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1. INTRODUCTION

In 2005 I participated in a joint research project for the Belgian government
involving several Belgian universities and a GIS-oriented private company in order
to develop a decision support system for the evaluation and (re)optimization of the
fire fighting services in Belgium, as reported in [1]. During the research discussions
within the team and with several fire fighting actors as well as government officials
many types of covering objectives and constraints were suggested, considered and
tested, mainly using mixed integer linear programming solvers. These fell short on
the one hand due to the sheer size of the problems with almost 20, 000 datapoints
(the highest precision statistical sectors for which detailed data are available),
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which therefore had to be subdivided into 12 subregions (provinces and Brussels
region), and for these subregions on the other hand due to model complexity when
combining, as requested, several types of constraints. It was therefore clear that
flexible heuristic methods were needed.

Around the same period I collaborated with Nenad Mladenović and Dragan
Urošević, extending the variable neighbourhood metaheuristic developed by the
first, see [2]. Convinced about the power and versatility of this method and its
successful application in several kinds of location models (e.g. [3, 4]), I wrote a
proposal for research into a variable neighbourhood approach (VNS) to the kind
of covering problems we faced. By lack of time during the project, and because of
direct availability of another metaheuristic (simulated annealing) my proposal was
abandoned as unmature at that time and it was not rekindled since then. Being
retired now for many years already I do not intend to do so, at least not on my
own.

The present note is a somewhat updated version of this proposal, but remains
just that: totally incomplete and untested, but yet another opportunity for show-
ing the power and flexibility of Nenad’s successful metaheuristic idea. Anyone is
free to pursue these suggestions, but in this case please refer to this note, and feel
free to contact me.

2. GENERAL NOTIONS AND NOTATIONS

In our covering type location problems there is a base set A of things to be
covered (e.g. statistical sectors). There is also a set of potential sites S. Any solu-
tion will consist of a subset C ⊂ S (of Chosen sites) satisfying certain conditions
and/or optimising certain objectives.

Choosing a site s ∈ S implies some fixed costs, described by the function

c : S → R+ : s 7→ cs (1)

This directly extends additively to solutions C ⊂ S in the following evident way:

c(C) :=
∑
s∈C

cs (2)

The simplest case is obtained taking for c the constant cost-function with values
1, leading to c(C) = |C|, i.e. one just counts the number of chosen sites.

As soon as a site s is chosen, this implies that according to certain quality
standards q ∈ Q certain things a ∈ A will be covered by it, as given by the
set Aq(s) ⊂ A. A typical example of a quality standard is the combination of a
distance measure d between sites and things and a threshold distance value tqd > 0:
Aq(s) then consists of all things which may be reached within d-distance tqd from
s:

Aq(s) := { a ∈ A d(s, a) ≤ tqd } (3)
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Different quality standards are then obtained when varying the threshold tqd and/or
the distance measure d.

The most common example in emergency services is when d is a shortest path
time-distance on a network (one might have to consider several such to cope with
dayly/seasonal traffic-variations) and tqd an extraneously fixed maximal allowed
service-time (one might again have to consider several such thresholds, because
different types of risks may require different intervention times, and/or to consider
second-order interventions, etc.). Note that the thresholds might also differ among
things (different levels of protection). Further one frequently encounters additional
regional limitations to coverage, due to administrative regulations.

Other examples where d is rather euclidean distance are the siting of wireless
antennas, drone bases, alarm sirens or water sprinklers.

In many cases, in particular for mixed integer programming formulations (which
will not be discussed here, but see e.g. [5, 6]), it is more convenient to work with
the ‘inverse’ (or dual) covering sets, which carry the same information as the Aq(s),
but organized differently. For each quality q ∈ Q and each thing a ∈ A there is
correspondingly the set Sq(a) of sites which are able to cover a at quality q, defined
as:

Sq(a) = { s ∈ S a ∈ Aq(s) } = { s ∈ S d(s, a) ≤ tqd } (4)

In fact any quality setting q may be represented by its characteristic function,
a 0-1 matrix on the index set A×S, with rows corresponding to things a ∈ A and
columns to sites s ∈ S, and each cell (a, s) containing either 1 or 0 according to
whether a is covered by s at quality q or not. Row a then gives the characteristic
function of Sq(a), while column s gives the characteristic function of Aq(s). Al-
though often used this representation is, however, rather heavy since the matrix
is usually sparse.

To each a ∈ A and quality q one may also attach an attribute, which we will
call q-weights wq(a), which allows to measure how much covering a at quality q
is valued (e.g. in terms of population at home at a, people at work at a, risk of
some incident at a, etc.).

To each solution C ⊂ S we may now associate following sets and values:

� Aq(C) := ∪s∈CAq(s) = { a ∈ A Sq(a) ∩ C ̸= ∅ } the set of things covered
by C at quality q

� w1
q(C) := wq(Aq(C)) =

∑
a∈Aq(C) wq(a) is the total q-weight covered by C

at quality q

More generally, for any integer k > 0, one may associate with C the set of
things covered at least k-times by C at quality q:

Ak
q (C) := { a ∈ A |Sq(a) ∩ C| ≥ k }

and the corresponding k-times covered q-weight

wk
q (C) := wq(A

k
q (C)).
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Note that Aq(C) = A1
q(C), justifying the notation w1

q(C) introduced above.
In practice one will usually be confronted with multiple covering questions only

for very small k, e.g. k ≤ 3.

3. CONSTRAINTS AND OBJECTIVES

3.1. Constraints

Several typical constraints may be considered. The following list covers many
of the proposals found in the literature on covering problems, either by themselves
or combined with others.

3.1.1. Full covering

Full k-tuple q-covering expresses that all things should be covered at least k
times at quality q, or formally

Ak
q (C) = A

3.1.2. Mandatory covering

Mandatory k-tuple q-covering of some given A′ ⊂ A expresses that certain
things (those of A′) must be covered at quality q. Formally

Ak
q (C) ⊃ A′

Full covering is equivalent to mandatory covering of A′ = A.

3.1.3. Mandatory weight covering

Mandatory weight k-tuple q-covering of some given A′ ⊂ A means one requires
that the total q-weight that is k times covered at level q within A′ should be at
least some given value W . Formally

wq(A
k
q (C) ∩A′) ≥ W (5)

The valueW will very often more conveniently be expressed as a percentage p ∈
[0, 1] of the total q-weight of A′: W = pwq(A

′). Choosing p = 100% (and assuming
that weights are always strictly positive) will then be equivalent to mandatory k-
tuple q-covering of A′. Hence this type of constraint encompasses both previous
ones.

3.1.4. Fixed site choices

It may be required that some of the sites F ⊂ S are fixed in advance as to be
chosen. Formally

C ⊃ F

One might be tempted to try to ’simplify’ by getting rid of fixed choices, simply
deleting them from the set of possible sites. But this would call for an in depth
adaptation of all other covering data concerning all things covered by F and it
will also rather mess up the evaluations of covered weights. So I feel this might be
a bad idea. Adding the fixed sites should simply be a first step in any heuristic,
while no c ∈ F should be allowed to be deleted, see section 4.
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3.1.5. Budgets

Budgets express that what is chosen should not be too expensive. But there
may be a single global and/or several regional budgets involved, related to possibly
distinct budgetary aspects (recall that my country Belgium is regionalized in a
quite intricate way).

Letting R be the set of (possibly overlapping) regions to be considered, we may
define the regional possible sites Sr ⊂ S (r ∈ R) and corresponding budgets Br

relative to the costfunction cr defined on Sr. The budget constraints are then

∀r ∈ R : c(C ∩ Sr) ≤ Br (6)

3.1.6. Regional minima and maxima

Political reasons sometimes compell the minimal presence of a number of service
stations within regions, not in terms of covered things (which would be handled
through mandatory weight covering constraints), but rather in terms of chosen
sites. In their simplest form this means specifying minimal numbers nr for each
region r ∈ R and require

|C ∩ Sr| ≥ nr

Clearly taking nr = 0 simply drops any regional minimum requirement on
region r.

Similarly, environmental reasons may impose that within some regions not too
many sites are chosen. This may be handled by a regional budget, using unit costs.

3.1.7. ‘Enough’ and ‘No more’ constraints

We can classify the constraints into two opposing types, akin to upper and
lower bounds.

Enough Mandatory weight constraints (and thus also Full and Mandatory cov-
ering constraints) as well as Fixed site choices and Regional minima all call
for having ‘enough’ sites chosen. More precisely they have the property that
if violated by a choice C any subset of C still violates it, but there always
exists a larger choice C ′ ⊃ C that satisfies it, while (as a consequence) when
satisfied by C any larger C ′ ⊃ C will also satisfy it.

Note that an Enough constraint is non contradictory (i.e. admits valid solu-
tions) if and only if the full choice C = S of all sites satisfies it.

No more Budget constraints (and thus also regional maxima) rather call for re-
ducing the chosen sites: if violated by a choice C any superset of C still
violates it, but there always exists a smaller choice C ′ ⊂ C that satisfies the
constraint; it follows that when satisfied by C any smaller C ′ ⊂ C will also
satisfy it.

Any combination of several (non-contradictory) Enough constraints can simply
be seen as a single Enough constraint and will never lead to a contradiction. Indeed
the union of any family consisting of a feasible choice for each single constraint
will satisfy the combination.
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Combining several No more constraints can in principle also be seen as a single
No more constraint for which the intersection of individual feasible choices will
be feasible. This intersection might be empty though ( i.e. none of the sites is
chosen) which is usually not considered as acceptable.

One should however be aware that Enough constraints may contradict with No
more constraints, in the sense that there simply is no solution at all that satisfies
all constraints. Combining these two kinds of constraints in a same model should
therefore be done carefully. One must make sure that choices C remain that satisfy
them all. A well designed decision support system should be able to warn the user
in the contrary case, but this is not an easy task, and will not be attempted.

3.2. Objectives

Most models will therefore rather consider one of these types of constraints as
an objective, where the left hand side of an Enough constraint is to be maximized,
while the left hand side of a No more constraint is to be minimized.

Typically one wants to cover ‘everything’ or ‘as much as possible’ at ‘affordable’
or ‘least possible’ cost. Thus there are two typical opposing kinds of objectives,
which might be considered separately or simultaneously in a multi-objective way:

Maximising k-tuply q-covered weight:

maxwk
q (C)

Minimising total cost:
min c(C)

When only a single objective is present there should be at least one constraint
of the opposing type present, otherwise the optimal solution would be trivial:
when maximising without No more constraint at optimality all sites will be chosen
(C = S), contrarily when minimising without Enough constraints at optimality
none of the sites will be chosen (C = ∅).

With two (or more) objectives one may distinguish two cases:

� when both ( or all) objectives are of the same kind they are usually treated
in a lexicographic way: they are (totally) ordered by highest preference and
optimized in this sequence as long as there remain several optimal solutions.

� otherwise with opposing objectives we should aim at non-dominance, see
section 4.3.

3.3. Model

A model is a combination of constraints and at least one explicit objective
opposing at least one of the constraints.

We will denote the set of all constraints of our covering model by C with generic
element γ. This is subdivided into the set of Enough constraints E with generic
element ϵ, and the set of No more constraints N with generic element ν.
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For a constraint γ ∈ C = E ∪ N we denote the value at the current solution
C of the left-hand side by lγ(C) and the (fixed) right-hand side by rγ . Note that
typically lγ is increasing, i.e. C ⊂ C ′ =⇒ lγ(C) ≤ lγ(C

′)
An Enough ( resp. No more) constraint ϵ (resp. ν) of inequality (5) ( resp.

(6)) will thus be satisfied at current solution C iff lϵ(C) ≥ rϵ ( resp. lν(C) ≤ rν),
and violated iff lϵ(C) < rϵ ( resp. lν(C) > rν).

A maximization (resp. minimization) objective α (resp. ι) is assumed to
always consist of an expression lα(C) (resp. lι(C)) similar to the left hand side of
inequality (5) ( resp. (6)).

Implicit objective. When no maximization objective is explicitly present we will
assume that in fact there always is the unstated aim to cover the most possible
things at least once at least quality level.

Similarly when no explicit minimization objective is given there always is the
unstated aim to use (choose) the least possible number of sites.

We call these aims implicit objectives.

3.4. A few examples

Let us mention here a few references to seminal work that falls into the de-
scribed framework. In view of the large and fastly growing literature on models of
covering type any attempt at completeness would be an almost impossible task.
Besides most of the recent research nowadays includes additional features (e.g.
[7, 8, 9, 10, 11, 12, 13]. There are several survey papers treating (parts of) this
material which, taken together, give a quite exhaustive picture, see e.g. (chrono-
logically) [14, 15, 16, 17, 6, 18, 19] as well as the recent book [5] entirely devoted
to the subject.

The earliest model is the Set Covering Problem, asking for full covering under
a single quality by a minimum number of sites. It dates back to the 50’s in the
context of graph theory, see [20], and was introduced in emergency location in
[21]. Since there usually are many optimal choices this was extended in [22] to
maximize the number of twice covered things among these optimal solutions, i.e.
two lex-max objectives.

Maximising the covered weight with a given number of sites was first introduced
in [23], and suggested to be combined with mandatory covering of certain sites in
[6] .

Backup coverage models require multiple covering to protect against failures
and/or overflow in sites at the time of call. Ambulance location requiring double
coverage are discussed in [11]. Another kind of application involves location of
sensors that need to be able to localize the precise site of an incident, requiring
detection by at least two sensors on a network, three sensors in planar environment
(triangulation), and four sensors in 3-dimensional space.

The models proposed to the user in our fire fighting DSS for Belgium [1] com-
bined the minimization of the number of chosen sites with a series of mandatory
(single) weight covering objectives with differing characteristics corresponding to
several kinds of incidents.
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4. HEURISTICS

Many kinds of (meta)heuristics have already been applied with success to cer-
tain classical and more involved covering models, e.g. [24, 25, 4, 26, 27, 28, 29, 30,
40]. The aim of this section is to devise a number of easy and sufficiently general
methods to search for ‘good’ solutions, which may be applied in many, if not all,
situations falling in our framework described in section 3 .

4.1. Add and Drop steps

All heuristic ideas proposed in what follows consist of the combination of the
two following basic kind of steps, starting from some initial choice C:

Add i.e. adding a site s ∈ S \C to C, resulting in the new choice C+
s := C ∪{ s }

Drop i.e. deleting a site c ∈ C \ F from C, resulting in the new choice C−
c :=

C \ { c }.

Every heuristic is determined by the initial C, the particular choices of the
added s or dropped c, and the sequence in which these operations are executed.

For a constraint-set Con we say that the current choice C is Con-valid if C
satisfies all constraints of Con, otherwise C is Con-invalid, i.e. C violates at least
one constraint of Con.

Concerning the full validity status of the current choice C we may then distin-
guish the four following situations:

improper i.e. C is both E-invalid and N -invalid

proper E-invalid i.e. C is E-invalid, but N -valid

proper N -invalid i.e. C is E-valid, but N -invalid

feasible i.e. C is both E-valid and N -valid.

Evidently the final solution(s) found should be feasible.
When C is N -invalid any Add step will yield N -invalidity again, while a Drop

step on a E-invalid choice always yields E-invalidity.
It follows that any Add or Drop step on an improper C just yields another im-

proper choice, so will never lead to feasibility. Since all our heuristics are Add/Drop
based, improper choices must therefore be avoided.

If not stated otherwise, in all what follows it will be assumed that C is a proper
(i.e. not improper) choice. Note that any time C is initialized one should therefore
try to make sure it is proper. As soon as some feasible choice is known to exist,
this choice is certainly proper, as well as the extreme choices C = ∅ and C = S.

When C is proper E-invalid we will try to obtain feasibility by way of Add
steps. All Enough constraints that were valid will remain so, while the new chosen
site(s) should be aimed at making the violated Enough constraints valid.

Similarly, when C is proper N -invalid we will try to gain feasibility by way of
Drop steps. This guarantees that the resulting choices remain valid for all already
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valid No more constraints, and should be aimed at making the violated No more
constraints valid.

Feasible choices C might possibly still be improved in view of the objective(s),
so may be used to start a heuristic improvement attempt. This latter may start
by using a series of Add (resp. Drop) steps, thereby possibly leading to violation
of some No more (resp. Enough) constraints (but not to an improper choice set),
which will then need to be brought back to feasibility by another sequence of steps
of opposite type. This back and forth strategy may (need to) be repeated, see
section 4.5.

4.2. Site-choice

For any Add or Drop step a site has to be chosen, an s ∈ S \ C for Adding or
a site c ∈ C for Dropping. One must however make sure that such a step does not
produce an improper choice.

We will call a site s ∈ S \ C addable (to the N -valid choice C) if C+
s is still

proper. This means that C+
s may only become N -invalid in case it has gained

E-validity.
A site c ∈ C \ F is called droppable (from the E-valid choice C) if C−

c is still
proper. In other words, if C−

c has become E-invalid it must at the same time have
become N -vaild.

If there is no addable (droppable) site we say that C is Add- (resp. Drop-)
blocked.

4.2.1. Validity gain evaluation

When an addable site s ∈ S \ C is considered for an Add step to C one may
evaluate a worst case gain in covering validity as follows.

For each ϵ ∈ E that is violated by C (i.e. lϵ(C) < rϵ) we calculate how much s
would contribute to validity when added to C:

gainϵ(s) := min(lϵ(C
+
s ), rϵ)− lϵ(C) ≥ 0

and take the worst case gain in relative terms to what is to be achieved for each
such ϵ

gain(s) := min{ gainϵ(s)

rϵ − lϵ(C)
ϵ ∈ E violated by C }

Note that 0 ≤ gain(s) ≤ 1 (except when C is already E-feasible, and then all gains
are undefined). Reaching the upper bound of 1 indicates that full E-validity would
be gained by adding s. On the other hand gain(s) = 0 only means that at least
one violated E-constraint does not improve.

Similarly, when a droppable c ∈ C \F is considered for being Dropped a worst
case gain in N -validity may be calculated as follows:

For each ν ∈ N that is violated by C (i.e. lν(C) > rν) we calculate how much
c would contribute to validity when dropped from C:

gainν(c) := lν(C)−max(lν(C
−
c ), rν) ≥ 0
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and take the worst case gain in relative terms to what is to be achieved for each
such ν

gain(c) := min{ gainν(c)

lν(C)− rν
ν ∈ N violated by C } (7)

Note again that 0 ≤ gain(c) ≤ 1 (except when C is already N -feasible and gains
are undefined), where reaching the upper bound of 1 indicates that full N -validity
would be gained by Dropping c, while value 0 indicates that at least one violated
N - constraint does not improve.

Note. One might also consider other types of gain evaluations, e.g. average,
median or best case gain replacing min by the average, median or max operator,
but then the just mentioned interpretation of gain = 1 will not hold anymore as
soon as there are more than one Enough (resp. No more) constraints.

4.2.2. Greedy site-choice

A greedy site choice means that we try to make the best possible step towards
feasibility. However, in presence of opposing objective(s) (which might be implicit,
see section 3.3 ), we must take into account that each site choice involves a possibly
different deterioration of these objectives. This may be done in a way similar to
the ‘bang for bucks’ trick for continuous knapsack problems:

� For an Add step we consider all addable sites s ∈ S \ C and choose a site s
which maximizes

gain(s)

max{ lι(C
+
s )− lι(C) ι min objective }

(8)

� For a Drop step we consider all droppable sites c ∈ C \ F and choose a site
c which maximizes

gain(s)

max{ lα(C)− lα(C
−
c ) α max objective }

(9)

Note that there might be (and often will be, in particular with implicit ob-
jective) ties, so that a greedy choice of site is not necessarily unique. Resolving
such ties is most easily done randomly, but better (and only somewhat harder) by
iterated max choice (i.e. for equal first max, take second max, etc.).

4.3. Reduction to smallness

Considering the two objectives mentioned in section 3.2, we say that a solution
C dominates solution C ′ as soon as C covers more weight at less costs, i.e. wk

q (C) ≥
wk

q (C
′) and c(C) ≤ c(C ′) with at least one strict inequality. Clearly in such a case

C is to be preferred to C ′. Therefore we are only really interested in non-dominated
solutions.
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However, it is in general quite hard to check non-dominance exactly. It would
call for solving to optimality some set-covering type combinatorial optimization
problem, which is known to be NP-hard, being an extension of the classical NP-
hard set covering problem [31], thus requiring a mixed binary linear programming
formulation (e.g. using standard tools such as described in [32, 33, 34]) and branch
and bound or other solution techniques that do not perform well for large scale
problems.

We may, however, eliminate certain more easily detected (but much less fre-
quent) cases of dominance using the following simple observations:

� We will call a feasible solution small if no proper subset remains feasible for
all Enough constraints and does not reduce any maximization objective.

� Clearly any solution C that is not small is dominated, so only small solutions
may be non-dominated, so be of possible interest.

� C is quite easily checked to be small. Indeed one only has to check that
dropping any c ∈ C \ F will either invalidate the choice or decrease a max
objective.

� Contrarily, if some c ∈ C \ F exists such that C−
c remains feasible and has

same max objective values, we know that C is not small and the just found
superfluous c may be Dropped.

As a first operation, any non-small solution C may be stepwise reduced to a
small solution, by iterative dropping of a superfluous site c ∈ C, until no such may
be found. This is a fairly easy task that does not require validity gain calculations.

Therefore any solution seriously considered as possibly adequate should un-
dergo this operation.

Note, however, that it is not uniquely defined: there may be several superflu-
ous sites in C, but which may not be all simultaneously dropped without losing
feasibility or max objective value. Therefore different drop-sequences may lead to
different small solutions. In such a case the (possibly implicit) min objective may
guide the dropping choice(s).

4.4. Greedy sequences

A greedy sequence is a series of successive greedy site-choices of same type
(Add or Drop resp.) as long as applicable.

More precisely:

1. Start from some initial solution C. For an Add-sequence C must be proper
E-invalid, resp. for a Drop-sequence proper N -invalid.

2. Repeat successive greedy Add (resp. Drop) steps (see section 4.2.2) as long
as possible.

The end result can be of three kinds: feasible, proper oppositely invalid, or blocked.
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4.5. Local search

Successive back and forth greedy sequences yield a form of local search starting
from some infeasible (but proper) solution C, as follows

1. Apply an appropriate greedy sequence (Add when E-invalid, Drop when N -
invalid).

2. In case the resulting choice is feasible we have obtained a solution, which we
reduce to smallness (section 4.3) and stop.

3. In case the new choice has become valid, but of opposite invalidity the local
search is continued by an opposite greedy sequence.

4. In case of block we are in trouble. If no feasible solution is known as yet,
this situation seems to indicate that the model might be infeasible, but this
conclusion is far from certain and needs further confirmation. Anyway, the
local search terminates here without result.

If in step 3. the same site is uniquely chosen by two successive Add and Drop
steps, the local search would enter an endless loop, so in this exceptional case
one should stop without result. Anyway, just to be certain that the local search
always ends one may limit the number of back and forth steps, and when this limit
is reached terminate without result.

4.6. Greedy construction and destruction

Greedy construction consists of starting with C = ∅, followed by Add steps of
all fixed sites s ∈ F (if present), followed by local search.

Greedy destruction starts with C = S, followed by local search.

4.7. Variable Neighbourhood Search

Variable neighbourhood Search (VNS) methods (see [35, 36, 37]) have been
quite successful for tackling many kinds of location problems (e.g. [4, 38, 39, 40,
41]), along many other optimization problems. They rely on the definition of
neighbourhoods for any solution on several levels of ‘closeness’.

Many variants may be devised based on the basic scheme delined below by
varying the specification details of the elements indicated in italic, each of which
are afterwards discussed separately together with one or some possibilities.

4.7.1. VNS scheme

The basic VNS scheme for optimization is as follows
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� Start at some solution C, and set n = 1.

� Repeat

– Search a bit within some n-th level neighbourhood of C.

– If this produced a better solution, set C to this new solution
and n = 1

– Otherwise increase n

Until some stopping rule is reached.

� The final C (if a feasible one was found) is then exhibited as can-
didate optimal solution. Otherwise the problem is declared to be
infeasible.

Previous scheme is easily adapted tot multiple-objective situations, where the
aim is to produce a list of good candidate nondominated solutions. A provisional
list of currently nondominated solutions is kept, containing all feasible solutions
found that are not dominated by any of the previously inspected feasible solutions.

� Start at some solution C, set List = ∅ and set n = 1.

� Repeat

– Search a bit within some n-th level neighbourhood of C.

– If this produced a feasible solution nondominated by any ele-
ment of the List, set C to this new solution and n = 1. Also
add C to List and delete all elements of the List dominated by
C.

– Otherwise increase n

Until some stopping rule is reached.

� The final List contains all candidate nondominated solutions. This
might still be empty, in which case the problem is declared to be
infeasible.

4.7.2. ‘some solution’

Any feasible solution may best be used as starting solution. This might for
example be some solution found by a greedy construction or destruction.

If no feasible solution is known one may select any random solution at the risk
that it is improper.

4.7.3. ‘n-th level neighbourhood’

We propose the two following types of neighbourhoods. The first type cor-
responds to quite traditional types of neighbourhood used in VNS schemes for
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general combinatorial problems, but totally disregards the particular spatial dis-
tance based setting that underlies location covering problems. The second type
explicitely takes this spatial setting into account, and is probably better suited to
the models considered here. In fact both types may be mixed in a random way,
which might produce even better results, similar to the formulation space idea (see
[42, 43]).

set neighbourhoods

The n-th level set neighbourhood of a solution C ⊂ S consists of all solutions
differing from C by at most n elements:

Nn(C) := { C ′ ⊂ S |C∆C ′| ≤ n }

where ∆ is the symmetric difference defined by C∆C ′ = (C∪C ′)\(C∩C ′) =
(C \ C ′) ∪ (C ′ \ C).

Thus, N1(C) consists of all solutions obtained by dropping a site from C
or by adding a new site to C. N2(C) additionally contains all solutions
obtained by either dropping two sites from C, or adding two new sites to C,
or dropping a site from C and adding another site to C.

A (random) selection in Nn(C) is obtained by (randomly) selecting with
possible repetition n elements of S and among these Dropping all those that
are in C while Adding all the others.

One may also define set neighbourhoods Nℓ,m(C) by specifying separately
that at most ℓ sites may be dropped from C and at most m new ones added
(ℓ stands for ℓess, m for more). In fact this is just a further refinement of
previous neighbourhoods since Nn(C) =

⋃
{ Nℓ,m(C) ℓ+m = n }.

spatial neighbourhoods

When the model includes covering for some quality q defined through a dis-
tance d and threshold tqd as in (3), (4) we may define spatial neighbourhoods
of C as sets of rearrangements of C within some region of d-size governed
by n. More precisely, a n-th level spatial neighbourhood of C consists of
all solutions that differ from C only in sites inside a region of radius e.g. n
times the threshold tqd. Formally:

Nd
n(C) := { C ′ ⊂ S ∃s ∈ S : ∀c ∈ C ′ : d(c, s) > ntqd =⇒ c ∈ C }

A (random) selection in Nd
n(C) consists of choosing a (random) s ∈ S, fixing

all sites c ∈ C with d(c, s) > ntqd and adding a (random) selection out of
{ c ∈ S d(c, s) ≤ ntqd }.

4.7.4. ‘Search a bit’

Any solution in the neighbourhood may be taken as the starting point of local
search. In case of a blocked situation the randomization will hopefully unblock it.

One may decide to try a single random neighbour, or a given number of these.
For small n a complete search of the neighbourhood may be attempted.
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4.7.5. ‘stopping rule’

‘Time is up’ is the usual rule.
Another more natural one, but probably unreachable in large scale situations,

is when n cannot be increased.

5. SOME IMPLEMENTATION CONSIDERATIONS

Since Add and Drop operations are to be used very frequently it is important
to be able to implement them and evaluate their effect efficiently.

This means that one must be able to update rapidly the basic information
pertaining to the evaluation of the covering when performing an Add or Drop step.
This basic information mainly consists of the sets Ak

q (C) and their evaluations

wk
q (C) for all relevant q and k. For greedy steps one must be able to efficiently

choose the best site, so to evaluate all the relevant gains.
Storing additional information may allow to speed up considerably feasibility

testing and gain calculations.
For example, keeping track for each a ∈ A and q ∈ Q of the number of times

Cq(a) that a is covered at quality q by the current site-choice C will be extremely
useful. Adding (Dropping) the site s ∈ S \ C (s ∈ C) calls for a simple updating
of the Cq(a): for each q and a ∈ Aq(s) add (subtract) 1.

This information might even be more important than the Ak
q (C), while allowing

linear time retrieval of these latter sets because of the fact that Cq(a) = |C∩Sq(a)|.
Indeed Cq(a) = 0 if and only if a is not q-covered by C, and otherwise a belongs
to Ak

q (C) exactly for all k ≤ Cq(a). So (without going into all details) the gain of
either Adding s ∈ S \ C or Dropping c ∈ C will have to be updated only at each
such a for which Cq(a) is at the constraint limit.

It view of this it should be worthwhile to investigate in further detail the trade-
off between increase of memory use against flexibility of Add and Drop operations,
as well as which type of datastructures are most efficient.

6. CONCLUDING REMARKS

Other types of constraints may arise in practice, in particular capacities. In-
deed, each thing covered calls for sufficient resources at the covering sites in order
to enable the service expressed by the covering. It might be that limits are imposed
on these resources, possibly rendering some solutions unfeasible. Such constraints
complicate matters considerably, because the relatively simple notion of covering
is then replaced by an allocation question which is nontrivial.

Also most applications will require an allocation rule to the closest chosen site,
in order to maximize the service quality, but this information is not fully available
with the simple covering sets we used here. For that one will have to revert to
the full distance information, which is usually either too voluminous to store in an
easily searchable format, and not immediately reconstructible when not stored.

However, when some sites have been fixed in advance, as often happens in
practice because one seldom can redesign the whole system from scratch, such
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capacities might be defined as supplementary constraints of type discussed higher.
This remains to be investigated, along many other details.

A different, but related type of objective is the optimization of quality, usually
under restriction of a fixed number of chosen sites and a single covering constraint.
With full (single) covering requirement this yields the well-known p-center problem
[44, 5], with full k-tuple covering we obtain the more recently studied k-neighbour
p-center problem, [45]. VNS has been successfully tuned to both such problems
[4, 46]. With mandatory weight covering we obtain an apparently yet unstudied
model, asking for the highest quality at which one may cover at least a given weight
of things by p sites. Strictly speaking, all these models fall outside the scope of
the framework presented here, which is rather aimed at multiple constraint types,
possibly mixing several fixed qualities. However, one possible general solution
approach consists of a binary search among fixed qualities replacing the covering
constraint by a maximal covering-type objective, yielding subproblems of the type
discussed here.
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