below:



D1

T3 (2, 4, 6),

(1.5, 2.5, 4.5),

(3, 5, 7)


Thus, the final resulting TFNAM with all assignments is as follows:

R =



D1 D2 D3

T1 cN11 cN12 c
N
13

T2 cN21 c
N
22 cN23

T3 c
N
31 cN32 cN33


Further, the final resulting TFNAM displaying explicitly all its elements along
with the required assignments is as shown below:
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R =



D1 D2 D3

T1 (1, 4, 7), (0.5, 2.5, 4.5), (1, 3, 5),

(1, 3, 5), (1, 2, 3), (0.5, 1.5, 3.5),

(3.5, 6, 7.5) (1.5, 3.5, 5.5) (2, 4, 6)

T2 (1, 2, 3), (1, 1.5, 4), (1.5, 2.5, 3.5),

(0.5, 1.5, 2.5), (0.5, 1, 2.5), (1, 1.5, 3),

(1.5, 2.5, 3.5) (1.25, 3, 4.25) (2, 3, 4)

T3 (2, 4, 6), (1, 5, 8), (1, 5, 8),

(1.5, 2.5, 4.5), (1.5, 4.5, 7.5), (1.5, 4.5, 7.5),

(3, 5, 7) (4, 6.5, 9) (4, 6.5, 9)


Our next work is to verify if the overall number of assignments precisely equals
the total number of rows (m) and columns (n) and in addition to it, if every
row and column has exactly one assignment. Here, we have made a total of 3
assignments which equals the total number of rows and columns and also, every
row and column has exactly one assignment as seen above, which guarantees the
prevalence of a triangular fuzzy neutrosophic non-degenerate basic feasible solution
to the considered TFNAP. Hence, we can move forward to step 7.
Step 7 : Now, we have to compute the TFNAS and the TMTFNAC, for the given
TFNAP, from the considered TFNAM, which will themselves serve as the TFNOS
and the TFNOAC respectively. The TFNAS (optimal solution) is, T1 −→ D3,
T2 −→ D2 and T3 −→ D1 and the TMTFNAC (optimal) = c13 + c22 + c31 =

((1, 3, 5), (0.5, 1.5, 3.5), (2, 4, 6)) + ((1, 1.5, 4), (0.5, 1, 2.5), (1.25, 3, 4.25)) + ((2, 4, 6), (1.5, 2.5, 4.5),

(3, 5, 7)) = ((4, 7, 7), (2.5, 5, 7), (6, 7, 7))

Step 8 : Finally, obtain the respective CAS and the TMCAC (which is calculated
by defuzzifying the already obtained TMTFNAC using the score function (1)),
for the given TFNAP, which will themselves serve as the COS and the COAC
respectively. Hence, by doing so, we obtain the CAS (optimal solution) as, T1 −→
D3, T2 −→ D2 and T3 −→ D1 and the TMCAS (optimal) = 1

12
[(4+2(7)+7)+(2.5+

2(5) + 7) + (6+ 2(7) + 7)] = 1
12

[(4 + 14+ 7) + (2.5+ 10+ 7) + (6+ 14+ 7)] = 1
12

[25 + 19.5+ 27]

= 71.5
12

= Rs.5.9583

6.2. Illustration 2

Consider a triangular fuzzy neutrosophic assignment problem (TFNAP), as in
[28], where a farmer plans to plant four different crops in each of four equal-sized
paddocks. The crops are S1, S2, S3, and S4, and the paddocks are G1, G2, S3,
and G4, respectively. Distinct crops have distinct nutritional needs, and the soil
fertility in the paddocks varies. As a result, the price of the fertilizers that must
be employed varies depending on the crop that is cultivated in each field. Let
the cost matrix be [cNij ] with triangular fuzzy neutrosophic numbers (TFNNs) as
its components. The farmer’s goal is to determine the appropriate distribution of
paddocks for crops in order to reduce the cost of fertilizer overall. The following
matrix describes the issue:
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K =


G1 G2 G3 G4

S1 cN11 cN12 cN13 cN14
S2 cN21 cN22 cN23 cN24
S3 cN31 cN32 cN33 cN34
S4 cN41 cN42 cN43 cN44


Furthermore, since the components involved in the above matrix are in the form
of TFNNs, it can be explicitly expressed through the following triangular fuzzy
neutrosophic assignment matrix (TFNAM), taken from [28]:

K =



G1 G2 G3 G4

S1 (3, 4, 5), (8, 12, 16), (20, 22, 24), (34, 38, 40),
(2, 3, 5), (4, 6, 8), (7, 9, 11), (10, 12, 14),
(1, 2, 3) (6, 7, 8) (9, 11, 13) (12, 14, 16)

S2 (8, 12, 16), (2, 3, 5), (23, 26, 28), (27, 30, 32),
(4, 6, 8), (1, 2, 3), (10, 11, 12), (10, 11, 12),
(6, 7, 8) (2, 3, 4) (11, 12, 13) (11, 12, 13)

S3 (13, 15, 17), (34, 38, 40), (2, 3, 5), (3, 4, 5),
(6, 7, 8), (10, 12, 14), (1, 2, 3), (2, 3, 5),
(3, 5, 7) (12, 14, 16) (2, 3, 4) (1, 2, 3)

S4 (27, 30, 32), (8, 12, 16), (19, 22, 24), (19, 22, 24),
(10, 11, 12), (4, 6, 8), (10, 12, 14), (10, 12, 14),
(11, 12, 13) (6, 7, 8) (8, 10, 12) (8, 10, 12)


Step 1 : It is clear that the above considered TFNAP is balanced since it is a
4× 4 square matrix. Thus, we can move forward to step 2.
Step 2 : Now, the Range Demand Column (RDC) and the Range Supply Row
(RSR) are included in the TFNAM as shown below:



G1 G2 G3 G4 RSR
S1 (3, 4, 5), (8, 12, 16), (20, 22, 24), (34, 38, 40),

(2, 3, 5), (4, 6, 8), (7, 9, 11), (10, 12, 14),
(1, 2, 3) (6, 7, 8) (9, 11, 13) (12, 14, 16)

S2 (8, 12, 16), (2, 3, 5), (23, 26, 28), (27, 30, 32),
(4, 6, 8), (1, 2, 3), (10, 11, 12), (10, 11, 12),
(6, 7, 8) (2, 3, 4) (11, 12, 13) (11, 12, 13)

S3 (13, 15, 17), (34, 38, 40), (2, 3, 5), (3, 4, 5),
(6, 7, 8), (10, 12, 14), (1, 2, 3), (2, 3, 5),
(3, 5, 7) (12, 14, 16) (2, 3, 4) (1, 2, 3)

S4 (27, 30, 32), (8, 12, 16), (19, 22, 24), (19, 22, 24),
(10, 11, 12), (4, 6, 8), (10, 12, 14), (10, 12, 14),
(11, 12, 13) (6, 7, 8) (8, 10, 12) (8, 10, 12)

RDC



Step 3 : Now, the range values are calculated for every row and column as shown
below:



G1 G2 G3 G4 RSR

S1 (3, 4, 5), (8, 12, 16), (20, 22, 24), (34, 38, 40), R(S1)
N

(2, 3, 5), (4, 6, 8), (7, 9, 11), (10, 12, 14),
(1, 2, 3) (6, 7, 8) (9, 11, 13) (12, 14, 16)

S2 (8, 12, 16), (2, 3, 5), (23, 26, 28), (27, 30, 32), R(S2)
N

(4, 6, 8), (1, 2, 3), (10, 11, 12), (10, 11, 12),
(6, 7, 8) (2, 3, 4) (11, 12, 13) (11, 12, 13)

S3 (13, 15, 17), (34, 38, 40), (2, 3, 5), (3, 4, 5), R(S3)
N

(6, 7, 8), (10, 12, 14), (1, 2, 3), (2, 3, 5),
(3, 5, 7) (12, 14, 16) (2, 3, 4) (1, 2, 3)

S4 (27, 30, 32), (8, 12, 16), (19, 22, 24), (19, 22, 24), R(S4)
N

(10, 11, 12), (4, 6, 8), (10, 12, 14), (10, 12, 14),
(11, 12, 13) (6, 7, 8) (8, 10, 12) (8, 10, 12)

RDC R(G1)
N R(G2)

N R(G3)
N R(G4)

N
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where, the neutrosophic values of both RSR and RDC are as follows:
R(S2)N = ((22, 27, 30), (7, 9, 11), (7, 9, 11)) ; R(S3)N = ((29, 35, 38), (7, 10, 13), (8, 11, 14))

R(S4)N = ((11, 18, 24), (2, 5, 8), (3, 5, 7)) ; R(G1)N = ((22, 26, 29), (5, 8, 10), (8, 10, 12))

R(G2)N = ((29, 35, 38), (7, 10, 13), (8, 11, 14)) ; R(G3)N = ((18, 23, 26), (7, 9, 11), (7, 9, 11))

R(G4)N = ((29, 34, 37), (5, 9, 12), (9, 12, 15))

Step 4 : Next, the highest value among all the found out new entries of the RSR
and the RDC (R(S3)

N ) is spotted and selected as shown in the following matrix:



G1 G2 G3 G4 RSR

S1 (3, 4, 5), (8, 12, 16), (20, 22, 24), (34, 38, 40), R(S1)
N

(2, 3, 5), (4, 6, 8), (7, 9, 11), (10, 12, 14),
(1, 2, 3) (6, 7, 8) (9, 11, 13) (12, 14, 16)

S2 (8, 12, 16), (2, 3, 5), (23, 26, 28), (27, 30, 32), R(S2)
N

(4, 6, 8), (1, 2, 3), (10, 11, 12), (10, 11, 12),
(6, 7, 8) (2, 3, 4) (11, 12, 13) (11, 12, 13)

S3 (13, 15, 17), (34, 38, 40), (2, 3, 5), (3, 4, 5), R(S3)
N

(6, 7, 8), (10, 12, 14), (1, 2, 3), (2, 3, 5),
(3, 5, 7) (12, 14, 16) (2, 3, 4) (1, 2, 3)

S4 (27, 30, 32), (8, 12, 16), (19, 22, 24), (19, 22, 24), R(S4)
N

(10, 11, 12), (4, 6, 8), (10, 12, 14), (10, 12, 14),
(11, 12, 13) (6, 7, 8) (8, 10, 12) (8, 10, 12)

RDC R(G1)
N R(G2)

N R(G3)
N R(G4)

N



Now, since this highest value (R(S3)
N ) lies in the RSR, the required least element

(cN33) of its corresponding row is chosen and boxed as an act of making an assign-
ment to it as shown below:



G1 G2 G3 G4 RSR

S1 (3, 4, 5), (8, 12, 16), (20, 22, 24), (34, 38, 40), R(S1)
N

(2, 3, 5), (4, 6, 8), (7, 9, 11), (10, 12, 14),
(1, 2, 3) (6, 7, 8) (9, 11, 13) (12, 14, 16)

S2 (8, 12, 16), (2, 3, 5), (23, 26, 28), (27, 30, 32), R(S2)
N

(4, 6, 8), (1, 2, 3), (10, 11, 12), (10, 11, 12),
(6, 7, 8) (2, 3, 4) (11, 12, 13) (11, 12, 13)

S3 (13, 15, 17), (34, 38, 40), (2, 3, 5), (3, 4, 5), R(S3)
N

(6, 7, 8), (10, 12, 14), (1, 2, 3), (2, 3, 5),

(3, 5, 7) (12, 14, 16) (2, 3, 4) (1, 2, 3)

S4 (27, 30, 32), (8, 12, 16), (19, 22, 24), (19, 22, 24), R(S4)
N

(10, 11, 12), (4, 6, 8), (10, 12, 14), (10, 12, 14),
(11, 12, 13) (6, 7, 8) (8, 10, 12) (8, 10, 12)

RDC R(G1)
N R(G2)

N R(G3)
N R(G4)

N



Step 5 : As a next task, both the corresponding row and column in which the
chosen minimal element (cN33) is present are deleted, after which the resulting
matrix looks like the one shown below:



G1 G2 G4

S1 (3, 4, 5), (8, 12, 16), (34, 38, 40),
(2, 3, 5), (4, 6, 8), (10, 12, 14),
(1, 2, 3) (6, 7, 8) (12, 14, 16)

S2 (8, 12, 16), (2, 3, 5), (27, 30, 32),
(4, 6, 8), (1, 2, 3), (10, 11, 12),
(6, 7, 8) (2, 3, 4) (11, 12, 13)

S4 (27, 30, 32), (8, 12, 16), (19, 22, 24),
(10, 11, 12), (4, 6, 8), (10, 12, 14),
(11, 12, 13) (6, 7, 8) (8, 10, 12)
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Step 6 : Now, with the resulting matrix, since not all columns are discarded, steps
2-5 are re-performed, until all columns disappear. Hence, after repeating the same
above procedure again for a few number of times until all columns are discarded,
the final resulting TFNAM with all the assignments is obtained as follows:

K =



G1 G2 G3 G4

S1 c
N
11 cN12 cN13 cN14

S2 cN21 c
N
22 cN23 cN24

S3 cN31 cN32 c
N
33 cN34

S4 cN41 cN42 cN43 c
N
44


Further, the final resulting TFNAM displaying explicitly all its elements along
with the required assignments is as shown below:

K =



G1 G2 G3 G4

S1 (3, 4, 5), (8, 12, 16), (20, 22, 24), (34, 38, 40),

(2, 3, 5), (4, 6, 8), (7, 9, 11), (10, 12, 14),

(1, 2, 3) (6, 7, 8) (9, 11, 13) (12, 14, 16)

S2 (8, 12, 16), (2, 3, 5), (23, 26, 28), (27, 30, 32),

(4, 6, 8), (1, 2, 3), (10, 11, 12), (10, 11, 12),

(6, 7, 8) (2, 3, 4) (11, 12, 13) (11, 12, 13)

S3 (13, 15, 17), (34, 38, 40), (2, 3, 5), (3, 4, 5),

(6, 7, 8), (10, 12, 14), (1, 2, 3), (2, 3, 5),

(3, 5, 7) (12, 14, 16) (2, 3, 4) (1, 2, 3)

S4 (27, 30, 32), (8, 12, 16), (19, 22, 24), (19, 22, 24),

(10, 11, 12), (4, 6, 8), (10, 12, 14), (10, 12, 14),

(11, 12, 13) (6, 7, 8) (8, 10, 12) (8, 10, 12)


Our next work is to verify if the overall number of assignments precisely equals
the total number of rows (m) and columns (n) and in addition to it, if every
row and column has exactly one assignment. Here, we have made a total of 4
assignments which equals the total number of rows and columns and also, every
row and column has exactly one assignment as seen above, which guarantees the
prevalence of a triangular fuzzy neutrosophic non-degenerate basic feasible solution
to the considered TFNAP. Hence, we can move forward to step 7.
Step 7 : Now, we have to compute the TFNAS and the TMTFNAC, for the given
TFNAP, from the considered TFNAM, which will themselves serve as the TFNOS
and the TFNOAC respectively . The TFNAS (optimal solution) is, S1 −→ G1,
S2 −→ G2, S3 −→ G3 and S4 −→ G4 and the TMTFNAC (optimal) = c11 + c22 +

c33 + c44 = ((3, 4, 5), (2, 3, 5), (1, 2, 3)) + ((2, 3, 5), (1, 2, 3), (2, 3, 4)) + ((2, 3, 5), (1, 2, 3), (2, 3, 4))

+ ((19, 22, 24), (10, 12, 14), (8, 10, 12)) = ((11, 18, 20), (3, 9, 10), (3, 6, 7))

Step 8 : Finally, obtain the respective CAS and the TMCAC (which is calculated
by defuzzifying the already obtained total minimal triangular fuzzy neutrosophic
assignment cost using the score function (1)), for the given TFNAP, which will
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themselves serve as the COS and the COAC respectively. Hence, by doing so,
we obtain the CAS (optimal solution) as, S1 −→ G1, S2 −→ G2, S3 −→ G3 and
S4 −→ G4 and the TMCAC (optimal) = 1

12
[(11+2(18)+20)+(3+2(9)+10)+(3+2(6)+7)]

= 1
12

[(11 + 36 + 20) + (3 + 18 + 10) + (3 + 12 + 7)] = 1
12

[67 + 31 + 22] = 120
12

= Rs.10

Remark 4. It has been observed that the TMCAC for illustrations 1 and 2 ob-
tained here using the proposed method (PM) differ from those of the corresponding
illustrations acquired using existing methods (EMs) in [11] and [28] respectively.
The following section discusses further insights and justifications on the TFNAP
that was taken into account in this study.

7. RESULTS AND CONCLUSION

7.1. Results

The following Tables 1, 2 and Figures 1-5 provide the solutions of the TFNAP
obtained using the proposed approach and a comparison of the solutions of the
proposed approach here to solve the TFNAP, with a few other existing methods
as in [11] and [28] respectively. Some of the significant results are shown in these
tables and figures.

Table 1: Solutions of the TFNAP obtained using the proposed approach
Solutions Illustration 1 Illustration 2
TFNAS/CAS T1 −→ D3, T2 −→ D2 and

T3 −→ D1

S1 −→ G1, S2 −→ G2, S3 −→ G3

and S4 −→ G4

TMTFNAC ((4, 7, 7), (2.5, 5, 7), (6, 7, 7)) ((11, 18, 20), (3, 9, 10), (3, 6, 7))
TMCAC Rs.5.9583 Rs.10

Table 2: Comparison of the solutions of the TFNAP obtained using the proposed approach, with
a few other existing methods
Solutions Illustration 1 Illustration 2
CAS of EMs T1 −→ D1, T2 −→ D3 and

T3 −→ D2 [11]
S1 −→ G4, S2 −→ G3, S3 −→ G2

and S4 −→ G1 [28]
CAS of PM T1 −→ D3, T2 −→ D2 and

T3 −→ D1

S1 −→ G1, S2 −→ G2, S3 −→ G3

and S4 −→ G4

TMCAC of EMs Rs.8.55 [11] 11.16 [28]
TMCAC of PM Rs.5.9583 Rs.10

� The Table 1 showcases the triangular fuzzy neutrosophic/crisp assignment
schedules (TFNAS/CAS), TMTFNAC and the TMCAC of both the above
considered two illustrations.

� The Table 2 compares the CAS and TMCAC calculated using the PM with
those of the two illustrations, expressed as real-world problems taken into
consideration above, using a few other EMs in [11] and [28].
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Illustration 1 Illustration 2
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Figure 1: An overview of the solutions (COAC) of the TFNAP using the proposed approach and
a few other existing methods

� Thus, the above comparison ensures that for the given TFNAPs, the CAS
and the TMCAC found by applying the PM itself serve as the COS and the
COAC, respectively.

� The same above conclusions can be drawn from the Figure 1 which pro-
vides an overview of the solutions (COACs) to the two TFNAPs that were
previously taken into consideration and solved using the two previously men-
tioned EMs with that of the same two problems using the PM. It does so by
demonstrating a sizable amount of variation in the values of the solutions,
through the usage of the PM.

� Figure 1 also shows that the solutions to the aforementioned two TFNAPs
obtained using the PM (the violet bar) are better (in terms of TMCAC/COAC)
than those obtained using the other EMs (the green bar) as in [11] and [28].

� Comparison of Proposed Method (Employing Range) Vs Hungarian Method
in [11]: Knowing that the Hungarian method (used in [11]), which is fre-
quently used to test the optimality of the given AP, provides better solutions
than the other methods (guarantees the optimal solution), we can infer from
the Figure 1 that the PM also seems to fulfil the same purpose (thereby
providing the best possible solution (or) making the total crisp assignment
costs as minimal as possible) by giving lower values for the TMCAC of the
two TFNAPs taken into consideration in this article, when compared to the
Hungarian method thus making it as the COS along with the COAC. Unlike
the Hungarian Method, which operates on precise crisp data, the proposed
method effectively deals with the uncertainty and imprecision in triangular
fuzzy neutrosophic environments. By capturing the variability and range of
possible costs, the proposed method allows for a more nuanced optimiza-
tion, potentially reducing the total minimal crisp optimal assignment costs
when compared to the crisp optimal assignment obtained using the Hungar-
ian Method. By employing the range to address the dispersion in triangular
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Figure 2: A glimpse of the CAS of illustration 1 using the existing method as in [11]

fuzzy neutrosophic environments, the proposed method can identify a more
nuanced optimal assignment schedule. This approach considers the variabil-
ity and potential extreme values, leading to a reduction in the total minimal
crisp optimal assignment costs of the corresponding final total minimal trian-
gular fuzzy neutrosophic optimal assignment costs. As a result, the proposed
method offers a best crisp optimal assignment schedule that reflects a more
accurate and resilient solution compared to the crisp optimal assignment
schedule derived from the Hungarian Method employed in [11]. In summary,
while the Hungarian Method excels in providing optimal solutions for crisp
and well-defined assignment problems, the proposed method employing the
range stands out in handling uncertainty and variability in triangular fuzzy
neutrosophic assignment problems.

� The two Figures 2 and 3 present a glimpse of the CASs of illustration 1
using an EM (T1 −→ D1, T2 −→ D3 and T3 −→ D2) as in [11] and the PM
(T1 −→ D3, T2 −→ D2 and T3 −→ D1) respectively, where the violet arrow
line represents the assignment 1, the red arrow line represents the assignment
2 and the green arrow line represents the assignment 3 of the TFNAP taken
into consideration.

� The CASs of the TFNAP under consideration differ when the two aforemen-
tioned graphs are compared. Since we have already established that the PM
gives us the COS along with the COAC, the Figure 3 can be viewed as the
COS of Illustration 1 using the PM.

� The two Figures 4 and 5 show a glimpse of the CASs of illustration 2 using
an EM (S1 −→ G4, S2 −→ G3, S3 −→ G2 and S4 −→ G1) as in [28] and
the PM (S1 −→ G1, S2 −→ G2, S3 −→ G3 and S4 −→ G4) respectively,
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Figure 3: A glimpse of the CAS (COS) of illustration 1 using the proposed approach
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Figure 4: A glimpse of the CAS of illustration 2 using the existing method as in [28]

where the red arrow line represents the assignment 1, the blue arrow line
represents the assignment 2, the pink arrow line represents the assignment 3
and the green arrow line represents the assignment 4 of the TFNAP under
consideration.

� The CASs of the TFNAP under consideration differ when the two aforemen-
tioned graphs are compared. Since we have already established that the PM
gives us the COS along with the COAC, the Figure 5 can be viewed as the
COS of Illustration 2 using the PM.

Advantages of using the proposed methodology: The following given
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Figure 5: A glimpse of the CAS (COS) of illustration 2 using the proposed approach

are certain distinct advantages and significance that the proposed methodology
offers:
Significance of employing Range in the proposed method for solving
the TFNAP: The range is a measure of dispersion that represents the difference
between the maximum and minimum values in a dataset. It provides an indica-
tion of the spread or variability within the data. The following are some of the
advantages of including the range concepts in the suggested methodology of this
research study:

� Simplicity: Range is a simple and easy-to-understand measure of disper-
sion, which makes it a practical choice for initial analysis in complex problems
like TFNAP.

� Applicability to Various Data Sets: Can be used with any type of data,
whether it’s a simple numerical dataset or complex fuzzy and neutrosophic
data.

� Quick Insight: It provides a quick overview of the spread of the data,
helping to identify the extent of variability in the assignment costs or times.

� Identifying Extremes: Range highlights the difference between the max-
imum and minimum values, helping to identify outliers and extreme values
that might influence the assignment decision.

� Decision Making and Determining the Spread: Range helps in un-
derstanding the variability and consistency of the assignment costs, which
is crucial for optimizing the assignment schedule and making informed deci-
sions in assignment problems.
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� Resource Allocation: By assessing the range of costs, it is possible to al-
locate resources more effectively and anticipate potential variations in costs.

� Optimization: In optimization problems, knowing the range can help in
setting realistic bounds and constraints, leading to more efficient and feasible
solutions.

� Simplified Comparison: Facilitates the comparison between different as-
signment scenarios by providing a straightforward measure of dispersion.

Benefits of Including Range Demand Column (RDC) and Range Supply
Row (RSR):

� Enhanced Data Analysis: Incorporating RDC and RSR into the method-
ology allows for a more detailed analysis of the variability in demand and
supply, respectively and provides a richer context for decision-making.

� Improved Clarity and Insight: RDC and RSR add additional layers of
clarity, helping to understand how demand and supply ranges impact overall
costs and assignments, leading to a more accurate TFNAS/TFNOS.

� Comprehensive Representation: By including RDC and RSR, the pro-
posed methodology can better represent the triangular fuzzy neutrosophic
conditions, ensuring that all aspects of both fuzzy and crisp costs are consid-
ered, providing a holistic view of the assignment problem and its solutions.

Novelty of the proposed approach and a comparison with the existing
methods: The proposed methodology of incorporating range measures like RDC
and RSR into TFNAP solving enhances its simplicity and practicality in manag-
ing complex uncertainty and hence is novel. Unlike traditional methods relying on
intricate statistical measures such as standard deviation and various means, this
approach offers deeper insights into cost variability in both fuzzy and crisp forms,
streamlining computation and interpretation. In contrast, range offers a simple,
easily interpretable measure that effectively captures data spread. It quickly re-
veals variability in assignment costs or benefits and identifies outliers. Seamlessly
integrating with existing models, this method is flexible and robust for managing
complexities in fuzzy and neutrosophic environments. It stands out for its sim-
plicity, sensitivity to extreme values, and ease of integration. This approach aids
in obtaining accurate and realistic fuzzy neutrosophic assignment schedules and
costs, addressing inherent uncertainties. It offers a more intuitive, less computa-
tionally demanding compared to existing methods, ensuring practical applicability
while maintaining analytical depth. The range provides a baseline for comparing
different scenarios and highlighting assignment process uncertainty. This, in turn,
supports informed, robust decision-making, ensuring strategies are resilient to vari-
ability and capable of addressing best and worst-case outcomes. Incorporating the
range into the TFNAP enhances clarity, flexibility, and robustness by quickly and
effectively assessing data variability, crucial for managing TFNAP complexity and
uncertainty.
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Limitations of the proposed method:

� Limited Representation of Uncertainty: Range alone might not fully cap-
ture the uncertainty inherent in TFNNs, potentially leading to oversimplified
models.

� Loss of Precision: Relying solely on range might result in a loss of precision,
as it provides only a crude approximation of the variability within TFNNs,
neglecting the values in between the extreme bounds.

� Interpretability Challenges: The interpretation of results based solely on
ranges can be challenging, making it difficult for decision-makers to under-
stand and act upon the solutions.

� Handling Indeterminacy: Range might not effectively handle the indetermi-
nacy aspect of TFNNs, potentially overlooking important nuances in decision-
making.

� Scalability Issues: As the problem size increases, managing ranges for numer-
ous TFNNs can become computationally expensive and resource-intensive.

� Risk of Conservative Estimates: Ranges tend to be conservative estimates,
potentially leading to overly cautious decision-making and suboptimal solu-
tions.

� Complexity in Implementation: Developing algorithms and software tools
to handle range-based dispersion measures for TFNNs can be complex and
require specialized expertise.

These limitations underscore the need for careful consideration and possibly the
integration of other measures of dispersion or uncertainty to effectively address
the TFNAP.
Relevance of Triangular Fuzzy Neutrosophic Assignment Problem and
the Proposed Method in Real-World Scenarios:

In real-world scenarios, decision-makers often face situations where data is
imprecise, uncertain, or incomplete. Traditional crisp models fall short in such
contexts because they cannot capture the inherent vagueness and ambiguity. The
TFNAP addresses this by incorporating three aspects: fuzziness, indeterminacy,
and membership, which reflect the uncertainty and incomplete information more
accurately.
Key Real-World Applications:

� Supply Chain Management: Assigning suppliers to orders where delivery
times and costs are not precisely known.

� Project Management: Allocating resources to tasks when task durations
and costs are uncertain.
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� Healthcare Management: Scheduling doctors or allocating medical re-
sources under uncertain patient needs and resource availability.

� Human Resources: Assigning employees to projects based on skills and
availability, both of which may be uncertain.

Insights and Implications for Future Research:

� Explore Dispersion Measures: Compare effectiveness of other measures
like variance, IQR, median and mode.

� Hybrid Models: Combine range with other techniques for robust solutions.

� Algorithmic Enhancements: Develop efficient algorithms for large-scale
problems.

� Practical Implementations: Conduct case studies in various industries.

� Technology Integration: Incorporate AI and machine learning for en-
hanced decision-making.

� Impact Analysis: Validate practical benefits in cost reduction and robust-
ness.

The TFNAP and the proposed range-based method address real-world uncertain-
ties effectively. Offering enhanced decision-making, quick insights, and adaptabil-
ity, this method holds significant advantages over traditional approaches. Future
research can expand on this to develop comprehensive solutions for complex envi-
ronments.

8. CONCLUSION

The TFNAP significantly extends the classical AP by incorporating uncer-
tainty and ambiguity through TFNS, enabling decision-makers to handle complex
scenarios more effectively. It represents uncertain data realistically and considers
multiple perspectives to enhance understanding and problem-solving. Researchers
have developed new algorithms for triangular fuzzy neutrosophic data, exploring
optimization, heuristics, and metaheuristics for efficient solutions and better com-
putational efficiency. This research article explores the attributes, kinds, solutions
of TFNAP and introduces a suggested technique for solving TFNAP, comparing
it with a few methods in existence as in [11] and [28] through real-life examples
to demonstrate its efficiency and significance. The proposed method consistently
reveals its effectiveness, offering reduced assignment costs, optimal solutions, and
computational simplicity in commparison with that of the existing methods in [11]
and [28] without compromising quality. It effectively balances accuracy and com-
putational efficiency, making it suitable for time-sensitive and resource optimiza-
tion scenarios in domains like supply chain management and logistics. Despite
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its advantages, ongoing research aims to refine algorithms and address scalabil-
ity challenges. Overall, TFNAP significantly contributes to real-world problem-
solving and advances decision theory and optimization techniques. Future work
will explore applying this suggested technique to multi-objective neutrosophic as-
signment problems, enhancing the findings and benefiting the triangular fuzzy
neutrosophic research environment.
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