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Abstract: In this paper, we consider a set-valued fractional minimax programming prob-
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by Das [1], as a generalization of higher-order cone arcwisely connected set-valued maps.
We explore the higher-order Mond-Weir (MWD) form of duality based on the supposi-
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ogous dual problem (MWD).
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1. INTRODUCTION

Mathematical science, economics, and operational research are the primary fields of
study for a class of problems known as fractional minimax programming problems, or
FMPPs for short. In 1990, two alternative duality models were developed and the the-
orems of duality for FMPPs were established by Yadav and Mukherjee [2] for differen-
tiable case of FMPPs. Later, in 1995, the theorems of duality of FMPPs were identified
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and two distinct forms of modified duality models were established by Chandra and Ku-
mar [3] for differentiable case of FMPPs. The optimality criteria and the strong and weak
theorems of duality of FMPPs were investigated by Weir [4] and Bector and Bhatia [5].
Zamlai [6] established the sufficient and necessary criteria of optimality and derived the-
orems of duality for FMPPs under the assumption of generalized invexity. Liu and Wu
[7] established the theorems of duality of FMPPs and articulated the necessary criteria of
optimality under the assumption of (F, a)-convexity concept. Ahmad [8] established the
necessary conditions of optimality and developed the theorems of duality for FMPPs us-
ing the assumption of o-invexity hypothesis. Liang and Shi [9] established the theorems
of duality for FMPPs and presented sufficient criteria of optimality via the assumption of
(F, a, p,d)-convexity hypothesis. Lai et al. [10] investigated the parametric theorems of
duality and established the necessary and sufficient criteria of optimality under the gen-
eralized convexity supposition for nondifferentiable case of FMPPs. Lai and Lee [11]
developed the theorems of duality under the generalized convexity supposition for non-
differentiable case of FMPPs. Ahmad and Husain [12] developed the necessary criteria
of optimality and demonstrated the theorems of duality of FMPPs under the (F, a, p,d)-
convexity supposition. Using higher-order contingent derivatives, Li et al. [13, 14] es-
tablished the sufficient and necessary criteria of optimality of set-valued optimization
problems (in short, SVOPs) in 2008. Additionally, the higher-order Mond-Weir dual of
SVOPs was presented, and the theorems of duality under convexity suppositions were
examined. In 1976, Avriel [15] presented arcwisely connectivity, a generalized form of
convexity where a continuous arc is used instead of the line segment connecting two el-
ements. The class of convex set-valued maps (abbreviated as SVMs) is a special type of
set-valued cone arcwisely maps. This concept was established by Fu and Wang [16] and
Lalitha et al. [17].

The notion of contingent derivative is a fundamental generalization of Frechet differ-
entiability from the single-valued to the set-valued case. This concept has been widely
applied in set-valued optimization theory as well. The sufficient and necessary optimality
criteria do not generally coincide under the assumption of contingent derivative. There-
fore, contingent derivatives are not exactly the right tool for developing optimality criteria
in set-valued optimization. The notion of contingent epiderivative is one potential gener-
alization of directional derivatives in the single-valued convex case. In the contingent epi-
derivative, the epigraph is used in place of the graph, and the derivative is single-valued.
These are the primary distinctions of two derivatives from one another. For cone-convex
SVMs, contingent epiderivatives have the unique characteristic of being sublinear, if they
exist at all. Therefore, higher-order contingent epiderivatives are of greater interest while
studying set-valued optimization problems.

Arcwise connectedness is a generalization of convexity where the line segment con-
necting two places is replaced by a continuous arc. We introduce the notion of higher-
order o-cone arcwise connectedness of SVMs as a generalization of cone arcwise con-
nected SVMs. For o = 0, we derive the conventional notion of higher-order cone arcwise
connectedness of SVMs. We also develop an example of a SVM that is not higher-order
cone arcwise connected, but is higher-order ¢-cone arcwise connected.

We employ the notion of higher-order ¢-cone arcwisely connectivity of SVMs, in-
troduced by Das [1], to solve SVFMPPs. The concept of higher-order a-cone arcwisely
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connectivity is more widely applicable than higher-order a-cone convexity. We illus-
trate it by studying an example in our work. As objective functions and constraints in
SVEMPPs, we primarily deal with o-cone arcwisely connected SVMs of higher order.

Das and Nahak [18] established the higher-order sufficient KKT requirements via
higher-order contingent epiderivative and higher-order a-cone convexity assumptions for
the set-valued optimization problem. Under ¢-cone convexity assumptions, the duals
of higher-order Mond-Weir, Wolfe, and mixed types are formulated, and the associated
higher-order duality theorems are proved. In this study, however, we have demonstrated
the duality theorems and sufficient KKT conditions of SVFMPPs under the hypothesis
of a-cone arcwise connectedness. Instead of ¢-cone convex SVMs, we essentially deal
with a-cone arcwise connected SVMs as objective function and constraint. This study
presents more broadly relevant cases than previous ones.

In order to establish the sufficient optimality conditions of SVFMPPs in a more gener-
alized case, our main objective is to implement the higher-order contingent epiderivative
and higher-order a-cone arcwise connectedness assumptions on the objective functions
and constraints. We also investigate the weak, strong, and converse duality theorems
of Mond-Weir type under higher-order contingent epiderivative and higher-order a-cone
arcwise connectivity assumptions. For a = 0, our results improve the ones currently
available in the literature.

The following abbreviations have been used often in this paper. Set-valued frac-
tional minimax programming problems are denoted by SVFMPPs, Karush-Kuhn-Tucker
by KKT, set-valued optimization problems by SVOPs, fractional minimax programming
problems by FMPPs, arcwise connected subsets by ACS, real normed space by RNS,
set-valued maps by SVMs, and “with respect to” by “w.r.t.”.

This is how the paper is organized. Section 2 covers the definitions and fundamental
concepts of SVMs. The concept of higher-order o-cone arcwisely connectivity of SVMs
is discussed in Section 3. A SVFMPP (MFP) is formulated in Section 4, and higher-
order sufficient KKT requirements of the problem are finally demonstrated in Section 5.
In Section 6, the higher-order duality theorem of Mond-Weir type are presented under
generalized higher-order cone arcwisely connectivity suppositions. Section 7 ends with
the concluding remarks.

2. DEFINITIONS AND OVERVIEWS

Assume that A is a real normed space (in short, RNS) and 0 ## W C A. Then ¥ is
defined to be a cone if 76 € W, V6 € W and 7 € R with T > 0. Moreover, W is defined to
be proper if ¥ # A, nontrivial if ¥ # {6}, solid if int(¥) # 0, closed if ¥ = P, pointed
if N (—¥) = {6a}, and convex if

¥+ (1-7)¥ C¥,vr€0,1],

where int(‘¥) and W indicate the interior and closure of ¥, correspondingly and 6, repre-
sents the zero of A.

Let W be a pointed cone in A. There are two different types of cone orders w.r.t. ¥ in
A. For 8,6, € A, we have

61 <&if&h—6 V¥
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and
S <&Hif&H -6 € int(‘P).

The following minimality concepts are usually introduced w.r.t. a pointed solid convex
cone Win aRNS A, .

Deﬁnitiog 2.1. Let 0 # A C A. Then weakly minimal, ideal minimal, and minimal ele-
ments of A are defined as

(i) &' e A is called a weakly minimal element ofl if there exists no o € A Sfulfilling
6<d.

(i) &' € Ais called an ideal minimal element of A if 8' < 8,¥8 € A.

(iii) 8’ € A is called a minimal element of A if there exists no 8 € Z\ {8'}, fulfilling
6<6.

We presume that w-min(A), I-min(A), and min(A) correspondingly represent the sets of
weakly minimal elements, ideal minimal elements, and minimal elements of A.
Aubin [19, 20] introduced the concept of contingent cone in a RNS.

]~)eﬁniti0n 2.2. [19, 20] Ler A be a RNS, 0 # A CA and §' € A. The contingent cone to
A at &' is specified by T (A, 8") and is defined as follows:

An element 8 € T(A,8') if there exist sequences {T,} in R, with T, — 0" and {8,} in
A, with 8, — 6, fulfilling

8'+18, €A, VneN,
or, there exist sequences {T,} in R, with T, > 0 and {8)} in A, with 8, — &', fulfilling
T.(8,—6') = 8, asn — .

Aubin [19, 20] also introduced the concept of contingent set of higher order in a RNS.
Definition 2.3. [19, 20] Assume that A is a RNS and 0 #* A CA € Z keN, withk > 2,
and 8y,...,8c, € A. Then the contingent set T®) (A, 8'.8;,...,8c1) of k-th order to A at
(8,01, ..., 0_1) is defined as:

85 € TW(A,8,8,,...,8(_1) if there exist some sequences {T,} in R and {8,} in A,
together with T, — 0" and 8, — §, so that

8 + 1081+ oo+ Tk 18 + 1,55, €AV EN,
equivalently, § € TW (A, 8',81,...,8_,) if there exist some sequences {T,} in R and {8}
in A, together with 8}, € A,Vn €N, 1, — 0%, and 8, — &', so that

6,/1—5/—’[”51 —...—Tnk716k71

— 0, asn — oo,
T,lk )

Let I', A be RNSs, and Let W be a pointed cone in A.. Let y : I — 2% be a SVM. The
definitions given for the image, domain, epigraph, and graph yx are as follows:
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= J{x(»)}, for any 0 £T CT,
yel

dom(y)={yeT: x(y) #0},
epi(x)={(7,6) eI xA: 8 € x(y)+ ¥},
and

gr(x) ={(r.6) eI'xA:d c x(v)}.
Jahn and Rauh [21] introduced the concept of contingent epiderivative of SVMs.

Definition 2.4. [21] Assume that T, A are RNSs, % : T — 2% is a SVM with dom(y) =
T, and (v,08') € gr(x). A function 7){(7/,5') : T — A having epigraph similar to the
contingent cone to the epigraph of x at (v,8'), i.e.,

epi(d (¥, 8")) = T(epi(x), (¥.8"))
is stated to be contingent epiderivative of x at (Y, 6').

The notion of contingent derivatives of higher-order of SVMs were originally introduced
by Aubin and Frankowska [20].

Definition 2.5. [20] Suppose that k € N, with k > 2, I', A are RNSs, ¥ : T — 24 s a
SVM with dom(x) = ()/ 0') € gr(x), and (1,61)y -, (Ye1,0k—1) € T x A. Then the
contingent derivative d( XV, 8 11,01, Ye1,6k_1) of k-th order of x at (Y ,8') for
(71,01)y ey (Ve—1,0k—1) is the SVM from T to A defined by

gr( <k) ’}/ 5/ ,}/la6la o Yie— ]76/(71))

= ), (7, 8),(1,61), s (M1, 61)).-
Let I', A be RNSs, ¥ be a pointed cone in A, and  : I' — 24 be a SVM. Let us define a
SVM y +¥:T — 2% by

(x +¥)(v) = 2(v)+¥,Vy € dom(x).

Li and Chen [22] developed the concept of generalized contingent epi-derivative of higher-
order of SVMs.

Definition 2.6. [22] Suppose that k € N, with k > 2, T', A are RNSs, x : T — 2% is a SVM
withdom(y) =T, (y,8) € gr(x), and (1,61), -, (Ye—1,0k—1) € T X A. Then the gener-
alized contingent epi-derivative of k-th order of x at (Y ,8') for (v1,61), -, (Y1, 0k_1),

specified by 7 x(Y,68 71,01, Y1, 6k_1), is the SVM from T to A defined by

745’1{)%(’)/’6,)}/1’61’"'77/( 176/( 1)( )
=min{§ € A: (,8) € TW (epi(x), (V,8"), (11,81, (he-1,8-1)) },
}/Edom(d(k)(x+‘l‘) 7/76 a}/lvélv"',}/l(—la&k—l))'
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We now focus on the concept of cone convexity of SVMs, which was presented by
Borwein [23].

Definition 2.7. [23] Let 0 # L CT and F is a convex set. A SVM x : 1" — 24, with
I C dom(y), is defined to be ¥-convex on T if Vy1,7, € T and T € [0,1],

x(n)+1-1)x(p) Cx(th+(1—1)p)+%.

The following proposition was developed for contingent derivative of higher-order of
SVMs by Li et al. [14].

Proposition 2.1. [14] Suppose that T, A are RNSs and y is P-convex on a nonempty
convex subset T of T, then Y,y € T and ¥8' € x (7)),

X(y) S/Cd 7/ 8/ N — ')/751—5/7---a7k—1—7/75k—1—5/)(7—7/)7
where Vi, ... %-1 €L, 81 € (1) + Y, ... 81 € x(%_1) + .

Auvriel [15] established the concept of arcwisely connectivity as a generalization of
convexity.

Definition 2.8. [15] A subset r of a RNS T is stated to be an arcwisely connected set if
V11,7 €T there exists a continuous arc Ay 2 0,1] = T fulfilling Ay 5 (0) =11 and

A}’l-,Vz(l) =%.

Fu and Wang [16] and Lalitha et al. [17] developed the concept of cone arcwisely
connected SVMs.

Definition 2.9. [16, 17] Let T be an qucwisely connected subset (in short, ACS) of a RNS
T and y:T — 2% be a SVM, with T C dom(x). Then yx is stated to be ¥-arcwisely
connected on T if

(1= x(n)+tx(1p) € x(Ayp (1) +¥, V11,7 € Dand vz € [0,1].
Khanh and Tung [24] developed the concept of 1-arcwisely connectivity of SVMs.

Definition 2.10. [24] A subset r of a RNST is stated to be an M-arcwisely connected set,
withn : T x T x [0,1] = T, if for every y1,7 € Tand T € [0, 1],

n+mn. 1) el

Form: I'xI x [0,1] =T, a SVM x : T — 22 is stated to be W-n-arcwisely connected on
an 1n-arcwisely connected set r if for every v, € Candt € [0,1],

lim =n(71,7%2,7) =0

and
(I-t)xn)+mx(r) Cx(n+mmn,r 7))+
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Suppose that y : ' — 22 is a SVM, together with 0 # [CTlandl C dom(y).
Let us assume that (Y, 8'), (11,61), -+, (Yi—1, 6_1) € x Atogether with ¥, ¥1,..., %—1 €

[,8 €x(v), 8 € x(n)+¥, .. 8c1 € x (%) + V.
The a-cone convexity of higher-order of SVMs was introduced by Das and Nahak
[18].

Definition 2.11. [18] Assume that I',A are RNSs, 0 # r CT, ¥is a convex cone of A
which is both pointed and solid, o € R, e € int(¥), and x : T — 2% is a SVM, together

with T C dom(y). Assume that ) is generalized contingent epiderivable of k-th order at
(v, 8") for (n =701 —=8),.... (Y1 =V 61 — &'). Then x is stated to be o-'¥-convex
of k-th order w.r.t. e at (Y ,8") for (11,61), ., (Ye—1,6c_1) on T if

X =8 CdPy( . 50—, 8—8 Yot — VS — )
(y—7)+aly—7|Pe+¥,vyeT.

Das et al. [25] presented the concept of o-cone arcwisely connectivity of SVMs
by generalizing cone arcwisely connected SVMs and therefore developed the sufficient
conditions of optimality for various forms of SVOPs.

Definition 2.12. [25] Let T be an ACS ofaRNST, e € int(¥), and y : T — 28 be a SVM,
with T C dom(Y). Then y is stated to be a-W-arcwisely connected w.r.t. e on T if there
exists @ € R, fulfilling

(1=2)x(n)+72(1) S X (Ayp () +at(1=7)n — pl’e+¥,
V71, € and VT € [0, 1].

Theorem 2.1. [25] Let T be an ACS of a RNST, e € int(¥), and y : T — 24 pe q-W-
arcwisely connected w.rt. e onT. Let Y € T and 8' € x(Y). Then,

20 =8 < d (o, 8) (N, (04) +ay—7|Pe+W, Vyel.

Let I be an ACS of a RNS I'. Throughout the paper, we assume that A/ Y(O—f—) exists
Vy,7 €T, where

Ay 4(T) = Ay (0
A, (0+) = lim 7(0) = Ay4(0)

=0+t T
LetI', A be RNSs, 0 # r Cly:I'— 24 be a SVM, and ¥ be a pointed convex cone
in A.
Definition 2.13. A SVM y : T — 22 is defined to be upper semicontinuous if ( )=
{yeT:x(y) C A} is open in T for arbitrary open subset A of A.

Definition 2.14. Let 0 # A C A. Then A is stated to be W-semicompact if all open cover
of complements having the form

{(8;+¥):8, €A, jet}

possesses a finite subcover, in which case J is an arbitrary index set.
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Definition 2.15. A SVM x : T — 22 is defined to be V-semicompact-valued if x () is
Y-semicompact, ¥y € dom(y).

We consider the following SVOP (P):

I;l:fz( 2(7), (P)

The maximizer for the problem (P) is defined as follows:

Definition 2.16. Let Y € T and 8' € x(Y). Then (Y,8') is defined to be a maximizer of
(P) if there exist no y € T and 6 € x(y) fulfilling

8 < 8.

The existence results for the solutions of SVOPs in RNSs were established by Corley
[26] when the objective map is an upper semicontinuous and cone semicompact-valued.

Theorem 2.2. [26] Let I, A be RNSs, 0 # CL,0 £W C A and ¥ is a pointed convex
cone in A. Assume that ) : T — 22 be W-semicompact-valued and upper semicontinuous.
In this case, there exists a maximizer for (P).

3. HIGHER-ORDER «-CONE ARCWISELY CONNECTIVITY

Das [27] and Das and Nahak [28] established the second-order sufficient optimality
conditions and developed the duality results of set-valued fractional programming prob-
lems and set-valued optimization problems, respectively. Pokharna and Tripathi [29]
introduced the optimality conditions and studied the duality theorems for E-minimax
fractional programming problems. The concept of higher-order ¢-cone arcwisely con-
nectivity of SVMs was first introduced by Das [1]. He developed the results of duality
for set-valued parametric optimization problems under the contingent epiderivative and
higher-order a-cone arcwisely connectivity suppositions and provided sufficient KKT
conditions of optimality. For & = 0, we have the standard notion of cone arcwisely con-
nectivity of SVMs, introduced by Fu and Wang [16] and Lalitha et al. [17].

Assume that y : T — 2% is a SVM, together with I’ C dom(). Suppose that (Y, 8'),
(’}’1, 51), ey ()/](_1,5](_1) € I' X A together with '}/,')/1, vy Vi1 €T, o' e X('}/), o € X(Yl) +
lPa ceey 51{71 S X(ykfl) +‘P

Definition 3.1. [I] Suppose that I',A are RNSs, T is an ACS of I, W is a solid pointed
convex cone of A, a € R, e € int(W), and y : T — 2% is a SVM, together with T C dom().
Suppose that ¥ is generalized contingent epiderivable of k-th order at (7y',8) for (y; —
Y,61—8"), ..., (Yo1 — Y, 01— 6'). Then x is stated to be a-¥-arcwisely connected of
k-th order w.rt. e at (Y ,8") for (71,81), ..., (%e—1,8—1) on T if

20 =8 CdPp(. 80—V, 8 =8 ht =7 5t —8)(AL,(04)
+ally—7|*e+¥,Vyel.
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Remark 3.1. If o > 0, then y is stated to be strongly o.-W-arcwisely connected of k-th
order; if oo = 0, we have the usual concept of W-arcwisely connectivity of k-th order, and
if a <0, then ¥ is stated to be weakly a-¥Y-arcwisely connected of k-th order. Obviously,
strongly o-W-arcwisely connectivity of k-th order = W-arcwisely connectivity of k-th
order = weakly a-Y-arcwisely connectivity of k-th order.

For a =0 and Ay, 5 (7) = 11+ (N, %, 7). with n +1(n,%,1) = 1, we have
the concept of n-arcwisely connectivity of k-th order. When Ay, 4, (T) =Y+t (1,7, 7).
with i +M(n, 1, 1) = P, strongly a-W-arcwisely connectivity of k-th order = n-arcwisely
connectivity of k-th order = weakly a-¥-arcwisely connectivity of k-th order.

4. FORMULATION OF THE MAIN PROBLEM

Let 0 # [ CR"and Abe a nonempty compact subset of R”. Let M| and M, be n X n
positive semidefinite matrices. Let ,{ : R” x R” — 2% and Q : R* — 2®” be SVMs,
with o _

I'x A Cdom(y)Ndom({) and I' C dom(Q).

Let (a,b) € R" x R™. Consider a SVFMPP

T
minimize  max | J x(a,b) + (a” Ma)
act beA (a,b) — (al Mra)

subjectto  Q(a)N(—RY) #0.

ST

(MFP)

Assume that 0+ X =0 and @ — X = 0 for every X C R. Define a SVM  : R” x R — 2R
by

u(a,b) = f ,V(a,b) e R" xR™.
2

assuming that

and ] o
¢(a,b) — (a" Maa)? > 0,Y(a,b) €T x A.

We assume that the SVM p(a,.) : R" — 2R is upper semicontinuous as well as R, -

semicompact-valued on A, Va € I'. Hence, by Theorem 2.2, max |J U(a,b) always exists,
beA
Va €T. Since p(a,b) C R, for every a € I" there exists only one solution of max |J u(a,b).

beA
The feasible set of (MFP) is

§'={aeT:Q(a)N(~R:) # 0}.

The following defines the minimizer of (MFP).
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Definition 4.1. Let a’' € S’ be a feasible element of (MFP) and ¢’ = max | pu(d',b).
beA
Then (d',c") is defined to be a minimizer of (MFP) if there exist no a € §' and ¢ =

max |J U(a,b), with a # d, fulfilling
beA

c<c.

Fora € f‘, define
Ia)={j:0€Qj(a),l <j<p}

J(a) =A{1,...p}\1(a),

B(a) = {b' € A : max Uula,b) € [.t(a,b')},
beA
and
K(a) = {(r,c*,z) ENXRL xR™:1<r<n,c" = (cf,....c;) €RY,

r o~ JE— PR— JR—
with Y ¢f = 1,b = (B1,....b,), with b; € B(a), j = 1,...,r}.
i=1

As p(a,.) is upper semicontinuous as well as R -semicompact-valued on &Va el we
have
B(d)#0,¥d €5

Let M be an n x n positive semidefinite matrix. Then, Va,d € R”,

1

a"Md < (a"Ma)2 (d"Md)?.

Moreover, if (dTMd) <1, we have
a’Md < (a"Ma)?. 4.1

5. HIGHER-ORDER SUFFICIENT CRITERIA OF OPTIMALITY
Assume that ¥, : R? x R” — 2R and Q : R” — 2R be SVMs, with

' x A C dom())Ndom(&) and T’ C dom(Q).

Suppose thata’ € T, k,r € N, with k > 2, and b; € B(d'), (1 <i <r). Let (d,c}), (a1, c11),

s (@1, ¢c0-1)0), () ), (ar,c)y),- '7(ak*1’c/(k71)i) cR*xRwithd',ay,...,a;_ 61:,676
X( ,), Ccli € X(al, )+R+, yC(k—1)i S X(akfl,b,') + Ry, Cﬁl S C(a’,bi), and c/li S
C(ala )+R+v (k 1)i GC(ak lvb)+R+

Also, assume that (a d;), (al,dlj) o (@k-1,dg-1);) € R" x R together with d} €
Qj(d),dijeQj(ar) +Ry,....d—1); €Q; (ak D+RL, (1< j<p),where Q= (Q,...,Q,).

We establish the hlgher-order sufﬁc1ent KKT conditions of SVFMPP (MFP) using the
assumption of the higher-order -cone arcwisely connectivity.
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Theorem 5.1. (Higher-order sufficient criteria of optimality) Let T be an ACS of R", d
be a feasible element of (MFP), and ¢’ = max |J p(d’,b). Assume that there exist r € N,
beA

where 1 <r <n, c* =(c},...,c}) e R}, with Zc:‘ =1,b;eB(d), (1<i<r),d,d €R",
i=1
d* = (df,....d;) €RY, and d’; € Qj(a') N (R4, (1 < j < p), fulfilling

r —

& _ _
207 (72 )X('abi)(a/acéaal —a/,cu - C?, ey A1 _a/ac(kfl)i - Ci)
i=1

#d = (d(=0)

(.,b)(d, —cT’,al —d,—c); —i—cT/7 ey —d, —c'(k71>i+c7) —M23)) 52)
(A 4(04))

P

* k

+ Z djjé )Qj(a’,d},al 7a/,d1j 7d}, cees Ap—1 7a/,d<k_1)j 7d;)

j=1
(Al 4(0+)) >0,VaeT,
p
Y did;=o, (5.3)
j=1
d"Md <1,8"M,8 <1, (5.4)
(d™Md)? = d"Myd, (5.5)

and

(a'TMza’)% =d M8, (5.6)

Suppose that x(.,b;) is o;-R -arcwisely connected of k-th order w.r.t. 1 at (a’,cﬁ) for
the elements (ay,c1;), ..., (ak-1,cp—1yi), ()" Mid is ®;-Ry -arcwisely connected w.rt. 1,
—§(.,b;) is al-Ry-arcwisely connected of k-th order w.rt. 1 at (aﬂ—c?) for the el-
ements (al,—c’li)7...,(ak,|7—c’(k71>i), ()"M>8 is o i-R -arcwisely connected WEL 1
and Q;, (1 < j < p), is vj-R-arcwisely connected of k-th order w.rt. 1 at (a’,d}) for
(a1,d1j); s (ar—1,d—1);), on T, satisfying
r _ p

i (o + %~ (af+a))) + Y divy =0, (5.7)
— j=1

1

Then (d',c') is a minimizer of (MFP).

Proof. Assume that (a’,c’) is not a minimizer of (MFP). Then there exist a € S’ and
c=max |J u(a,b), with a # o', fulfilling
beh

/
c<c.
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Since b; € B(d'),i=1,...,r, we have
max (J u(d/.b) € (a5
beA

As ¢ =max | u(d',b), we have
beh

deuldb)i=1,..r

Let¢; € pi(a,b;). Again, as ¢ = max | pi(a,b) and b; € B(d') C A, we have

beA

ci <c.

Hence,
¢ < c.

As ¢’ € u(d,b;), there exist ¢} € x(d',b;) and ¢ € {(d',b;) fulfilling

So,
ot (a’TMla')% - - (a'TMza/)%) =0,Vi=1,..,r.
Since ¢; € u(a,b;), there exist ¢} € x(a,b;) and ¢! € {(a,b;) fulfilling

- cg—i—(aTMla)%l .
¢! —(a"Mra)?2
Hence,
¢! —(a"Mra)?
So,

1

¢+ (@ Mya)? — ¢ (c] — (aT Maa)?) <ONi=1,....r
From (4.1) and (5.4), we have

-

Il
_

et (c; (@ Md) (! — (aTM25)))

u T 1 T 1
Z (ch Mia)t — (" —(a Mza)2)>.
Again, from (5.9), we have

Xr;cf(c +( TMla)% —c(c! —(a TMga)%)) <0.

(5.8)

(5.9)
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From (5.8),

Zc (c +(d"Md )% (! — (a’TMza’)%)) =0.
i=1
Again, from (5.5) and (5.6) we have

r — J—
Y e (+(@TMia)t (] - (M) )

i=1
=Y ci (@ Mid) ¢ (] — (" M:5)) )
i=1

Hence, we have

Y ci (i (@™ Mid) — ¢/ (] — (a"M25)) )

i=1
r — —
<Y (c; +(dTMyd) — (& - (a/TMQS))) .
i=1
As a € 5, there exists
dj € Qj(a) N (7R+).
Since d;‘ >0 (1 <j<p),wehave
did; <0,Yj, with 1 < j < p.
So,
p
Y did;<o.
j=1

From (5.3), we have

™
Nt
&
1
o

Hence,

™
Nt
&
IN

M-
&
X

Hence,

-

cf (cf + (a" Myd) — ¢ (¢! — (a” My §)) ) + Z did;

1

r —
<Z@(¢+@U@@75( (a5 5) )+Zd%’
i=1

1

(5.10)

As it is presumed that x (., b;) is ;-R  -arcwisely connected of k-th order w.r.t. 1 at (d,ch)
for (ar,c1i); s (@—1,¢(k—1)i)> on I and cl € x(d',b;), we have

xmﬂ—7

ng X ) la a/7Cli_C7;7"'7ak71_alvc(k—l)i_;;)

(Aa/,a(0+)) + Ofi\la*a ||2+R+~
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Again, as c: € x(a,b;), we have

c—c
678 X ) 17 —d Cli_if)"'aakfl_a/ac(kfl)i_ci;) (5.11)
( a, a(0+)) + al”a —a H2 +]R+
Suppose that (.)"M;d is @;-R . -arcwisely connected w.r.t. 1, on I, we have

a'Myd —d"Myd > Myd(A)y ,(0+)) + Clla—d'||* + Ry (5.12)
bi) i
1y

is o -R+-arcw1sely connected of k-th order w.r.t. 1 at

As it is presumed that —{(.,
(k 1>i>’ onT and e € ¢(d,b;), we have

(a’,—cT’) for (al’_c/li)"' ( Ap—
—{(a, 5)4—?
C7 (d,~clay—d,~ch+7, ...

( a’,a(o+ )+aiHa_a ||2+R+

Jag_1 —d fc(k Di +c”)

Again, as ¢/ € {(a,b;), we have

e 0B
(d',~cf a1 —d,=cli+ ] oar1 —d =gy + ) (5.13)

(A, ,a(0+))+a la—d'|* +R;.
Since ()" M»8 is o;-R , -arcwisely connected w.r.t. 1, on I, we have

TMy§ > My§(Aly ((04)) + & la—d||* + R (5.14)

a'M,8 —a
As Qj, (1 < j < p),is vj-R-arcwisely connected of k-th order w.r.t. 1 at (a’,d’) for the
elements (ar,d1;), ..., (ax—1,d(x—1y;), on T and d; € Qj(a)N(~Ry), we have
d’)

)—d, C dP0d d)ar—d dij—d,.oar —d dyy;
( a’,a(0+))+vj”a_a >+ Ry

Since d; € Q;(a) N (—Ry), we have

d'—d/
€ 7 Cl ,d;, a',dlj—d},...,ak_l
(A;’,a(0+))+VjHa_a/||2+R+~
From (5.2), (5.7), (5.11), (5.12), (5.13), (5.14), and (5.15), we have
Zc (C +(a"Myd) — (¢! — (a” M> ) )+Zd*

i=1

—Cll,d<k,1>/’—d}) (515)

(@TMyd) — (] — (dT M) ) Zd*.d;,

,
* (7
> Zci (C,--i— a
i=1
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which contradicts (5.10). Hence, (a’,¢’) is a minimizer of (MFP). [

6. HIGHER-ORDER MOND-WEIR TYPE DUAL

We consider a higher-order dual (MWD) of Mond-Weir form in accordance with the
primal problem (MFP), where the SVMs x(.,b;), —{(.,b;); b; € B(d'),d’ €T, and Q; are
higher-order contingent epiderivable SVMs.

maximize Il (MWD)

subject to

.
‘ _ _ _
z:c;-k (7£ )x(.7b,-)(a/7c§,a1 —d,cii—c,....ap_1—d,

i=1

Clk—1)i —07) +Md

—c'(jék)(—é)(.7a)(a/7 —cT’,al —d, —c'“—i—c?, ey —d,
—Clenyi+cf) 7M26))

(Aﬁl’.,a(o—i_))

P
+ Zdjjgk)ﬂj(a/’d}7al —a’,dlj —d}, ey Ak—1 —a/7
=1

dy—1);—d}) (A ,(0+)) > 0,Va eT,

for some r € N, (1 <r <n) and b; € B(d'),
d * g/

) djd; >0,

=

dTMd < 1,8"My8 < 1,(dTMyd)? = d"Myd,
(a'TMza’)% =d"M,8, for some d,8 € R",
d e€T,¢ = max U/.L(a',b),d/ =(dy,....d,),d; € Q;(d),
beA
¢t =(cfy0y),d” = (di,...dy),c; > 0,d} > O,ic;‘ =1,
i=1
where ] <i<rand1<j<p.

Acelement (d',c’,d’,c*,d*) meeting every constraints of (MWD) is defined to be a feasible
element of (MWD).

Definition 6.1. A feasible element (d',c’,d’,c*,d*) of the problem (MWD) is defined to
be a maximizer of (MWD) if there exists no feasible element (a,c,d,c},dy) of (MWD)
Sfulfilling

d <ec.
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Theorem 6.1. (Higher-order weak duality) Let T be an ACS of R", ag be feasible to

(MFP) and (d',c',d’,c*,d*) be a feasible element of (MWD). B
Suppose that ¥(.,b;) is 0;-R_-arcwisely connected of k-th order w.r.t. 1 at (d',c}) for

the elements (ay,c1;), ..., (ak—1,cp—1yi), ()" Mid is ®;-Ry -arcwisely connected w.rt. 1,

—&(.,bi) is o -R y -arcwisely connected of k-th order w.r.t. 1 at (d, —c for (a1, —¢c};),s ey
(ag—1, —c’(kil)i), () TMa6 is o' -R-arcwisely connected w.rt. 1 and Qj, (1< j <p), is

vj-R -arcwisely connected of k-th order w.r.t. 1 at (a’,dj) for (ar,dj), ..., (@k—1,d(—1);),
onT, satisfying

- )4
(ai+ﬁi—c’(a{+a;))+2d}fvj20. (6.16)
=1

Then,
max | J p(ao,b) £ c'.

beA

Proof. Using the method of contradiction, we demonstrate the proof. Assume that for
co =max |J u(ag,b), co <. Since b; € B(d'), i =1,...,r, we have
beA

max (Ju(d'b) € u(d ).
beA

As ¢ =max | u(d',b), we have
beh

deuldb)i=1,..,r
Let ¢; € p(ag,b;). Again, as co = max | w(ao,b) and b; € B(a') C A, we have
beA
ci < cp.
Hence,
ci < c.

As ¢’ € u(d,b;), there exist ¢} € x(a',b;) and ¢ € {(d',b;) fulfilling

g _ Gt ma):
o —(aTMa)?
So,
I+ (d™Md)E = (= (dTMyd ) 1) =0,¥i = 1,....r. 6.17)

Since ¢; € p(ao,b;), there exist ¢} € x(ao,b;) and ¢! € {(ap, b;) fulfilling

¢+ (ah Myag)?
1

Ci = v T T
¢! — (ayMaag)?2
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Hence,
¢+ (a¥ Myag)
¢! — (al Mray)

o] =

So,

i+ (angao)% —d(c! - (aOMzao) )<0,Vi=1,.
From (4.1) and the constraints of the problem (MWD), we have

-

Il
-

cf (cf + (agMid) — ' (cf - (agM25)))

gr, z*(c + aoMlao)2 —c'(cf —(a gMzao)%))-

Again, from (6.18), we have

i=1

From (6.17),

-

1

Again, from the constraints of the problem (MWD), we have

M\

C;

*
1

(+ (@ Mia)? = ( — (@ Mrd)) )

Zr: c; (CT—I— (a"Myd) - (] - (a’TMZS))).

i=1

Hence, we have

-

¢ (ci+ (@fMid) = ¢ (] - (af M28)))
1

< Zc;k (074— (alTMld) - C/(CT/— (a/TMZS))) :
i=1

As apg € S, there exists

dj € Qj(ap)N(—Ry).
As d; >0, where (1<j<p),

did; <0,Yj,(1<j<p).
So,

djd; <0.

Mw

1

J

i (C + (lOM]ao)Z —C(C 7( gMzao)%)) <0.

c; (Cj-i— (a/TMla/)% —(— (a’TMza')%)) =0.

765

(6.18)
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From (MWD),

Z !
Y did;>o0.
j=1
Hence,
Z * Z *x g/
Z d] dj < Z d] d]
Jj=1 J=1
Hence,

cj (c;—l—(angd)—c’(cf/— iMy8)) ) +Zd*

-

1

<2}%Z+m”Mﬁyﬁx (a M>5) )+Zduk
i=1

1

(6.19)

As it is presumed that x (., b;) is 0;-R  -arcwisely connected of k-th order w.r.t. 1 at (d,ch)
for (ar,c1); s (@r—1,¢(k—1)i)> on [ and chex(d,b),

x(ao,b;) —ZC?W}( ,bi)(a ,cl,al—a’,cli—a,...,ak,l—a/,c(k,l)i—gf)&
(Al 4 (0+)) +aillag —d'[|* + Ry

As ¢ € x(ao,bi),

ci—c
€ 7g x(. ,Cha a',cli—a,...,ak_l —a',c(k_l),-fcig) (6.20)
(Aw ao<0+)) +oa~|\ao—a 12+ Ry
Suppose that ()7 M,d is 0;-R_.-arcwisely connected w.r.t. 1, on T,
0o (0+)) +illag — ' + Ry (6.21)

is o;-R-arcwisely connected of k-th order w.r.t. 1 at
(k—l)i)’ onT and c/ € {(d',b;), we have

As it is presumed that —{ (.,

alMyd —d"Myd > Myd(A!
bi) i
(a’,—c?’) for ((l],—C’li),... ( Ag—1,

—&(ao,b )+C”

C7 a fc ,ap — fotc —d,—c o’
1—d,—c+c e —d k)i T¢7)

(Ay a0(0+))+0‘i||40_a 1>+ Ry

Again, as ¢! € {(ag,b;), we have
c”—l—c”ejg —8)(.,b:)

(a/,_c:/’al —a Clt +Cz s ooy f—1 —a/7—c/(k71)i—|—07/) (6.22)

(Al (0+))+ai||aofa||2+R+-

aao
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Since (.)7M,8 is o;-R , -arcwisely connected w.r.t. 1, on T,
ay My8 —d" My8 > MyS(A)y , (0+)) + of||ag — d'||* + R . (6.23)

As Qj, (1 < j < p),is vj-R -arcwisely connected of k-th order w.r.t. 1 at (a’,di;.) for the
elements (ay,d1), ..., (@—1,d(x-1);), on I and d; € Qj(a’)N(~Ry), we have

—d,c dPod d)a—d dij~d),....a 1 —d dy_y);—d})

( o a0(0+)) +Villao — | + Ry
Since d; € Qj(ap) N (—Ry), we have
dj —d/
e dPo;(d dar—d dij—d),...ar 1 —d dy_y);—d) (6.24)
( a a0(0+)) + ijaO —a ||2 +Ry.
From (6.16), (6.20), (6.21), (6.22), (6.23), (6.24), and (MWD),

ic (c + (alMyd) - (¢! — (ad M )+Zd*

—_

zr: ( ’TM1d)—c(c— dTM,8) ) Zd*.d;,

which contradicts (6.19). Hence,

max J p(ao,b) £ .
beA

It concludes the proof of the theorem. [

Theorem 6.2. (Higher-order strong duality) Let (d',c') be a minimizer of (MFP) and
d;eQi(d)N(-Ry), (1<j< p) Suppose that for arbitrary k € Z, (1 <r <n), ¢} >

0, b eB(d), (1<i<r) wzchc =1land d; >0, (1< j<p) Egs. (52) (53),

(5.4), (5.5), and (5.6) arefulﬁlled at (d,c,d' c*,d*). Then (d',c',d',c*,d*) is feasible to
(MWD). If Theorem 6.1 is satisfied, then (a ,c,d' c*,d*) is a maximizer of (MWD).
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Proof. As Egs. Egs. (5.2), (5.3), (5.4), (5.5), and (5.6) are fulfilled at (d’,c’,d’,c*,d*),
r —

¢} (7§k)x(.,a)(a/,c;,a1 —d,
=1

Cli—?;7,,,,ak71 _a/ac(kfl)i_ci;)‘f'Mld
/7U<) ). —c P T /
—c( g (=8)(bi)(d',—c ay—a,—cy+c; a1 —a,

i
— i+ ) = M28) ) (AL, (0+))
p
+ Z d.glfjg,k)gj(al’d},al *a,,du 7d}, N P
j=1

die—1); —d}) (N ,(0+)) > 0,Ya € T,

did, =0,

)

-

1

J
d"™Mid <1,8"™M,56 <1,
(a’TMla')% =d"Myd,

and .
(a’TMza/) 2 = a’TM25.

Hence, (d',c’,d’,c*,d*) is feasible to (MWD). Assume that Theorem 6.1 is satisfied and
(d',c,d',c*,d*) is not a maximizer of (MWD). Let (a,c,d,c},d}) be a feasible element
for (MWD) fulfilling

d <ec.

It contradicts Theorem 6.1. Hence, (d’,c’,d’,c¢*,d*) is a maximizer for MWD). [

Theorem 6.3. (Higher-order converse duality) Let T be an ACS of R" and (d' ¢, d' ,¢*,d*)

be a feasible element of (MWD). B
Suppose that x(.,b;) is 0;-R_-arcwisely connected of k-th order w.r.t. 1 at (d',c}) for

(ar,¢1i); - (ax—1,c—1y), (-)" Mid is Q;-R y -arcwisely connected w.rt. 1, = (., b;) is o -

R -arcwisely connected of k-th order w.r.t. 1 at (a',—c!!) for the elements (ay,—c};),...,

(ag—1, —c’(kil)l.), ()TM,8 is &' -R-arcwisely connected w.rt. 1 and Q;, (1< j < p), is

vj-R-arcwisely connected of k-th order w.rt. 1 at (aﬂd?) for (a1, dyj), ... (@k—1,d—1);),
onT, satisfying (6.16). If d is feasible to (MFP), then (d',c) is a minimizer of (MFP).

Proof. Assume that (a’,c’) is not a minimizer of (MFP). Hence there exist a € §' and
c=max |J u(a,b), with a # o, fulfilling
beh

c<c.
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Since b; € B(d'),i=1,...,r,
max | J u(d,b) € p(d, By).
beA

As ¢ =max | u(d,b),
beh B
deuldb)i=1,..r

Let ¢; € p(a,b;). Again, as ¢ = max {J p(a,b) and b; € B(d') C A,
beA

ci <c.
Hence,

¢ < c.
As ¢’ € u(d,b;), there exist ¢} € x(a',b;) and ¢/ € {(d',b;) fulfilling
, ;; 4 ( a7 M, a')

C = —
C;/ _ (a/TMza’)

Nl—| =

So,
T (d™Myd): — (¢ — (dTMyd)2) =0 Yi=1,....r. (6.25)
Since ¢; € t(a,b;), there exist ¢} € x(a,b;) and ¢/ € {(a,b;) fulfilling

i = C; + (aTMla)%
=
ol — (aTMga)%
Hence,
1
Ci»—l— (aTMla)i <
el — (aTMza)%
So,
ci+ (aTMla)% —d(! —(a TMza) )<0,Vi=1,..,r. (6.26)

From (4.1) and the constraints of the problem (MWD), we have

-

Il
—

¢ (ci+ (" Mid) ~ ¢ (¢] = (a" M)
i ( (a'M 1 n_(T 1

1a)2 —c'(c! — (a" Mra)?)).
Again, from (6.26), we have

Xr;cf(c +( TMla)% —c(c! —(a TMga)%)) <0.
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From (6.25),

-

Il
—

i (- @ Ma)t = (] - (d"Md))) =o0.

Again, from the constraints of the problem (MWD), we have

-

Il
-

i (+ @Tma)t = ¢ (] - (d"Mrd)?) )

ic ( (@™ Myd) — ¢ (7 — (a /TM25))).

i=1

Hence, we have

-

i+ (@) ¢ (]~ (o 20)))

Yei (4 (@7 Mid) ~ ¢ (] — (@ M:5))).

i=1

Asa € S, there exists d; € Qj(a) N (~Ry). Asd; >0 (1< j<p),

did; <0,Yj, with 1 < j < p.

So,
p
*
Y didj<o0
j=1
From (MWD),
P
Y did;>0
j=1
Hence,
Z * Z * g/
Z d] dj < Z d] d]
j=1 j=1
Hence,

-

cj (cf +(a"Myd) — (] — (a" My §)) ) + Z did;

i=1

. 6.27)
<Y (Z;+ (@"Myd) — (] — (dT M) ) v Z did.
i=1

As it is presumed that x (., b;) is 0;-R -arcwisely connected of k-th order w.r.t. 1 at (d,ch)
for (ar,c1i); s (@r—1,¢(k—1)i)> on I and cex(d,b),

X(%E‘) _Z C 71(;]{)?((’[7:)( aclaal —a/,Cli _;;7"'76”671 _a/7c(k71)i _;:)
(Al 4(04)) + ailla—d'||* + Ry
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Ascl€ x(a,b;),
ci—c
678 X ) 17 —d 615—7)...’611671 _a/ac(kfl)i_cié) (6.28)
( a, a(0+)) + al”a —a H2 +]R+
Suppose that (.)" M;d is @;-R . -arcwisely connected w.r.t. 1, on T’

a’Myd —d"Mid > Myd(A)y ,(0+)) + Tlla—d'||* + Ry (6.29)
bi) i
1y

is o -R+-arcw1sely connected of k-th order w.r.t. 1 at

As it is presumed that —{(.,
(k 1>i>’ onT and e € ¢(d,b;), we have

(a’,—cT’) for (al’_c/li)"' ( Ap—
—{(a, 5)4—?
C7 (d,~clay—d,~ch+7, ...

( a’,a(o+ )+aiHa_a ||2+R+

Jag_1 —d fc(k Di +c”)

Again, as ¢/ € {(a,b;), we have

—c<’+?672k><—c><.,a>
ity ar1 —d,—c_ i+ ) (6.30)

(d,—c —d, -
(A, ,a(0+))+a la—d'|* +R;.
Since ()" M»8 is o;-R , -arcwisely connected w.r.t. 1, on T,
a" M8 —d" My > MrS (Al ,(04)) + of a—d'||* + R (6.31)

As Qj, (1 < j < p),is vj-R-arcwisely connected of k-th order w.r.t. 1 at (a’,d’) for the
elements (ar,d1;), ..., (ax—1,d(x—1y;), on T and d; € Qj(a)N(~Ry), we have
d’)

)—d, C dP0d d)ar—d dij—d,.oar —d dyy;
( a’,a(0+))+vj”a_a >+ Ry

Since d; € Q;(a) N (—Ry), we have

dj—d,
e dPod day—d.dij—d)...ar 1 —d dy_);—d}) (6.32)
(Aly o(0+)) + Vjlla—d'||* +R;.

From (6.16), (6.28), (6.29), (6.30), (6.31), (6.32), and (MWD),

c:‘(c +(a"Myd) — (¢! — (a” M> ) )+Zd*

M\

Il
R

(@TMyd) — (] — (dT M) ) Zd*.d;,

,
* (7
> Zci (C,--i— a
i=1
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which contradicts (6.27). Hence, (a’,¢’) is a minimizer of (MFP). O

7. CONCLUSIONS

In light of the broader concept of higher-order cone arcwisely connected SVMs, we
use the concept of higher-order -cone arcwisely connectivity of SVMs, introduced by
Das [1]. We have the standard notion of higher-order cone arcwisely connected SVMs for
a = 0. We investigate the higher-order converse, strong, and weak theorems of duality for
the Mond-Weir (MWD) form under the higher-order generalized contingent epiderivative
and o-cone arcwisely connectivity suppositions.

For k = 1 and Ay, 5, (7) = (1 = T)71 + 7%, our results correspond with the suffi-
cient optimality conditions and duality results of the problem (MFP) under the contin-
gent epiderivative and o-cone convexity suppositions as explored in [30]. For k =2
and Ay, 5, (7) = (1 — 7)%1 + 79, our findings coincides with the second-order sufficient
optimality conditions and duality results of the problem (MFP) under the second-order
contingent epiderivative and second-order a-cone convexity suppositions as discussed in
[31]. For k = 1, our findings correspond with the sufficient optimality conditions and dual-
ity results of the problem (MFP) under the contingent epiderivative and a-cone arcwisely
connectivity suppositions as presented in [32].
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