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Abstract: The single-objective fuzzy or non-fuzzy transportation problem (TP) is 

not capable of dealing with real-life decision-making problems due to our current 

competitive market state. In this article, we investigate a fully integer interval multi-

objective transportation problem (FIIMOTP) and a fully fuzzy integer multi-objective 

transportation problem (FFIMOTP). We also provide two solution approaches for solving 

the FIIMOTP and FFIMOTP. Numerical examples are provided to validate these two 

approaches. Our results show that the proposed algorithm hugely outperforms the best 

solution approaches. 

Keywords: Fuzzy integer multi-objective transportation problem, solution approach, 

integer interval multi-objective transportation problem, decision making. 
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1. INTRODUCTION 

TP is one of the well-known problems in the field of mathematical programming. A 

transportation problem is one that arises when goods must be transported from one source 

to another. This concept was first introduced by Hitchcock [8] and then by Koopman [11]. 

Juman and Hoque [29] also explored this single objective TP. However, because of its 

unique mathematical structure, the transportation simplex approach is frequently used to 

solve the TP problem. These transportation problems have a single objective in common. 

All real-life TPs cannot be made with a single objective TP. However, under actual 
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circumstances, every organization seeks to accomplish multiple objectives while 

organizing the movement of goods. 

Several real-world problems can be solved using operational research approaches, but 

they struggle to deal with imprecise data. However, by using fuzzy linear programming, 

many researchers have been successful in obtaining imprecise and fuzzy linear 

programming problems (LPP). Bellman and Zadeh [4] were the first to put forth the idea 

of fuzzy decision-making. Fuzzy optimization techniques have been used for LPPs with 

multiple objectives by Zimmermann [28]. 

In this research, we focus on the FIIMOTP solution method, where the decision-maker 

expresses the source and destination parameters' interval values as well as the value 

coefficients of the objective functions. First, we calculate it using a method that Akilbasha 

et al. [2] adapted. The problem is then solved using the suggested technique. We also 

provide a fuzzy method for solving FFIMOTP. 

2. LITERATURE REVIEW 

In this section, we will discuss some pertinent research on problems that deal with 

inexact coefficients in TPs. 

Many scholars have suggested fuzzy and interval programming approaches for solving 

TP, including Chanas et al. [5], Ishibuchi [10], Moore [13], Oliveira et al. [14], and Tong 

[25]. A novel method for resolving a fuzzy TP was put out by Ebrahimnejad [7]. In order 

to determine the value interval of the cost parameters of the interval TP, Panda and Das 

[15] created a two-vehicle cost variable interval transportation model. To unravel interval 

TPs, Sengupta and Pal [23] suggested a replacement fuzzy-oriented solution approach. 

Hosseinzade and Hassanpour [9] derived Karush Kuhn Tucker's conditions for an objective 

function problem with interval values and used them to solve the problem. 

For integer TPs, Pandian and Natarajan [16,17,18,19] found a compromise solution, 

offered a substitute method for finding an optimal solution, and presented two new 

algorithms, a fuzzy zero-point algorithm and a level-bound algorithm for finding fuzzy TPs 

and fully fuzzy interval integer TPs, respectively. A method for supporting weighted sum 

and resolving multi-objective stochastic TPs was created by Roy and Mahapatra [22]. A 

MOMILP was presented by Singh and Goh [24] and incorporates a number of conflicting 

objectives. 

By using a mid-width method, Akilbasha et al. [1,2] have introduced a novel exact 

method for solving fully interval integer TPs and fully fuzzy integer TPs. By using an 

interactive method, Vincent Yu et al. [26] were able to arrive at a compromise solution for 

the multi-objective interval TP. Annie Christi and Kalpana [3] were able to unravel multi-

objective fuzzy TPs with non-linear membership functions using compromise solutions. 

Fuzzy programming was developed by Rani [21] and Dalman [6] to solve multi-objective 

TP and multi-objective solid TP, respectively. Fuzzy programming has been suggested as 

a strategy to solve multi-objective TP by Yeola and Jahav [27]. Multi-objective interval 

TP was offered as a compromise by Patel and Dhodiya [20]. 

In addition, the research demonstrates many optimization techniques using sensitivity 

analysis, which greatly enhances the accuracy of the computational findings. It has been 

suggested by Ali et al. [30] that a method be used for multiobjective optimization, in 

particular, nonlinear supply chains under uncertainty, to attain the lowest transportation 
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cost while regulating all other degradation variables. Also, many researchers including 
Pratihar et al. [33], Veeramani et al. [34], Kumar et al. [35], and Akram et al. [36] studied various 

multiobjective TPs under uncertainty. More MATLAB code has been executed for 

nonlinear and stochastic situations using various validation procedures. Das and Lee [31] 

offer research utilizing the stochastic technique with uncertainties for a multiobjective 

allocation issue involving a transport with a Weibull distribution. Palanivel and Das [32] 

proposed a nonlinear programming problem for optimizing an objective function with 

multiple constraints. Wang [37] has invented a smart parking system to avoid traffic 

congestion through a smart transportation approach. Edalatpanah [38] studied the 

multidimensional solution approach to solve fuzzy linear programming problems. Khalifa 

et al. [39] have proposed the min-max goal programming approach for solving piecewise 

quadratic fuzzy multi-objective de novo programming problems. Many researchers 

including Alburaikan et al. [44], Sheikhi and Ebadi [45], El-Wahed Khalifa and Ali Yousif 

[48], and Akram et al. [50] have proposed various methods to solve different types of linear 

programming problems. Kané et al. [42,43] and Akram et al. [46,49] have developed 

different methods to solve various transportation problems. Ghasemi et al. [40] and 

Komijan [47] have studied multi-objective and multi-level vehicle routing problems in 

different environments. Abdou El-Morsy [41] proposed a zero-base budgeting method for 

the selection and management of budgets. 

Here, we present a technique for solving FIIMOTP and FFIMOTP. The benefits of the 

suggested approaches, the conclusion, and novel methods for solving FIIMOTP and 

FFIMOTP are described in the following sections of the study, together with numerical 

examples used to verify the methods. 

3. A MATHEMATICAL MODEL AND A DEVELOPED SOLUTION 

METHODOLOGY WITH EXAMPLES 

3.1. Fully interval integer multi-objective transportation problems 

𝑴𝒊𝒏𝒊𝒎𝒊𝒛𝒆 𝒁𝒎 = [𝒛𝟏
𝒎, 𝒛𝟐

𝒎] = ∑∑[𝒄𝒊𝒋
𝒎, 𝒅𝒊𝒋

𝒎]

𝑵

𝒋=𝟏

𝑴

𝒊=𝟏

⊗ [𝒙𝒊𝒋, 𝒚𝒊𝒋] 

Subject to 

∑[𝑥𝑖𝑗 , 𝑦𝑖𝑗]

𝑁

𝑗=𝑖

= [𝑎𝑖
𝑚, 𝑝𝑖

𝑚]            𝑖 = 1,2,3, … ,𝑀  𝑎𝑛𝑑  𝑚 = 1,2,3, … , 𝐿            (1) 

∑[𝑥𝑖𝑗 , 𝑦𝑖𝑗]

𝑀

𝑖=1

= [𝑏𝑗
𝑚, 𝑞𝑗

𝑚]         𝑗 = 1,2,3, … , 𝑁  𝑎𝑛𝑑    𝑚 = 1,2,3, … , 𝐿             (2) 

𝑥𝑖𝑗 ≥ 0, 𝑦𝑖𝑗 ≥ 0, 𝑖 = 1,2,3, … ,𝑀;  𝑚 = 1,2,3, … , 𝐿  𝑎𝑛𝑑   

𝑗 = 1,2,3, … , 𝑁 𝑎𝑛𝑑 𝑎𝑟𝑒 𝑖𝑛𝑡𝑒𝑔𝑒𝑟              (3) 

 

Where 𝑐𝑖𝑗
𝑚 𝑎𝑛𝑑 𝑑𝑖𝑗

𝑚
 are positive real numbers  ,   and .i j m  𝑎𝑖

𝑚, 𝑝𝑖
𝑚, 𝑏𝑗

𝑚, 𝑎𝑛𝑑 𝑞𝑗
𝑚

 

are positive real numbers  ,   and .i j m  
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3.2. A new approach for solving a fully interval integer multi-objective transportation 

problem (FIIMOTP) 

An algorithm to solve a fully interval integer multi-objective TP is presented in this 

section. 

 

New Approach: Heuristic for solving a fully interval integer multi-objective TP 

 

Step 1: First, consider one objective at a time and ignore the other objectives. Then solve 

this fully interval integer single-objective TP using Akilbasha et al. [2]’s 

approach. For L different objective functions, repeat this for L times. Let 

{[𝑥1
∗, 𝑦1

∗], [𝑥2
∗, 𝑦2

∗], … , [𝑥𝐿
∗, 𝑦𝐿

∗]} be the respective optimal solutions of the L 

objective functions. 

 

Step 2: Build a pay-off matrix of order L⊗L by computing all the objective functions of 

all the optimal solutions obtained in Step 1: 

 

[
 
 
 
 
 
𝑍1 = [𝑍1, 𝑍2](𝑥1∗,𝑦1∗)

𝑍1 = [𝑍1, 𝑍2](𝑥2∗,𝑦2∗)

𝑍1 = [𝑍1, 𝑍2](𝑥3∗,𝑦3∗)

𝑍2 = [𝑍1, 𝑍2](𝑥1∗,𝑦1∗)

𝑍2 = [𝑍1, 𝑍2](𝑥2∗,𝑦2∗)

𝑍2 = [𝑍1, 𝑍2](𝑥3∗,𝑦3∗)

⋯
⋯
⋯

𝑍𝐿 = [𝑍1, 𝑍2](𝑥1∗,𝑦1∗)

𝑍𝐿 = [𝑍1, 𝑍2](𝑥2∗,𝑦2∗)

𝑍𝐿 = [𝑍1, 𝑍2](𝑥3∗,𝑦3∗)
⋮

𝑍1 = [𝑍1, 𝑍2](𝑥𝐿∗,𝑦𝐿∗)

⋮
𝑍2 = [𝑍1, 𝑍2](𝑥𝐿∗,𝑦𝐿∗)

⋮
⋯

⋮
𝑍𝐿 = [𝑍1, 𝑍2](𝑥𝐿∗,𝑦𝐿∗)]

 
 
 
 
 

 

 

Step 3: 

1. From the payoff matrix provided in Step 2, create the following payoff matrix by 

taking into account all upper limit values for all intervals: 

ZU = 

[
 
 
 
 
 
𝑍𝑈
1 = [𝑍2](𝑦1∗)

𝑍𝑈
1 = [𝑍2](𝑦2∗)

𝑍𝑈
1 = [𝑍2](𝑦3∗)

𝑍𝑈
2 = [𝑍2](𝑦1∗)

𝑍𝑈
2 = [𝑍2](𝑦2∗)

𝑍𝑈
2 = [𝑍2](𝑦3∗)

⋯
⋯
⋯

𝑍𝑈
𝑚 = [𝑍2](𝑦1∗)

𝑍𝑈
𝑚 = [𝑍2](𝑦2∗)

𝑍𝑈
𝑚 = [𝑍2](𝑦3∗)

⋯
⋯
⋯

𝑍𝑈
𝐿 = [𝑍2](𝑦1∗)

𝑍𝑈
𝐿 = [𝑍2](𝑦2∗)

𝑍𝑈
𝐿 = [𝑍2](𝑦3∗)

𝑍𝑈
1 =

⋮
[𝑍2](𝑦𝐿∗)

⋮
𝑍𝑈
2 = [𝑍2](𝑦𝐿∗)

⋮
⋯

⋮
𝑍𝑈
𝑚 = [𝑍2](𝑦𝐿∗)

⋮
⋯

⋮
𝑍𝑈
𝐿 = [𝑍2](𝑦𝐿∗)]

 
 
 
 
 

 

 

In the mth column of the payoff matrix Zu mentioned above, find the 𝐿𝑚 (Lower bound) 

and 𝑈𝑚 (Upper bound) values that correspond to the mth objective function, 𝑍𝑈
𝑚(𝑦). 

Formulate the membership function as follows using Zimmermann's [28] method for each 

objective function 𝑍𝑈
𝑚(𝑦𝑚), 𝑚 = 1,2,3, … , 𝐿: 

      μ(𝑍𝑈
𝑚(𝑦𝑚)) = {

0,                𝑖𝑓 𝑍𝑈
𝑚(𝑦𝑚) ≥ 𝑈𝑚

𝑈𝑚−𝑍𝑈
𝑚(𝑦𝑚)

𝑈𝑚−𝐿𝑚
,         𝑖𝑓 𝐿𝑚 < 𝑍𝑈

𝑚(𝑦𝑚) < 𝑈𝑚

1,                𝑖𝑓 𝑍𝑈
𝑚(𝑦𝑚) ≤ 𝐿𝑚

,    𝑚 = 1,2,3, … , 𝐿              (4) 

 

2. From the payoff matrix provided in Step 2, create the following payoff matrix by 

taking into account the lower limit values of all intervals: 
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ZL  =  

[
 
 
 
 
 
𝑍𝐿
1 = [𝑍1](𝑥1∗)

𝑍𝐿
1 = [𝑍1](𝑥2∗)

𝑍𝐿
1 = [𝑍1](𝑥3∗)

𝑍𝐿
2 = [𝑍1](𝑥1∗)

𝑍𝐿
2 = [𝑍1](𝑥2∗)

𝑍𝐿
2 = [𝑍1](𝑥3∗)

⋯
⋯
⋯

𝑍𝐿
𝑚 = [𝑍1](𝑥1∗)

𝑍𝐿
𝑚 = [𝑍1](𝑥2∗)

𝑍𝐿
𝑚 = [𝑍1](𝑥3∗)

⋯
⋯
⋯

𝑍𝐿
𝐿 = [𝑍1](𝑥1∗)

𝑍𝐿
𝐿 = [𝑍1](𝑥2∗)

𝑍𝐿
𝐿 = [𝑍1](𝑥3∗)

⋮
𝑍𝐿
1 = [𝑍1](𝑥𝐿∗)

⋮
𝑍𝐿
2 = [𝑍1](𝑥𝐿∗)

⋮
⋯

⋮
𝑍𝐿
𝑚 = [𝑍1](𝑥𝐿∗)

⋮
⋯

⋮
𝑍𝐿
𝐿 = [𝑍1](𝑥𝐿∗)]

 
 
 
 
 

 

 

Obtain 𝑙𝑚 (Lower bound) and 𝑢𝑚 (Upper bound) corresponding to the mth objective 

function, 𝑍𝐿
𝑚(𝑥) in the mth column of the above payoff matrix ZL. Then by using 

Zimmermann's [28] approach for each objective function 𝑍𝐿
𝑚(𝑥𝑚), 𝑚 = 1,2,3, … , 𝐿, 

formulate the membership function as given below: 
 

μ(𝑍𝐿
𝑚(𝑥𝑚)) = {

0,                𝑖𝑓 𝑍𝐿
𝑚(𝑥𝑚) ≥ 𝑢𝑚

𝑢𝑚−𝑍𝐿
𝑚(𝑥𝑚)

𝑢𝑚−𝑙
,          𝑖𝑓 𝐿𝑚 < 𝑍𝐿

𝑚(𝑥𝑚) < 𝑢𝑚

1,               𝑖𝑓 𝑍𝐿
𝑚(𝑥𝑚) ≤ 𝑙𝑚

,  𝑚 = 1,2,3, … , 𝐿                 (5) 

 

Step 4: Formulate the corresponding integer LPPs as follows by adding the auxiliary 

variable (see Maity and Roy [12]): 

 

1. In the mth column of the payoff matrix ZU mentioned above, for the mth objective 

function, 𝑍𝑈
𝑚(𝑦) , 𝑚 = 1,2,3, … , 𝐿 

 

𝑀𝑎𝑥𝑖𝑚𝑢𝑚 λ  
 

Subject to 

 

λ ≤  μ(𝑍𝑈
𝑚(𝑦𝑚)) , m = 1,2,3, … , L 

∑ 𝑦𝑖𝑗

𝑁

  𝑗=1

= 𝑝𝑖
𝑚     𝑖 = 1,2,3, … ,𝑀    𝑎𝑛𝑑  𝑚 = 1,2,3, … , 𝐿                                     (6) 

∑𝑦𝑖𝑗

𝑀

𝑖=1

=  𝑞𝑗
𝑚    𝑗 = 1,2,3, … , 𝑁   𝑎𝑛𝑑  𝑚 = 1,2,3, … , 𝐿                                        (7) 

 𝑦𝑖𝑗 ≥ 0,      𝑖 = 1,2,3, … ,𝑀 𝑎𝑛𝑑 𝑗 = 1,2,3, … , 𝑁 𝑎𝑛𝑑 𝑎𝑟𝑒 𝑖𝑛𝑡𝑒𝑔𝑒𝑟𝑠                 (8) 

 

Let [y*] be its associated solutions and let λU be the optimal upper bound cost. 

 

2. In the mth column of the payoff matrix ZL mentioned above, for the mth objective 

function, 𝑍𝐿
𝑚(𝑥), 𝑚 = 1,2,3, … , 𝐿 

𝑀𝑎𝑥𝑖𝑚𝑢𝑚 λ     
 

Subject to 
 

λ ≤  μ(𝑍𝐿
𝑚(𝑥𝑚)), m = 1,2,3,… , L 
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∑𝑥𝑖𝑗

𝑁

𝑗=1

= 𝑎𝑖
𝑚   𝑖 = 1,2,3, … ,𝑀  𝑎𝑛𝑑  𝑚 = 1,2,3, … , 𝐿                                          (9) 

∑𝑥𝑖𝑗

𝑀

𝑖=1

=  𝑏𝑗
𝑚           𝑗 = 1,2,3, … , 𝑁  𝑎𝑛𝑑   𝑚 = 1,2,3, … , 𝐿                               (10) 

𝑥𝑖𝑗 ≥ 0,   𝑖 = 1,2,3, … ,𝑀 𝑎𝑛𝑑 𝑗 = 1,2,3, … , 𝑁 𝑎𝑛𝑑 𝑎𝑟𝑒 𝑖𝑛𝑡𝑒𝑔𝑒𝑟𝑠                  (11) 

 

Let [x*] be the solutions that are associated with it, and let λL be the optimal Lower bound 

cost. 

 

Here, μ(𝑍𝐿
𝑚(𝑥𝑚)) 𝑎𝑛𝑑 μ(𝑍𝑈

𝑚(𝑦𝑚)) are the membership functions of the mth objective 

function for 𝑚 = 1,2,3, … , 𝐿 as stated in Step 3. 

 

Step 5: Determine the ultimate interval compromise solution to the specified FIIMOTP by 

solving both models obtained in step 4. 

 

 

 
 

Figure 1: Flowchart representation of our approach 1 for solving FIIMOTP 



 T. Baranwal and A. Akilbasha / Economical Heuristics for Fully Interval Integer 7 

3.3. Demonstration via a numerical example 

Utilizing some data that was provided at random, the aforementioned solution strategy 

is illustrated, and a numerical example is provided in Vincent Yu et al. [26]. Data for this 

benchmark instance along with its certain randomly generated data are given below: 

A drug company produces a variety of medicines in its three factories A, B and C. The 

product will be sent to four destinations D1, D2, D3 and D4 from the three factories. 

Determine a shipping plan for the company from three factories to four destinations such 

that the total shipping cost and time should be minimal using the following numerical data 

obtained from the company: 

The minimum supply from A, B and C are 15,000, 18,000 and 10,000 respectively and 

the maximum supply from A, B and C are 17,000, 20,000 and 11,000 respectively. The 

minimum demand for D1, D2, D3 and D4 are 8,000, 10,000, 11,000 and 14,000 

respectively and the maximum demand for D1, D2, D3 and D4 are 9,000, 11,000, 12,000 

and 16,000 respectively. 

The unit shipping cost and time range from each supply point to each demand point are 

given below: 

 D1 D2 D3 D4 

A 
[2,4]  

[4,6] 

[1,2] 

[5,8] 

[2,3] 

[7,9] 

[2,3] 

[8,12] 

B 
[1,3] 

[6,8] 

[2,4] 

[7,13] 

[2,5] 

[10,14] 

[2,6] 

[15,19] 

C 
[1,2] 

[8,12] 

[2,3] 

[10,14] 

[2,4] 

[16,20] 

[1,7] 

[8,10] 

 

In each cell, the 1st interval is the shipping cost per unit on the corresponding route and 

the 2nd interval is the time of shipping per unit on that route. 

 

The interval compromise solution to this problem, FIIMOTP is [68000, 581000]. A 

detailed computation of this problem is given in Appendix A. 

 

3.4. Fully fuzzy integer multi-objective transportation problems (FFIMOTP) 

Consider the following FFIMOTP: 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑍𝑚 =∑∑�̃�𝑖𝑗
𝑚

𝑁

𝐽=1

𝑀

𝑖=1

�̃�𝑖𝑗  

Subject to 

∑�̃�𝑖𝑗

𝑁

 𝑗=1

= �̃�𝑗
𝑚         𝑖 = 1,2, … ,𝑀  𝑎𝑛𝑑  𝑚 = 1,2, … , 𝐿                                          (12) 

∑�̃�𝑖𝑗

𝑀

𝑖=1

= �̃�𝑗
𝑚         𝑗 = 1,2, … , 𝑁   𝑎𝑛𝑑 𝑚 = 1,2, … , 𝐿                                           (13) 
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    �̃�𝑖𝑗 ≥ 0̃    𝑖 = 1,2, … ,𝑀  𝑎𝑛𝑑   𝑗 = 1,2, … , 𝑁 𝑎𝑛𝑑 𝑎𝑟𝑒 𝑖𝑛𝑡𝑒𝑔𝑒𝑟𝑠.                   (14) 

 

Where the decision variables �̃�𝑖𝑗 ,  ,   and i j m  are triangular fuzzy numbers and 

parameters �̃�𝑖𝑗
𝑚, �̃�𝑗

𝑚 and �̃�𝑗
𝑚 are positive triangular fuzzy numbers  ,   and .i j m  

 

A triangular fuzzy number (p,q,r) can be represented as an interval number as follows: 

 

𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛 ∶ (𝑝, 𝑞, 𝑟) = [𝑝 + (𝑞 − 𝑝)𝛼, 𝑟 − (𝑟 − 𝑞)𝛼];       0 ≤ 𝛼 ≤ 1                              (15) 
 

3.5. A fuzzy approach for solving the FFIMOTP 

This section presents a fuzzy approach to solving the FFIMOTP 

 

New fuzzy Approach: Heuristic for solving an FFIMOTP 

 

Step A: Transform the given FFIMOTP into a FIIMOTP using the above relation. 

 

Step B: Applying the approach we suggested in section B, find the optimal interval 

solution to this FIIMOTP. 

 

Step C: Apply the aforementioned relation to the given FFIMOTP to find the 

optimal fuzzy solution. 

 

 
 

Figure 2: Flowchart representation of our approach 2 for solving FFIMOTP 
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3.6. Demonstration via a numerical example 

The above-mentioned fuzzy approach is illustrated by using some randomly contributed 

data and the numerical example is given in Akilbasha et al. [2]. Data for this numerical 

example problem is provided in Appendix B. Besides, a detailed computation of this 

problem is given in Appendix B. 

The literature review indicates that no research has been done on the problems with the 

FIIMOTP and FFIMOTP. The decision-makers can choose a suitable strategy for shipping 

the goods in accordance with their financial condition. 

4. A COMPARATIVE ASSESSMENT 

To show the potential significance of our approach, the new approach of this paper is 

compared with Akilbasha et al. [2] approach. Both approaches are used to solve two 

single–objective fuzzy and non-fuzzy instances and two multi-objective fuzzy and non-

fuzzy instances and the obtained results are provided in Table 18 of Appendix C. Table 18 

clearly shows that the proposed methods of this paper can be used to solve both the single 

and multi-objective whereas the existing method can solve only single-objective ones. 

Thus, our method scores over the existing one. 

5.  MERITS AND LIMITATIONS OF THE PROPOSED 

METHODS 

 Finding the best shipping and transportation costs for the provided FIIMOTP and 

FFIMOTP is the major goal of this study. 

 Due to our current competitive market state, the single-objective fuzzy or non-fuzzy 

TP is insufficient to handle real-life decision-making problems. So, we look into 

FIIMOTP and FFIMOTP. 

 The current method does not rely on decisions variable upper bounded conditions 

because it is based on two independent TPs that are derived from the provided 

FIIMOTP. 

 The suggested approach has the potential to be a useful tool and will provide decision-

makers with the optimum transportation plan when they are tackling various logistic 

issues with interval or fuzzy parameters as a multi-objective TP. 

 It will assist future researchers in extending this problem to other problems like 

trapezoidal fuzzy sets, rough sets, and so on with parameters. 

 The inherent limitations or constraints of this approach are doubtful for unbalanced 

cases. So, it is an open problem to extend this work for unbalanced cases as well. 

6. CONCLUSION 

In this study, FIIMOTP and FFIMOTP are explored, and two techniques for their 

solution are offered. These approaches are supported by two numerical examples. Finally, 

it is claimed that our novel method outperformed the current method. In addition, the 

interval parameter is considered to be the quantities of supply and demand. In reality, 

though, variations in demands and supplies could adhere to a specific pattern. Thus, 

assuming a suitable trend in supply and demand distributions, future research could be 
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conducted to enhance this fully integer interval multi-objective fuzzy and non-fuzzy TP. 

We will fully commit to the current course of future study. 

REFERENCES 

 

[1] A. Akilbasha, P. Pandian and G. Natarajan, “Finding an optimal solution of the interval integer 

transportation problems with rough nature by split and separation method,” International 

Journal of Pure and Applied Mathematics, vol. 106, pp. 1-8, 2016. 

[2] A. Akilbasha, P. Pandian and G. Natarajan, “An innovation exact method for solving fully 

interval integer transportation problems,” Informatics in Medicine Unlocked, vol. 11, pp. 95-99, 

2018. https://doi.org/10.1016/j.imu.2018.04.007. 

[3] M. S. Annie Christi and I. Kalpana, “Solutions of multi objective fuzzy transportation problems 

with non-linear membership functions,” International Journal of Engineering Research and 

Application, vol. 6, no. 11, pp. 52-57, 2016. 

[4] R. E. Bellman and L. A. Zadeh, “Decision making in a fuzzy environment,” Management 

Science, vol. 17, no. 4, pp. 141-164, 1970. https://doi.org/10.1287/mnsc.17.4.B141. 

[5] S. Chanas and D. Kuchta, “A concept of the optimal solution of the transportation problem with 

fuzzy cost coefficients,” Fuzzy Sets and Systems, vol. 82, no. 3, pp. 299–305, 1996. 

https://doi.org/10.1016/0165-0114(95)00278-2. 

[6] H. Dalman, “A fuzzy programming approach for interval multi objective solid transportation 

problem,” New Trends in Mathematical Sciences, vol. 4, pp. 114-127, 2016. 

https://doi.org/10.20852/ntmsci.2016422557. 

[7] A. Ebrahimnejad, “A simplified new approach for solving fuzzy transportation problems with 

generalized trapezoidal fuzzy numbers,” Applied Soft Computing, vol. 19, pp. 171-176, 2014. 

https://doi.org/10.1016/j.asoc.2014.01.041. 

[8] F. L. Hitchcock, “The distribution of a product from several sources to numerous localities,” 

Journal of Mathematical Physics, vol. 20, pp. 224-230, 1941. 

http://dx.doi.org/10.1002/sapm1941201224. 

[9] E. Hosseinzade and H. Hassanpour, “The karush-kuhn-tucker optimality conditions in interval-

valued multi objective programming problems,” 

Journal of Applied Mathematics & Informatics, vol. 29, pp. 1157-1165, 2011. 

[10] H. Ishibuchi and H. Tanaka, “Multi objective programming in optimization of the interval 

objective function,” European Journal of Operational Research, vol. 48, no. 2, pp. 219–225, 

1990. https://doi.org/10.1016/0377-2217(90)90375-L. 

[11] T. C. Koopman, “Optimum utilization of the transportation system,” Proceeding of the 

International Statistical Conference, Washington, D.C, 1947. 

[12] G. Maity and S. K. Roy, “Solving a multi-objective transportation problem with nonlinear cost 

and multi–choice demand,” International Journal of Management Science and Engineering 

Management, vol. 11, no. 1, pp. 62-70, 2016. https://doi.org/10.1080/17509653.2014.988768. 

[13] R. E. Moore, Method and applications of interval analysis, Philadelphia, PA: SLAM, 1979. 

[14] C. Oliveira and C. H. Antunes, “Multiple objective linear programming models with interval 

coefficients-an illustrated overview,” European Journal of Operational Research, vol. 181, no. 

3, pp. 1434-1463, 2007. https://doi.org/10.1016/j.ejor.2005.12.042. 

[15] A. Panda and C. B. Das, “Cost varying interval transportation problem under two vehicle,” 

Journal of New Results in Science, vol. 3, pp. 19-37, 2013. 

[16] P. Pandian and G. Natarajan, “A new method for finding an optimal solution of fully interval 

integer transportation problems,” Applied Mathematical Sciences, vol. 4, no. 37, pp. 1819-1830, 

2010. 

[17] P. Pandian and G. Natarajan, “A new method for finding an optimal solution for transportation 

problems,” International Journal of Mathematical Sciences and Engineering Applications, vol. 

4, pp. 59-65, 2010. 

https://doi.org/10.1287/mnsc.17.4.B141
https://doi.org/10.1016/0165-0114(95)00278-2
https://www.researchgate.net/journal/2147-5520_New_Trends_in_Mathematical_Sciences
http://dx.doi.org/10.1002/sapm1941201224
https://doi.org/10.1016/0377-2217(90)90375-L
https://doi.org/10.1080/17509653.2014.988768
https://doi.org/10.1016/j.ejor.2005.12.042


 T. Baranwal and A. Akilbasha / Economical Heuristics for Fully Interval Integer 11 

[18] P. Pandian and G. Natarajan, “A new algorithm for finding a fuzzy optimal solution for fuzzy 

transportation problems,” Applied Mathematical Sciences, vol. 4, no. 2, pp. 79-90, 2010. 

[19] P. Pandian and G. Natarajan, “A fully rough integer interval transportation problems,” 

International Journal of Pharmacy & Technology, vol. 8, no. 2, pp. 13866-13876, 2016. 

[20] J. G. Patel and J. M. Dhodiya, “Solving multi-objective interval transportation problem using 

gray situation decision-making theory based on grey numbers,” International Journal of Pure 

and Applied Mathematics, vol. 2, pp. 219-233, 2017. https://doi.org/10.12732/ijpam.v113i2.3. 

[21] D. Rani, “Fuzzy programming technique for solving different types of multi-objective 

transportation problem,” Thesis, Thapar University, Punjab, 2010. 

[22] S. K. Roy and D. R. Mahapatra, “Multi-objective interval-valued transportation probabilistic 

problem involving log-normal,” International Journal of Mathematics and Scientific 

Computing, vol. 1, no. 2, pp. 14-21, 2011. 

[23] A. Sengupta and T. K. Pal, “Interval-valued transportation problem with multiple penalty 

factors,” VU Journal of Physical Sciences, vol. 9,   pp. 71-81, 2003. https://doi.org/10.1007/978-

3-540-89915-0_7. 

[24] S. K. Singh and M. Goh, “Multi objective mixed integer programming and an application in a 

pharmaceutical supply chain,” International Journal of Production Research, vol. 57, no. 4, pp. 

1214-1237, 2019. https://doi.org/10.1080/00207543.2018.1504172. 

[25] S. Tong, “Interval number and fuzzy number linear programming,” Fuzzy Sets and Systems, vol. 

66, no. 3, pp. 301–306, 1994. https://doi.org/10.1016/0165-0114(94)90097-3. 

[26] F. Vincent Yu, Kuo-Jen Hu and An-Yuan Chang, “An interactive approach for the multi-

objective transportation problem with interval parameters,” International Journal of Production 

Research, vol. 53, no. 4, pp. 1051-1064, 2014. https://doi.org/10.1080/00207543.2014.939236. 

[27] M. C. Yeola and V. A. Jahav, “Solving multi-objective transportation problem using fuzzy 

programming technique-parallel method,” International Journal of Recent Scientific Research, 

vol. 7, no. 1,      pp. 8455-8457, 2016. 

[28] H. J. Zimmermann, “Fuzzy programming and linear programming with several objective 

functions,” Fuzzy Sets and Systems, vol. 1, no. 1,   pp. 45-55, 1978. 

https://doi.org/10.1016/0165-0114(78)90031-3. 

[29] Z. A. M. S. Juman and M. A. Hoque, “An efficient heuristic to obtain a better initial feasible 

solution to the transportation problem,” Applied Soft Computing, vol. 34, pp. 813-826, 2015. 

[30] S. S. Ali, H. Barman, R. Kaur, H. Tomaskova and S. K. Roy, “Multi-product multi echelon 

measurements of perishable supply chain: fuzzy nonlinear programming approach,” 

Mathematics, vol. 9, pp. 2093, 2021. https://doi.org/10.3390/math9172093 

[31] A. Das and G. M. Lee, “A multi-objective stochastic solid transportation problem with the 

supply, demand, and conveyance capacity following the weibull distribution,” Mathematics, 

vol. 9, pp. 1757, 2021. https://doi.org/10.3390/math9151757 

[32] K. Palanivel and A. Das, “A mathematical model for nonlinear optimization which attempts 

membership functions to address the uncertainties,” Mathematics, vol. 10, pp. 1743, 2022. 

https://doi.org/10.3390/math10101743 

[33] J. Pratihar, R. Kumar, S. A. Edalatpanah and A. Dey, “Modified Vogel’s approximation method 

for transportation problem under uncertain environment,” Complex and Intelligent Systems, vol. 

7, no. 1, pp. 29-40, 2021. doi:10.1007/s40747-020-00153-4 

[34] C. Veeramani, S. A. Edalatpanah and S. Sharanya, “Solving the multiobjective fractional 

transportation problem through the neutrosophic goal programming approach,” Discrete 

Dynamics in Nature and Society, 2021. doi:10.1155/2021/7308042 

[35] R. Kumar, S. A. Edalatpanah, S. Jha and R. Singh, “A Pythagorean fuzzy approach to the 

transportation problem,” Complex and Intelligent Systems, vol. 5, no. 2, pp. 255-263, 2019. 

doi:10.1007/s40747-019-0108-1 

[36] M. Akram, S. M. U. Shah, M. M. Ali Al-Shamiri and S. A. Edalatpanah, “Extended DEA 

method for solving multi-objective transportation problem with Fermatean fuzzy sets,” AIMS 

Mathematics, vol. 8, no. 1, pp. 924-961, 2023. doi:10.3934/math.2023045 

https://doi.org/10.12732/ijpam.v113i2.3
https://doi.org/10.1080/00207543.2018.1504172
https://doi.org/10.1016/0165-0114(94)90097-3
https://doi.org/10.1080/00207543.2014.939236
https://doi.org/10.1016/0165-0114(78)90031-3
https://doi.org/10.3390/math9172093
https://doi.org/10.3390/math9151757
https://doi.org/10.3390/math10101743


 T. Baranwal and A. Akilbasha / Economical Heuristics for Fully Interval Integer 12 

[37] C. Wang, “Big Data and Computing Visions Avoidance Traffic Congestion through Smart 

Transportation Approach,” Big. Data. Comp. Vis, vol. 2, no. 4, pp. 159–162, 2022, doi: 

10.22105/bdcv.2022.332460.1064. 

[38] S. A. Edalatpanah, “Multidimensional solution of fuzzy linear programming,” PeerJ Computer 

Science, vol. 9, 2023, doi: 10.7717/peerj-cs.1646. 

[39] H. A. E.-W. Khalifa, S. A. Edalatpanah, and D. Bozanic, “On Min-Max Goal Programming 

Approach for Solving Piecewise Quadratic Fuzzy Multi- Objective De Novo Programming 

Problems,” Systemic Analytics, vol. 2, no. 1, pp. 36–48, Feb. 2024, doi: 10.31181/sa21202411. 

[40] P. Ghasemi, H. Hemmaty, A. Pourghader Chobar, M. R. Heidar, and M. Keramati, “A Multi-

Objective and Multi-Level Model for Location-Routing Problem in the Supply Chain Based on 

the Customer’s Time Window,” Journal of Applied Research on Industrial Engineering, vol. 

10, no. 3, pp. 412–426, Jul. 2023, doi: 10.22105/jarie.2022.321454.1414. 

[41] S. Abdou El-Morsy, “Optimization of fuzzy zero-base budgeting,” Computational Algorithms 

and Numerical Dimensions, vol. 1, no. 4, pp. 147–154, 2022, doi: 10.22105/cand.2022.155548. 

[42] L. Kané, M. Diakité, S. Kané, H. Bado, M. Konaté, and K. Traoré, “The New Algorithm for 

Fully Fuzzy Transportation Problem by Trapezoidal Fuzzy Number (A Generalization of 

Triangular Fuzzy Number),” Journal of Fuzzy Extension and Applications, vol. 2, no. 3, pp. 

204–225, Sep. 2021, doi: 10.22105/jfea.2021.287198.1148. 

[43] L. Kané et al., “A Simplified Method for Solving Transportation Problem with Triangular Fuzzy 

Numbers under Fuzzy Circumstances,” Journal of Fuzzy Extension and Applications 

www.journal-fea.com J. Fuzzy. Ext. Appl, vol. 2, no. 1, pp. 89–105, 2021, doi: 

10.22105/jfea.2021.275280.1084aaihe.ac. 

[44] A. Alburaikan, S. A. Edalatpanah, R. Alharbi, and H. A. El-Wahed Khalifa, “Towards 

neutrosophic Circumstances goal programming approach for solving multi-objective linear 

fractional programming problems,” International Journal of Neutrosophic Science, vol. 23, no. 

1, pp. 350–365, 2024, doi: 10.54216/IJNS.230130. 

[45] A. Sheikhi and M. J. Ebadi, “On Solving Linear Fractional Programming Transportation 

Problems with Fuzzy Numbers,” Journal of Fuzzy Extension and Applications, vol. 4, no. 4, pp. 

327–339, Oct. 2023, doi: 10.22105/jfea.2024.402392.1294. 

[46] M. Akram, S. M. U. Shah, M. M. Ali Al-Shamiri, and S. A. Edalatpanah, “Fractional 

transportation problem under interval-valued Fermatean fuzzy sets,” AIMS Mathematics, vol. 

7, no. 9, pp. 17327–17348, 2022, doi: 10.3934/math.2022954. 

[47] R. Komijan, “Development of a multi-objective model for the routing problem of vehicles 

carrying valuable commodity under route risk conditions (Case study of Shahr Bank),” J. Appl. 

Res. Ind. Eng, vol. x, No. x (xx) x-x, doi: 10.22105/jarie.2023.391399.1540. 

[48] H. A. El-Wahed Khalifa and B. A. Ali Yousif, “Addressing Cost-Efficiency Problems Based 

on Linear Ordering of Piecewise Quadratic Fuzzy Quotients,” Journal of Operational and 

Strategic Analytics, vol. 1, no. 3, pp. 124–130, Sep. 2023, doi: 10.56578/josa010303. 

[49] M. Akram, S. M. U. Shah, M. M. Ali Al-Shamiri, and S. A. Edalatpanah, “Extended DEA 

method for solving multi-objective transportation problem with Fermatean fuzzy sets,” AIMS 

Mathematics, vol. 8, no. 1, pp. 924–961, 2023, doi: 10.3934/math.2023045. 

[50] M. Akram, I. Ullah, T. Allahviranloo, and S. A. Edalatpanah, “LR-type fully Pythagorean fuzzy 

linear programming problems with equality constraints,” Journal of Intelligent and Fuzzy 

Systems, vol. 41, no. 1, pp. 1975–1992, 2021, doi: 10.3233/JIFS-210655. 

 

 



 T. Baranwal and A. Akilbasha / Economical Heuristics for Fully Interval Integer 13 

APPENDICES 

APPENDIX-A 

Appendix A gives the mathematical formulation for this problem. 
 

Notation 
 

Index set  

i             Index for factory,  1, 2, ,i m    

j             Index for DC,  1,2, ,j n    

 

Decision variable 

𝑥𝑖𝑗          Quantity transported from factory i to DC j  
 

Parameter 

𝑃𝐶𝑖𝑗         Production cost per unit delivered from factory 𝑖 to DC 𝑗 

𝑇𝐶𝑖𝑗          Transportation cost/per unit transported from factory 𝑖 to DC 𝑗 

𝐷𝑇𝑖𝑗         Delivery time from factory 𝑖 to DC 𝑗 

𝑆𝑖              Total supply available for each factory 𝑖 
𝐷𝑗            Total demand for each DC 𝑗 

𝐵𝑖            Budget allocated to each factory 𝑖 
 

Objective functions 

min 𝑍1 (𝑡𝑜𝑡𝑎𝑙 𝑡𝑟𝑎𝑛𝑠𝑝𝑜𝑟𝑡𝑎𝑡𝑖𝑜𝑛 𝑐𝑜𝑠𝑡) =∑∑(𝑃𝐶𝑖𝑗 + 𝑇𝐶𝑖𝑗 )𝑥𝑖𝑗

𝑛

𝑗=1

𝑚

𝑖=1

                                     (𝑖) 

min 𝑍2 (𝑡𝑜𝑡𝑎𝑙 𝑑𝑒𝑙𝑖𝑣𝑒𝑟𝑦 𝑡𝑖𝑚𝑒) =∑∑𝐷𝑇𝑖𝑗

𝑛

𝑗=1

𝑚

𝑖=1

𝑥𝑖𝑗                                                                   (𝑖𝑖) 

 

Constraints 

  

∑𝑥𝑖𝑗 ≤

𝑛

𝑗=1

𝑆𝑖      ∀𝑖                                                                                                                            (𝑖𝑖𝑖) 

 

∑𝑥𝑖𝑗 =

𝑚

𝑖=1

𝐷𝑗      ∀𝑗                                                                                                                            (𝑖𝑣) 

 

∑(𝑃𝐶𝑖𝑗 + 𝑇𝐶𝑖𝑗 )𝑥𝑖𝑗 ≤

𝑛

𝑗=1

𝐵𝑖      ∀𝑖                                                                                                    (𝑣) 

 

𝑥𝑖𝑗 ≥ 0    ∀𝑖, 𝑗                                                                                                                                 (𝑣𝑖) 
 

The objective functions in Formulae (i)-(ii) are to minimize the TP cost and delivery 

time. Constraint (iii) ensures that the maximum available supply is no more than all 

factories’ combined capacity. Constraint (iv) guarantees that the available quantities of 
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transported products from each factory to DC can meet total demand. Constraint (v) makes 

sure that the Production–TP costs of all factories do not exceed the total budget. Constraint 

(vi) ensures that all decision variables are non-negative. 

Table 1: Transportation information of the drug company 

 D1 D2 D3 D4 Supply 

A 
[2,4]  

[4,6] 

[1,2] 

 [5,8] 

[2,3] 

 [7,9] 

[2,3]  

[8,12] 
[15,000,17,000] 

B 
[1,3]  

[6,8] 

[2,4]  

[7,13] 

[2,5]  

[10,14] 

[2,6]  

[15,19] 
[18,000,20,000] 

C 
[1,2] 

 [8,12] 

[2,3]  

[10,14] 

[2,4]  

[16,20] 

[1,7]  

[8,10] 
[10,000,11,000] 

Demand 
[8000,

9000] 

[10000,

11000] 

[11000,

12000] 

[14000,

16000] 
 

Table 2: Information about the unit transportation cost (Z1) 

 D1 D2 D3 D4 Supply 

A [2,4]  [1,2] [2,3] [2,3] [15,000,17,000] 

B [1,3]  [2,4]  [2,5]  [2,6]  [18,000,20,000] 

C [1,2] [2,3]  [2,4]  [1,7] [10,000,11,000] 

Demand 
[8000,

9000] 

[10000,

11000] 

[11000,

12000] 

[14000,

16000] 
 

Table 3: Information on the delivery time (Z2) 

 D1 D2 D3 D4 Supply 

A [4,6] [5,8] [7,9] [8,12] [15,000,17,000] 

B [6,8] [7,13] [10,14] [15,19] [18,000,20,000] 

C [8,12] [10,14] [16,20] [8,10] [10,000,11,000] 

Demand 
[8000,

9000] 

[10000,

11000] 

[11000,

12000] 

[14000,

16000] 
 

 

Now, by Step 1, consider one objective at a time and ignore the remaining objectives and 

the mid-value TP (M) of the problem is given below: 

Table 4: The mid-value TP of Z1 

 D1 D2 D3 D4 Supply 

A 3 1.5 2.5 2.5 16000 

B 2 3 3.5 4 18000 

C 1.5 2.5 3 4 10500 

Demand 8500 10500 11500 15000  
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The optimal solution to the problem (M) constraints are 𝑚13
0 = 1000, 𝑚14

0 =

15000,  𝑚21
0 = 8500,𝑚23

0 = 10500, 𝑚32
0
= 10500. 

Table 5: The mid-value TP of Z2 

 D1 D2 D3 D4 Supply 

A 5 6.5 8 10 16000 

B 7 10 12 17 18000 

C 10 22 18 9 10500 

Demand 8500 10500 11500 15000  

 

The optimal solution to the problem (M) constraints are 𝑚12
0 = 0, 𝑚13

0 = 11500,

𝑚14
0 = 4500,  𝑚21

0 = 8500,𝑚22
0 = 10500, 𝑚24

0
= 0 &  𝑚34

0 = 10500. 
 

Now, by Step 1, consider one objective at a time and ignore the remaining objectives and 

the half-width TP (W) of the problem is given below: 

Table 6: The half-width TP of Z1 

 D1 D2 D3 D4 Supply 

A 1 0.5 0.5 0.5 1000 

B 1 1 1.5 2 1000 

C 0.5 0.5 1 3 500 

Demand 500 500 500 1000  

 

The optimal solution to the problem (W) constraints are 𝑤13
0 = 0, 𝑤14

0 = 1000,  𝑤21
0 =

500,𝑤23
0 = 500 &  𝑤32

0
= 500. 

Table 7: The half-width TP of Z2 

 D1 D2 D3 D4 Supply 

A 1 1.5 1 2 1000 

B 1 3 2 2 2000 

C 2 2 2 1 500 

Demand 500 500 500 1000  

 

The optimal solutions to the problem (W) constraints are 𝑤12
0 = 500, 𝑤13

0 = 500,

𝑤14
0 = 0,  𝑤21

0 = 500,𝑤22
0 = 0, 𝑤24

0
= 500 &  𝑤34

0 = 500. 
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Now, using Step 1, an optimal solution to the transportation unit cost is [𝑥13
0, 𝑦13

0] =
[1000, 1000], [𝑥14

0, 𝑦14
0] = [14000, 16000], [𝑥21

0, 𝑦21
0] = [8000, 9000], [𝑥23

0, 𝑦23
0] = 

[10000, 11000] &[𝑥32
0, 𝑦32

0] = [10000, 11000]. 

 

Now, using Step 1, an optimal solution to the delivery time is [𝑥12
0, 𝑦12

0] = [-

500,500],[𝑥13
0, 𝑦13

0] = [11000, 12000], [𝑥14
0, 𝑦14

0] = [4500, 4500], [𝑥21
0, 𝑦21

0] = 

[8000, 9000], [𝑥22
0, 𝑦22

0] = [10500, 10500], [𝑥24
0, 𝑦24

0] = [-500,500], [𝑥34
0, 𝑦34

0] = 

[10000, 11000]. 
 

Now, by Step 2, the payoff matrix is given below: 

Table 8: Payoff matrix of a given problem 

 
Objectives 

Z1 Z2 

Solutions 
x1

*,y1
* [78000,166000] [367000,581000] 

x2
*, y2

* [68500,199500] [304500,494000] 

Now, by Step 3, consider all upper limit values of all intervals from the above payoff matrix 

𝑍𝑈 = [
166000 581000
199500 494000

] 

By using this upper limit payoff matrix, we get 

μ(𝑍𝑈
1 (𝑦1)) =

{
 

 
0,                               𝑖𝑓 𝑍𝑈

1 (𝑦1) ≥ 𝑈1
199500 − 𝑍𝑈

1 (𝑦1)

199500 − 166000
, 𝑖𝑓 𝐿1 < 𝑍𝑈

1 (𝑦1) < 𝑈1

1,                               𝑖𝑓 𝑍𝑈
1 (𝑦1) ≤ 𝐿1

 

 

μ(𝑍𝑈
2(𝑦2)) =

{
 

 
0,                                𝑖𝑓 𝑍𝑈

2(𝑦2) ≥ 𝑈2
581000 − 𝑍𝑈

1 (𝑦1)

581000 − 494000
,         𝑖𝑓 𝐿2 < 𝑍𝑈

2(𝑦2) < 𝑈2

1,                                𝑖𝑓 𝑍𝑈
2(𝑦2) ≤ 𝐿2

 

Now, by Step 3, consider all lower limit values of all intervals from the above payoff matrix 

𝑍𝐿 = [
78000 367000
68500 304500

] 

By using this lower limit payoff matrix, we get 

μ(𝑍𝐿
1(𝑥1)) =

{
 

 
0,                        𝑖𝑓 𝑍𝐿

1(𝑥1) ≥ 𝑢1
78000 − 𝑍𝐿

1(𝑥1)

78000 − 68500
,     𝑖𝑓 𝐿1 < 𝑍𝐿

1(𝑥1) < 𝑢1

1,                      𝑖𝑓 𝑍𝐿
1(𝑥1) ≤ 1
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μ(𝑍𝐿
2(𝑥2)) =

{
 

 
0,                          𝑖𝑓 𝑍𝐿

2(𝑥2) ≥ 𝑢2
367000 − 𝑍𝐿

2(𝑥2)

367000 − 304500
,   𝑖𝑓 𝐿2 < 𝑍𝐿

2(𝑥2) < 𝑢2

1,                         𝑖𝑓 𝑍𝐿
2(𝑥2) ≤ 1

 

Now, by Step 4, the corresponding integer LPPs are as follows for upper limit values. 

 

𝑀𝑎𝑥𝑖𝑚𝑢𝑚 λ 
 

Subject to: 

 

87000λ ≤ 581000 − (4𝑦11 + 2𝑦12 + 3𝑦13 + 3𝑦14 + 3𝑦21 + 4𝑦22 + 5𝑦23 + 6𝑦24
+ 2𝑦31 + 3𝑦32 + 4𝑦33 + 7𝑦34) 

(4𝑦11 + 2𝑦12 + 3𝑦13 + 3𝑦14 + 3𝑦21 + 4𝑦22 + 5𝑦23 + 6𝑦24 + 2𝑦31 + 3𝑦32 + 4𝑦33
+ 7𝑦34) ≤ 581000 

33500λ ≤ 199500 − (6𝑦11 + 8𝑦12 + 9𝑦13 + 12𝑦14 + 8𝑦21 + 13𝑦22 + 14𝑦23 + 19𝑦24
+ 12𝑦31 + 14𝑦32 + 20𝑦33 + 10𝑦34) 

6𝑦11 + 8𝑦12 + 9𝑦13 + 12𝑦14 + 8𝑦21 + 13𝑦22 + 14𝑦23 + 19𝑦24 + 12𝑦31 + 14𝑦32
+ 20𝑦33 + 10𝑦34 ≤ 80350 

𝑦11 + 𝑦12 + 𝑦13 + 𝑦14 = 17000 

𝑦21 + 𝑦22 + 𝑦23 + 𝑦24 = 18000 

𝑦31 + 𝑦32 + 𝑦33 + 𝑦34 = 11000 

𝑦11 + 𝑦21 + 𝑦31 = 9000 

𝑦12 + 𝑦22 + 𝑦32 = 11000 

𝑦13 + 𝑦23 + 𝑦33 = 12000 

𝑦14 + 𝑦24 + 𝑦34 = 16000 

𝑦11 + 𝑦12 + 𝑦13 + 𝑦14 = 17000 

𝑦21 + 𝑦22 + 𝑦23 + 𝑦24 = 18000 

𝑦31 + 𝑦32 + 𝑦33 + 𝑦34 = 11000 

𝑦11 + 𝑦21 + 𝑦31 = 9000 

𝑦12 + 𝑦22 + 𝑦32 = 11000 

𝑦13 + 𝑦23 + 𝑦33 = 12000 

𝑦14 + 𝑦24 + 𝑦34 = 16000 

𝑦𝑖𝑗 ≥ 0   𝑖 = 1,2,3  &  𝑗 = 1,2,3,4 

0 <  λ < 1. 

The above model is a LPP. We get the following compromise optimal solution by using 

lingo 18.0 software: 

[y*] = [0,0,1000,16000,9000,0,11000,0,0,11000,0,0] 

 

The minimum value of the objective functions of the upper bound (λU) is 581000. 

 

Now, by Step 4, the corresponding integer LPPs are as follows for lower limit values. 

 

𝑀𝑎𝑥𝑖𝑚𝑢𝑚 λ 
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Subject to: 

 

9500λ ≤ 78000 − (4𝑥11 + 5𝑥12 + 7𝑥13 + 8𝑥14 + 6𝑥21 + 7𝑥22 + 10𝑥23 + 15𝑥24
+ 8𝑥31 + 10𝑥32 + 16𝑥33 + 8𝑥34) 

(4𝑥11 + 5𝑥12 + 7𝑥13 + 8𝑥14 + 6𝑥21 + 7𝑥22 + 10𝑥23 + 15𝑥24 + 8𝑥31 + 10𝑥32 + 16𝑥33
+ 8𝑥34) ≤ 78000 

(2𝑥11 + 1𝑥12 + 2𝑥13 + 2𝑥14 + 1𝑥21 + 2𝑥22 + 2𝑥23 + 2𝑥24 + 1𝑥31 + 2𝑥32 + 2𝑥33
+ 2𝑥34) ≤ 367000 

62500λ ≤ 367000 − (𝑥11 + 1𝑥12 + 2𝑥13 + 2𝑥14 + 1𝑥21 + 2𝑥22 + 2𝑥23 + 2𝑥24 + 1𝑥31
+ 2𝑥32 + 2𝑥33 + 2𝑥34) 

𝑥11 + 𝑥12 + 𝑥13 + 𝑥14 = 15000 

𝑥21 + 𝑥22 + 𝑥23 + 𝑥24 = 18000 

𝑥31 + 𝑥32 + 𝑥33 + 𝑥34 = 10000 

𝑥11 + 𝑥21 + 𝑥31 = 8000 

𝑥12 + 𝑥22 + 𝑥32 = 10000 

𝑥13 + 𝑥23 + 𝑥33 = 11000 

𝑥14 + 𝑥24 + 𝑥34 = 14000 

𝑥11 + 𝑥12 + 𝑥13 + 𝑥14 = 15000 

𝑥21 + 𝑥22 + 𝑥23 + 𝑥24 = 18000 

𝑥31 + 𝑥32 + 𝑥33 + 𝑥34 = 10000 

𝑥11 + 𝑥21 + 𝑥31 = 8000 

𝑥12 + 𝑥22 + 𝑥32 = 10000 

𝑥13 + 𝑥23 + 𝑥33 = 11000 

𝑥14 + 𝑥24 + 𝑥34 = 14000 

𝑥𝑖𝑗 ≥ 0           𝑖 = 1,2,3    &𝑗 = 1,2,3,4 

0 <  λ < 1 

 

The above model is a LPP. We get the following compromise optimal solution for lower 

bound by using lingo 18.0 software: 

[x*] = [0,0,1100,4000,8000,10000,0,0,0,0,0,10000]. 

The minimum value of the objective functions of the lower bound (λL) is 68000. 

 

Now, the solution to the given FIIMOTP is [68000, 581000]. 
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APPENDIX-B 

The above model is a LPP. We get the following compromise optimal solution for lower 

bound by using lingo 18.0 software: 

Table 9: Information on the triangular fuzzy unit transportation cost and delivery time 

 D1 D2 D3 Supply 

S1 
(1,2,3) 

(2,4,6) 

(10,11,12) 

(1,3,5) 

(4,7,10) 

(5,10,15) 
(1,6,11) 

S2 
(0,1,2) 

(7,9,11) 

(1,6,11) 

(2,3,4) 

(0,1,2) 

(1,2,3) 
(2,3,4) 

S3 
(1,5,9) 

(2,9,16) 

(5,15,25) 

(3,9,15) 

(3,9,15) 

(1,5,9) 
(3,4,5) 

Demand (3,7,11) (1,3,5) (2,3,4) (6,13,20) 

Now, by Step A, using the relation (15), the given FFIMOTP can be made into FIIMOTP 

Table 10: Information on the unit transportation cost and delivery time 

 D1 D2 D3 Supply 

S1 
[1+α, 3-α] 

[2+2α,6-2α] 

[10+α,12-α] 

[1+2α,5-2α] 

[4+3α,10-3α] 

[5+5α,15-5α] 
[1+5α, 11-5α] 

S2 
[α, 2-α] 

[7+2α,11-2α] 

[1+5α,11-5α] 

[2+α,4-α] 

[α, 2-α] 

[1+2α,3-α] 
[2+α, 4-α] 

S3 
[1+4α, 9-4α] 

[2+7α,16-7α] 

[5+10α,25-10α] 

[3+6α,15-6α] 

[3+6α, 15-6α] 

[1+4α,9-4α] 
[3+α, 5-α] 

Demand [3+4α,11-4α] [1+2α, 5-2α] [2+α, 4-α] [6+7α, 20-7α] 

Now, by Step B, 

Table 11: Information about the unit transportation cost (Z1) 

 D1 D2 D3 Supply 

S1 [1+α, 3-α] [10+α, 12-α] [4+3α, 10-3α] [1+5α, 11-5α] 

S2 [α, 2-α] [1+5α, 11-5α] [α, 2-α] [2+α, 4-α] 

S3 [1+4α, 9-4α] [5+10α, 25-10α] [3+6α, 15-6α] [3+α, 5-α] 

Demand [3+4α, 11-4α] [1+2α, 5-2α] [2+α, 4-α] [6+7α, 20-7α] 
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Table 12: The mid-value TP of Z1 

 D1 D2 D3 Supply 

S1 2 11 7 6 

S2 1 6 1 3 

S3 5 15 9 4 

Demand 7 3 3 13 

The optimal solution to the problem (M) is 𝑚11
0 = 3,𝑚12

0 = 3,𝑚23
0 = 3 𝑎𝑛𝑑 𝑚31

0 = 4 

Table 13: The half-width TP of Z1 

 D1 D2 D3 Supply 

S1 1-α 1-α 3-3α 5-5α 

S2 1-α 5-5α 1-α 1-α 

S3 4-4α 10-10α 6-6α 1-α 

Demand 4-4α 2-2α 1-α 7-7α 

 

The optimal solution to the problem (W) is 𝑤11
0 = 3 − 3α, 𝑤12

0 = 2 − 2α, 𝑤23
0 = 1 −

α 𝑎𝑛𝑑 𝑤31
0 = 1 −α. 

 

The optimal solution to the given problem of the unit transportation cost is [𝑥11
0 , 𝑦11

0 ] =
[3α, 6 − 3 α], [𝑥12

0 , 𝑦12
0 ] = [1 + 2α, 5 − 2α], [𝑥23

0 , 𝑦23
0 ] = [2 +  α, 4 −  α]  and [𝑥31

0 , 𝑦31
0 ] =

[3 + α, 5 − α]. 
 

Now, by using the relation (15), the optimal solution to the problem of unit 

transportation cost is �̃�11 = (0,3,6), �̃�12 = (1,3,5), �̃�23 = (2,3,4) 𝑎𝑛𝑑 �̃�31 = (3,4,5) and 

the minimum transportation cost is (19, 86,183). 

Table 14: Information on the delivery time (Z2) 

 D1 D2 D3 Supply 

S1 [2+2α,6-2α] [1+2α,5-2α] [5+5α,15-5α] [1+5α, 11-5α] 

S2 [7+2α,11-2α] [2+α,4-α] [1+2α,3-α] [2+α, 4-α] 

S3 [2+7α,16-7α] 
[3+6α,15-

6α] 
[1+4α,9-4α] [3+α, 5-α] 

Demand [3+4α,11-4α] [1+2α, 5-2α] [2+α, 4-α] [6+7α, 20-7α] 
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Table 15: The mid-value TP of the Z2 

 D1 D2 D3 Supply 

S1 4 3 10 6 

S2 9 3 2 3 

S3 9 9 5 4 

Demand 7 3 3 13 

The optimal solution to the problem (M) is 𝑚11
0 = 6,𝑚22

0 = 3,𝑚31
0 = 1 𝑎𝑛𝑑 𝑚33

0 = 3 

Table 16: The half-width TP of Z2 

 D1 D2 D3 Supply 

S1 2-2α 2-2α 5-5α 5-5α 

S2 2-2α 1-α 1-α 1-α 

S3 7-7α 6-6α 4-4α 1-α 

Demand 4-4α 2-2α 1-α 7-7α 

 

The optimal solution to the problem (W) is 𝑤11
0 = 4 − 4α,𝑤12

0 = 1 − α,𝑚22
0 = 1 −

α,𝑚31
0 = 0 𝑎𝑛𝑑 𝑚33

0 = 1 − α 
 

The optimal solution to the given problem of the unit transportation cost is [𝑥11
0 , 𝑦11

0 ] =
[2 + 4α, 10 − 4α], [𝑥12

0 , 𝑦12
0 ] = [−1 + α, 1 − α], [𝑥22

0 , 𝑦22
0 ] = [2 +  α, 4 −  α] , 

[𝑥31
0 , 𝑦31

0 ] = [10 − 10α, 10 − 10α]  and  [𝑥33
0 , 𝑦33

0 ] = [2 + 4α, 10 − 4α]. 
 

Now, by using the relation (15), the optimal solution to the problem of unit transportation 

cost is �̃�11 = (2,6,10), �̃�12 = (−1,0,1), �̃�22 = (2,3,4) , �̃�31 = (10,0,10) 𝑎𝑛𝑑 �̃�33 =
(2,6,10) and minimum transportation cost is (19, 86,183). 

Now, by Step 2, the payoff matrix is given below: 

Table17: Payoff matrix of a given problem 

 
Objectives 

Z1 Z2 

Solutions 
x1

*,y1
* [56.2,68] [58.59,70.38] 

x2
*, y2

* [38.5,69.86] [36.51,63.25] 

 

Now, by Step 3, consider all lower limit values of all intervals from the above payoff matrix 

𝑍𝑈 = [
68 70.38
69.86 63.25

] 
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By using this upper limit payoff matrix, we get 

μ(𝑍𝑈
1 (𝑦1)) =

{
 

 
0,                     𝑖𝑓 𝑍𝑈

1(𝑦1) ≥ 𝑈1
69.86 − 𝑍𝑈

1 (𝑦1)

69.86 − 68
,   𝑖𝑓 𝐿1 < 𝑍𝑈

1 (𝑦1) < 𝑈1

1,                     𝑖𝑓 𝑍𝑈
1(𝑦1) ≤ 𝐿1

 

 

μ(𝑍𝑈
2(𝑦2)) =

{
 

 
0,                     𝑖𝑓 𝑍𝑈

2(𝑦2) ≥ 𝑈2
70.38 − 𝑍𝑈

1 (𝑦1)

70.38 − 63.25
,   𝑖𝑓 𝐿2 < 𝑍𝑈

2(𝑦2) < 𝑈2

1,                     𝑖𝑓 𝑍𝑈
2(𝑦2) ≤ 𝐿2

 

Now, by Step 3, consider all lower limit values of all intervals from the above payoff matrix 

𝑍𝐿 = [
56.2 58.59
38.4 36.51

] 

By using this lower limit payoff matrix, we get 

μ(𝑍𝐿
1(𝑥1)) =

{
 

 
0,                     𝑖𝑓 𝑍𝐿

1(𝑥1) ≥ 𝑢1
56.2 − 𝑍𝐿

1(𝑥1)

56.2 − 38.5
,     𝑖𝑓 𝐿1 < 𝑍𝐿

1(𝑥1) < 𝑢1

1,                   𝑖𝑓 𝑍𝐿
1(𝑥1) ≤ 1

 

 

μ(𝑍𝐿
2(𝑥2)) =

{
 

 
0,                     𝑖𝑓 𝑍𝐿

2(𝑥2) ≥ 𝑢2
58.59 − 𝑍𝐿

2(𝑥2)

58.59 − 36.51
,    𝑖𝑓 𝐿2 < 𝑍𝐿

2(𝑥2) < 𝑢2

1,                    𝑖𝑓 𝑍𝐿
2(𝑥2) ≤ 1

 

Now, by Step 4, the corresponding integer LPPs are as follows for upper limit values. 

 

𝑀𝑎𝑥𝑖𝑚𝑢𝑚 λ 

 

Subject to: 

 

1.86λ ≤ 69.86 − (2.1𝑦11 + 11.1𝑦12 + 7.3𝑦13 + 1.1𝑦21 + 6.5𝑦22 + 1.1𝑦23 + 5.4𝑦31
+ 16𝑦32 + 9.6𝑦33) 

 

2.1𝑦11 + 11.1𝑦12 + 7.3𝑦13 + 1.1𝑦21 + 6.5𝑦22 + 1.1𝑦23 + 5.4𝑦31 + 16𝑦32 + 9.6𝑦33
≤ 69.86 

 

7.13λ ≤ 70.38 − (4.2𝑦11 + 3.2𝑦12 + 10.5𝑦13 + 9.2𝑦21 + 3.1𝑦22 + 2.1𝑦23 + 9.7𝑦31
+ 9.6𝑦32 + 5.4𝑦33) 

 

4.2𝑦11 + 3.2𝑦12 + 10.5𝑦13 + 9.2𝑦21 + 3.1𝑦22 + 2.1𝑦23 + 9.7𝑦31 + 9.6𝑦32 + 5.4𝑦33
≤ 70.38 

 

𝑦11 + 𝑦12 + 𝑦13 = 6.5 

𝑦21 + 𝑦22 + 𝑦23 = 3.1 

𝑦31 + 𝑦32 + 𝑦33 = 4.1 
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𝑦11 + 𝑦21 + 𝑦31 = 7.4 

𝑦12 + 𝑦22 + 𝑦32 = 3.2 

𝑦13 + 𝑦23 + 𝑦33 = 3.1 

𝑦11 + 𝑦12 + 𝑦13 = 6.5 

𝑦21 + 𝑦22 + 𝑦23 = 3.1 

𝑦31 + 𝑦32 + 𝑦33 = 4.1 

𝑦11 + 𝑦21 + 𝑦31 = 7.4 

𝑦12 + 𝑦22 + 𝑦32 = 3.2 

𝑦13 + 𝑦23 + 𝑦33 = 3.1 

𝑦𝑖𝑗 ≥ 0           𝑖 = 1,2,3     &    𝑗 = 1,2,3 

0 <  λ < 1. 

 

The above model is a LPP. We get the following compromise optimal solution by using 

lingo 18.0 software: 

[y*] = [4.85, 1.65, 0, 0, 1.55, 1.55, 2.55, 0, 1.55] 

 

The minimum value of the objective functions of the upper bound (λU) is 68.93. 

 

Now, by Step 4, the corresponding LPPs are as follows for lower limit values. 
 

𝑀𝑎𝑥𝑖𝑚𝑢𝑚 λ 
 

Subject to: 

 

17.7λ ≤ 56.2 − (1.9𝑥11 + 10.9𝑥12 + 6.7𝑥13 + 0.9𝑥21 + 5.5𝑥22 + 0.9𝑥23 + 4.6𝑥31
+ 15𝑥32 + 8.4𝑥33) 

 

1.9𝑥11 + 10.9𝑥12 + 6.7𝑥13 + 0.9𝑥21 + 5.5𝑥22 + 0.9𝑥23 + 4.6𝑥31 + 15𝑥32 + 8.4𝑥33
≤ 56.2 

 

22.08λ ≤ 58.59 − (3.8𝑥11 + 2.8𝑥12 + 9.5𝑥13 + 8.8𝑥21 + 0.9𝑥22 + 2.8𝑥23 + 8.3𝑥31
+ 8.4𝑥32 + 4.6𝑥33) 

 

3.8𝑥11 + 2.8𝑥12 + 9.5𝑥13 + 8.8𝑥21 + 0.9𝑥22 + 2.8𝑥23 + 8.3𝑥31 + 8.4𝑥32 + 4.6𝑥33
≤ 58.59 

𝑥11 + 𝑥12 + 𝑥13 = 5.5 

𝑥21 + 𝑥22 + 𝑥23 = 2.9 

𝑥31 + 𝑥32 + 𝑥33 = 3.9 

𝑥11 + 𝑥21 + 𝑥31 = 6.6 

𝑥12 + 𝑥22 + 𝑥32 = 2.8 

𝑥13 + 𝑥23 + 𝑥33 = 2.9 

𝑥11 + 𝑥12 + 𝑥13 = 5.5 

𝑥21 + 𝑥22 + 𝑥23 = 2.9 

𝑥31 + 𝑥32 + 𝑥33 = 3.9 

𝑥11 + 𝑥21 + 𝑥31 = 6.6 

𝑥12 + 𝑥22 + 𝑥32 = 2.8 

𝑥13 + 𝑥23 + 𝑥33 = 2.9 
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𝑥𝑖𝑗 ≥ 0           𝑖 = 1,2,3    &𝑗 = 1,2,3 

0 <  λ < 1 
 

The above model is a LPP. We get the following compromise optimal solution for lower 

bound by using lingo 18.0 software: 

[x*] = [5.5, 0, 0, 0, 2.8, 0.1, 1.1, 0, 2.8]. 

 

The minimum value of the objective functions of the lower bound (λL) is 45.71. 

 

Now, the solution to the given fully interval integer multi-objective TP is [45.71, 68.93]. 

 

Now, by step 3, (by using the relation (15)) we obtain the optimal fuzzy solution to 

FFIMOTP. 

APPENDIX-C 

Table 18: Comparison of fuzzy and non-fuzzy instances of single and multi-objectives by different 

approaches 

Solution Procedures 

 

Single-Objective Multi-Objective 

Non-

Fuzzy 

(ITP) 

Fuzzy 

(FTP) 

Non-Fuzzy 

(FIIMOTP) 

Fuzzy 

(FFIMO

TP) 

Annie Christi and Kalpana [3]     √   

Akilbasha et al. [2] √ √     

Ebrahimnejad [7]   √     

Hosseinzade and Hassanpour [9]  √       

Ishibuchi and Tanaka [10] √       

Oliveira and Antunes [14] √       

Panda and Das [15] √       

Pandian and Natarajan [16] √       

Patel and Dhodiya [20]     √   

Roy and Mahapatra [22]     √   

Sengupta and Pal [23]     √   

Vincent Yu et al. [26]     √   

This Paper √ √ √ √ 

 


