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Abstract: Skewed General Variable Neighborhood Search (SGVNS) is shown to be
a powerful and robust methodology for solving vehicle routing problems. In this pa-
per we suggest new SGVNS for solving the multi-compartment vehicle routing problem
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(MCVRP). The problem of multi-compartment vehicle routing is of practical importance
in the petrol and food delivery and waste collection industries. A comparison between
our algorithm and the memetic algorithm and the tabu search is provided. It was clear
that the proposed algorithm is capable of solving the available instances. Skewed General
Variable Neighborhood Search was used because it makes it easy to explore the space
of realizable solutions for MCVRP. As a result, the SGVNS is much faster and more
effective. It is able to solve 50 to 484 customers from the literature.

Keywords: Variable neighbourhood search, vehicle routing problem, multi-compartment

vehicle routing problem.

MSC: 90B85, 90C26.

1. INTRODUCTION

The vehicle routing problem with compartments is concerned with solving the
generalized vehicle routing problem with a homogeneous fleet of vehicles having
several compartments as well as additional constraints on the goods loaded in each
compartment such as incompatibility between different products in a compartment
and between products and compartments. The MCVRP is defined by an undi-
rected graph with a set of nodes N = {0, 1, ..., n} including a depot (node 0) and
a set N ′ of n customers. Each edge (i, j) has a cost cij = cji . The shops in the
depot have a set P = {1, 2, ...,M} of m products, which must be delivered by a
fleet V = {1, 2, ..., V } of identical vehicles with m compartments. The compart-
ment p of each vehicle is dedicated to product p and has a known capacity Qp.
Each customer i has a known demand qip ≤ Qp for each product p , which may
be zero for a product not ordered by the customer. In our version, there is also
a maximum path length L. The formulation of the multi-compartment vehicle
routing problem was proposed by El Fallahi et al. [1].

MinZ =
∑
i,j∈N

∑
k∈V

cijxijk (1)

S/C ∑
i∈N

xijk ≤ 1 ∀j ∈ N ′,∀k ∈ V (2)

∑
i∈N

xijk =
∑
i∈N

xjik ∀j ∈ N ′,∀k ∈ V (3)

∑
i,j∈S

xijk ≤ |S| − 1 ∀S ⊆ N ′, |S| ≥ 2,∀k ∈ V (4)

yjkp ≤
∑
i∈N

xijk ∀j ∈ N ′,∀k ∈ V,∀p ∈ P (5)
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k∈V

yjkp = 1 ∀j ∈ N ′,∀p ∈ P (6)

∑
j∈N ′

yjkpqjp ≤ Qp ∀k ∈ V,∀p ∈ P (7)

∑
i,j∈N

cijxijk ≤ L ∀k ∈ V (8)

xijk ∈ {0, 1} ∀i ∈ N, ∀j ∈ N, i ̸= j,∀k ∈ V (9)

yjkp ∈ {0, 1} ∀j ∈ N ′,∀k ∈ V,∀p ∈ P, qjp ̸= 0 (10)

The binary variables xijk (9) are equal to 1 if and only if the edge (i, j) ( is
crossed by the vehicle k. The binary variables yjkp (10) take the value 1 if and
only if customer j receives the product p from vehicle k. The objective function (1)
is to minimise the total cost of the tours formed. In equation (2), each customer
can be visited at most once by each route. Equation (3) ensures the continuity
of each route: if a vehicle enters node j, it must leave it. Equation (4) presents
classical sub-route elimination constraints. The constraints presented in equation
(5) are zeroing of the variable yjkp for each product p if customer j is not visited
by vehicle k. Each product ordered by a customer is delivered by only one vehi-
cle, thanks to the constraints (6). Constraints (7) and (8) respectively ensure the
non-violation of the compartment capacity and the route length. Like most of the
routing problems considered so far, MCVRP is NP-hard. This class encompasses
the set of problems whose solutions cannot be verified by a polynomial algorithm
as a function of the instance size. The NP-hard [2] class which has numerical
type answers the optimization problems associated with NP-complete decision
problems. Despite several real-life applications, MCVRP has not been studied in
depth. A well-known application, studied by Brown and Graves [3] in 1981 and
Brown et al. [4], is the nationwide shipment of different petroleum products si-
multaneously to gas stations using tankers with isolated compartments. Brown
and Graves [3] introduced a heuristic method to solve this problem while retaining
the need for human intervention during the process. In 1990, Apotheker [5] devel-
oped a comparison between separate waste collection and mixed collection, and in
1995, Jahre [6] studied vehicles with multi-compartments that are also deployed
for the collection of source-separated waste streams where one compartment is
dedicated to rubbish and another compartment to recyclables. Research work also
includes Kaabachi et al. [7] who worked on the MCVRP. Their main objective
of the problem is to minimize the total distance traveled while using a minimum
number of trucks. According to the computational results, the optimization ap-
proach can give the optimal solution only in small instances. For large problem
instances, two algorithms for solving the MCVRP are proposed: a hybrid artificial
bee colony algorithm and a hybrid self-adaptive general variable neighborhood
algorithm. Henke et al. [8] tried to minimize the total distance to be covered
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by the disposal vehicles. To solve this problem in an optimal way, a branch-and-
cut algorithm developed him. Extensive numerical experiments were conducted
to evaluate the algorithm and to better understand the structure of the problem.
Eshtehadi et al. [9] proposed an improved adaptive large neighborhood search
algorithm for the studied routing problem. The computational results highlight
the efficiency of the proposed algorithm in terms of quality and resolution time,
and also provide useful information for urban logistics. Martins et al. [10] work
extends the research on multi-compartment vehicle routing problems (MCVRP)
by tackling a multi-period framework with a product-oriented time window as-
signment. Silvestrin et al. [11] Studied a variant of the vehicle routing problem
that enables multi-compartment vehicles. They proposed a tabu search heuristic
and integrate it with an iterated local search to solve the MCVRP. Ostermeiera’s
et al. [12] paper addresses the problem of routing and selecting single and multi-
compartment vehicles for food distribution. They solved the problem using a large
neighborhood search. Lahiyani et al. [13] proposed an exact branch-and-cut al-
gorithm to solve MCVRP. They evaluated the performance of the algorithm on
real data sets in different transportation scenarios. Reed et al. [14] used the ACS
algorithm that is extended to model the use of multi-compartment vehicles with
curbside waste sorting into separate compartments for glass and paper. Abdulka-
der et al. [15] proposed a hybrid algorithm that combines local search with an
existing ant colony algorithm to solve MCVRP. In this paper, the main idea of the
Variable Neighborhood Search is a systematic change of neighborhoods in a local
search procedure. From an initial solution, a perturbation procedure is performed
by randomly choosing a solution from the first neighborhood. It is followed by
applying an iterative improvement algorithm to improve the initial solution while
minimizing the transport cost. This procedure is repeated as long as a new solu-
tion is found. An experimental study will be presented in the next section. We’ll
also show the neighborhood structures and the method used to solve this problem.

2. APPLICATION OF THE SKEWED GENERAL VARIABLE
NEIGHBORHOOD SEARCH (SGVNS) TO SOLVE THE

MULTI-COMPARTMENT VEHICLE ROUTING PROBLEM
MCVRP

2.1. SGVNS

For the application of the skewed general variable neighborhood search [16] for
the multi-compartment vehicle routing problem, we defined an initial randomly
created solution, four neighborhood structures, the VND algorithm and the local
search associated with the neighborhood structures. We can now elaborate our
skewed general VNS algrithm for the MCVRP.
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Algorithm 1: SGV NS Algorithm

Input:

– The set of neighborhood Nk(k = 1, 2, . . . , kmax) kmax = 4

– Find an initial solution s

Output:

– s∗ ←− s

repeat
k ← 1;
While K ≤ kmax do,

– a random neighbor s′ ∈ Nk(s); /*Shaking*/

– s′′ ← local search(s′)

if f(s′′) ≤ f(s∗) then

– s∗ ← s′′

end

if f(s′′) < (1 + µ ∗ d(s, s′′)) ∗ f(s∗) then ;

– s← s′′;

– k ← 1;

else

– k ← k + 1;

end

end

until a termination condition is met;

return s∗

In this algorithm, we used a parameter µto weight the importance of the dis-
tance between solutions, the µ ∈ ]0, 1[ parameter. The notation d(s, s′′) refers to
a distance between two solutions. Consider two different solutions of size 6 of our
problem: S1 = {d, 1, 2, 3, d} ∪ {d, 4, 5, 6, d} and S2 = {d, 2, 1, 3, d} ∪ {d, 4, 5, 6, d}.
We can represent them differently; each solution will be presented by a vector
that contains the next customer of each visited customer, the solutions S1 and S2

become as follows :

1 2 3 4 5 6 1 2 3 4 5 6
S1 2 3 1 5 6 4 → S2 3 1 2 5 6 4
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We note that there are 3 differences between the two solutions; the distance
d(S1, S2) will be calculated as follows: d(S1, S2) = 3/6 = 1/2. Generally speaking,
the distance between two solutions is the ratio of the difference between the two
solutions and the total number of customers.

2.1.1. Solution representation and initialization

For our problem, a solution consists in determining the set of tours that form
it; this solution is represented by the set of vectors; each representing a tour. Each
vector starts with the depot followed by the customers to visit in order and ends
with the depot. As shown in the figure, that instance composed of 8 customers
and one depot will be represented; we can then distinguish 4 distinct tours.

Figure 1: initial Solution

To solve our problem, we must first start with an initial solution. There are
two ways, either random or with a heuristic. For our case we will generate the
initial solution randomly. The creation of the initial solution is done by randomly
assigning a vehicle for each customer.

2.1.2. Perturbation

In the perturbation phase, we modify the current local optimum to obtain a
new intermediate solution in order to avoid the stopping of this local optimum.
Each time a perturbation is made throughout the skewed general VNS procedure,
a new solution is created. We perturb the solution in the following way ; we select
a vehicle at random and remove a customer already assigned to that vehicle, then
insert him into another vehicle. This random insertion is repeated at least twice.
This kind of movement generates a new solution that gives the possibility to explore
neighbors that have not been explored before.

2.1.3. Evaluation function

To enlarge the neighborhood space of a solution, the capacity and length con-
straints (see constraints (7) and (8) in the proposed formulation) are relaxed. The
capacity and length violations are multiplied by two coefficients α and β respec-
tively and then added to the objective function. The purpose of this penalty is
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to expand the search space by visiting infeasible solutions. The penalty costs of
a tour Rk, which correspond to the overflow of capacity and tour length, can be
defined by the following equations:

penq(Rk) = Max
{
0,

∑
j∈N ′

yjkpqjp −Qp

}
∀k ∈ V,∀p ∈ P (11)

penl(Rk) = Max
{
0,

∑
i,j∈N

cijxijk − L
}
∀k ∈ V (12)

The cost resulting from the new cost function defined below is inspired by the one
proposed by Gendreau et al. [17] for the vehicle routing problem:

F ′(x) = F (x) + αQ(x) + βL(x)

The function F (x) is the cost of solution x, Q(x) is the sum of capacity violations
for all routings, and L(x) denotes the sum of length violations for all routing.
The penalty factors α and β are self-adjusting parameters, initialized to given
values and dynamically changed during the search. The penalty factors α and
β are reduced by a constant after each block of successive solutions meeting the
capacity and routing length constraints, and multiplied by another constant after
each block of successive solutions violating these constraints.

2.2. The Variable Neighborhood Descent method (VND)

the proposed solution of the multi-compartment vehicle routing problem, we
will change the local search previously used in the skewed variable neighborhood
search method algorithm to another method named variable neighborhood descent
which will enable us to better explore the neighborhood of each solution.

2.2.1. VND Algorithm

The variable neighborhood descent method was introduced by Hansen and
Mladenovic [18] as a local search used in the variable neighborhood search method
containing multiple neighborhood structures. The VND aims at iterating the dif-
ferent neighborhood structures used in order to explore the maximum possible
number of neighbors. The different steps of VND will be presented in the follow-
ing Algorithm [19] :
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Algorithm 2: V ND Algorithm

Input:

– The set of neighborhood Nk(k = 1, 2, . . . , kmax) kmax = 4

– Find an initial solution s

– k ← 1

Output:

– s

repeat
While K ≤ kmax do,

– s′ ← local search(Nk, s)

if f(s′) < f(s) then ;

– s← s′

– k ← 1

else

– k ← k + 1;

end

end

until a termination condition is met;

return s

During the implementation of our VND , we then chose to rank the neigh-
borhood structures according to the intensity of their impact on the solution. A
permutation of blocks from two clients is performed, followed by an insertion of
blocks from two clients, ending with the permutation and insertion.

2.2.2. Local Search

A local search method is an iterative process based on two essential elements
[20]: a neighborhood and a procedure exploiting the neighborhood. This method
consists in :
- Starting with any configuration s of X.
- Choosing a neighbor s′ of s such that f(s′) > f(s) and replacing s by s′ and
repeating (2) until (for any neighbor) s′ of s, f(s′) ≥ f(s)(maximization case).
The main advantage of this method is that it is very simple and fast. But the
solutions produced are often of poor quality and of a cost much higher than the
optimal cost [18]. For our local search, we have chosen to stop the search as soon
as the first improvement is obtained in order to reduce the search time and to
enlarge the exploration space of the feasible solutions.
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2.3. Neighborhood structures

The proposed variable neighborhood descent method algorithm is made up of
four neighborhood structures V1, V2, V3 and V4 which are mainly insertions and
permutations. The neighborhood structures V1 and V2 represent the classical
insertion and permutation respectively. Neighborhood structures V3 and V4 are
block insertion and permutation of two customers; they consist in changing the
location of a block of two successive customers in the same route or in two different
routes. All these structures will be represented more explicitly in the following:

2.3.1. Insertion V1

There are two types of insertions, an intra-route insertion and an inter- route
insertion.

Figure 2: Intra-route insertion

This neighborhood structure consists in modifying the order in which the cus-
tomers visit. This is a classic move in routing problems. For example, we can see
in the figure that customer 3 existing in the 3rd position of the routing is inserted
in the 5th position of the same routing.

Figure 3: Inter-route insertion

The associated movement in this type of neighborhood is to remove a customer
from a given routing and insert it into another routing. In the example shown in
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the figure, we have eliminated customer 5 existing in the 5th position of the 1st
routing and inserted it in the 5th position of the 2nd routing.

2.3.2. Permutaion V2

There are two types of permutations, an intra-route permutation and an inter-
route permutation.

Figure 4: Intra-route Permutaion

This neighborhood structure is obtained by permuting the positions of two cus-
tomers present in the same routing. In the example shown in the figure, customer
2 is permuted with customer 5.

Figure 5: Inter-route Permutaion

This neighborhood structure consists in swapping a customer in a given routing
with another customer belonging to another routing. The figure shows us how
customer 5 existing in the 5th position of routing R1 is swapped with customer
11 of the 5th position in routing R2.

2.3.3. Block insertion of two customers V3

There are two different types of block insertions, an intra-route block insertion
and an inter-route block insertion.



A. Arousse, et al. / SGVNS to Solve MCVRP Problem 433

Figure 6: Intra-route block insertion

Block insertion is almost identical with conventional insertion except that mov-
ing one customer is replaced by moving a block of customers that includes two
customers. In the example in the figure, we have eliminated the existing sequence
of customers 3 and 4 between customer 2 and customer 5 and inserted it between
customers 5 and 6 of the same routing while keeping the same customer order.

Figure 7: Inter-route block insertion

2.3.4. Block permutation of two customers V4

Like block insertion, block permutation involves permuting two blocks of cus-
tomers in the same or different routings.
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Figure 8: Intra-route block permutation

In this example of a neighborhood structure, we permute between two blocks
of customers located in the same routing. In the illustration in the figure we
have permuted the sequence of customers 1 and 2 of a given routing with that of
customers 5 and 6 while keeping the order of the customers.

Figure 9: Inter-route block permutation

In this neighborhood structure, the solutions are obtained by permuting a
sequence of customers from one of the routings of the current solution with another
sequence located in another routing. In the Figure, the sequence of customers 4
and 5 of the 1st routing is permuted with the sequence of customers 10 and 11 of
the other routing.

3. COMPUTATIONAL RESULTS

The mentioned algorithm was coded with the C language using a computer with
an Intel Core i5 processor with 3.2 Ghz and 4 GB of RAM. The experimental study
was performed with a collection of instances created by El Fallahi [1] and tested on
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a pentium 4 computer. Twenty well-known instances for VRP were transformed
into two sets of MCVRP instances with m= 2, creating two compartments and
dividing the demand of each customer into two quantities. The first 14 problems
(vrpnc) are due to Christofides and contain 50-199 customers. Instances 6-10, 13
and 14 include a routing length restriction. The last six cases are from Eilon:
their names start with ”E”, followed by the number of customers (76-484). All
of these cases can be downloaded from or at the Beasley library. We tested the
proposed skewed general VNS algorithm on two different scenarios. The first
scenario requires the delivery of customer requests by a single vehicle; the second
enables us to separate the requests provided that each request is fully delivered in
full by a single vehicle. The table summarizes our results. The first and second
columns contain the label of each instance used and its size. The next four columns
contain the best results obtained by El Fallahi [1], either by the memetic algorithm
or by the tabu search, regarding the two scenarios and the associated computation
time. The next four columns respectively list the best results obtained by the
proposed skewed general VNS algorithm and the associated computation time.
The last column summarizes the percentage gain of our results in comparison
with the El Fallahi [1] and Silvestrin [11] results.

We first compare the results of each scenario separately. Starting with the first
scenario of delivering customers without demand segregation, we find that the
skewed general VNS (SGVNS) successfully improved the results of 17 instances
and failed to improve the results of 3 instances, these results are colored in green.
The average improvement rate is 2%. The total execution time was improved with
an improvement rate of 96.25%. We notice that the skewed general VNS solved
the MCVRP well regarding the first scenario and the efficiency of our algorithm
to provide better results in a considerably fast execution time. Regarding the
second scenario, the customers’ requests can be separated, i.e., each customer can
receive its two product requests by two different vehicles. The proposed skewed
general VNS algorithm successfully improved 18 instances with an improvement
rate ranging from 0.04% to 4% and it managed to achieve the same result for the
instance (E076− 08s) with an execution time of 11.7 seconds in comparison with
52.41 seconds for the El Fallahi [1] result, all these results are colored in blue. The
average improvement rate is 1.5%. The total execution time was improved with
an improvement rate of 79.71%. Finally, since both scenarios are generations of
the same MCVRP, we need to discuss all the results together by comparing our
VNS results with the results El Fallahi [1]. Our skewed general VNS Algorithm
successfully improved 19 instances. We also notice that the skewed general VNS
algorithm for the first scenario is indeed the fastest, given that the search space
is limited, but it only managed to improve 7 instances, all of which were moder-
ately large. As for the second scenario, it managed to improve 14 instances with a
considerably good execution time. The overall improvement rate is 1.55%. Com-
paring with the work of Silvestrin [11], and despite his use of a good processor, his
obtained results show a minor compromise between the execution time and the
quality of the solution. In other words, the deviation he found is not so important
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Table 1: Computational results
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compared to our work.

4. CONCLUSION

In this paper, We developed the skewed general variable neighborhood search
to solve the multi-compartment vehicle routing problem. This proposed method
aims at minimizing the transportation cost. Subsequently, a comparison between
our algorithm and the memetic algorithm and tabu search is developed. It was
clear that our algorithm is capable of solving the available instances containing
from 50 to 484 customers and it proved its efficiency regarding good quality results
and faster execution time than the previous algorithms. Our study also showed
that the separation of customer requests provided good quality results for most
instances. The experimental results showed that the proposed skewed general VNS
performs well.In general, it achieves a good solution in a small computation time
which is better than the solutions in the literature.
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