
Yugoslav Journal of Operations Research 

# (20##), Number #, #-# 

DOI: https://doi.org/10.2298/YJOR240215027R 

LULU FILTERIZED LIN’S CORRELATIVE THEIL–SEN 

REGRESSION-BASED FULLY CONNECTED DEEP 

MULTILAYER PERCEPTIVE NEURAL NETWORK FOR 

EYE GAZE PATTERN RECOGNITION 

Rathi K1 

Research Scholar, Department of Computer Science, Periyar University, Salem, Tamil 

Nadu, India 

rathikuppusamy@gmail.com 

Srinivasan K 

Assistant Professor, Department of Computer Science, Government Arts and Science 

College, Pennagaram, Dharmapuri, Tamil Nadu, India 

vasanphdrk@gmail.com 

Received: February 2024 / Accepted: June 2024 

Abstract: Gaze estimation is process finding the point of gaze on observe axis of eye. 

Gaze tracking schemes are mainly employed in HCI and study of visual scanning samples. 

Traditional tracking schemes usually need   accurate personal calibration procedure to 

evaluate the particular eye metrics.  In order to improve the accurate gaze estimation, Lulu 

Filterized Lin’s Correlative Theil–Sen Regression-based Fully Connected Deep Multilayer 

Perceptive Neural Network (LFLCTR-FCDMPNN) is designed for accurate gaze pattern 

identification through lesser time consumption.  Fully Connected Deep Multilayer 

Perceptive NN contains input layer, three hidden layers, output layer. In input layer, 

number of gaze images is collected. Then using Lulu nonlinear smoothing filtering method 

is applied in initial hidden layer for removing noise as well as enhancing image quality. In 

second hidden layer, Polar coordinate system-based eye-gaze point estimation is 

performed.  Finally, the Gaze Pattern matching is carried out in third hidden layer using 

Lin’s Concordance Correlative Theil–Sen regression.  The estimated gaze points are 

organized at gaze plane to identify gaze patterns. Then pattern matching performed by 

Lin’s Concordance Correlation. In this way, the eye gaze patterns are correctly recognized 

at the output layer. Experimental evaluation is conducted to demonstrate performance 
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analysis of LFLCTR-FCDMPNN technique through different metrics like gaze pattern 

recognition accuracy, gaze pattern recognition time, and false-positive rate with different 

number of eye images. Explained result illustrates which LFLCTR-FCDMPNN method 

improves the accuracy of gaze pattern recognition and decreases the time consumption 

than the conventional prediction methods. Using the Synthes Eyes dataset, it turned out 

that the FPR of the suggested LFLCTR-FCDMPNN was 63% higher than existing. 

Keywords: Gaze estimation, fully connected deep multilayer perceptive neural network, 

lulu nonlinear smoothing filtering technique, polar coordinate system-based eye-gaze point 

estimation, Lin’s Concordance correlative Theil–Sen regression. 

MSC: 68T05, 92C55, 68U10. 

 

1. INTRODUCTION 

Human visual scheme investigates multifaceted views quickly. It offers imperfect 

intuitive sources to majority prominent subsets of scenes. Gaze estimation method attempt 

to forecast human gaze below free-viewing situation. Previous work on accurate human 

eye gaze estimation is yet to be solved efficiently with minimum complexity.  

For forecasting gaze variations of pairwise eye patches with similar individual depend 

on SNNet, Differential Eyes’ Appearances Network (DEANet) was developed in [1].  But, 

accuracy for gaze estimation was not enhanced. FARE-Net was introduced in [2] to 

perform the gaze assessment with the consideration of the variation of left as well as right 

eyes.  However, accurate gaze assessment was not achieved with minimum time 

consumption.  

An improved Itracker integrated with bi-LSTM was designed [3] to recognize the 

subject’s gazes.  But, it failed to effectively enhance performance of subject’s gazes’ 

estimation. For enhancing performance of eye gaze, Fisher kernels from different 

generative methods were designed [4]. But, identification accuracy of eye gaze was not 

improved. 

A deep gaze forecast technique was introduced [5] depend on object detection as well 

as image segmentation. However computational complexity was not reduced. 3Dgaze 

estimation framework was designed in [6] based on visual attributes of both eyes and the 

head position. But the time complexity analysis of gaze estimation was not measured.  A 

differential convolutional neural network was developed in [7] for gaze estimation between 

two eye input images of the equal subject. However image preprocessing was not carried 

out to enhance accuracy of gaze assessment.  

For improving accuracy of gaze assessment, Gaze direction estimation method was 

introduced in [8]. However it failed to increase robustness of model. 3D gaze estimation 

with an auto-calibration technique was developed in [9] for accurate measurement. But the 

time complexity of gaze estimation was not performed. Dynamic causal modeling (DCM) 

technique was introduced in [10] for gaze processing. But the performance of gaze 

processing was not improved.  

Research in several domains, such as marketing, neuroscience, psychology, and 

human-computer interface, relies heavily on eye gaze estimation. By recording people's 

gaze, it sheds light on attention, thought processes, and decision-making, paving the way 

for a better understanding of human behaviour. Gaze estimation is a tool in the field of 
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human-computer interaction that helps in the creation of gaze-aware interfaces. These 

interfaces let users operate devices and engage with material simply by moving their eyes. 

Gaze estimate additionally helps with studies of visual perception, social cognition, and 

emotional reactions in the fields of neuroscience and psychology. Researchers in the field 

of marketing also use gaze tracking to learn about customers' habits, evaluate the efficacy 

of ads, and find the sweet spot for product placement and design. 

The assessment of eye gaze accurately does, however, provide a number of difficulties. 

Estimation accuracy is susceptible to changes in occlusions, lighting, head movement, and 

eye appearance. In real-world settings or when there are big head movements, traditional 

methods like video-based systems or infrared eye trackers might not be able to acquire 

accurate gaze positions. There is also the possibility of estimating mistakes due to 

calibration techniques and individual variations in eye shape. The limits of existing 

methods have been extensively studied and documented. These methods include geometric 

models, appearance-based approaches, and machine learning algorithms. Geometric 

models necessitate precise alignment and depend on presumptions about the shape of the 

eyes, whereas appearance-based approaches could have trouble dealing with illumination 

and occlusion variations. The training datasets for machine learning algorithms can be 

rather big, and there is a risk of overfitting to certain conditions, which can dramatically 

reduce their generalizability. 

Overall, there are a lot of reasons that make correct estimating difficult, even though 

eye gaze estimation provides useful information about human behaviour and has many 

uses. Innovative methods that can reliably estimate gaze in a variety of settings are needed 

to overcome these obstacles and provide more flexible and efficient gaze tracking systems. 

 

1.1 Major contributions  

 A novel deep learning-based technique called LFLCTR-FCDMPNN is introduced 

for accurate eye gaze estimation with the help of preprocessing, gaze point 

evaluation, as well as pattern matching incorporated into FCDMPNN.   

 To minimize time complexity of gaze pattern recognition, LFLCTR-FCDMPNN 

uses the Lulu nonlinear smoothing filtering technique in initial hidden layer for 

removing noise artifacts as well as enhancing image quality. In addition, a Polar 

coordinate system is applied to estimate the different eye gaze points based on 

radial distance and theta (𝜃) (angular coordinate). The estimated points are given 

to the pattern matching to minimize the time consumption.    

 To increase the gaze pattern recognition accuracy, Lin’s Concordance Correlative 

Theil–Sen regression is applied to the Fully Connected Deep Multilayer 

Perceptive Neural Network.  The estimated gaze points are organized in gaze 

plane. Then pattern matching is performed using Lin’s Concordance Correlation. 

The correlation accurately recognizes the human gazes with the help of ground 

truth patterns at output layer of DNN. This aids to reduce false positive of pattern 

detection.   

 Finally, comprehensive experiments are performed to estimate quantitative study 

of LFLCTR-FCDMPNN with existing DL methods depend on different 

performance parameters. 
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1.2 Organization of manuscript 

The manuscript is structured as follows: section 2 reviews literature for gaze pattern 

estimation. The proposed LFLCTR-FCDMPNN is explained in Section 3. Section 4 

describes experimental settings through dataset explanation. Section 5 discusses study of 

experimental outcomes through dissimilar performance parameters and lastly, section 6 

summarizes the manuscript. 

An improved method for recognising gaze patterns, the Lulu Filterized Lin’s 

Correlative Theil–Sen Regression–based Fully Connected Deep Multilayer Perceptive 

Neural Network (LFLCTR–FCDMPNN), was created and shown as a result of this 

research. By enhancing the precision and effectiveness of gaze tracking devices, this novel 

method fills a need in the arena. The LFLCTR-FCDMPNN outperforms conventional 

approaches by combining methods like Lin's Concordance Correlative Theil-Sen 

regression, Arctic coordinate system-based eye-gaze point estimation, and Lulu nonlinear 

smoothing filtering. Improved and more dependable gaze pattern recognition in fields like 

visual scanning studies and human-computer interaction is one outcome of this study's 

contribution to the state of the art in eye-tracking technology. An improved method that 

reduces processing time without sacrificing accuracy is additionally presented. 

 

2. LITERATURE REVIEW  

Saliency-based gaze correction (SalientGaze) was performed in [11] for providing the 

results with better accuracy. However, the performance time complexity analysis remained 

unaddressed. 3D gaze estimation technique was introduced in [12] using a multi-camera-

multilight-source system. However, the calibration error in each step of the gaze estimation 

process was not reduced. Deep CNN and transfer learning were developed [13] for eye 

gaze tracking. But, it failed to perform accurate gaze point estimation with minimum 

complexity.  

DCNN was introduced [14] for 3D eye gaze tracking by extracting the iris and pupil 

pixels of each eye from input images automatically. However, the accuracy of eye gaze 

tracking was not improved. Geometric transformation models were developed in [15] to 

redesign eye feature allocation. However, Deep Learning Models (DLP) were not applied 

to estimate eye-spooring through gaze-mapping calibration. 

Gaze point mapping was designed [16] depend on detection of fiducial markers. But 

precise Gaze point mapping was not achieved. An iris feature-based method was 

introduced in [17] for 3D gaze estimation. But it failed to reduce the error and increase the 

accuracy of gaze estimation. A knowledge-based method was introduced in [18] for gaze 

estimation with low-resolution conditions. However, it failed to enhance the performance 

of gaze estimation with low-resolution images.  

A new technique was introduced in [19] to eliminate the precise user calibration and 

attain 3-D gaze estimation. However, the designed technique failed to increase the 

estimation accuracy. Ortho Gaze approach was introduced in [20] that allows the users to 

operate the 3D position of virtual objects using eye or head gaze alone. However, it failed 

to perform the discussion regarding the accuracy control of Ortho Gaze, in more complex 

and practical environments. 

A multi layered comparison convolutional neural network (MC-CNN) is employed in 

the suggested approach to examine the disparities in visual attention between normals and 
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individuals with Alzheimer's Disease (AD). With the use of an eye-tracking system and a 

3D comprehensive visual task, MC-CNN is able to collect visual attention heatmaps and 

achieve a recall of 0.86, precision of 0.82, F1-score of 0.83, and area under the curve 

(AUC) of 0.90. This allows for the effective diagnosis of AD based on behaviours of eye 

movement. 

When compared to current approaches, the proposed LFLCTR-FCDMPNN Lulu 

Filterized Lin’s Correlative Theil-Sen Regression-based Fully Connected Deep Multilayer 

Perceptive Neural Network strives to be more accurate and use less time. When it comes 

to noise and poor image quality, traditional gaze tracking techniques could be a pain and 

frequently necessitate precise personal calibration. But LFLCTR-FCDMPNN takes a 

different approach by combining various cutting-edge methods to boost performance. 

First, to improve the input data reliability, Lulu nonlinear smoothing filtering is used 

in the initial hidden layer to reduce noise and boost image quality. Accurate gaze estimate 

relies on this preprocessing phase. Furthermore, by examining the spatial correlations 

between features, a more robust method for predicting gaze points is achieved by 

incorporating eye-gaze point estimate based on the Polar coordinate system into the second 

hidden layer. 

In addition, a novel approach to recognising gaze patterns can be achieved by including 

Lin's Concordance Correlative Theil-Sen regression in the third hidden layer for gaze 

pattern matching. This method improves recognition accuracy by using statistical 

correlations to successfully match observed gaze patterns. 

In terms of accuracy, false-positive rate, and time consumption, experimental 

evaluation of LFLCTR-FCDMPNN shows that it outperforms previous approaches. 

Performance measures compared to traditional prediction methods reveal substantial 

efficiency and accuracy gains with the suggested approach. In particular, LFLCTR-

FCDMPNN outperforms state-of-the-art methods in recognising gaze patterns with 

reduced processing time, offering a potential solution for practical uses in visual scanning 

and human-computer interaction research. 

In summary, LFLCTR-FCDMPNN is different from other approaches because it uses 

cutting-edge techniques like Lulu filtering and Lin's regression to improve the efficiency 

and accuracy of eye gaze pattern detection. Superior testing findings and the fact that it can 

handle typical problems with gaze tracking highlight how innovative and useful the 

suggested method is for improving gaze estimation. 

A fully connected deep multilayer perceptive neural network based on Lulu Filterized 

Lin's Correlative Theil-Sen Regression (LFLCTR-FCDMPNN) is suggested as a potential 

solution to this problem in the study. This innovative method is designed to efficiently 

detect eye movements and decrease processing time. The network streamlines the gaze 

pattern recognition process and improves the quality of input data by incorporating 

techniques such as Lulu nonlinear smoothing filtering, eye-gaze point estimate based on 

the Polar coordinate system, and Lin's Concordance Correlative Theil-Sen regression. In 

this regard, LFLCTR-FCDMPNN could be compared to other deep learning approaches 

such as CNNs for image processing, RNNs for sequential data analysis, and GANs for data 

augmentation and synthesis. When compared to other gaze pattern recognition systems, 

these comparisons could provide light on how well LFLCTR-FCDMPNN performs. 

By concentrating on improving accuracy and efficiency concurrently, the study fills a 

particular void in the area of gaze pattern detection. Poor performance from noise in the 

input data and the need for precise human calibration procedures are common problems 
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with traditional gaze tracking systems. Several improvements are introduced by the 

proposed LFLCTR-FCDMPNN to fill this gap. In order to improve the input gaze images, 

it first uses the Lulu nonlinear smoothing filtering approach to reduce noise. Second, it 

uses eye-gaze point estimate based on the Polar coordinate system to make it more 

accurate. As a last step, it matches gaze patterns efficiently using Lin's Concordance 

Correlative Theil-Sen regression. The LFLCTR-FCDMPNN enhances accuracy and 

reduced processing time compared to standard methods by incorporating these techniques 

into a fully connected deep multilayer perceptron neural network architecture. There is a 

big void in the field that this combination of efficiency and accuracy fills, since current 

methods tend to favour one over the other. 

 

3. PROPOSED METHODOLOGY  

Human eye gaze estimation provides significant signs to understand visual attention 

since the eye movement’s determination is highly-complex [21]. It is wildly required for 

human-computer interaction, video surveillance, and etc. So, capability to mechanically 

and correctly track human eye gaze is significant for numerous intelligent schemes. Based 

on motivation, a novel deep learning technique called LFLCTR-FCDMPNN based eye 

gaze depth estimation is performed with lesser complexity. A novel LFLCTR-FCDMPNN 

is developed based on preprocessing, gaze point estimation, as well as pattern matching.  

3.1. Pre-processing:  

Input Layer: Data for the input layer is gaze images. 

Lulu Nonlinear Smoothing Filtering: To improve picture quality and eliminate noise, 

the first hidden layer applies Lulu nonlinear smoothing filtering. To improve gaze photos, 

Lulu filtering is used because it effectively preserves edge details while smoothing noise. 

3.2. Gaze Point Evaluation:  

Second Hidden Layer: This layer estimates eye-gaze points using the Polar coordinate 

system. In order to get a better estimate of gaze points, this phase uses a Polar coordinate 

system to evaluate them. This system takes into account the spatial relationships between 

features. 

3.3. Pattern Matching:  

Third Hidden Layer: Lin's Concordance Correlative Theil-Sen regression is used to 

carry out gaze pattern matching in the third hidden layer. To find patterns in gaze data, we 

use Lin's regression approach, which measures the degree and direction of the link between 

two variables. 

Combination with FCDMPNN (Fully Connected Deep Multilayer Perceptron Neural 

Network): 

Deep multilayer perceptron neural network incorporates the pre-processing, gaze point 

evaluation, and pattern matching components: 
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 - The output of each pre-processing step is sent into the next layer of the neural 

network. – Each hidden layer carries out its own computations using the input data and 

sends the results on to the layer below it. 

 The last layer of the neural network is responsible for processing the pattern matching 

results and producing the output that stands in for the identified eye movements. 

With the goal to improve the quality of the input data for gaze point evaluation, certain 

techniques are used. One of them is Lulu nonlinear smoothing filtering, which is selected 

because it successfully removes noise from gaze images while keeping crucial information. 

- The Concordance of Lin Correlative Specifically, the Theil-Sen Regression takes 

advantage of Lin's regression method's capacity to detect patterns in gaze data and assess 

correlations across variables. Improvements in pattern matching and gaze pattern 

recognition are achieved by the use of statistical correlations in Lin's regression. 

The LFLCTR-FCDMPNN technique is a strong respond to many problems in visual 

scanning and human-computer interaction because it uses these preprocessing and analysis 

methods with a fully linked deep multilayer perceptron neural network to recognise eye 

gaze patterns efficiently and accurately. 

 

 

Figure 1: Flow process of proposed LFLCTR-FCDMPNN technique 

Figure 1 demonstrates flow process of LFLCTR-FCDMPNN method for gaze pattern 

estimation. First, the numbers of eye gaze images are gathered as of dataset.  In first stage, 

image preprocessing performed using Lulu nonlinear smoothing filtering technique to 

reduce complexity of eye gaze pattern categorization. Secondly, gaze point estimation is 

performed using Polar coordinate system.  Finally, the pattern matching is performed using 

Lin’s Concordance Correlative Theil–Sen regression with the estimated gaze point and the 

ground truth point.  
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Figure 2: Schematic structure of Fully Connected Deep Multilayer Perceptive Neutral 

Figure 2 demonstrates Schematic structures of a deep neural network. The layers 

comprise neurons as nodes are connected as of one layer to a consecutive layer with 

adjustable weights. Input layer considers eye gaze images as input. In initial hidden layer, 

image preprocessing is performed to remove noise artifacts. After that, gaze point 

estimation process is said to be performed in 2nd hidden layer. Finally, gaze pattern 

categorization is carried out in third hidden layer. As a result, gaze estimation is obtained 

at output layer.   

A comparison with other top-tier deep learning models for gaze pattern recognition is 

something the authors might look into doing to improve the methodology. Although the 

LFLCTR-FCDMPNN is a novel strategy, it would be instructive to compare its results to 

those of current models to determine its efficacy and superiority. To further improve the 

model's performance, the authors could think about optimising the architecture and 

hyperparameters using methods like grid search or Bayesian optimisation. 

The model's performance could be optimised across many datasets and circumstances 

with this adaptive technique, guaranteeing its robustness and generalizability. 

In order to confirm that the suggested method is reliable and robust, the authors should 

think about adding further controls. To test the model's performance in different settings, 

it may be necessary to use datasets that represent a wide range of demographics, 

environmental factors, and eye movements. Further assurance in the model's performance 

could be achieved by utilising sensitivity analysis and cross-validation techniques to 

evaluate its consistency and stability. Further validation of the model's practical value and 

reliability could be achieved by testing it in real-world settings with real-time gaze tracking 

systems. 

Lulu nonlinear smoothing filtering-based Preprocessing  

Preprocessing is the process of removing the noise and enhancing the image for 

restoration. Preprocessing of an image is significant aspect of digital image processing. 

Aim of preprocessing is to enhance image quality before the gaze point estimation. The 

proposed LFLCTR-FCDMPNN technique uses the Lulu nonlinear smoothing filter for 

enhancing the image quality.  Lulu nonlinear smoothing filter is a nonlinear mathematical 

technique for removing noise from a by taking a moving average 
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Let us assume image dataset ‘𝐷’ through number of eye gaze images ‘𝐼1, 𝐼2, 𝐼3, … . 𝐼𝑛’ 

‘𝑛’ represents whole number of images. Number of pixels in every image is represented 

by 𝑣1, 𝑣2, 𝑣3, … . 𝑣𝑚. Then the image pixels are organized in kernel filtering window in 

rows as well as columns. 

 

 

Figure 3: 5*5 kernel filtering window 

Figure 3 depicts 5 ∗ 5 kernel filtering window. Then pixels are sorted into ascending 

order and take middle pixel value.  If some two pixels are in center pixel, after that average 

of these pixels is taken as center.   Lulu nonlinear smoothing filter is worked based on two 

operators L and U which represent the ‘lower’ and ‘upper.  It means that the neighboring 

pixels are selected below or above the upper of the center pixel (𝑣𝑖𝑗).  The neighboring 

pixels are segmented as given below, 

𝒗𝒏 = [𝒗(𝒊−𝟏,𝒋), 𝒗(𝒊+𝟏,𝒋), 𝒗(𝒊,𝒋−𝟏), 𝒗(𝒊,𝒋+𝟏)]  (1) 

Were, 𝑣𝑛 denotes a neighboring pixel of the center pixels ‘𝑣𝑖𝑗  ‘. From the above 

equation (1), there are four neighboring pixels are selected from above or below the center 

value. The noise filtered output as given below,  

𝑭 = 𝝁 + ‖𝒗𝒊𝒋 − 𝝁‖ (2) 

Where 𝐹 represents the filtered output, 𝜇 denotes a local mean of neighboring pixels 

inside filtering window, ‘𝑣𝑖𝑗’ denotes a center pixels. 

Polar coordinate system-based eye-gaze point evaluation  

Following the image preprocessing, eye gaze points are evaluated by a Polar coordinate 

scheme. In mathematics, polar coordinate scheme is 2D coordinate scheme at that every 

point on plane is calculated through distance as of reference point as well as angle from 

reference direction. Angle is named angular coordinate as well as angles in polar notation 

are normally denoted in degree.  
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Figure 4: Polar coordinate system  

Figure 4 illustrates polar coordinate scheme in 2D space to estimate the set of boundary 

points used to form a gaze pattern. By applying the polar coordinate system, the points are 

marked to estimate gaze patterns. This helps to reduce the time consumption of gaze pattern 

classification. 

 
Figure 5: Gaze Point’s Estimation using a polar coordinate system 

Figure 5 illustrates the gaze point’s estimation using a polar coordinate system. Polar 

coordinates ‘𝑟’ (radial distance), theta (𝜃) are defined in terms of polar coordinate is 

calculated by applying the Pythagoras theorem, 

𝑟 = √𝑥2 + 𝑦2 (3) 

𝜃 =
r sin 𝜃 𝑦

𝑟 cos 𝜃 𝑦
= tan 𝜃 (

𝑦

𝑥
) (4) 

𝜃 = tan−1 (
𝑦

𝑥
) (5) 

By using (3), (4), (5), the radial distance and angular coordinates are measured and the 

gaze points are estimated. Likewise, all points are noted in gaze plane. As outcome, 

dissimilar points are attained depend on motion of eyelid. This aids to identify gaze patterns 

through lesser time.  
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Lin’s Concordance Correlative Theil–Sen regression-based pattern classification  

The obtained gaze points are organized in gaze plane to identify gaze patterns. Gaze 

pattern detection is performed in third hidden layer of DL by means of Lin’s Concordance 

Correlative Theil–Sen regression.  Theil–Sen regression is ML method for robustly 

examining the two sample points in the plane by finding Lin’s Concordance Correlation 

function. The regression function uses correlation between the gaze points and ground truth 

patterns.   

 

Figure 6: Ground-truth gaze patterns 

Figure 6 demonstrates the ground truth patterns. Evaluated gaze patterns through 

ground truth patterns are coordinated depend on Lin’s Concordance Correlation.  

𝝆 =
𝟐∗𝒗𝒑𝒆𝒔𝒗𝒑𝒈𝒕

𝒗
𝒑𝒆𝒔𝟐+𝒗

𝒑𝒈𝒕𝟐+(𝒑𝒆𝒔−𝒑𝒈𝒕)
𝟐 (6) 

Where, 𝑣𝑝𝑒𝑠
 denotes a variance of estimated gaze patterns, 𝑣𝑝𝑔𝑡

 indicates a variance of 

ground truth gaze patterns, 𝑝𝑒𝑠 indicates an estimated gaze pattern, 𝑝𝑔𝑡 indicates ground-

truth gaze patterns. Lin’s Concordance Correlation coefficient gives outcomes from 0 to 1. 

𝝆 = {
+𝟏, 𝒑𝒂𝒕𝒕𝒆𝒓𝒏𝒔𝒂𝒓𝒆𝒄𝒐𝒓𝒓𝒆𝒕𝒍𝒚𝒎𝒂𝒕𝒄𝒉𝒆𝒅

𝟎, 𝒑𝒂𝒕𝒕𝒆𝒓𝒏𝒔𝒂𝒓𝒆𝒏𝒐𝒕𝒄𝒐𝒓𝒓𝒆𝒕𝒍𝒚𝒎𝒂𝒕𝒄𝒉𝒆𝒅
 (7) 

Lin’s Concordance Correlative coefficient provides the results ‘1’ when the patterns 

are correctly matched. Otherwise, the correlative coefficient returns ‘0’. In this way, 

accurate pattern matching is performed at the output layer. The LFLCTR-FCDMPNN 

algorithmic process is described as given below,  
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Algorithm 1 describes the process of gaze patterns recognition with higher accuracy. 

The FCDMPNN includes multiple layers to study given input eye gaze images. Input layer 

obtain number of eye gaze images.  In initial hidden layer, Lulu nonlinear smoothing 

filtering method is applied for enhancing image quality through eliminating noise. 

Afterward, polar coordinate system is used to second hidden layer of DNN for estimating 

the gaze points. Lastly, gaze patterns are coordinated through ground truth patterns using 

Lin’s Concordance Correlative Theil–Sen regression in third hidden layer. Finally, 

accurate recognition is attained at output layer.  

 

4. EXPERIMENTAL ASSESSMENT 

In this section, experimental evaluation of LFLCTR-FCDMPNN and conventional 

DEANet [1] FARE-Net [2]is executed by MATLAB through two dissimilar eye image 

datasets such as synthes Eyes and MPII gaze. Synthes Eyes dataset 

(https://www.cl.cam.ac.uk/research/rainbow/projects/syntheseyes/) contain 11,382 

synthesized close-up images of eyes. Other dataset is the MPII gaze dataset that is 

considred from https://www.kaggle.com/chethanhebbar/mpii-modified-dataset. This 

dataset includes 213,659 images taken as of 15 different contestant s through natural daily 

laptop employ in excess of three months. It has a huge changeability in appearance and 

illumination.  

5. RESULTS 

Results of LFLCTR-FCDMPNN and existing DEANet [1], FARE-Net [2] are 

obviously explained in this part. Different parameters are employed for measuring 

https://www.cl.cam.ac.uk/research/rainbow/projects/syntheseyes/
https://www.kaggle.com/chethanhebbar/mpii-modified-dataset
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performance of three dissimilar techniques. Performance study is performed by a table and 

graphical representation.   

GPRA: It measured as number of gaze patterns of eye images are identified from whole 

number of ye gaze images.  The accuracy is formulated as given below, 

𝑮𝑷𝑹𝑨 = (
𝒏𝒐.𝒐𝒇 𝒈𝒂𝒛𝒆𝒑𝒂𝒕𝒕𝒆𝒓𝒏𝒔 𝒐𝒇 𝒆𝒚𝒆𝒊𝒎𝒂𝒈𝒆𝒔𝒂𝒓𝒆 𝒓𝒆𝒄𝒐𝒈𝒏𝒊𝒛𝒆𝒅

𝒏
∗ 𝟏𝟎𝟎) (8) 

Where 𝐺𝑃𝑅𝐴 denotes Gaze pattern recognition accuracy, ‘n’ indicates number of eye 

images and it calculated in percentage (%).    

False-positive rate: It is calculated as number of gaze patterns of eye images that are 

incorrectly recognized.  It is expressed as below, 

𝑭𝑷𝑹 = (
𝒏𝒐.𝒐𝒇 𝒈𝒂𝒛𝒆𝒑𝒂𝒕𝒕𝒆𝒓𝒏𝒔 𝒐𝒇 𝒆𝒚𝒆𝒊𝒎𝒂𝒈𝒆𝒔𝒂𝒓𝒆 𝒊𝒏𝒄𝒐𝒓𝒓𝒆𝒄𝒕𝒍𝒚 𝒓𝒆𝒄𝒐𝒈𝒏𝒊𝒛𝒆𝒅

𝒏
∗ 𝟏𝟎𝟎) (9) 

Where, 𝐹𝑃𝑅denotes false-positive rate and it is calculated in percentage (%).    

Time complexity: It is measured as amount of time taken through algorithm to identify 

gaze patterns with number of eye gaze images. Overall time consumption measured as 

follows 

𝑻𝑪 = [𝒏] ∗ 𝑻(𝒈𝒂𝒛𝒆𝒑𝒂𝒕𝒕𝒆𝒓𝒏𝒓𝒆𝒄𝒐𝒈𝒏𝒊𝒕𝒊𝒐𝒏) (10) 

From (12), 𝑇𝐶 represents time complexity, 𝑇 indicates time for recognizing the gaze 

patterns.  

Table 1 (a) Gaze pattern recognition accuracy 

Number of eye gaze 

images 

Gaze pattern recognition accuracy using Synthes Eyes 
LFLCTR-

FCDMPNN 
DEANet FARE-Net 

1000 94 89 87 

2000 94.5 87.5 87.5 

3000 95.06 88.33 85.33 

4000 93.75 89 85.5 

5000 95 87.6 85 

6000 95.83 90.33 88.66 

7000 94.07 89.71 87.85 

8000 95.65 88.12 86.87 

9000 95.22 89.11 86.11 

10000 96.45 88.5 87.25 
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Table 1 (b) 

Number of eye gaze 

images 

Gaze pattern recognition accuracy using SynthesEyes 
LFLCTR-

FCDMPNN 
DEANet FARE-Net 

1000 92 87.5 86.5 

2000 92.5 87 85 

3000 94.66 87.66 85.16 

4000 93.25 88.62 85 

5000 94.8 87 84.2 

6000 94.16 89.41 87.75 

7000 93.5 88.35 86.92 

8000 95.37 87.87 85.68 

9000 95.05 89 86.05 

10000 95.85 88.1 86.5 

 

Table 1(a) (b) shows the Gaze pattern recognition accuracy using synthesEyes dataset 

and MPII gaze of the proposed LFLCTR-FCDMPNN. Tabulated results confirm Gaze 

pattern recognition accuracy using LFLCTR-FCDMPNN upon comparison with the other 

two existing methods [1] and [2]. Let us assume number of gaze images 1000 considered 

from synthesEyes dataset. Therefore, accuracy of the proposed LFLCTR-FCDMPNNis 

94% and the existing DEANet [1], FARE-Net [2] are89% , 87%. Afterward which, the 

nine different outcomes are examined along with the various input gaze images. Finally, 

the performance of LFLCTR-FCDMPNN is compared to conventional techniques. Overall 

comparison result noticed which recognition accuracy by LFLCTR-FCDMPNN is 

increased by 7% and 10% than the DEANet, FARE-Net. 

Let us consider the 10000 from the MPII gaze dataset. Gaze pattern recognition 

accuracy of LFLCTR-FCDMPNN is 92% and the accuracy of DEANet [1], FARE-Net [2] 

are 87.5% and 86.5%. Likewise, the accuracy of different results is obtained.  Performance 

of LFLCTR-FCDMPNN is compared to the results of DEANet [1], FARE-Net [2]. The 

overall results indicate that the recognition accuracy of LFLCTR-FCDMPNN is enhanced 

by 7% and 10% than the existing methods.  

 

Figure 7 (a) Gaze Pattern Recognition accuracy Syntheseyes dataset 
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Figure 7 (b) Gaze Pattern Recognition accuracy using MPII gaze dataset 

Figure 7 (a) (b) demonstrates the accuracy with respect to gaze images collected from 

the dataset. From observed results, accuracy was found to be improved using the proposed 

LFLCTR-FCDMPNN when compared to ofDEANet [1], FARE-Net [2]. This is due to the 

application of Lin’s Concordance Correlative Theil–Sen regression into the Fully 

Connected Deep Multilayer Perceptive Neural Network. In the third hidden layer, Lin’s 

Concordance Correlation is used to estimate the gaze patterns and ground truth patterns.  
 

Table 2 (a) False- Positive rate 

Number of eye gaze 

images 

False- Positive rate (%) 

using SynthesEyes 
LFLCTR-

FCDMPNN 
DEANet FARE-Net 

1000 6 11 13 

2000 5.5 12.5 14.5 

3000 4.93 11.66 14.66 

4000 6.25 11 14.5 

5000 5 12.4 15 

6000 4.16 9.66 11.33 

7000 5.92 10.28 12.14 

8000 4.35 11.87 13.12 

9000 4.77 10.88 13.88 

10000 3.55 11.5 12.75 

 

Based on the Correlation measure, the eye gaze patterns are correctly recognized.  
 

 

 

 

 



 K. Rathi and K. Srinivasan / Lulu Filterized Lin’s Correlative Theil-Sen Regression 16 

Table 2: (b) 

Number of eye gaze 

images 

False- Positive rate (%) 

using MPII gaze 
LFLCTR-

FCDMPNN 
DEANet FARE-Net 

1000 8 12.5 13.5 

2000 7.5 13 15 

3000 5.33 12.33 14.83 

4000 6.75 11.37 15 

5000 5.2 13 15.8 

6000 5.83 10.58 12.25 

7000 6.5 11.64 13.07 

8000 4.62 12.12 14.31 

9000 4.94 11 13.94 

10000 4.15 11.9 13.5 

 

Table 2 (a) (b) illustrates the experimental outcomes of 𝐹𝑃𝑅using LFLCTR-

FCDMPNN, DEANet [1], FARE-Net [2] with number of eye gaze images. Obtained result 

verifies which 𝐹𝑃𝑅 is considerably reduced by LFLCTR-FCDMPNN than the existing two 

conventional methods. Through using synthes Eyes dataset, 𝐹𝑃𝑅of proposed LFLCTR-

FCDMPNN was found to be increased by 55% and 63% when compared to DEANet [1], 

FARE-Net [2]. Let us consider the MPII gaze dataset, false-positive rate of the proposed 

LFLCTR-FCDMPNNwas found to be increased by 51% and 58% when compared to 

DEANet [1], FARE-Net [2] respectively.  

 

 

Figure 8 (a): Gaze Pattern Recognition accuracy using Syntheseyes dataset 
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Figure 8 (b): Gaze Pattern Recognition Accuracy using MPII gaze dataset 

 

Figure 8 (b): Gaze Pattern Recognition accuracy using MPII gaze dataset 

Figure 8 (a) (b) given above demonstrates the false positive rate of LFLCTR-

FCDMPNN, DEANet [1], FARE-Net [2]. The figure inferred that the LFLCTR-

FCDMPNN technique relatively reduces 𝐹𝑃𝑅when compared to conventional methods.  

This is due to application of Lin’s Concordance Correlative Theil–Sen regression. The 

Theil–Sen regression is applied for measuring the correlation between evaluated gaze as 

well as ground truth gaze patterns by Lin’s Concordance correlation. Where the patterns 

are correctly matched, the correlation coefficient returns‘1’.  Otherwise, the correlation 

coefficient returns‘0’. This helps to minimize incorrect pattern recognition and increase 

the accuracy at the output layer.  
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Table 3: (a) Time Complexity 

Number of eye gaze 

images 

Time Complexity (ms) 

using SynthesEyes 

LFLCTR-

FCDMPNN 

DEANet FARE-Net 

1000 55 58 62 

2000 60 64 68 

3000 63 66 72 

4000 68 72 76 

5000 70 75 80 

6000 72 78 84 

7000 77 84 91 

8000 81.6 85.6 96 

9000 83.7 87.3 99 

10000 91 95 100 

Table 3: (b) 

Number of eye gaze 

images 

Time Complexity (ms) 

using MPII gaze 
LFLCTR-

FCDMPNN 
DEANet FARE-Net 

1000 72 78 81 

2000 80 90 96 

3000 84 93 105 

4000 88 96 104 

5000 90 97 107.5 

6000 96 102 108 

7000 98 105 112 

8000 104 112 120 

9000 112.5 117 126 

10000 118 125 130 

 

The time complexity using three methods namely LFLCTR-FCDMPNN, DEANet [1], 

FARE-Net [2] are reported in table 3 (a) (b) using synthes Eyes dataset and MPII gaze 

dataset. In table 5, the time complexity for three different techniques obtain enhanced as 

enhancing number of gaze images.  Amongst three techniques, LFLCTR-FCDMPNN 

better well in attaining lesser 𝑇𝐶. Through ‘1000’ gaze images are gathered as of synthes 

Eyes dataset for experimentation, time complexity was found to be ‘55𝑚𝑠’ using the 

LFLCTR-FCDMPNN technique, ‘58ms’ are observed using [1], and 62𝑚𝑠’ when applied 

[2]. For every technique, ten different outcomes are attained through dissimilar counts of 

input gaze images. Therefore, overall 𝑇𝐶 of LFLCTR-FCDMPNN method is compared to 

conventional methods. Average of ten comparison outcomes shows which 𝑇𝐶 of LFLCTR-

FCDMPNN is considerably minimized by 7% and 14% than the [1],[2]. Similarly, by 

applying MPII gaze dataset, overall 𝑇𝐶 of LFLCTR-FCDMPNN is lesser by the means of 

7% and 14% when compared to DEANet [1], FARE-Net [2] respectively.  
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Figure 9 (a): Time complexity using synthes Eyesdataset 

 

Figure 9 (b): Time complexity using MPII gaze dataset 

Figure 9 (a) (b) demonstrates performance of 𝑇𝐶 of gaze pattern recognition using three 

methods LFLCTR-FCDMPNN, DEANet [1], FARE-Net [2]. Therefore, 𝑇𝐶 was examined 

in graph is comparative to number of gaze images. Enhancing number of gaze images, 

improve in 𝑇𝐶 also. Amongst three techniques, LFLCTR-FCDMPNN technique 

minimizes the complexity of gaze pattern recognition. This is owing to application of 

image preprocessing, and gaze point estimation. In image preprocessing, Lulu nonlinear 

smoothing filtering technique is applied in initial hidden layer for removing noise as well 

as enhancing image quality. In addition, the Polar coordinate system is applied to evaluate 

eye gaze points. With the estimated gaze points, the classification is carried out to reduce 

𝑇𝐶 of pattern recognition and decrease the time consumption.   

Evaluate the performance of the model numerically as part of quantitative analysis of 

the experimental results. In general, the fraction of correct forecasts is what we call 

accuracy. The precision of a model is defined as its capacity to prevent false positives, 

which is measured by the ratio of true positives to all positive predictions. Model accuracy 

in detecting all relevant instances is measured by recall, which is defined as the ratio of 

true positives to all actual positives. To provide a more equitable evaluation, F1-score 

combines recall and precision into a single statistic. Qualitative analysis goes farther into 
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comprehending how the model acts. It comprises improving interpretability, looking at 

misclassifications, and determining important traits. To validate model predictions and 

guide improvements, it is helpful to include domain knowledge into qualitative analysis. 

 

6. CONCLUSION 

A new DL-based gaze estimation technique called LFLCTR-FCDMPNN is introduced 

to improve gaze estimation performance. First, image preprocessing is employed through 

using Lulu nonlinear smoothing filtering method in initial hidden layer for removing noise 

as well as enhancing image quality. Followed by, a Polar coordinate system is applied to 

estimate the eye gazepoints. These gaze points are arranged at the gaze plan. Finally, Gaze 

Pattern recognition is performed using Lin’s Concordance Correlative Theil–Sen 

regression.  The estimated gaze points are organized in gaze plane to identify gaze patterns 

by using Lin’s Concordance Correlation. Experimental results demonstrate performance 

of LFLCTR-FCDMPNN compared to different conventional methods. Also, comparison 

outcomes denote which the LFLCTR-FCDMPNN better in prediction accuracy, 𝐹𝑃𝑅, 

prediction time. Also, it is shown that the HDMPJCR-DMPFFN increases 𝐺𝑃𝑅𝐴 and 

reduces time and 𝐹𝑃𝑅than the conventional approaches.  

Even if the method that has been suggested has some promise, it is vital to recognise 

the limitations of the method and to identify potential possibilities for further research. 

When applied to bigger datasets or real-world applications, it may run out of steam due to 

insufficient processing power or resources. There may be a need for additional 

generalisation and adaptation if the technique's efficacy varies across different types of 

data or domains. Approaches to improve scalability, generalizability to varied datasets, and 

model interpretability could be investigated in future research using approaches like 

explainable artificial intelligence. Researching how well the method handles different 

types of data noise and uncertainty could also provide useful information. Resolving these 

constraints will allow the suggested method to be applied more effectively and with more 

flexibility in real-world contexts. 

The study's findings are in accordance with the arguments and evidence offered 

throughout. Highlighting its novel approach to improving accuracy and efficiency, the 

research outlines the development and implementation of the Lulu Filterized Lin’s 

Correlative Theil–Sen Regression–based Fully Connected Deep Multilayer Perceptive 

Neural Network (LFLCTR-FCDMPNN) for gaze pattern recognition. Lulu nonlinear 

smoothing filtering, eye-gaze point estimation based on the Polar coordinate system, and 

Lin's Concordance Correlative Theil-Sen regression are only a few of the methods 

described in depth in the paper. 

Using the Synthes Eyes dataset, it turned out that the FPRof the suggested LFLCTR-

FCDMPNN was 63% higher than existing. 
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