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Abstract: Machining systems are essential for many industrial applications, such as
manufacturing, processing, and assembly. However, these systems are often exposed to
various sources of uncertainty and disruption, such as disasters and customer impatience.
These factors can adversely affect the performance, reliability, and profitability of the ma-
chining systems. Consequently, modeling and analyzing machining systems under these
conditions becomes crucial. In this paper, we deal with a Markovian multi-server queue-
ing system with batch arrival, Bernoulli feedback, and customers’ impatience (balking
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and reneging). The system undergoes disastrous interruptions that force all customers–
whether waiting or currently in service–to exit, leading to server failures. Moreover, the
system dynamically alternates between main servers and substitute servers based on the
occurrence of disasters. These substitute servers operate at reduced rates compared to the
main servers. Our contributions include deriving the stability condition for the system
and obtaining the probability generating function of steady-state probabilities, enabling
us to derive essential performance measures. Additionally, we develop a cost model and
conduct an economic analysis for the system.

Keywords: Markovian queueing models, disasters, impatience.
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1. INTRODUCTION

Over the past two decades, queueing systems with disasters have garnered significant
attention due to the rapid development of communication systems and networks. Disasters
in these systems lead to the forced departure of all present customers, including the one
being served. Such queueing models find applications in various domains. For instance,
in computer networks, a virus can act as a delete operation, wiping out all stored data.
Extensive research works have been conducted on the subject. Notable contributions in-
clude a M/M/1 queue with catastrophes by [1], a multi-server retrial queue with negative
customers and disasters by [2], and a finite-source discrete-time Geo/Geo/1 queue with
disasters by [3]. Subsequently, [4] extended the work [3] to GI/Geo/1 queues, while [5]
investigated M/G/1 queues with disasters and working breakdowns. [6] studied M/G/1
queues with distastes in a multi-phase random environment and [7] explored GI/M/1
queues in multi-phase random environments with disasters and working breakdowns. Re-
cently, [8] discussed a discrete-time Geo/Geo/1 queue with feedback, repair and disaster.

Customer behavior, such as balking and reneging, plays a crucial role in real-world
queueing systems, where arrivals may be discouraged by long queues. Abundant literature
exists on this topic, [9] studied a queue with disasters and impatient customers in which
during the breakdown period, the new arrivals become impatient. Then, [10] presented
optimal and equilibrium balking strategies in the single server Markovian queue with
catastrophes and derived the corresponding Nash equilibrium and social optimal strate-
gies. Later, they analyzed the effect of catastrophes on the strategic customer behavior in
queueing systems [11]. Recently, [12] presented the transient analysis of impatient cus-
tomers in a Markovian single server queue with disasters queue in random environment.
Other contributions on impatience customers’ in different queueing models can be found
in [13, 14, 15, 16, 17, 18, 19, 20, 21].

Queueing systems with batch arrivals have a long history, dating back to the works of
[22, 23, 24, 25, 26, 27, 28]. Subsequent researches have explored priority queues [29],
server vacations [30], and heavy traffic limit theories [31, 32, 33]. Recent studies have
investigated batch arrivals in conjunction with multiple working vacation [34], disasters
and vacation [35], retrial queues [36], fluid queues [37], breakdowns and vacation [38,
39], vacation/working vacation queues with impatience [40, 41, 42], and group clearance
[43].
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This paper presents a novel contribution by considering an infinite-capacity multi-
server Markovian queue with batch arrivals, Bernoulli feedback, working breakdowns,
balking, and reneging. This model assumes that service continues at a reduced rate dur-
ing repair periods, reflecting practical scenarios such as computer networks under virus
attacks or machine replacements in manufacturing systems. The main contributions of
this work can be summarized as follows:

- Establishing the stability condition for the proposed queueing system.
- Obtaining the steady-state solution for the system by using probability generating

functions (PGFs), which provide a powerful approach for analyzing discrete proba-
bility distributions and stochastic processes.

- Deriving important performance measures from the steady-state probability distri-
butions.

- Formulating a cost model for the queueing system to conduct an economic analysis.
- Performing a numerical analysis to validate the analytical results and investigate the

impact of different system parameters on the performance measures, total expected
cost, and total expected profit.

The body of the remainder of this paper is organized: Description of the system and a
practical application of the suggested queueing model are given in Section 2. In Section
3, the analysis of the system is established. In Section 4, we formulated the performance
measures of the system. In Section 5, we present a cost model. Then, in Section 6,
numerical simulation results are provided and finally, in Section 7, we conclude the work
done.

2. MODEL DESCRIPTION
An infinite-capacity multi-server queue with batch arrivals, Bernoulli feedback, dis-

asters, working breakdowns, balking, and reneging is considered:
- Customers arrive in batches according to a Poisson process with rate λ . We consider

our system in which the size of an arriving batch is drawn from an independent
and identically distributed sequence of random variables. We assume that the times
of arrivals are given by a Poisson process. The arrival batch size X is a random
variable with probability mass function P(X = l) = bl ; l = 1,2, .... They are served
in accordance with First Come First Served ’FCFS’ discipline.

- The service time during normal busy period are supposed to exponentially distributed
with rate µ.

- During the busy period, the system may break down. At this time, all customers present
are removed out and the system (all the servers as one station) is sent for a repa-
ration. The inter-arrival times between successive breakdowns are assumed to be
distributed exponentially with rate η . Repair times have an exponential distribution
with rate ϑ .

- On arrival, if a batch of customers find the c servers busy, they may decide to enter
the system with a certain probability θ , or balk wit a complementary probability
θ ′ = 1−θ . More precisely, we suppose that the number of customers in the batch
is n(≥ 1) then all customers of arrival batch join the system with probability θ , if
n < c and all leave the system without receiving service (balk) with probability θ ′,
otherwise.
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- During the repair period of the primary servers, new customers can be served by substi-
tute servers. The service times during this period are assumed to be exponentially
distributed with a rate ν , where ν < µ . Once the repair of the servers is completed,
the service by the substitute servers is immediately stopped, and the primary servers
restart operations at their regular service rate. Additionally, once the system is re-
paired and the queue becomes empty, all the primary servers return simultaneously
to the system, remain idle, and wait for new arrivals.

- During a repair period, customers can get impatient; each customer activates an impa-
tient timer ’T’, exponentially distributed with rate χ. If the customer has not been
served before its impatience time has expired he leaves the system without getting
a service.

- If a customer is not happy with current service, he can retry many times as a feed-
back customer with some probability β ′ or leave the system with a complementary
probability β .

- The inter-arrival times, repair times, impatience times, service times are supposed to be
mutually independent.

2.1. Practical application of the proposed model

The proposed queuing model with batch arrivals, Bernoulli feedback, disasters, work-
ing breakdowns, balking, and reneging has practical applications in various manufacturing
and production systems, particularly in the electronics industry. Consider a manufactur-
ing facility that produces electronic devices such as smartphones, tablets, or laptops. The
devices arrive in batches of random sizes according to a Poisson arrival process and join
the queue/server for processing.

The manufacturing system comprises multiple servers, which are specialized ma-
chines or workstations responsible for quality checks, testing, and assembly operations
on the devices. These servers operate in parallel, and the devices are served following the
First-Come First-Served (FCFS) discipline.

However, the system is susceptible to catastrophic events like power failures, fires, or
shortage of supplies, which force the machines (servers) to stop their service and evacuate
the devices. In such cases, all existing devices in the system are rejected and lost, and the
system undergoes a repair process of random duration.

During the repair period, the system can utilize backup generators and emergency staff
to provide a substitute service to the arriving devices. However, the service rate of this
substitute service is typically lower than the regular service rate. Devices arriving during a
normal or breakdown period can decide whether to enter the system or balk (leave without
receiving service) based on a certain probability.

Furthermore, devices already in the system during the repair process can also decide
whether to stay or leave based on their impatience time. Each device activates an im-
patience timer with an exponentially distributed duration. If the device’s service is not
completed before its impatience time expires, it leaves the system without receiving ser-
vice. Such devices are considered defective products and sent back to the factory.

After receiving service, if a device is not satisfied with the quality or requires addi-
tional processing, it can rejoin the queue for another service attempt with a certain feed-
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back probability. This feedback mechanism allows devices to retry the service until they
meet the desired quality standards.

3. ANALYSIS OF THE SYSTEM

3.1. Steady-state equations

Let N(t) be the number of customers in the system and let J(t) denote the status of
the server at time t. If J(t) = 1, the system is functioning, serving customers, whereas if
J(t) = 2, the system is down, undergoing a repair process.

Let {(N(t),J(t)); t ≥ 0} represent two-dimensional infinite state continuous-time Markov
chain with state space S = {(n, j) : n ≥ 0, j = 1,2}.

Let πn, j = lim
t→∞

P{N(t) = n,J(t) = j}, n ≥ 0, j = 1,2 define the system state probabil-

ities of the process {(N(t),J(t)), t ≥ 0}. Figure 1 depicts the state transition diagram of
the queueing model under consideration.
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Figure 1: State-transition-rate diagram
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Then, based on the theory of Markov process, it is easy to show that the steady-state
equations of the model are:

1. If J(t) = 1, normal busy period:

λπ0,1 = ϑπ0,2 +β µπ1,1, n = 0, (1)
(λ +η +β µ)π1,1 = λb1π0,1 +ϑπ1,2 +2β µπ2,1, n = 1, (2)

(λ +η +nβ µ)πn,1 = λ

n

∑
m=1

bmπn−m,1 +ϑπn,2 +(n+1)β µπn+1,1,

2 ≤ n ≤ c−1, (3)

(θλ +η +nβ µ)πn,1 = λ

n

∑
m=1

bmπn−m,1 +ϑπn,2 + cβ µπn+1,1, n = c, (4)

(θλ +η + cβ µ)πn,1 = θλ

n

∑
m=1

bmπn−m,1 +ϑπn,2 + cβ µπn+1,1, n ≥ c, (5)

2. If J(t) = 2, working breakdown period:

(λ +ϑ)π0,2 = η

∞

∑
n=1

πn,1 +(βν +χ)π1,2, n = 0, (6)

(λ +ϑ +βν +χ)π1,2 = λb1π0,2 +2(βν +χ)πn+1,2, n = 1, (7)

(λ +ϑ +n(βν +χ))πn,2 = λ

n

∑
m=1

bmπn−m,2 +(n+1)(βν +χ)πn+1,2,

2 ≤ n ≤ c−1, (8)

(θλ +ϑ +n(βν +χ))πn,2 = λ

n

∑
m=1

bmπn−m,2 +(cβν +(n+1)χ)πn+1,2,

n = c, (9)

(θλ +ϑ + cβν +nχ)πn,2 = θλ

n

∑
m=1

bmπn−m,2 +(cβν +(n+1)χ)πn+1,2,

n ≥ c, (10)

3.2. Stability condition

According to Neuts [44], the infinitesimal generator Q for the bivariate process {(N(t),J(t)); t ≥
0} is defined as follows:
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Q =



A0 C(0)
1 C(0)

2 . . . . . . C(0)
c C(1)

c+1 . . . . . .

B1 A1 C(0)
1 C(0)

2 . . . C(0)
c−1 C(1)

c . . . . . .

D B2 A2 C(0)
1 . . . C(0)

c−2 C(1)
c−1 . . . . . .

...
. . .

. . .
. . .

D Bc−1 Ac−1 C(0)
1 C(1)

2 . . . . . .

D Bc Ac C(1)
1 . . . . . .

D Bc+1 Ac+1 C(1)
1 . . .

...
. . .

. . .
. . .

D BN AN C(1)
1

D BN AN C(1)
1

...
. . .

. . .



,

where N is a sufficiently large number such that when the number of customers n ≥ N,
we approximate the matrices An and Bn by AN and BN , respectively. In the proposed
queueing model, the approximation of the matrices An and Bn by AN and BN for n ≥ N is
employed to facilitate numerical analysis and computation. This approximation is based
on the assumption that when the queue length exceeds a certain threshold N, the transition
rates within the same level and to the next level can be considered constant, as the dynam-
ics of the system do not significantly change for large queue lengths. The value of N is
judiciously chosen such that the difference between the exact and approximated transition
rates becomes negligible for n ≥ N. Specifically, a sufficiently large N is selected, and
the matrices AN and BN are calculated using the steady-state equations and transition rate
expressions. Then, for all n≥N, the matrices An and Bn are approximated by the constant
matrices AN and BN , respectively. These approximated matrices are subsequently used in
the matrix representation of the Markov chain and in the numerical computations. While
this approximation introduces some error, it is a practical consideration that enables the
analysis of large-scale queueing systems by improving computational tractability.
Each sub-matrix of the matrix Q is done as:

A0 =

(
−λ 0
ϑ −(λ +ϑ)

)
, C(0)

l =

(
λbl

λbl

)
, 1 ≤ l < c

B1 =

(
β µ η

0 βν +χ

)
, C(1)

l =

(
θλbl

θλbl

)
, l ≥ c,

Bn =

(
nβ µ 0

0 n(βν +χ)

)
, 2 ⩽ n ⩽ c−1

Bn =

(
cβ µ 0

0 cβν +nχ

)
, c ⩽ n ⩽ N −1

Bn =

(
cβ µ 0

0 cβν +Nχ

)
, n ≥ N, D =

(
0 η

0 0

)
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An =

(
−(λ +nβ µ +η) 0

ϑ −(λ +n(βν +χ)+ϑ)

)
, 1 ⩽ n ⩽ c−1

An =

(
−(θλ + cβ µ +η) 0

ϑ −(θλ + cβν +nχ +ϑ)

)
, c ⩽ n ⩽ N −1

An =

(
−(θλ + cβ µ +η) 0

ϑ −(θλ + cβν +Nχ +ϑ)

)
, n ≥ N

In the following Theorem, we present the stability condition of our queueing system.

Theorem 1. The Markov process {(N(t);J(t)), t ≥ 0} is ergodic if and only if

θbλ < [cβ µϑ +(cβν +Nχ)η ]
1

ϑ +η
, where b =

∞

∑
l=1

lbl . (11)

Proof. Based on [44], the approximated system is stable and the steady-state probability
vector exists if and only if

x
∞

∑
l=1

lC(l)
1 en < xBNen, (12)

where x = [x1,x2] is the invariant probability vector of the matrix:

F = D+BN +AN +
∞

∑
l=1

C(l)
1 ,

and en denotes a column vector with size n with all elements equal to one. Further, x
satisfies:{

xF = 0,
xen = 1.

Solving the above two equations, we get

x = [x1,x2] =

[
ϑ

ϑ +η
,

η

ϑ +η

]
.

Then, by substituting x, en, C(l)
1 , and BN into Equation (12), we find the stability condition

(11).

3.3. Analysis of the steady-state probability distribution

Define the probability generating functions as:

G j(z) =
∞

∑
n=0

πn, jzn , |z|= 1, j = 1,2, G
′
j(z) =

d
dz

G j(z) =
∞

∑
n=1

nπn, jzn−1, j = 1,2,
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and B(z) =
∞

∑
n=1

bnzn, with B(1) =
∞

∑
n=1

bn = 1.

Multiplying Eqs. (1)-(5) by zn and summing all possible values of n, we get:

[θλ z(B(z)−1)+ cβ µ(1− z)− zη ]G1(z)+ zϑG2(z) = λθ
′
zψ1(z)

+β µ(1− z)ψ2(z)−λθ
′
zψ3(z)− zηπ0,1,

(13)

where

ψ1(z) =
c−1

∑
n=0

πn,1zn, ψ2(z) =
c−1

∑
n=0

(c−n)πn,1zn, and ψ3(z) =
c

∑
n=1

n

∑
m=1

bmπn−m,1zn. Similarly,

multiplying Eqs. (6)-(10) by zn then summing all possible values of n, we obtain:

χz(1− z)G
′
2(z)+ [θλ z(B(z)−1)+ cβν(1− z)− zϑ ]G2(z) = λθ

′
zϕ1(z)

+βν(1− z)ϕ2(z)−λθ
′
zϕ3(z)−ηzG1(1)+ zηπ0,1,

(14)

with

ϕ1(z) =
c−1

∑
n=0

πn,2zn, ϕ2(z) =
c−1

∑
n=0

(c−n)πn,2zn, and ϕ3(z) =
c

∑
n=1

n

∑
m=1

bmπn−m,2zn.

Next, using the recursive method, we get: πn,1 = Lnπ0,1 +Rnπ0,2 +NnG1(1),

πn,2 = Anπ0,2 +Bnπ0,1 +CnG1(1),

where

An =


1, n=0;
λ +ϑ

βν +χ
, n=1;

ϖnAn−1 +
κ

n

n−1

∑
m=1

bmAn−m−1, n ⩾ 2,

Bn =


0, n=0;

η

βν +χ
, n=1;

ϖnBn−1 +
κ

n

n−1

∑
m=1

bmBn−m−1, n ⩾ 2,

Cn =


0, n=0;
−η

βν +χ
, n=1;

ϖnCn−1 +
κ

n

n−1

∑
m=1

bmCn−m−1, n ⩾ 2,

Ln =


1, n=0;
λ

β µ
, n=1;

ζnLn−1 +
κ
′

n

n−1

∑
m=1

bmLn−m−1 +
R1

n
Bn−1, n ⩾ 2,
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Rn =


0, n=0;
−ϑ

β µ
, n=1;

ζnRn−1 +
κ
′

n

n−1

∑
m=1

bmRn−m−1 +
R1

n
An−1, n ⩾ 2,

Nn =


0, n=0;
0, n=1;

ζnNn−1 +
κ
′

n

n−1

∑
m=1

bmNn−m−1 +
R1

n
Cn−1, n ⩾ 2,

such that

κ =
−λ

βν +χ
, ϖn =

λ +ϑ

n(βν +χ)
+

n−1
n

, κ
′
=

−λ

β µ
, and ζn =

λ +η

nβ µ
+

n−1
n

.

Further, for z ̸= 1 and z ̸= 0, Eqs. (13) and (14) can be respectively written as:

G1(z) =− zϑ

ξ (z)
G2(z)+

[
λθ

′
z(L1(z)−L0(z))+β µ(1− z)L2(z)− zη

ξ (z)

]
π0,1

+

[
λθ

′
z(R1(z)−R0(z))+β µ(1− z)R2(z)

ξ (z)

]
π0,2

+

[
λθ

′
z(N1(z)−N0(z))+β µ(1− z)N2(z)

ξ (z)

]
G1(1),

(15)

where ξ (z) = θλ z(B(z)−1)+ cβ µ(1− z)− zη ,

L0(z) =
c

∑
n=1

n

∑
m=1

bmLn−mzn, L1(z) =
c−1

∑
n=0

Lnzn, L2(z) =
c−1

∑
n=0

(c−n)Lnzn,

R0(z) =
c

∑
n=1

n

∑
m=1

bmRn−mzn, R1(z) =
c−1

∑
n=0

Rnzn, R2(z) =
c−1

∑
n=0

(c−n)Rnzn,

N0(z) =
c

∑
n=1

n

∑
m=1

bmNn−mzn, N1(z) =
c−1

∑
n=0

Nnzn, N2(z) =
c−1

∑
n=0

(c−n)Nnzn,

and

G
′
2(z)+

[
θλ

χ
H

′
(z)+

cβν

zχ
− ϑ

χ(1− z)

]
G2(z)

=

[
θ

′
λ

χ(1− z)
[A1(z)−A0(z)]+

βν

zχ
A2(z)

]
π0,2

+

[
θ

′
λ

χ(1− z)
[B1(z)−B0(z)]+

βν

zχ
B2(z)+

η

χ(1− z)

]
π0,1

+

[
θ

′
λ

χ(1− z)
[C1(z)−C0(z)]+

βν

zχ
C2(z)−

η

χ(1− z)

]
G1(1),

(16)
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with

A0(z) =
c

∑
n=1

n

∑
m=1

bmAn−mzn, A1(z) =
c−1

∑
n=0

Anzn, A2(z) =
c−1

∑
n=0

(c−n)Anzn,

B0(z) =
c

∑
n=1

n

∑
m=1

bmBn−mzn, B1(z) =
c−1

∑
n=0

Bnzn, B2(z) =
c−1

∑
n=0

(c−n)Bnzn,

C0(z) =
c

∑
n=1

n

∑
m=1

bmCn−mzn, C1(z) =
c−1

∑
n=0

Cnzn, C2(z) =
c−1

∑
n=0

(c−n)Cnzn,

and H(z) =
∫ z

0

B(x)−1
1− x

dx, H
′
(z) =

B(z)−1
1− z

.

To solve Eq. (14), we multiply both sides of Eq. (16) by e
λθ
χ

H(z)
(1− z)

ϑ
χ z

cβν

χ , then
we get:

G2(z) =
e−

λθ
χ

H(z)

(1− z)
ϑ
χ z

cβν

χ

{(
θ

′
λ

χ
K0(z)+

βν

χ
K1(z)

)
π0,2

+

(
θ

′
λ

χ
K2(z)+

βν

χ
K3(z)+

η

χ
K4(z)

)
π0,1+[

θ
′
λ

χ
K5(z)+

βν

χ
K6(z)−

η

χ
K4(z)

]
G1(1)

}
,

(17)

where

K0(z) =
∫ z

0
e

λθ
χ

H(x)
(1− x)

ϑ
χ
−1x

cβν

χ (A1(x)−A0(x))dz,

K1(z) =
∫ z

0
e

λθ
χ

H(x)
(1− x)

ϑ
χ x

cβν

χ
−1A2(x)dz,

K2(z) =
∫ z

0
e

λθ
χ

H(x)
(1− x)

ϑ
χ
−1x

cβν

χ (B1(x)−B0(x))dz,

K3(z) =
∫ z

0
e

λθ
χ

H(x)
(1− x)

ϑ
χ x

cβν

χ
−1B2(x)dz,

K4(z) =
∫ z

0
e

λθ
χ

H(x)
(1− x)

ϑ
χ
−1x

cβν

χ dz,

K5(z) =
∫ z

0
e

λθ
χ

H(x)
(1− x)

ϑ
χ
−1x

cβν

χ (C1(x)−C0(x))dz,

K6(z) =
∫ z

0
e

λθ
χ

H(x)
(1− x)

ϑ
χ x

cβν

χ
−1C2(x)dz.
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Taking limit as z → 1 in Eq. (17) we get:

G2(1) = e−
λθ
χ

H(1)
[

(
θ

′
λ

χ
K0(1)+

βν

χ
K1(1)

)
π0,2

+

(
θ

′
λ

χ
K2(1)+

βν

χ
K3(1)+

η

χ
K4(1)

)
π0,1

+

(
θ

′
λ

χ
K5(1)+

βν

χ
K6(1)−

η

χ
K4(1)

)
G1(1)] lim

z→1
(1− z)

−ϑ
χ z

−cβν

χ .

(18)

Since G2(1) =
∞

∑
n=0

πn,2 > 0 and lim
z→1

(1− z)
−ϑ
χ z

−cβν

χ = ∞ we must have that :

(
θ

′
λ

χ
K0(1)+

βν

χ
K1(1)

)
π0,2 +

(
θ

′
λ

χ
K2(1)+

βν

χ
K3(1)+

η

χ
K4(1)

)
π0,1

+

(
θ

′
λ

χ
K5(1)+

βν

χ
K6(1)−

η

χ
K4(1)

)
G1(1) = 0.

(19)

Therefore

G1(1) = Θ1π0,2 +Θ2π0,1, (20)

where

Θ1 =
−θ

′
λK0(1)−βνK1(1)

θ
′
λK5(1)+βνK6(1)−ηK4(1)

,

and

Θ2 =
−ηK4(1)−θ

′
λK2(1)−βνK3(1)

θ
′
λK5(1)+βνK6(1)−ηK4(1)

.

Further, by taking z = 1 in Eq. (15), we find

G2(1) =

[
η +λθ

′
(N1(1)−N0(1))

ϑ

]
G1(1)+

[
λθ

′
(L1(1)−L0(1))−η

ϑ

]
π0,1

+

[
λθ

′
(R1(1)−R0(1))

ϑ

]
π0,2.

(21)

By substituting Eq. (20) into Eq. (21) we obtain:

G2(1) =Ψ1π0,2 +Ψ2π0,1, (22)

where

Ψ1 =
(η +λθ

′
(N1(1)−N0(1)))Θ1

ϑ
+

λθ
′
(R1(1)−R0(1))

ϑ
,

Ψ2 =
(η +λθ

′
(N1(1)−N0(1)))Θ2

ϑ
+

λθ
′
(L1(1)−L0(1))−η

ϑ
.
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Next, by taking z = 1 in Eqs. (13)-(14), we respectively have:

−ηG1(1)+ϑG2(1) = λθ
′
(ψ1(1)−ψ3(1))−ηπ0,1, (23)

ηG1(1)−ϑG2(1) = λθ
′
(ϕ1(1)−ϕ3(1))+ηπ0,1. (24)

Summing both (23) and (24) we obtain:

ψ1(1)−ψ3(1) = ϕ3(1)−ϕ1(1), (25)

where
ϕ3(1) = A0(1)π0,2 +B0(1)π0,1 +C0(1)G1(1),
ϕ1(1) = A1(1)π0,2 +B1(1)π0,1 +C1(1)G1(1),
ψ3(1) = L0(1)π0,1 +R0(1)π0,2 +N0(1)G1(1),
ψ1(1) = L1(1)π0,1 +R1(1)π0,2 +N1(1)G1(1).

Further, by substituting Eq. (25) into (20) we find:

π0,2 = Γ(1)π0,1, (26)

where,

Γ(1) =
L0(1)−L1(1)+B0(1)−B1(1)−Θ2 [C1(1)−C0(1)+N1(1)−N0(1)]
A1(1)−A0(1)+R1(1)−R0(1)+Θ1 [C1(1)−C0(1)+N1(1)−N0(1)]

.

The following Theorem presents the steady-state probabilities of the considered queueing
system.

Theorem 2. Under the stability condition, the steady-state probabilities are given by

π.,1 = G1(1) = [Θ1Γ(1)+Θ2]π0,1, (27)

and

π.,2 = G2(1) = [Ψ1Γ(1)+Ψ2]π0,1, (28)

where

π0,1 =

{
Θ1Γ(1)+Θ2 +Ψ1Γ(1)+Ψ2

}−1

.

Proof. By substituting Eq. (26) into Eqs. (20) and (22) we get π.,1 and π.,2, respectively.
Then, using the normalization condition:

∞

∑
n=0

2

∑
j=1

πn, j = 1 ⇔ π.,1 +π.,2 = 1, we obtain π0,1.
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Let L denote the number of customers in the system. Then we have E(L) = E(L1)+
E(L2), where E(L1) is the mean system size when the system is on busy period and E(L2)
represents the mean system size when the system is on working repair.

Theorem 3. The mean system sizes during busy and working breakdown periods can be
expressed as

E(L1) =
1
η

[
(θλB

′
(1)− cβ µ −η)(Θ1Γ(1)+Θ2)+ϑ(Ψ1Γ(1)+Ψ2)+η

]
π0,1

+
1
η

[
λθ

′
(ψ3(1)+ψ

′
3(1)−ψ1(1)−ψ

′
1(1))+β µψ2(1)+ϑE(L2)

]
,

and

E(L2) =
1

χ +ϑ
[
[(

θλB
′
(1)− cβν −ϑ

)
[Ψ1Γ(1)+Ψ2]−η +η(Θ1Γ(1)+Θ2)

]
π0,1

+λθ
′
(ϕ3(1)+ϕ

′
3(1)−ϕ1(1)−ϕ

′
1(1))+βνϕ2(1)].

Proof. Setting z −→ 1 and using L’Hospital rule in Eq. (13), we get:[
θλB

′
(1)− cβ µ −η

]
G1(1)+ϑG2(1)+ϑG

′
2(1)−ηG

′
1(1)

= λθ
′
[
−ψ3(1)−ψ

′
3(1)+ψ1(1)+ψ

′
1(1)

]
−β µψ2(1)−ηπ0,1,

where G1(1) and G2(1) are given in Eqs. (27) and (28), respectively. Therefore

E(L1) = lim
z→1

G
′
1(z)

=
1
η

[
(θλB

′
(1)− cβ µ −η)(Θ1Γ(1)+Θ2)+ϑ(Ψ1Γ(1)+Ψ2)+η

]
π0,1

+
1
η

[
λθ

′
(ψ3(1)+ψ

′
3(1)−ψ1(1)−ψ

′
1(1))+β µψ2(1)+ϑE(L2)

]
.

Next, differentiating Eq. (14) and taking z = 1, we find:

(χ +ϑ)G
′
2(1) =

[
θλB

′
(1)− cβν −ϑ

]
G2(1)+λθ

′
(ϕ3(1)+ϕ

′
3(1)−ϕ1(1)

−ϕ
′
1(1))+βνϕ2(1)−η [π0,1 −G1(1)] .

Thus

E(L2) = lim
z→1

G
′
2(z)

=
1

χ +ϑ
[
[(

θλB
′
(1)− cβν −ϑ

)
[Ψ1Γ(1)+Ψ2]−η +η(Θ1Γ(1)+Θ2)

]
π0,1

+λθ
′
(ϕ3(1)+ϕ

′
3(1)−ϕ1(1)−ϕ

′
1(1))+βνϕ2(1)].
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4. PERFORMANCE MEASURES AND COST MODEL

4.1. Performance measures

In this subpart of paper, useful performance measures are presented.

Corollary 4. The mean number of customers in the queue is given as:

E(Lq) =
∞

∑
n=c+1

(n− c)(πn,1 +πn,2) = E(L)− c+ψ2(1)+ϕ2(1).

Corollary 5. 1. The probability that the servers are in working repair period is pre-
sented as:

Pwr = G2(1) =
∞

∑
n=0

πn,2.

2. The probability that the servers are in a normal busy period is presented as:

Pb = 1−Pwr.

3. The probability that the servers are working either during busy or repair period is
presented as:

Pw =
∞

∑
n=1

(πn,2 +πn,1).

Corollary 6.
1. The mean number of customers served per unit time is given as:

Ns = β µ

c−1

∑
n=1

nπn,1 + cβ µ

∞

∑
n=c

πn,1 +βν

c−1

∑
n=1

nπn,2 + cβν

∞

∑
n=c

πn,2

= β µ
[
cPbusy −ψ2(1)

]
+βν [cPwr −ϕ2(1)] .

2. The average rate of abandonment of customers due to impatience is given as:

Ra = χE(L2).

3. The average rate of balking is given as:

Rbalk = λ (1−θ)

[
∞

∑
n=c

πn,1 +
∞

∑
n=c

πn,2

]
= λ (1−θ) [1−ψ1(1)−ϕ1(1)] .
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4.2. Cost model

Cost-profit analysis is very beneficial in the application of real-life situations arising
from industrial and technical situations.

The total expected cost (Tcost) is defined as:

Tcost = CbPb +CrpPwr +(ClE(L))+(CrRren)+ c(µ +ν)

×(Cs +(1−β )C f )+ cCp,

where Cb is the cost per unit time during normal busy period, Crp; the cost per unit time
during working repair period, Cl ; the holding cost per unit time, Cr; the cost per unit time
when a customer is lost due to impatience, Cs; the cost per service per unit time, C f ; the
cost per unit time when a customer returns to the system as a feedback, and Cp; the fixed
server purchase cost per unit.

Let R be the revenue earned for providing service to a customer, then the total ex-
pected revenue per unit time (Trevenue) of the system is as:

Trevenue = R×Ns.

The total expected profit (Tprofit) per unit time of the system is as:

Tprofit = Trevenue −Tcost.

5. NUMERICAL ANALYSIS

To validate the analytical results obtained through mathematical modeling and anal-
ysis, we employ computational techniques. These methods allow us to compute and ap-
proximate the relevant quantities, including steady-state probabilities and performance
measures for the manufacturing system. By comparing the numerically obtained results
with the analytical expressions, we validate the accuracy of our derived solutions.

While numerical analysis introduces approximations and potential numerical errors, it
complements analytical methods by providing a practical means of verifying results and
acquiring a deeper understanding of the behavior of complex queueing systems.

In this section, important numerical results are presented in the form of Tables and
Graphs in order to illustrate the effect of various system parameters on different system
characteristics, (Tcost) and (Tprofit), using R program. The arrival batch size X follows a

geometric distribution with parameter σ ,that is P(X = l) = (1−σ)l−1σ , with 0 < σ < 1,

and l = 1,2, .... Therefore, B(z) =
σz

1− (1−σ)z
.

For our analysis, we consider the manufacturing system discussed above. Unless their
values are indicated in the appropriate places, the model parameters are assumed to be as
follows: the devices arrive in groups of random size according to a Poisson arrival pro-
cess with rate λ = 1.0 devices per minute, and join the queue/server for processing. The
system has c = 3 primary servers. The service time of each machine is exponentially dis-
tributed with rate µ = 1.9 devices per minute. The time between successive breakdowns
is exponentially distributed with rate η = 5.0 breakdowns per minute, and the repair time
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is exponentially distributed with rate ϑ = 2.0 repairs per minute. During a breakdown, the
substitute service time is exponentially distributed with rate ν = 0.5 devices per minute,
where ν < µ . The devices can decide whether to enter the system or not, based on the
probability θ = 0.8. The devices that are already in the system can also decide whether
to stay or leave, based on their impatience time, which is exponentially distributed with
rate χ = 0.2 devices per minute. If a device gets a service but is not satisfied, it can retry
the service with probability β ′ = 0.5 or leave the system with probability β = 0.5, and
σ = 0.7.

To evaluate the cost and revenue of the system, we can use the following parameters:
we take the cost parameters as Cb = $3.5, Crp = $2, Cl = $2.5, Cr = $2, Cs = $0.11,
C f = $0.11, Cp = $1, and R = $70. These values can be adjusted according to the market
conditions and the quality of the devices. Numerical results are presented in Table 1 and
Figures 2-7.

Table 1: Effect of λ , µ, ν , ϑ , η ,σ ,χ, and β on performance measures
π0,1 Pwr Pb E(L1) E(L2) E(L) Rbalk Rren Ns

1.0 0.5156 0.3445 0.6555 0.1448 0.1783 0.3231 0.1238 0.0357 0.4922
λ 1.5 0.3815 0.4387 0.5613 0.2163 0.3288 0.5451 0.2434 0.0658 0.6480

2.0 0.2894 0.5025 0.4975 0.2843 0.4869 0.7712 0.3942 0.0974 0.7749
1.1 0.2873 0.5041 0.4959 0.3465 0.4884 0.8349 0.3831 0.0977 0.4797

µ 1.5 0.2889 0.5029 0.4971 0.3160 0.4872 0.8033 0.3886 0.0974 0.6244
1.9 0.2894 0.5025 0.4975 0.2843 0.4869 0.7712 0.3942 0.0974 0.7749
0.3 0.2874 0.5040 0.4960 0.2903 0.5051 0.7953 0.3990 0.1010 0.7349

ν 0.4 0.2884 0.5033 0.4967 0.2872 0.4959 0.7831 0.3966 0.0992 0.7553
0.5 0.2894 0.5025 0.4975 0.2843 0.4869 0.7712 0.3942 0.0974 0.7749
0.5 0.2894 0.5025 0.4975 0.2843 0.4869 0.7712 0.3942 0.0974 0.7749

θ 0.7 0.2874 0.5060 0.4940 0.3270 0.5334 0.8604 0.2391 0.1067 0.7740
0.9 0.2855 0.5094 0.4906 0.3705 0.5830 0.9535 0.0805 0.1166 0.7731
5 0.2894 0.5025 0.4975 0.2843 0.4869 0.7712 0.3942 0.0974 0.7749

η 7 0.3050 0.5364 0.4636 0.2251 0.5197 0.7448 0.3628 0.1039 0.6594
9 0.3143 0.5575 0.4425 0.1853 0.5402 0.7254 0.3443 0.1080 0.5901
1 0.1362 0.7108 0.2892 0.2064 1.0894 1.2958 0.5284 0.2179 0.8523

ϑ 1.5 0.2210 0.5926 0.4074 0.2547 0.7019 0.9566 0.4450 0.1404 0.8075
2 0.2894 0.5025 0.4975 0.2843 0.4869 0.7712 0.3942 0.0974 0.7749
0.1 0.2874 0.5040 0.4960 0.2914 0.5078 0.7991 0.3990 0.0508 0.7796

χ 0.15 0.2884 0.5033 0.4967 0.2877 0.4971 0.7848 0.3966 0.0746 0.7773
0.20 0.2894 0.5025 0.4975 0.2843 0.4869 0.7712 0.3942 0.0974 0.7749
3 0.2894 0.5025 0.4975 0.2843 0.4869 0.7712 0.3942 0.0974 0.7749

c 5 0.3032 0.4959 0.5041 0.3723 0.5333 0.9056 0.1447 0.1067 0.6822
7 0.3026 0.4975 0.5025 0.4112 0.5616 0.9728 0.0501 0.1123 0.6175
0.5 0.2894 0.5025 0.4975 0.2843 0.4869 0.7712 0.3942 0.0974 0.7749

β 0.7 0.2898 0.5022 0.4978 0.2154 0.4709 0.6862 0.4006 0.0942 1.1139
0.9 0.2871 0.5041 0.4959 0.1425 0.4577 0.6002 0.4075 0.0915 1.4710
0.5 0.2795 0.5030 0.4970 0.3668 0.5924 0.9592 0.5439 0.1185 0.9595

σ 0.7 0.2894 0.5025 0.4975 0.2843 0.4869 0.7712 0.3942 0.0974 0.7749
0.9 0.3011 0.4981 0.5019 0.2474 0.4180 0.6654 0.2628 0.0836 0.6098
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Figure 2: Total expected profit versus µ, ν , and β
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Figure 3: Total expected profit versus µ, ν , and β
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Figure 4: Total expected cost versus θ , η , and ϑ
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Figure 5: Total expected profit versus θ , η , and ϑ
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Figure 6: Total expected cost versus χ, c, and σ
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Figure 7: Total expected profit versus χ, c, and σ
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5.1. Results discussion and managerial insights

The numerical experiments explored the sensitivity of various system parameters on
performance measures and the cost-profit model. The key observations and potential
managerial recommendations are as follows:

1. Arrival rate (λ ): A higher arrival rate leads to lower idle probability (π0,1) and
higher expected system lengths (E(L1),E(L2),E(L)), average balking and reneging
rates (Rbalk,Rren), and mean number of customers served (Ns). Consequently, both
the total expected cost and profit (Tcost,Tprofit) increase. While higher demand can
boost revenue, managers must judiciously balance it against the potential impact on
congestion, service quality degradation, and increased system breakdowns.

2. Service rates (µ,ν): Higher service rates during busy and breakdown periods re-
duce average system lengths and reneging rates, improving customer satisfaction
and loyalty. Furthermore, it increases idle probability (π0,1), mean number of cus-
tomers served (Ns), and lowers breakdown probability (Pwr), enhancing profitabil-
ity. However, the associated costs and feasibility constraints of increasing service
rates should be carefully evaluated.

3. Non-balking probability (θ ): A higher non-balking probability attracts more cus-
tomers, increasing the busy period’s average system length (E(L1)) and breakdown
probability (Pwr). This leads to higher customer losses (Rren), reducing the mean
number of customers served and the total expected profit (Tprofit) while increasing
the total expected cost (Tcost). Managers must strike a balance between attracting
customers and managing congestion, impatience, and system breakdowns.

4. Impatience rate (χ): A higher impatience rate adversely impacts the profit by re-
ducing the mean number of customers served due to reneging. To mitigate this, the
manufacturing system should aim to decrease the impatience rate of the devices as
much as possible, by providing substitute services, priority queues, or compensa-
tion schemes. This can improve customer retention and overall satisfaction.

5. Failure rate (η): A higher failure rate decreases the average system length during
the busy period (E(L1)), leading to more customer losses due to impatience (Rren),
significantly reducing the total expected profit (Tprofit). This means that the man-
ufacturing system can reduce the impact of catastrophic events by decreasing the
failure rate and increasing the repair rate.

6. Repair rate (ϑ ): Even when considering the server’s ability to work during break-
downs, a higher repair rate leads to a reduction in the number of customers served
and profitability. This can be explained by the fact that the reduced service rate can,
sometimes, act as a bottleneck, leading to longer queues and waiting times. Con-
sequently, fewer customers may be served overall, resulting in lower profitability
despite the reduction in complete downtime. Therefore, managers must carefully
evaluate the cost-benefit trade-off of investing in higher repair rates against the po-
tential revenue gains from reduced complete downtime and the potential revenue
losses due to the server’s reduced service capacity during breakdowns.
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7. Non-feedback probability (β ): Similar to service rates, a higher non-feedback prob-
ability leads to an increase in the total expected profit. This is likely due to a reduc-
tion in congestion and a more efficient utilization of system resources when fewer
customers return to the system. However, a high non-feedback probability may also
indicate underlying issues with service quality and customer dissatisfaction. While
increasing the feedback probability can boost revenue in the short term by accom-
modating more retries, it may also exacerbate congestion and waiting times. To
strike a balance and maintain long-term profitability, managers should focus on im-
proving service quality through better service rates or providing compensations to
enhance overall customer satisfaction. This can help retain customers and mitigate
the potential negative impact of a high non-feedback probability on future business.

8. Batch size probability (σ ): A higher probability of smaller batch sizes (σ closer to
1) decreases the mean number of customers in the system, customers served, the
average rates of balking and reneging, probability of breakdowns, total expected
cost, and total expected profit. Attracting more devices by favoring smaller batches
can be a viable strategy. However, this approach also increases congestion and
customer waiting times. Managers must carefully balance the trade-off between
batch size probability and waiting times, as a high probability of smaller batches
can exacerbate impatience and dissatisfaction among customers.

9. The number of servers (c): A higher number of servers in the system leads to higher
total expected costs and lower total expected profits. This counterintuitive result
can be attributed to potential inefficiencies and coordination challenges associated
with managing a larger number of servers. With more servers, there is an increased
likelihood of underutilization or imbalanced workload distribution, leading to in-
efficient resource utilization and longer waiting times for customers. Additionally,
a higher number of servers may also increase the system’s complexity, potentially
leading to more frequent breakdowns or maintenance requirements, further con-
tributing to reduced throughput and profitability. Therefore, managers should care-
fully evaluate the trade-off between the number of servers, the associated costs, and
the potential impact on system efficiency and customer throughput.

Remark 7. The choice of parameters in Table 1, while arbitrary, was carefully done to
ensure the stability of the system and to observe clear behaviors that could be interpreted
meaningfully. Based on the observations above, it is important to recognize that most
of the results align with our intuition. However, there are some examples that are less
straightforward to interpret, possibly due to the specific costs and parameters chosen.

6. CONCLUSION

In this paper, we presented a queueing system applicable to manufacturing systems
producing electronic devices like smartphones, tablets, or laptops. Our model incorpo-
rated batch arrivals, multiple servers, catastrophic events, substitute service during break-
downs, customer balking and reneging behavior, and feedback. We derived the stability
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condition and employed probability generating functions to obtain closed-form expres-
sions for the steady-state probabilities and performance measures. Furthermore, we con-
ducted a numerical analysis to evaluate the impact of different parameters on key perfor-
mance metrics, total expected cost, and total expected profit.

Potential future research directions include extending the proposed model to batch
service queues. It would also be interesting to explore more complex scenarios, such
as repairable queueing systems with non-Markovian arrival processes for customers and
non-Markovian service processes for normal and breakdown services. Such extensions
would enhance the model’s applicability to a wider range of real-world manufacturing
scenarios.
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