

Yugoslav Journal of Operations Research

34 (2024), Number 3, 475-497

DOI: https://doi.org/10.2298/YJOR230815039R

EXACT SOLUTIONS OF SOME OR-LIBRARY TEST

INSTANCES FOR THE P-NEXT CENTER PROBLEM

Dalibor RISTIĆ

School of Computing, Union University, Belgrade, Serbia

dalibor.ristic@outlook.com

Raca TODOSIJEVIĆ

Polytechnic University of Hauts-de-France, Valenciennes, France

racatodosijevic@gmail.com

Dragan UROŠEVIĆ

Mathematical Institute of the Serbian Academy of Sciences and Arts, Belgrade, Serbia

School of Computing, Union University, Belgrade, Serbia

durosevic@raf.rs

Received: August 2023 / Accepted: February 2024

Abstract: OR-Library is a platform that provides standardized examples for testing

problem-solving algorithms in many fields of the operational research and combinatorial

optimization. One of the problems emerged in the previous decade is the p-next center

problem. The solution to the p-next center problem implies locating p centers in order to

minimize the maximum user distance to the closest center plus the distance between that

center and the center closest to it. There are several heuristic algorithms for solving this

NP-hard problem that give optimal or near-optimal solutions. We propose an algorithm for

solving the p-next center problem based on the variable neighborhood search method,

capable of recognizing whether some of the found solutions from the OR-Library test set

are exact. As a result of the algorithm execution, more than 50% of the solutions are

identified as globally optimal. The paper presents a table with the found exact solution

values for the p-next center problem from the OR-Library test set.

Keywords: OR-Library test set, p-next center problem, variable neighborhood search,

heuristic algorithms, combinatorial optimization.

MSC: 68T20, 90B06.

https://doi.org/10.2298/YJOR230815039R

D. Ristić et al. / Exact Solutions of Some OR-Library Test 476

1. INTRODUCTION

In the 1980s, one of problems in the field of operational research was standardization

of data sets for testing implemented algorithms. Comparing the efficiency of different

algorithms requires testing them over the same test set. Apart from standardization, the

problem was test set availability. As a solution to these problems, the OR-Library [1]

distribution platform was introduced in 1990. The platform contains data sets for testing

solutions to various operational research problems. Researchers could request and receive

on their e-mail account any test set from the library.

The OR-Library contains data sets for testing solutions to the p-median problem,

warehouse location, traveling salesman problem and many more. Over time, data sets from

the OR-Library platform have been used to test solutions to various problems such as the

p-center [2], p-median [3], p-next center [4-7] etc. Data sets are available at

http://people.brunel.ac.uk/~mastjjb/jeb/info.html.

One of the more recent problems in the field of operational research is the p-next center

problem (pNCP). The p-next center problem was presented in 2015 in [4] as an extension

of the p-center problem [8]. It is defined as locating p out of n centers to minimize the

maximum sum of the distance from user to the closest center and the distance between that

center and its closest center. It is formally defined over an undirected weighted graph G =

(V, E), where V is the set of all nodes and E is the set of branches of the graph. The shortest

distance between the nodes i and j is represented as d(i, j).

𝑝𝑁𝐶𝑃(𝑉, 𝐸) = 𝑚𝑖𝑛
𝑃⊂𝑉
|𝑃|=𝑝

𝑚𝑎𝑥
𝑖∈𝑉

{𝑚𝑖𝑛
𝑗∈𝑃

𝑑(𝑖, 𝑗) + 𝑚𝑖𝑛
𝑘∈𝑃

𝑘≠𝑗′∈𝑎𝑟𝑔𝑚𝑖𝑛
𝑗∈𝑃

𝑑(𝑖,𝑗)

𝑑(𝑗′, 𝑘)} (1)

Together with the definition of the pNCP, the paper [4] also presents several exact

mathematical models that can be used to solve smaller problems. Also, the authors show

in [4] that the pNCP is an NP-hard problem. The first heuristic algorithms for solving the

p-next center problem were proposed by Lopez-Sanchez et al. in [5]. The authors present

the GRASP and VNS implementations and the hybrid version as a combination of these

two algorithms. The first algorithm, applied to larger instances of the p-next center

problem, is the “Filtered variable neighborhood search method for the p-next center

problem” [7] from 2021. Afterward, an improved implementation of the same VNS

framework [6] was presented, which is currently best performing in solving the p-next

center problem. All these methods and algorithms were tested on the OR-Library test set

initially intended for the p-median problem. The test set contains 40 test instances with 100

to 900 nodes and p values between 5 and 200.

This paper provides exact solutions to larger test instances of the p-next center problem

from the OR-Library test set. The solutions can be used to evaluate and compare different

algorithms for solving the p-next center problem. To this end, in the next chapter, we first

present the algorithm used to solve the pNCP. In the third chapter, we give a table of the

obtained results of the algorithm executions on the OR-Library test set, i.e., the exact

solutions to p-next center problems represented by the aforementioned test set. Finally, in

Chapter 4, we conclude the paper with a brief summary and announcement of future work.

http://people.brunel.ac.uk/~mastjjb/jeb/info.html

D. Ristić et al. / Exact Solutions of Some OR-Library Test 477

2. ALGORITHM

In this paper, we introduce an algorithm which might identify exact solutions to the p-

next center problem. The algorithm is built on a variable neighborhoods search (VNS)

metaheuristic. VNS is presented in the 1997 by Mladenović and Hansen [9] as a generic

method for building search algorithms. Starting from a predefined current solution, the

basis of VNS implementation is systematic change of the searched solution and a local

search of the current solution with the aim of finding a local optimum. The incumbent

solution is the best solution found so far. The change of the solution, i.e., the next current

solution is selected as a random solution from the Nk neighborhood of the previously

searched solution. The Nk neighborhood presents the set of solutions generated by

replacing exactly k elements of the considered solution with new elements that were

previously not contained in the solution. If the local search from so randomly selected

solution finds no better solution than the currently incumbent solution, the k value increases

by 1, but if after increasing becomes greater than predefined maximum value kmax, then

resets to1. Otherwise, if the better solution is found, k is reset to 1. A detailed explanation

of the basic variable neighborhood search method can be found in [9].

An efficient implementation of the VNS method for solving the p-next center problem

is given in [6]. The algorithm from that paper, applied to the OR-Library test set, found so

far the best-known solutions to the p-next center problem. However, it is a simple heuristic

algorithm that cannot guarantee the optimality of its solution. In this paper, we present a

modification of the algorithm from [6] capable of recognizing whether the found solutions

to particular instances of the p-next center problem are globally optimal.

In the paper [6], it is explained that the algorithm iteratively improves the current

solution, i.e., in each of the local search iterations it tries to find a better solution than the

current one. It is noticed that the function value in the case of the p-next center problem

corresponds to the maximum sum of the user's distance to the closest center and the

distance between that center and the center closest to it. The user corresponding to the

maximum distance is called the critical user. The center closest to a user is the reference

center, and the center closest to it is the backup center. The essence of the local search

phase [6] is replacing one of the centers of the current solution with a new one so that the

function value corresponding to the critical user is decreased. The critical user needs to be

allocated a new reference center, closer than the previous one, or a new backup center

closer to the reference center. In this way, the function value for the critical user is reduced,

but the improvement of the current solution and the solution optimality is not guaranteed.

The algorithm we propose in this paper expands the solution [6] and guarantees the

optimality of the new solution in the N1 neighborhood of the current solution, though at the

expense of the time complexity of the algorithm, and thus the time it takes to find a

solution. To present the complete algorithm, we take Figure 1 and the example from [6],

which we later expand with the explanation and illustration in Figure 2. So, let us first look

at the example of the p-next center problem with n = 15 users and p = 3 centers as given

in the following figures.

Based on Figure 1, the current solution to the p-next center problem with n = 15 users

and p = 3 centers contains three reference center 2, 5 and 11. The critical user is node uc =

8. To improve the current solution, we can look for a new reference center closer to critical

user 8 (within circle C1 if there is already a center within radius 𝑑(8, 5) + 𝑑(5, 2) −

D. Ristić et al. / Exact Solutions of Some OR-Library Test 478

𝑑(8, 𝑣) around the new center 𝑣, e.g., center 10) or a new backup center closer to the

reference center 5 (inside circle C2). On the other hand, if there is another center at the

same distance as the reference center 5 (on circle C1), we can look for a new backup center

with a distance to that center closer than that of the respective backup center to the previous

reference center.

Figure 1: Example of the p-next center problem with n = 15 and p = 3; the current solution is P =

{2, 5, 11} and the critical user uc = 8

Let us denote the reference center of the critical user as the critical center pc, and its

backup center as 𝑝𝑐
∗. If pc, i.e., center 5, is closed, there are several other potential ways to

decrease the function value of the current solution. Based on Figure 2, we can find a new

reference or backup center closer to center 2 in the area A1. As center 2, denoted by p’, is

the second closest center to the critical user and the radius of the area A1 is 𝑑(8, 5) +
𝑑(5, 2) − 𝑑(8, 2), the new function value for the user uc after opening the center in the

area A1 is certainly lower than the previous value 𝑑(8, 5) + 𝑑(5, 2). On the other hand, if

there is at least one other center in the area A1 apart from center 2, it is enough to close the

pc, and after opening any center not closer to the critical user than center p’, the current

solution will potentially be improved. Similarly, any center p at the same distance from the

critical user as the center p’ (on the outer circle A2) is a potentially new reference center if

the newly-added (not closer to the critical user) or any already existing center is located

within a radius of 𝑑(8, 5) + 𝑑(5, 2) − 𝑑(8, 𝑝) around the center p. Also, it is necessary to

consider all centers in the area A2, since each of them is potentially a new reference center

v. If there is at least one center within the radius of 𝑑(𝑢𝑐, 𝑝𝑐) + 𝑑(𝑝𝑐 , 𝑝𝑐
∗) − 𝑑(𝑢𝑐, 𝑣) around

the new center v, v becomes the new reference center of the critical user and the function

value decreases.

Considering the above, we find the center that needs to be added to the current solution

to reduce the function value corresponding to the critical user. In other words, we filter out

potentially new centers so that only those that reduce the value of the function

corresponding to the critical user are considered. Although we do not reduce algorithm

complexity in the worst case, we narrow the search scope and accelerate the convergence

towards the local optimum by filtering potential solutions. However, opening a new center

is not enough to make a new solution better than the current one. Whether it will be better

D. Ristić et al. / Exact Solutions of Some OR-Library Test 479

depends on other users who will lose some of their centers in the new solution. It may

happen that some of the users, who are not a critical user in the previous solution, are

allocated new centers so that the function value is greater than the previous value

corresponding to the critical user. Therefore, it is necessary to optimally choose the center

to be closed so that the new objective function value is as low as possible. The method that

optimally identifies the center to be closed is explained in detail in [6]. The implementation

is also given in Appendix 1, presenting complete pseudocode.

Figure 2: Example of the p-next center problem with n = 15 and p = 3; the current solution is P =

{2, 5, 11}; the critical user uc = 8 and the critical center pc = 5 is going to be closed

This paper focuses on extending the algorithm from [6], which allows recognizing

optimal solutions. To this end, we first present a property based on which we further

implement this modification.

Property 1: Let 𝑢𝑐 be the critical user, 𝑝𝑐 its reference center, 𝑝𝑐
′ its second-closest center

and 𝑐1(𝑣) the closest center to the user 𝑣 (𝑣 ∊ 𝑉) in the current solution 𝑃. Then, if 𝑑(𝑢, 𝑣)
represents the shortest distance between the 𝑢 and 𝑣 nodes and there is a better solution in

the neighborhood 𝑁1(𝑃) than the current solution 𝑃, at least one of the following

propositions must be true:

(i) the new center 𝑐𝑖𝑛 is not farther from the critical user than the center 𝑝𝑐

(𝑑(𝑐𝑖𝑛 , 𝑢𝑐) ≤ 𝑑(𝑝𝑐 , 𝑢𝑐)) and 𝑑(𝑢𝑐 , 𝑐𝑖𝑛) + 𝑑(𝑐𝑖𝑛 , 𝑐1(𝑐𝑖𝑛)) < 𝑑(𝑢𝑐, 𝑝𝑐) + 𝑑(𝑝𝑐 , 𝑐1(𝑝𝑐))
(circle C1 in Figure 1),

(ii) the new center 𝑐𝑖𝑛 is not closer to the critical user than the center 𝑝𝑐 (𝑑(𝑐𝑖𝑛 , 𝑢𝑐) ≥
𝑑(𝑝𝑐 , 𝑢𝑐)), there is a center 𝑝 (𝑝 ∊ 𝑃, including 𝑝𝑐) such that it is at the same distance from

the critical user as the center 𝑝𝑐 (𝑑(𝑝, 𝑢𝑐) = 𝑑(𝑝𝑐, 𝑢𝑐)) and 𝑑(𝑝, 𝑐𝑖𝑛) < 𝑑(𝑝𝑐 , 𝑐1(𝑝𝑐)),

(iii) the center 𝑝𝑐 is deleted, the new center 𝑐𝑖𝑛 is not farther from the critical user than

the center 𝑝𝑐
′ (area A2 in Figure 2: 𝑑(𝑐𝑖𝑛 , 𝑢𝑐) ≤ 𝑑(𝑝𝑐

′ , 𝑢𝑐)) and there is a center 𝑝 (𝑝 ∊ 𝑃

and 𝑝 ≠ 𝑝𝑐) so that 𝑑(𝑢𝑐 , 𝑐𝑖𝑛) + 𝑑(𝑐𝑖𝑛 , 𝑝) < 𝑑(𝑢𝑐 , 𝑝𝑐) + 𝑑(𝑝𝑐 , 𝑐1(𝑝𝑐)),

(iv) the center 𝑝𝑐 is deleted, the new center 𝑐𝑖𝑛 is not closer to the critical user than

the center 𝑝𝑐
′ (𝑑(𝑐𝑖𝑛 , 𝑢𝑐) ≥ 𝑑(𝑝𝑐

′ , 𝑢𝑐)) and there are centers 𝑝𝑟 and 𝑝𝑏 (𝑝𝑟 ∊ 𝑃, 𝑝𝑏 ∊ 𝑃 ∪
{𝑐𝑖𝑛} and 𝑝𝑟 ≠ 𝑝𝑏 ≠ 𝑝𝑐) so that 𝑑(𝑝𝑟 , 𝑢𝑐) = 𝑑(𝑝𝑐

′ , 𝑢𝑐) and 𝑑(𝑢𝑐 , 𝑝𝑟) + 𝑑(𝑝𝑟 , 𝑝𝑏) <

𝑑(𝑢𝑐, 𝑝𝑐) + 𝑑(𝑝𝑐 , 𝑐1(𝑝𝑐)) (such as area A1 in Figure 2).

D. Ristić et al. / Exact Solutions of Some OR-Library Test 480

Proof. The objective function value is determined by the sum of the distances to the centers

allocated to the critical user: 𝑓(𝑃) = 𝑑(𝑢𝑐 , 𝑝𝑐) + 𝑑(𝑝𝑐 , 𝑐1(𝑝𝑐)). So that the new solution

from the neighborhood 𝑁1(𝑃) would be better than the current solution 𝑃, a new reference

or/and a backup center must be allocated to the critical user 𝑢𝑐. If the closest center 𝑝𝑐
remains open in a new solution, one of these centers must be the new center 𝑐𝑖𝑛. Let us

consider cases when the center 𝑝𝑐 is deleted and when it is not deleted:

1) Reference center 𝑝𝑐 is not deleted. Suppose none of the propositions (i) and (ii)

are true. The new center 𝑐𝑖𝑛 can be found inside the circle C1, on the circular arc C1 and

outside the circle C1 (see Figure 1).

 If the new center is inside the circle, it will be the closest to the critical user 𝑢𝑐,
i.e., the new reference center of the user 𝑢𝑐. Since (i) is not true, it holds that 𝑑(𝑢𝑐 , 𝑐𝑖𝑛) +

𝑑(𝑐𝑖𝑛 , 𝑐1(𝑐𝑖𝑛)) ≥ 𝑓(𝑃), which is in contradiction with the fact that the new solution is

better than the current solution 𝑃.

 In case that 𝑐𝑖𝑛 is on the circular arc C1, the user 𝑢𝑐 can keep the same reference

center 𝑝𝑐 or get a new one, either 𝑐𝑖𝑛 or any of centers 𝑝 ∊ 𝑃 that are at the same distance

from 𝑢𝑐 as the center 𝑝𝑐. Since (i) and (ii) are not true, it holds that 𝑑(𝑢𝑐 , 𝑐𝑖𝑛) +

𝑑(𝑐𝑖𝑛 , 𝑐1(𝑐𝑖𝑛)) ≥ 𝑓(𝑃), as well as for all other centers 𝑝 located on the circular arc C1

(𝑑(𝑢𝑐 , 𝑝) = 𝑑(𝑢𝑐 , 𝑝𝑐)), including 𝑝𝑐, that 𝑑(𝑢𝑐 , 𝑝) + 𝑑(𝑝, 𝑐𝑖𝑛) ≥ 𝑓(𝑃). Therefore, by

allocating the center 𝑐𝑖𝑛 to the critical user, either as a new reference or backup center, the

objective function value is not improved.

 When the new center 𝑐𝑖𝑛 is outside the circle C1, the reference center of the

critical user can remain 𝑝𝑐 or become one of the centers 𝑝 ∊ 𝑃 that are at the same distance

from 𝑢𝑐 as the center 𝑝𝑐. Since (ii) is not true, for each of the centers 𝑝 located on the

circular arc C1 (including 𝑝𝑐), it holds that 𝑑(𝑢𝑐 , 𝑝) + 𝑑(𝑝, 𝑐𝑖𝑛) ≥ 𝑓(𝑃). Therefore, by

allocating the new backup center 𝑐𝑖𝑛 to the critical user, the objective function value is not

improved.

2) Reference center 𝑝𝑐 is deleted. Let us assume that propositions (iii) and (iv) are

not true. The new center 𝑐𝑖𝑛 can be found inside the area A2, on the outer circular arc A2

and outside this area (see Figure 2).

 If the center 𝑐𝑖𝑛 is placed inside the inner circular arc A2, the correctness of the

property can be shown similarly as in the first case from 1).

 Anyway, if the new center 𝑐𝑖𝑛 is within the area A2, it will be the closest to the

critical user 𝑢𝑐, i.e., the new reference center of the user 𝑢𝑐. Let the center 𝑝 be the new

backup of the center 𝑐𝑖𝑛, i.e., 𝑝 = 𝑐1(𝑐𝑖𝑛) providing 𝑐1(𝑐𝑖𝑛) ≠ 𝑝𝑐, and otherwise 𝑝 is the

second-closest center of the user 𝑐𝑖𝑛 in the solution 𝑃. Since (iii) is not true, it holds that

𝑑(𝑢𝑐, 𝑐𝑖𝑛) + 𝑑(𝑐𝑖𝑛 , 𝑝) ≥ 𝑓(𝑃), which is in contradiction with the fact that the new solution

is better than the current solution 𝑃.

 In case that 𝑐𝑖𝑛 is on the outer circular arc A2, the user 𝑢𝑐 as a new reference

center gets one of the centers 𝑝 ∊ 𝑃 ∪ {𝑐𝑖𝑛} that are located at the same distance from 𝑢𝑐
as the center 𝑝𝑐

′ , including 𝑝𝑐
′ and 𝑐𝑖𝑛. Let the center 𝑝′ be the backup of the center 𝑝 in the

solution 𝑃 ∪ {𝑐𝑖𝑛}\{𝑝𝑐}. Since (iii) and (iv) are not true, for each center 𝑝 (including 𝑐𝑖𝑛),

it holds that 𝑑(𝑢𝑐, 𝑝) + 𝑑(𝑝, 𝑝
′) ≥ 𝑓(𝑃), which is again in contradiction with the fact that

a better solution is found.

 When the new center 𝑐𝑖𝑛 is outside the outer arc of the area A2, the user 𝑢𝑐 as a

new reference center gets one of the centers 𝑝 ∊ 𝑃 that are at the same distance from 𝑢𝑐 as

D. Ristić et al. / Exact Solutions of Some OR-Library Test 481

the center 𝑝𝑐
′ , including 𝑝𝑐

′ . Let the center 𝑝′ be the backup of the center 𝑝 in the solution

𝑃 ∪ {𝑐𝑖𝑛}\{𝑝𝑐}. Since (iv) is not true, for each center 𝑝, it holds that 𝑑(𝑢𝑐 , 𝑝) + 𝑑(𝑝, 𝑝
′) ≥

𝑓(𝑃). Therefore, the objective function value is not improved.

The reference center 𝑝𝑐 can remain open or be closed in a new solution from the 𝑁1(𝑃)
neighborhood. The new center 𝑐𝑖𝑛 can be found inside the circle C1, outside the circle or

on the circular arc C1, and also on the outer circular arc A2, inside the area or outside the

area A2. Therefore, according to 1) and 2), it follows that the property is correct.

The following property enables us to recognize the exact solutions to particular

instances of the p-next center problem.

Property 2: Let the critical user 𝑢𝑐 be also the center included in the current solution 𝑃,

and 𝑐1(𝑢𝑐) its closest center in the solution 𝑃, (𝑢𝑐 ∈ 𝑃, 𝑐1(𝑢𝑐) ∈ 𝑃 and 𝑐1(𝑢𝑐) ≠ 𝑢𝑐).
Then, if in the set of potentially new centers there is not any center 𝑐𝑖𝑛 (𝑐𝑖𝑛 ∉ 𝑃) that

is closer to the critical user 𝑢𝑐 than the closest center 𝑐1(𝑢𝑐), the current solution 𝑃 is the

optimal solution for the p-next center problem.

Proof. Let 𝑓(𝑃) be the objective function value in the current solution 𝑃, and 𝑓(𝑢𝑖) the

function value for the user 𝑢𝑖. In addition, 𝑑(𝑢𝑖 , 𝑢𝑗) represents the shortest distance

between the 𝑢𝑖 and 𝑢𝑗 nodes. Then, it holds that:

𝑓(𝑃) = 𝑚𝑎𝑥
𝑖=1,…,𝑛

𝑓(𝑢𝑖) = 𝑓(𝑢𝑐) = 𝑑(𝑢𝑐 , 𝑢𝑐) + 𝑑(𝑢𝑐, 𝑐1(𝑢𝑐)) = 𝑑(𝑢𝑐, 𝑐1(𝑢𝑐)). (2)

The objective function value is determined by the function value for the critical

user. Therefore, in order to reduce the objective function value, it is necessary to include

at least one new center 𝑐𝑖𝑛 into the current solution, so that:

𝑑(𝑢𝑐 , 𝑐𝑖𝑛) < 𝑓(𝑃), (3)

i.e.,

𝑑(𝑢𝑐 , 𝑐𝑖𝑛) < 𝑑(𝑢𝑐, 𝑐1(𝑢𝑐)) (4)

If it is not possible to find a new center 𝑐𝑖𝑛 that satisfies inequality (4), it means that it is

not possible to improve the current solution, i.e., the current solution is the optimal solution

to the p-next center problem. ■

Recall that in the local search phase of the VNS implementation, we try to reduce the

objective function value by replacing one of the current solution (P) centers with a new

center 𝑐𝑖𝑛 (𝑐𝑖𝑛 ∉ 𝑃). We narrow the search scope only to centers that potentially improve

the current solution, i.e., reduce the function value for the critical user uc. Based on

Property 1, we implement a procedure (Algorithm 1) that certainly checks whether it is

possible to improve the current solution by opening a new center.

The algorithm assumes that the current solution P represents the first p elements of the

array xcur, and the other users are n - p elements from the end of the same array, where n is

the number of users. Additionally, the presented algorithm uses the following structures:

 dist(u, v) - the shortest distance between the nodes u and v,

 c1(u) - the closest center to the user u in the current solution,

 c2(u) - the second-closest center to the user u in the current solution.

Algorithm 1: Checking whether there is a better solution if cin is opened as a new center

D. Ristić et al. / Exact Solutions of Some OR-Library Test 482

ExistsRelaxedDistance(xcur, c1, c2, uc, cin)

pc = c1(uc)

f = dist(uc, pc) + dist(pc, c1(pc))

**Property 1(i):

If dist(cin, uc) ≤ dist(pc, uc) and dist(uc, cin) + dist(cin, c1(cin)) < f

 Return True

End If

**Property 1(ii):

If dist(pc, cin) < dist(pc, c1(pc))

 Return True

End If

**Property 1(ii):

If dist(c2(uc), uc) = dist(pc, uc)

 For Each pr ∊ {xcur(1), …, xcur(p)} \ {pc}
 If dist(uc, pc) = dist(uc, pr) and dist(pr, cin) < dist(pc, c1(pc))

 Return True

 End If

 End For Each

End If

**Property 1(iii) – pc is deleted:

If dist(cin, uc) ≤ dist(c2(uc), uc)

 p = c1(cin) if c1(cin) ≠ pc else c2(cin)

 If dist(uc, cin) + dist(cin, p) < f

 Return True

 End If

End If

**Property 1(iv) – pc is deleted:

If dist(c2(uc), uc) ≤ dist(cin, uc)

 For Each pr ∊ {xcur(1), …, xcur(p)} \ {pc}
 If dist(uc, pr) = dist(uc, c2(uc))

 If dist(uc, pr) + dist(pr, cin) < f

 Return True

 End If

 pb = c1(pr) if c1(pr) ≠ pc else c2(pr)

 If dist(uc, pr) + dist(pr, pb) < f

 Return True

 End If

 End If

 End For Each

End If

Return False.

Based on Property 2, we propose a modification of the VNS algorithm from [6], capable

of recognizing in some cases exact solutions to the p-next center problem. The idea is to

check whether the critical user is one of the current solution centers, and if it is, to proceed

with the local search phase only if there is at least one center that potentially improves the

current solution. If not, the execution stops and the algorithm identifies the current solution

as the global optimum (Algorithm 2). The algorithm execution is time-limited by the value

of parameter tmax.

D. Ristić et al. / Exact Solutions of Some OR-Library Test 483

Algorithm 2: Shaking procedure for the p-next center problem

VariableNeighborhoodSearch(kmax, tmax)

**Initialization: Randomly initialize xopt;

according to xopt initialize arrays c1 and c2, fopt, uc;

copy initial solution into the current one, i.e., copy fopt, xopt, c1, c2

and uc into fcur, xcur, c1’, c2’ and uc’, respectively.

Repeat the Main step until the stopping condition is met (time ≤ tmax)

Main step:

 k ← 1

 While k ≤ kmax

 If uc’ is center

 cin ← find center from {xcur(p + 1), …, xcur(n)}

 where d(uc’, center) < d(uc’, c1’(uc’))

 If cin is not found

 the optimal solution has been found

 Return {xopt(1), …, xopt(p)}, fopt

 End If

 End If

 Shaking operator:

 generate a solution at random from kth neighborhood

 For Each j = 1, ..., k

 Take center to be inserted (cin)

if ExistsRelaxedDistance(xcur, c1’, c2’, uc’, xcur(cin))

 Find center to be deleted (cout) at random

 Update xcur, c1’ and c2’, i.e., execute:

xcur(cin) ↔ xcur(cout)

Update(xcur, c1’, c2’)

 Update fcur and uc’ according to xcur, c1’ and c2’

 End For Each

 Local search:

 If any potentially better solution found

 xcur, c1’, c2’, uc’, fcur ← LocalSearchVertexSubstitution(xcur,

 c1’, c2’, uc’, fcur)

 Move or not:

 If fcur ≤ fopt

 save current solution as the optimal; return to N1

 xopt ← xcur; fopt ← fcur; uc ← uc’; c1 ← c1’; c2 ← c2’

 k ← 1

 Else

 reject the new solution; change the neighborhood

 xcur ← xopt; fcur ← fopt; uc’ ← uc; c1’ ← c1; c2’ ← c2

 k ← k + 1

 End If

 End If

 End While

Return {xopt(1), …, xopt(p)}, fopt.

In the local search phase, in order to accelerate the convergence towards the local

optimum, potential centers are filtered out based on the call of the Exists Relaxed Distance

procedure. It is obvious that the complexity of the Exists Relaxed Distance affects the local

search execution time, as presented in the following properties.

D. Ristić et al. / Exact Solutions of Some OR-Library Test 484

Property 3: The time complexity of the Move algorithm (Algorithm 3 in Appendix 1) is

𝑂(𝑛 + 𝑝2).

Proof. Let:

 𝑃 = {𝑝1, 𝑝2, … , 𝑝𝑝} – be the current solution to the p-next center problem,

 𝑉 = {𝑣1, 𝑣2, … , 𝑣𝑛} – be the set of all users,

 𝑃′ = 𝑃 ∪ {𝑐𝑖𝑛}, 𝑐𝑖𝑛 ∈ 𝑉\𝑃 – be the solution that is obtained by adding a center 𝑐𝑖𝑛

to the current solution,

 𝑃𝑖 = 𝑃
′\{𝑝𝑖} = 𝑃 ∪ {𝑐𝑖𝑛}\{𝑝𝑖}, 𝑝𝑖 ∈ 𝑃 – be the solution that is obtained by

deleting the center 𝑝𝑖 from the solution 𝑃′,

 𝑟(𝑝𝑖 , 𝑝𝑗), 𝑝𝑖 ∈ 𝑃
′, 𝑝𝑗 ∈ 𝑃

′ and 𝑝𝑖 ≠ 𝑝𝑗 – be the maximum function value among

all users to whom centers (𝑝𝑖 , 𝑝𝑗) are allocated as the reference and backup center

in the solution 𝑃′,
 𝑧(𝑝𝑖), 𝑝𝑖 ∈ 𝑃 – be the maximum objective function value (after closing center 𝑝𝑖)

taking into account all users to whom the center 𝑝𝑖 was allocated either as a

reference or backup center and deleted from the solution 𝑃′,

 𝑟𝑐𝑋(𝑣𝑗), 𝑗 = 1,… , 𝑛 – be the reference center for the user 𝑣𝑗 in the solution 𝑋 ∈
{𝑃′, 𝑃𝑖},

 𝑐1𝑋(𝑣𝑗), 𝑗 = 1,… , 𝑛 – be the closest center to the user/center 𝑣𝑗 in the solution 𝑋 ∈
{𝑃, 𝑃′, 𝑃𝑖},

 𝑐2𝑋(𝑣𝑗), 𝑗 = 1,… , 𝑛 – be the second closest center to the user/center 𝑣𝑗 in the

solution 𝑋 ∈ {𝑃, 𝑃′},
 𝑑(𝑢, 𝑣) – be the shortest distance between the 𝑢 and 𝑣 nodes.

Let us first consider the set of centers 𝑃′, i.e., the case when the new center 𝑐𝑖𝑛 is included

in the current solution 𝑃, without any center being closed. For each 𝑣𝑖 ∈ 𝑉, in the solution

𝑃′ applies:

𝑐1𝑃′(𝑣𝑖) = {

𝑐𝑖𝑛 , 𝑖𝑓 𝑐𝑛𝑑𝐶𝑃1(𝑣𝑖) ∨ (𝑐𝑛𝑑𝐶𝑃2(𝑣𝑖) ∧ 𝑐𝑛𝑑𝐶𝑃3(𝑣𝑖))

𝑐1𝑃(𝑣𝑖), 𝑖𝑓 𝑐𝑛𝑑𝐶𝑃4(𝑣𝑖) ∨ (𝑐𝑛𝑑𝐶𝑃5(𝑣𝑖) ∧ 𝑐𝑛𝑑𝐶𝑃6(𝑣𝑖))

𝑐2𝑃(𝑣𝑖), 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

, (5)

where:

𝑐𝑛𝑑𝐶𝑃1(𝑣𝑖) = 𝑑(𝑣𝑖 , 𝑐𝑖𝑛) < 𝑑(𝑣𝑖 , 𝑐1𝑃(𝑣𝑖)),

𝑐𝑛𝑑𝐶𝑃2(𝑣𝑖) =

[𝑑(𝑣𝑖 , 𝑐𝑖𝑛) = 𝑑(𝑣𝑖 , 𝑐1𝑃(𝑣𝑖))] ∧ 𝑑(𝑐𝑖𝑛 , 𝑐1𝑃(𝑐𝑖𝑛)) <

𝑚𝑖𝑛 {𝑑 (𝑐1𝑃(𝑣𝑖), 𝑐1𝑃(𝑐1𝑃(𝑣𝑖))) , 𝑑(𝑐1𝑃(𝑣𝑖), 𝑐𝑖𝑛)},

𝑐𝑛𝑑𝐶𝑃3(𝑣𝑖) =

𝑑(𝑣𝑖 , 𝑐𝑖𝑛) < 𝑑(𝑣𝑖 , 𝑐2𝑃(𝑣𝑖)) ∨ 𝑑(𝑐𝑖𝑛 , 𝑐1𝑃(𝑐𝑖𝑛)) <

𝑚𝑖𝑛 {𝑑 (𝑐2𝑃(𝑣𝑖), 𝑐1𝑃(𝑐2𝑃(𝑣𝑖))) , (𝑐2𝑃(𝑣𝑖), 𝑐𝑖𝑛)},

𝑐𝑛𝑑𝐶𝑃4(𝑣𝑖) = 𝑑(𝑣𝑖 , 𝑐1𝑃(𝑣𝑖)) < 𝑑(𝑣𝑖 , 𝑐2𝑃(𝑣𝑖)),

D. Ristić et al. / Exact Solutions of Some OR-Library Test 485

𝑐𝑛𝑑𝐶𝑃5(𝑣𝑖) = [𝑑(𝑣𝑖 , 𝑐1𝑃(𝑣𝑖)) = 𝑑(𝑣𝑖 , 𝑐2𝑃(𝑣𝑖))],

𝑐𝑛𝑑𝐶𝑃6(𝑣𝑖) =

𝑚𝑖𝑛 {𝑑 (𝑐1𝑃(𝑣𝑖), 𝑐1𝑃(𝑐1𝑃(𝑣𝑖))) , 𝑑(𝑐1𝑃(𝑣𝑖), 𝑐𝑖𝑛)} ≤

𝑚𝑖𝑛 {𝑑 (𝑐2𝑃(𝑣𝑖), 𝑐1𝑃(𝑐2𝑃(𝑣𝑖))) , (𝑐2𝑃(𝑣𝑖), 𝑐𝑖𝑛)}.

Then:

𝑟𝑐𝑃′(𝑣𝑖) = {
𝑐1𝑃′(𝑣𝑖), 𝑣𝑖 ∉ 𝑃

′

𝑣𝑖 , 𝑣𝑖 ∈ 𝑃
′ (6)

Let us assume that:

𝑐1𝑃′(𝑣𝑖) = 𝑐𝑖𝑛, then:

𝑐2𝑃′
′ (𝑣𝑖) = {

𝑐1𝑃(𝑣𝑖), 𝑐𝑛𝑑𝐶𝑃1
′(𝑣𝑖) ∨ (𝑐𝑛𝑑𝐶𝑃2

′(𝑣𝑖) ∧ 𝑐𝑛𝑑𝐶𝑃3
′(𝑣𝑖))

𝑐2𝑃(𝑣𝑖), 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
, (7)

where:

𝑐𝑛𝑑𝐶𝑃1
′(𝑣𝑖) = 𝑑(𝑣𝑖 , 𝑐1𝑃(𝑣𝑖)) < 𝑑(𝑣𝑖 , 𝑐2𝑃(𝑣𝑖)),

𝑐𝑛𝑑𝐶𝑃2
′(𝑣𝑖) = [𝑑(𝑣𝑖 , 𝑐1𝑃(𝑣𝑖)) = 𝑑(𝑣𝑖 , 𝑐2𝑃(𝑣𝑖))],

𝑐𝑛𝑑𝐶𝑃3
′(𝑣𝑖) =

𝑚𝑖𝑛 {𝑑 (𝑐1𝑃(𝑣𝑖), 𝑐1𝑃(𝑐1𝑃(𝑣𝑖))) , 𝑑(𝑐1𝑃(𝑣𝑖), 𝑐𝑖𝑛)} ≤

𝑚𝑖𝑛 {𝑑 (𝑐2𝑃(𝑣𝑖), 𝑐1𝑃(𝑐2𝑃(𝑣𝑖))) , (𝑐2𝑃(𝑣𝑖), 𝑐𝑖𝑛)}.

1) 𝑐1𝑃′(𝑣𝑖) = 𝑐1𝑃(𝑣𝑖):

𝑐2𝑃′
′′ (𝑣𝑖) = {

𝑐𝑖𝑛 , 𝑐𝑛𝑑𝐶𝑃1
′′(𝑣𝑖) ∨ 𝑐𝑛𝑑𝐶𝑃2

′′(𝑣𝑖)

𝑐2𝑃(𝑣𝑖), 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
, (8)

where:

𝑐𝑛𝑑𝐶𝑃1
′′(𝑣𝑖) = 𝑑(𝑣𝑖 , 𝑐𝑖𝑛) < 𝑑(𝑣𝑖 , 𝑐2𝑃(𝑣𝑖)),

𝑐𝑛𝑑𝐶𝑃2
′′(𝑣𝑖) =

[𝑑(𝑣𝑖 , 𝑐𝑖𝑛) = 𝑑(𝑣𝑖 , 𝑐2𝑃(𝑣𝑖))] ∧ 𝑑(𝑐𝑖𝑛 , 𝑐1𝑃(𝑐𝑖𝑛)) <

𝑚𝑖𝑛 {𝑑 (𝑐2𝑃(𝑣𝑖), 𝑐1𝑃(𝑐2𝑃(𝑣𝑖))) , (𝑐2𝑃(𝑣𝑖), 𝑐𝑖𝑛)}.

2) 𝑐1𝑃′(𝑣𝑖) = 𝑐2𝑃(𝑣𝑖):

𝑐2𝑃′
′′′(𝑣𝑖) = {

𝑐𝑖𝑛 , 𝑐𝑛𝑑𝐶𝑃1
′′′(𝑣𝑖) ∧ 𝑐𝑛𝑑𝐶𝑃2

′′′(𝑣𝑖)

𝑐1𝑃(𝑣𝑖), 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
, (9)

where:

𝑐𝑛𝑑𝐶𝑃1
′′′(𝑣𝑖) = [𝑑(𝑣𝑖 , 𝑐𝑖𝑛) = 𝑑(𝑣𝑖 , 𝑐1𝑃(𝑣𝑖))],

D. Ristić et al. / Exact Solutions of Some OR-Library Test 486

𝑐𝑛𝑑𝐶𝑃2
′′′(𝑣𝑖) = 𝑑(𝑐𝑖𝑛 , 𝑐1𝑃(𝑐𝑖𝑛)) <

𝑚𝑖𝑛 {𝑑 (𝑐1𝑃(𝑣𝑖), 𝑐1𝑃(𝑐1𝑃(𝑣𝑖))) , (𝑐1𝑃(𝑣𝑖), 𝑐𝑖𝑛)}.

From (7), (8) and (9), it follows that:

𝑐2𝑃′(𝑣𝑖) = {

𝑐2𝑃′
′ (𝑣𝑖), 𝑐1𝑃′(𝑣𝑖) = 𝑐𝑖𝑛

𝑐2𝑃′
′′ (𝑣𝑖), 𝑐1𝑃′(𝑣𝑖) = 𝑐1𝑃(𝑣𝑖)

𝑐2𝑃′
′′′(𝑣𝑖), 𝑐1𝑃′(𝑣𝑖) = 𝑐2𝑃(𝑣𝑖)

 (10)

Based on the previous expressions, it follows that:

𝑟 (𝑝𝑗 , 𝑐1𝑃′(𝑝𝑗)) = 𝑚𝑎𝑥
𝑣𝑖∈V

{𝑑(𝑣𝑖 , 𝑝𝑗) | 𝑝𝑗 = 𝑟𝑐𝑃′(𝑣𝑖)} + 𝑑 (𝑝𝑗, 𝑐1𝑃′(𝑝𝑗)) (11)

Let us now consider the set 𝑃𝑖 , i.e., the solution obtained when the center 𝑝𝑖 is excluded

from the set 𝑃′. Comparing the solutions 𝑃′ and 𝑃𝑖 , the set of users 𝑉 is divided into two

disjoint subsets:

 𝑉𝑖
′, users that in the solution 𝑃𝑖 keep their pair of centers from the solution 𝑃′:

𝑧′(𝑝𝑖) = 0, (12)

 𝑉𝑖
′′, users that lose their reference and/or backup center from the solution 𝑃′ after

closing the center 𝑝𝑖:

𝑧′′(𝑝𝑖) = 𝑚𝑎𝑥
𝑣𝑗∈𝑉𝑖

′′
{𝑑 (𝑣𝑗 , 𝑟𝑐𝑃𝑖(𝑣𝑖)) + 𝑑 (𝑟𝑐𝑃𝑖(𝑣𝑖), 𝑐1𝑃𝑖 (𝑟𝑐𝑃𝑖(𝑣𝑖)))} (13)

From (12) and (13), it follows:

𝑧(𝑝𝑖) = 𝑚𝑎𝑥{𝑧′(𝑝𝑖), 𝑧
′′(𝑝𝑖)} = 𝑧′′(𝑝𝑖) = 𝑚𝑎𝑥

𝑣𝑗∈𝑉𝑖
′′
{𝑑 (𝑣𝑗 , 𝑟𝑐𝑃𝑖(𝑣𝑖)) +

𝑑 (𝑟𝑐𝑃𝑖(𝑣𝑖), 𝑐1𝑃𝑖 (𝑟𝑐𝑃𝑖(𝑣𝑖)))} (14)

Also, for each 𝑣𝑖 ∈ 𝑉, in the solution 𝑃𝑖 , it holds that:

𝑐1𝑃𝑖(𝑣𝑖) =

{
𝑐1𝑃′(𝑣𝑖), 𝑐𝑛𝑑𝐶𝑃1

𝑖𝑣(𝑣𝑖) ∨ (𝑐𝑛𝑑𝐶𝑃2
𝑖𝑣(𝑣𝑖) ∧ (𝑐𝑛𝑑𝐶𝑃3

𝑖𝑣(𝑣𝑖) ∨ 𝑐𝑛𝑑𝐶𝑃4
𝑖𝑣(𝑣𝑖)))

𝑐2𝑃′(𝑣𝑖), 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
, (15)

where:

𝑐𝑛𝑑𝐶𝑃1
𝑖𝑣(𝑣𝑖) = [𝑐2𝑃′(𝑣𝑖) = 𝑝𝑖],

𝑐𝑛𝑑𝐶𝑃2
𝑖𝑣(𝑣𝑖) = 𝑐1𝑃′(𝑣𝑖) ≠ 𝑝𝑖 ,

𝑐𝑛𝑑𝐶𝑃3
𝑖𝑣(𝑣𝑖) = 𝑑(𝑣𝑖 , 𝑐1𝑃′(𝑣𝑖)) < 𝑑(𝑣𝑖 , 𝑐2𝑃′(𝑣𝑖)),

𝑐𝑛𝑑𝐶𝑃4
𝑖𝑣(𝑣𝑖) = 𝑑 (𝑐1𝑃′(𝑣𝑖), 𝑏𝑐𝑃𝑖(𝑐1𝑃′(𝑣𝑖))) < 𝑑 (𝑐2𝑃′(𝑣𝑖), 𝑏𝑐𝑃𝑖(𝑐2𝑃′(𝑣𝑖))) ,

𝑏𝑐𝑃𝑖(𝑐) = {
𝑐1𝑃′(𝑐), 𝑐1𝑃′(𝑐) ≠ 𝑝𝑖
𝑐2𝑃′(𝑐), 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

, 𝑐 ∈ {𝑐1𝑃′(𝑣𝑖), 𝑐2𝑃′(𝑣𝑖)}.

D. Ristić et al. / Exact Solutions of Some OR-Library Test 487

Then:

𝑟𝑐𝑃𝑖(𝑣𝑖) = {
𝑐1𝑃𝑖(𝑣𝑖), 𝑣𝑖 ∉ 𝑃𝑖
𝑣𝑖 , 𝑣𝑖 ∈ 𝑃𝑖

 (16)

Finally, based on the previous expressions, we present Best deletion as follows:

𝑓(𝑃(𝑏𝑒𝑠𝑡)) = 𝑚𝑖𝑛
𝑖=1,…,𝑝

𝑓(𝑃𝑖)

= 𝑚𝑖𝑛
𝑖=1,…,𝑝

{𝑚𝑎𝑥
𝑣𝑗∈𝑉

{𝑑 (𝑣𝑗 , 𝑟𝑐𝑃𝑖(𝑣𝑗)) + 𝑑 (𝑟𝑐𝑃𝑖(𝑣𝑗), 𝑐1𝑃𝑖 (𝑟𝑐𝑃𝑖(𝑣𝑗)))}}

= 𝑚𝑖𝑛
𝑖=1,…,𝑝

{ 𝑚𝑎𝑥
𝑣𝑗∈(𝑉𝑖

′∪𝑉𝑖
′′)
{𝑑 (𝑣𝑗 , 𝑟𝑐𝑃𝑖(𝑣𝑗)) + 𝑑 (𝑟𝑐𝑃𝑖(𝑣𝑗), 𝑐1𝑃𝑖 (𝑟𝑐𝑃𝑖(𝑣𝑗)))}}

= 𝑚𝑖𝑛
𝑖=1,…,𝑝

{

𝑚𝑎𝑥

{

 𝑚𝑎𝑥
𝑣𝑗∈𝑉𝑖

′
{𝑑 (𝑣𝑗 , 𝑟𝑐𝑃𝑖(𝑣𝑖)) + 𝑑 (𝑟𝑐𝑃𝑖(𝑣𝑖), 𝑐1𝑃𝑖 (𝑟𝑐𝑃𝑖(𝑣𝑖)))} ,

𝑚𝑎𝑥
𝑣𝑗∈𝑉𝑖

′′
{𝑑 (𝑣𝑗 , 𝑟𝑐𝑃𝑖(𝑣𝑖)) + 𝑑 (𝑟𝑐𝑃𝑖(𝑣𝑖), 𝑐1𝑃𝑖 (𝑟𝑐𝑃𝑖(𝑣𝑖)))}}

}

= 𝑚𝑖𝑛
𝑖=1,…,𝑝

{

𝑚𝑎𝑥 { 𝑚𝑎𝑥
𝑝𝑗∈𝑃∪{𝑐𝑖𝑛}∖{𝑝𝑖}

𝑐1𝑃′(𝑝𝑗)≠𝑝𝑖

{𝑟 (𝑝𝑗, 𝑐1𝑃′(𝑝𝑗))} , 𝑧(𝑝𝑖)}

}

= 𝑚𝑖𝑛
𝑝𝑖∈𝑃

{

𝑚𝑎𝑥 {𝑧(𝑝𝑖), 𝑚𝑎𝑥
𝑝𝑗∈𝑃∪{𝑐𝑖𝑛}∖{𝑝𝑖}

𝑐1𝑃′(𝑝𝑗)≠𝑝𝑖

{𝑟 (𝑝𝑗 , 𝑐1𝑃′(𝑝𝑗))}}

}

. (17)

The last expression leads to the procedure given in the Best deletion step in Algorithm

3.5 (Appendix 1). It follows from (5), (6), (15) and (16) that 𝑐1𝑋(𝑣𝑖) and 𝑟𝑐𝑋(𝑣𝑖), where

𝑋 ∈ {𝑃′, 𝑃𝑖}, are found in 𝑂(1) time. Based on (11) and (14), it is simple to notice that r

and z values can be found in 𝑂(𝑛) time. From (17), the Best deletion step is executed in

𝑂(𝑝2), so the time complexity of the Move procedure is 𝑂(𝑛 + 𝑝2). ■

Property 4: The time complexity of a single iteration of the Local Search Vertex

Substitution algorithm (Algorithm 5 in Appendix 1) is 𝑂(𝑛2 + 𝑝2𝑛) in the worst case.

Proof. In order to determine the time complexity of an iteration of the Local Search Vertex

Substitution algorithm, it is first necessary to determine the complexity of the other

procedures. According to Property 3, the time complexity of the Move procedure is 𝑂(𝑛 +
𝑝2). The Update procedure (Algorithm 4 in Appendix 1) updates the elements of arrays c1

and c2 for each of the n users and potential p reference centers, so that the time complexity

is 𝑂(𝑝𝑛). The time complexity of the Exists Relaxed Distance procedure is 𝑂(𝑝). The

Local Search Vertex Substitution algorithm in the worst case uses Exists Relaxed Distance

and Move procedures n - p times and Update procedure once, so the worst-case time

complexity is 𝑂(𝑛2 + 𝑝2𝑛) + 𝑂(𝑝𝑛) + 𝑂(𝑛) ≈ 𝑂(𝑛2 + 𝑝2𝑛). ■

D. Ristić et al. / Exact Solutions of Some OR-Library Test 488

3. RESULTS

The algorithm is implemented in the C++ programming language and all tests were

performed on an Intel Core i7-8700K (3.7GHz) CPU with 32 GB RAM. It was performed

20 times on each test instance from the OR-Library test set, always starting with a different

initial solution. Different combinations of parameters kmax = p/2, kmax = p and tmax = n and

tmax = 2n were tested. It turned out that the results were slightly better with higher values

of the kmax parameter. On the other hand, the algorithm found the best solution well before

the execution time limit expired. Therefore, we decided to present the results only for kmax

= p and tmax = n seconds. The results are presented in the following tables.

Table 1 shows the results obtained for each instance from the OR-Library set. The first

column of the table contains the name of the instance. The next three columns give the

value p (number of centers), n (number of users) and “Best Know Value”, i.e., the best

solution known in the literature. In the “Best Found Value” column, we show the value of

the best solution the algorithm found in 20 executions. The “Time” (or time-to-target)

column shows the average time in seconds it took to find the best solution for the first time.

“Time” is not the total execution time. The algorithm is executed until the time limit

expires, i.e., for n seconds, or until it identifies a globally optimal solution. The “#Best

Known” column gives the number of times the algorithm found the best known solution in

20 executions. We also give the percentage deviation of the best found solution compared

to the best known solution in the “Gap” column. As the best known solution, we take the

best solution found by the algorithm from [6]. The percentage gap is calculated as
𝐵𝑒𝑠𝑡 𝑓𝑜𝑢𝑛𝑑 − 𝐵𝑒𝑠𝑡 𝑘𝑛𝑜𝑤𝑛

𝐵𝑒𝑠𝑡 𝑘𝑛𝑜𝑤𝑛
∗ 100. Finally, the last column “Exact Value” shows whether the

exact solution has been found.

Table 1: Results of the algorithm for OR-Library test instances

 p n Best Known

Value

Best Found

Value

Time #Best

Known

Gap
(best found-

best known)

/best known

*100

Exact

Value

pmed1 5 100 166 166 0.10 20 0.00

pmed2 10 100 135 135 1.34 20 0.00

pmed3 10 100 151 151 3.00 20 0.00

pmed4 20 100 118 118 5.85 20 0.00

pmed5 33 100 85 85 0.76 16 0.00

pmed6 5 200 107 107 6.60 20 0.00

pmed7 10 200 84 84 35.75 15 0.00

pmed8 20 200 81 84 7.73 0 3.70

pmed9 40 200 71 71 12.46 16 0.00

D. Ristić et al. / Exact Solutions of Some OR-Library Test 489

pmed10 67 200 70 70 0.79 20 0.00

pmed11 5 300 70 70 2.26 19 0.00

pmed12 10 300 72 72 2.49 14 0.00

pmed13 30 300 47 47 59.69 1 0.00

pmed14 60 300 60 60 13.36 20 0.00

pmed15 100 300 44 44 68.38 14 0.00

pmed16 5 400 54 54 86.95 19 0.00

pmed17 10 400 46 47 23.68 0 2.17

pmed18 40 400 50 50 26.76 17 0.00

pmed19 80 400 32 37 250.07 0 15.63

pmed20 133 400 40 40 222.64 13 0.00

pmed21 5 500 48 48 51.18 15 0.00

pmed22 10 500 49 49 22.45 3 0.00

pmed23 50 500 31 37 209.20 0 19.35

pmed24 100 500 33 33 317.23 2 0.00

pmed25 167 500 44 44 29.03 20 0.00

pmed26 5 600 47 47 55.67 16 0.00

pmed27 10 600 38 38 210.91 2 0.00

pmed28 60 600 57 57 2.79 20 0.00

pmed29 120 600 36 36 158.65 20 0.00

pmed30 200 600 40 40 32.45 20 0.00

pmed31 5 700 35 35 30.10 16 0.00

pmed32 10 700 72 72 4.17 20 0.00

pmed33 70 700 22 28 406.79 0 27.27

pmed34 140 700 41 41 12.86 20 0.00

pmed35 5 800 36 36 24.75 5 0.00

pmed36 10 800 42 42 12.77 20 0.00

D. Ristić et al. / Exact Solutions of Some OR-Library Test 490

pmed37 80 800 33 33 176.91 20 0.00

pmed38 5 900 40 40 13.81 18 0.00

pmed39 10 900 74 74 9.06 20 0.00

pmed40 90 900 23 25 517.58 0 8.70

 Average: 78.23s 13.53 1.92% Total:

19

Table 1 shows that the proposed algorithm is not as efficient as algorithm [6]. It found

the best known solution in 13.53 out of 20 executions on average. The algorithm from [6]

is 1.92% more successful. On the other hand, the algorithm was able to identify optimal

solutions for 19 of the 40 instances, as indicated in the last column of the table. In any case,

there are 6 instances for which the best known solution has not been found. Therefore, we

decided to execute the algorithm once more time but now with the best known solutions as

the initial ones. The obtained results are presented in the following table. The table is

expanded with a column containing the number of branches (m) of the graph which

represents the test instance.

Table 2: Exact results for OR-Library test instances

 p n m Time Exact Value

pmed5 33 100 200 0.01 85

pmed9 40 200 800 0.04 71

pmed10 67 200 800 0.04 70

pmed12 10 300 1800 0.23 72

pmed14 60 300 1800 0.25 60

pmed15 100 300 1800 0.14 44

pmed18 40 400 3200 0.08 50

pmed19 80 400 3200 0.29 32

pmed20 133 400 3200 0.52 40

pmed24 100 500 5000 1.02 33

pmed25 167 500 5000 0.65 44

pmed28 60 600 7200 1.95 57

pmed29 120 600 7200 1.98 36

D. Ristić et al. / Exact Solutions of Some OR-Library Test 491

pmed30 200 600 7200 1.93 40

pmed32 10 700 9800 3.18 72

pmed33 70 700 9800 3.25 22

pmed34 140 700 9800 3.23 41

pmed36 10 800 12800 4.80 42

pmed37 80 800 12800 1.10 33

pmed38 5 900 16200 7.20 40

pmed39 10 900 16200 7.02 74

pmed40 90 900 16200 0.99 23

Average: 73.86 536.36 6909.01 1.81s Total: 22

Table 2 shows the results of the algorithm execution only for test instances that have

been exactly solved. The algorithm was executed once for each OR-Library test instance

with the same parameter values (kmax = p and tmax = n seconds) and the best known solutions

as the initial solutions. The table shows that the algorithm was able to identify optimal

solutions for 22 out of 40 instances. It is important to note that mostly larger instances are

exactly solved. The average p, n and m values of exactly solved instances are 73.86, 536.36

and 6909.01, respectively.

4. CONCLUSION

The paper deals with identifying exact solutions of the p-next center problem instances

presented by OR-Library [1] data set, initially intended for testing solutions to the p-

median problem. The OR-Library platform for test set distribution has proven to be

applicable and generally accepted among researchers for testing and comparing the

efficiency of algorithms in various fields of the operational research and combinatorial

optimization. After the p-next center [4] was introduced in 2015 as a new NP-hard

problem, all so far proposed methods and algorithms which solve this problem have been

tested on the “p-median” OR-Library test set. Therefore, it is vital to offer exact solutions

for this data set, and especially for larger instances of problems that cannot be solved by

exact mathematical models.

The solution to the p-next center problem is to locate p centers in order to minimize the

maximum distance among n users to the closest center plus the distance between that center

and the center closest to it. In the paper, we use a heuristic algorithm based on the variable

neighborhood search method to solve the problem. The existing algorithm for solving the

p-next center problem from [6] has been modified so that it is able to recognize some of

the globally optimal solutions. Executed over the OR-Library test set, the algorithm turned

out to be less efficient than the original algorithm [6], but was able to identify optimal

D. Ristić et al. / Exact Solutions of Some OR-Library Test 492

solutions for 22 out of 40 instances. These solutions are mostly examples of larger

instances of the problem.

The proposed algorithm for the p-next center problem showed 55% success in

identifying the exact solutions of the OR-Library test set. However, it would be a challenge

to try to increase the success rate in future works, either by reducing time complexity as in

algorithm [6] and/or tracking search history and, based on previous solutions, reducing the

cardinality of a set of new potentially better solutions.

Funding. The research has been partially supported by the Serbian Ministry of Science,

Innovations, and Technological Development, Agreement No. 451-03-66/2024-

03/200029.

REFERENCES

[1] J. E. Beasley, “OR-Library: distributing test problems by electronic mail,” Journal of the

operational research society, vol. 41(11), pp. 1069–1072, 1990.

[2] N. Mladenovic, M. Labbé and P. Hansen, “Solving the p-center problem with tabu search and

variable neighborhood search,” Networks, vol. 42(1), pp. 48–64, 2003.

[3] P. Hansen and N. Mladenovic, “Variable neighborhood search for the p-median,” Location

Science, vol. 5(4), pp. 207-226, 1997.

[4] M. Albareda-Sambola, Y. Hinojosa, A. Marín and J. Puerto, “When centers can fail: a close

second opportunity,” Computers and Operations Research, vol. 62, pp. 145–156, 2015.

[5] A. D. López-Sánchez, J. Sánchez-Oro and A. G. Hernández-Díaz, “GRASP and VNS for

solving the p-next center problem,” Computers and Operations Research, vol. 104, pp. 295-

303, 2019.

[6] D. Ristic, N. Mladenovic, M. Ratli, R. Todosijevic and D. Urosevic, “Auxiliary data structures

and techniques to speed up solving of the p-next center problem: A VNS heuristic,” Applied

Soft Computing, 2023.

[7] D. Ristic, N. Mladenovic, R. Todosijevic and D. Urosevic, “Filtered variable neighborhood

search method for the p-next center problem,” International Journal for Traffic and Transport

Engineering, vol. 11(2), pp. 294 – 309, 2021.

[8] S. L. Hakimi, “Optimum distribution of switching centers in a communication network and

some related graph theoretic problems,” Operations Research, vol. 13(3), pp. 462-475, 1965.

[9] N. Mladenovic and P. Hansen, “Variable neighborhood search,” Computers and Operations

Research, vol. 24(11), pp. 1097–1100, 1997.

APPENDIX 1

Appendix 1 presents the pseudocode of the algorithm for solving the p-next center

problem in its entirety. The code is taken from [6] with modification of Exists Relaxed

Distance and Variable Neighborhood Search procedures to potentially identify the

obtained solution as the globally optimal solution to the problem.

The algorithm in order to efficiently calculate the objective function value uses the

arrays of the closest and second-closest centers: c1 and c2. Also, the following auxiliary

structures are used to find the optimal center for deletion during the local search phase:

• r(pi, pj) - the maximum value of the pNCP function in the current solution, taking

into account all users with pi as a reference and pj as a backup center and vice versa,

D. Ristić et al. / Exact Solutions of Some OR-Library Test 493

• z(pi) - the maximum value of the pNCP function among all users to whom center pi

was allocated as a reference or backup center in the current solution, but after center

pi was deleted from the solution.

The solution is represented by an array xcur so that the first p elements of the array

contain the current solution. The remaining n - p elements from the end of the array, where

n is the number of users, represent only the users in the current solution. Algorithm 3

describes the Move procedure, which based on the input parameters xcur, cin, c1 and c2

creates the r and z structures and returns a new function value fcur and center cout, which

should be replaced by center cin, where cin and cout represent the indexes of the centers in

the array xcur. The Update procedure (Algorithm 4) updates the arrays of centers c1 and c2

based on the new current solution xcur. Additionally, the presented algorithms use the

following functions:

• nc1(v, in, c1, c2) - returns the references (closest) center of the user v. If the centers

c1(v) and c2(v) are equally distant from the user v, the center with closer backup

center has the advantage. The new center in can also be a backup center;

• nc2(v, in, c1, c2) - returns the backup center for the user v,

• nc1Dist(v, p, c1) - returns the function value for the user v and reference center p,

• nc2_1Dist(v, in, c1, c2) - returns a new function value for the user v after its

reference center is replaced by the new center in in the current solution,

• nc2_2Dist(v, in, c1, c2) - returns a new function value for the user v after its backup

center is replaced by the new center in in the current solution,

• dist(v, u) - returns the length of the shortest path between the nodes v and u.

To simplify the pseudocode, in the following algorithms, we omit the c1 and c2 arrays

from the list of arguments when calling the aforementioned functions.

Algorithm 3: 1-interchange move in the context of the p-next center problem

Move(xcur, cin, c1, c2)

Initialization:

Set z(xcur(i)) ← 0 for all i = 1, ..., p

Set r(xcur(i), xcur(j)) ← 0 for all i = 1, ..., p and j = i+1, ..., p, cin

Add center:

in ← xcur(cin)

For Each user = xcur(1), …, xcur(n)

 **calculate function value if center in is a new reference or

 backup center [see Algorithm 3.1]**

 fin, center ← GetFunctionValueForNewCentarIn(user, in, c1, c2)

 **calculate function value if center in is a new reference or

 backup center and “center” is deleted [see Algorithm 3.2]**

 fout← GetBackupFunctionValueForNewCentarIn(user, in, center, c1, c2)

 **calculate function value if center in is not a new reference

 center [see Algorithm 3.3]**

 fcur ← GetFunctionValue(user, in, c1, c2)

 Update r and z values:

 If fin ≤ fcur

 center in is either a new reference or backup center

 r(in, center) ← r(center, in) ← max(fin, r(in, center))

 **calculate function value if center in is not a new reference

 center and “center” is deleted [see Algorithm 3.4]**

D. Ristić et al. / Exact Solutions of Some OR-Library Test 494

 f’out ← GetBackupFunctionValue(user, in, center, c1, c2)

 in case that “center” is deleted

 z(center) ← max(min(fout, f’out), z(center))

 Else

 **nc1(user, in) is the reference center; c1(nc1(user, in)) is

 the backup center**

 r(nc1(user, in), c1(nc1(user, in))) ← max(fcur, r(nc1(user, in),

 c1(nc1(user, in))))

 in case that the reference center is deleted [Algorithm 3.4]

 f’out ← GetBackupFunctionValue(user, in, nc1(user, in), c1, c2)

 f ← fin if nc1(user, in) ≠ center else fout

 z(nc1(user, in)) ← max(min(f, f’out), z(nc1(user, in)))

 in case that the backup center is deleted [Algorithm 3.4]

 f’’out ← GetBackupFunctionValue(user, in, c1(nc1(user, in)), c1,

 c2)

 f ← fin if c1(nc1(user, in)) ≠ center else fout

 z(c1(nc1(user, in))) ← max(min(f, f’’out), z(c1(nc1(user, in))))

 End If

End For Each

Best deletion:

cout, fcur ← FindBestDeletion(xcur, r, z, cin) [Algorithm 3.5]

Return fcur, cout.

Algorithm 3.1: Calculates function value for the user u and the center in as a new reference

or backup center and also returns counterpart center as a new backup or reference center.

GetFunctionValueForNewCentarIn(u, in, c1, c2)

in as the new reference center

f ← nc1Dist(u, in) if dist(u, in) ≤ dist(u, nc1(u, in)) else ∞

counterpart_center ← c1(in)

in as the new backup center

f’ ← dist(u, nc1(u, in)) + dist(nc1(u, in), in)

 if dist(u, nc1(u, in)) ≤ dist(u, in) else ∞

If f > f’

 f ← f’

 counterpart_center ← nc1(u, in)

End If

Return f, counterpart_center.

Algorithm 3.2: Calculates function value for the user u and in as a new reference or backup

center if the center out is deleted.

GetBackupFunctionValueForNewCentarIn(u, in, out, c1, c2)

**“center” is the closest center (not including in), after center out

 has been deleted**

center ← nc1(u, in) if nc1(u, in) ≠ out else nc2(u, in)

in as the new reference center

If c1(in) ≠ out

 f’ ← nc1Dist(u, in) if dist(u, in) ≤ dist(u, center) else ∞

Else

 f’ ← dist(u, in) + dist(in, c2(in))

 if dist(u, in) ≤ dist(u, center) else ∞

End If

in as the new backup center

D. Ristić et al. / Exact Solutions of Some OR-Library Test 495

f’’ ← dist(u, center) + dist(center, in)

 if dist(u, center) ≤ dist(u, in) else ∞

Return min(f’, f’’).

Algorithm 3.3: Calculates function value for the user u (center in might be a new backup

center). If the center in is the new reference center, it returns infinity.

GetFunctionValue(u, in, c1, c2)

f ← nc1Dist(u, nc1(u, in)) if dist(u, nc1(u, in)) ≤ dist(u, in) else ∞

Return f.

Algorithm 3.4: Calculates function value for the user u if the center out is deleted (center

in might be a new backup center). If the center in is the new reference center, it returns

infinity.

GetBackupFunctionValue(u, in, out, c1, c2)

If out ≠ nc1(u, in) and out ≠ c1(nc1(u, in))

 neither the reference nor the backup center is deleted

 f ← GetFunctionValue(u, in, c1, c2) [Algorithm 3.3]

Else

 If out = nc1(u, in)

 the reference center is deleted

 f ← nc2_1Dist(u, in) if dist(u, nc2(u, in)) ≤ dist(u, in) else ∞

 Else

 the backup center is deleted

 f ←nc2_2Dist(u, in) if dist(u, nc1(u, in)) ≤ dist(u, in) else ∞

 End If

End If

Return f.

Algorithm 3.5: Identifies the center from the current solution, which should be deleted to

minimize the function value. Also, it returns the new objective function value.

FindBestDeletion(xcur, r, z, cin)

f ← ∞

For Each i = {1, ..., p}

 cur ← z(xcur(i))

 For Each j = {1, ..., p} ∪ {cin} \ {i}
 If xcur(i) ≠ c1(xcur(j))

 cur ← max(r(xcur(j), c1(xcur(j))), cur)

 End If

 End For Each

 If f > cur

 f ← cur

 cout ← i

 End If

End For Each

Return cout, f.

As the steps of Algorithm 3 are not so obvious, we give a brief explanation. Note first

that the function value in the current solution extended by the center in = xcur(cin) can be

calculated as the maximum of all r(pi, pj) values, where r(pi, pj) represents the maximum

value of the pNCP function for all users with allocated pi as a reference and pj as a backup

center. After initialization, in the Add center step, taking into account all users, we check

whether the newly-opened center in can be allocated to the user (marked with) “user” as a

new reference or backup center. The function value for the “user” in the new solution is

also calculated. If the new center in becomes a reference or backup center, fin contains the

new pNCP function value related to the “user”. Otherwise, the fin value is ∞. Also, variable

D. Ristić et al. / Exact Solutions of Some OR-Library Test 496

“center” denotes the counterpart center, i.e., the reference center if in becomes the new

backup center and vice versa. It is certain that the newly-added center in will not be closed,

and therefore it is only necessary to handle the case when the “center” is deleted. We also

introduce variable fout to hold the function value for the “user” when the “center” is closed

and in remains allocated to the “user”. The f’out value corresponds to the case when the

center in does not remain allocated to the “user”.

Having calculated the previous values, including the function value for the “user” in

the current solution (fcur), the algorithm continues to update the r and z values. However,

note that the fcur value is ∞ if the center in is the reference center in the new solution.

Providing the new function value fin is better (lower or equal) than fcur, the “user” will be

allocated a new pair of centers (in, center). Therefore, the r(in, center) is updated if its

current value is less than fin (recall that r(pi, pj) contains the maximum value). Also, if the

z(center) value is less than min(fout, f’out), it is updated to this value. The min(fout, f’out) value

corresponds to the new function value in case of potential closure of the “center”.

Otherwise, if fcur is less than fin, the new function value fin is discarded, and the r and z

values are updated based on the previously allocated (reference and backup) centers to the

“user” and in as the potential new backup center. Note that we need to handle cases when

either the reference or backup center is closed, i.e., to update z(the reference center of the

user), z(the backup center of the user) and r(the reference center, the backup center)

values.

Finally, based on the updated r and z values, the center to be closed is determined so

that the new function value is minimized.

Algorithm 4: Updating the closest and the second-closest center

Update(xcur, c1, c2)

For Each user = xcur(1), …, xcur(n)

 c1_dist ← ∞; c1_center ← null

 c2_dist ← ∞; c2_center ← null

 For Each center = xcur(1), ..., xcur(p)

 d ← dist(user, center)

 If d < c1_dist or d = c1_dist and

 dist(center, c1(center)) < dist(c1_center, c1(c1_center))

 c2_center ← c1_center

 c2_dist ← c1_dist

 c1_center ← center

 c1_dist ← d

 Else If d < c2_dist or d = c2_dist and

 dist(center, c1(center)) < dist(c2_center, c1(c2_center))

 c2_center ← center

 c2_dist ← d

 End If

 End For Each

 c1(user) ← c1_center

 c2(user) ← c2_center

End For Each

Return c1, c2.

Algorithm 5 presents the Local Search Vertex Substitution pseudocode. Together with

the c1 and c2 arrays, the algorithm takes the current solution xcur, the critical user uc and

the current function value fcur as input parameters and updates them if it comes to a better

solution. The Exists Relaxed Distance procedure (Algorithm 1) checks whether it is

D. Ristić et al. / Exact Solutions of Some OR-Library Test 497

possible to improve the function value by adding a new center and deleting one of the

centers from the current solution.

Algorithm 5: The vertex substitution local search for the p-next center problem

LocalSearchVertexSubstitution(xcur, c1, c2, uc, fcur)

Main loop:

While True

 f’ ← ∞

 cin ← null; cout ← null

 For Each in = p +1, ..., n

 **Investigate N1(xcur) neighborhood with center xcur(in) as a new

 center and find the best deletion**

 If ExistsRelaxedDistance(xcur, c1, c2, uc, xcur(in))

 f, out ← Move(xcur, in, c1, c2)

 If f < f’

 f’ ← f

 cin ← in

 cout ← out

 End If

 End If

 End For Each

 If fcur ≤ f’

 There is not found improvement in the neighborhood

 Break Main loop

 End If

 xcur(cin) ↔ xcur(cout)

 Update(xcur, c1, c2)

 fcur ← f’

 uc ← select user from {xcur(1), …, xcur(n)}

 where nc1Dist(user, nc1(user, null)) = fcur

End While

Return xcur, uc, fcur.

In the VNS algorithm (Algorithm 2) which yields the solution to the p-next center

problem, after the local search phase, if a better (or equal) solution is found, it will become

the current solution and the search process will be restarted (k = 1). Otherwise, if no better

solution is found, the new solution will be discarded and the search will continue in the (k

+ 1)-th neighborhood of the previous solution. If kmax is exceeded, k value will be reset to

1 before the next main loop iteration. The main step is repeated until the time limit tmax

expires. As a result, the algorithm returns the best solution found during execution. If

during the search process, the critical user becomes the current solution center and it is not

possible to find at least one new center which potentially improves the current solution,

the current solution is identified as the exact solution to the p-next center problem.

