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Abstract: In this paper, we consider a set-valued fractional minimax programming
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1. INTRODUCTION

Mathematical science, economics, and operational research are the primary
fields of study for a class of problems known as fractional minimax programming
problems, or FMPPs for short. In 1990, two alternative duality models were de-
veloped and the theorems of duality for FMPPs were established by Yadav and
Mukherjee [2] for differentiable case of FMPPs. Later, in 1995, the theorems of
duality of FMPPs were identified and two distinct forms of modified duality mod-
els were established by Chandra and Kumar [3] for differentiable case of FMPPs.
The optimality criteria and the strong and weak theorems of duality of FMPPs
were investigated by Weir [4] and Bector and Bhatia [5]. Zamlai [6] established
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the sufficient and necessary criteria of optimality and derived theorems of duality
for FMPPs under the assumption of generalized invexity. Liu and Wu [7] estab-
lished the theorems of duality of FMPPs and articulated the necessary criteria
of optimality under the assumption of (F, α)-convexity concept. Ahmad [8] es-
tablished the necessary conditions of optimality and developed the theorems of
duality for FMPPs using the assumption of α-invexity hypothesis. Liang and Shi
[9] established the theorems of duality for FMPPs and presented sufficient criteria
of optimality via the assumption of (F, α, ρ, d)-convexity hypothesis. Lai et al.
[10] investigated the parametric theorems of duality and established the necessary
and sufficient criteria of optimality under the generalized convexity supposition
for nondifferentiable case of FMPPs. Lai and Lee [11] developed the theorems of
duality under the generalized convexity supposition for nondifferentiable case of
FMPPs. Ahmad and Husain [12] developed the necessary criteria of optimality and
demonstrated the theorems of duality of FMPPs under the (F, α, ρ, d)-convexity
supposition. Using higher-order contingent derivatives, Li et al. [13, 14] estab-
lished the sufficient and necessary criteria of optimality of set-valued optimization
problems (in short, SVOPs) in 2008. Additionally, the higher-order Mond-Weir
dual of SVOPs was presented, and the theorems of duality under convexity sup-
positions were examined. In 1976, Avriel [15] presented arcwisely connectivity, a
generalized form of convexity where a continuous arc is used instead of the line
segment connecting two elements. The class of convex set-valued maps (abbrevi-
ated as SVMs) is a special type of set-valued cone arcwisely maps. This concept
was established by Fu and Wang [16] and Lalitha et al. [17].

The notion of contingent derivative is a fundamental generalization of Frechet
differentiability from the single-valued to the set-valued case. This concept has
been widely applied in set-valued optimization theory as well. The sufficient and
necessary optimality criteria do not generally coincide under the assumption of
contingent derivative. Therefore, contingent derivatives are not exactly the right
tool for developing optimality criteria in set-valued optimization. The notion of
contingent epiderivative is one potential generalization of directional derivatives
in the single-valued convex case. In the contingent epiderivative, the epigraph
is used in place of the graph, and the derivative is single-valued. These are the
primary distinctions of two derivatives from one another. For cone-convex SVMs,
contingent epiderivatives have the unique characteristic of being sublinear, if they
exist at all. Therefore, higher-order contingent epiderivatives are of greater interest
while studying set-valued optimization problems.

Arcwise connectedness is a generalization of convexity where the line segment
connecting two places is replaced by a continuous arc. We introduce the notion
of higher-order α-cone arcwise connectedness of SVMs as a generalization of cone
arcwise connected SVMs. For α = 0, we derive the conventional notion of higher-
order cone arcwise connectedness of SVMs. We also develop an example of a SVM
that is not higher-order cone arcwise connected, but is higher-order α-cone arcwise
connected.

We employ the notion of higher-order α-cone arcwisely connectivity of SVMs,
introduced by Das [1], to solve SVFMPPs. The concept of higher-order α-cone
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arcwisely connectivity is more widely applicable than higher-order α-cone convex-
ity. We illustrate it by studying an example in our work. As objective functions
and constraints in SVFMPPs, we primarily deal with α-cone arcwisely connected
SVMs of higher order.

Das and Nahak [18] established the higher-order sufficient KKT requirements
via higher-order contingent epiderivative and higher-order α-cone convexity as-
sumptions for the set-valued optimization problem. Under α-cone convexity as-
sumptions, the duals of higher-order Mond-Weir, Wolfe, and mixed types are for-
mulated, and the associated higher-order duality theorems are proved. In this
study, however, we have demonstrated the duality theorems and sufficient KKT
conditions of SVFMPPs under the hypothesis of α-cone arcwise connectedness. In-
stead of α-cone convex SVMs, we essentially deal with α-cone arcwise connected
SVMs as objective function and constraint. This study presents more broadly
relevant cases than previous ones.

In order to establish the sufficient optimality conditions of SVFMPPs in a more
generalized case, our main objective is to implement the higher-order contingent
epiderivative and higher-order α-cone arcwise connectedness assumptions on the
objective functions and constraints. We also investigate the weak, strong, and
converse duality theorems of Mond-Weir type under higher-order contingent epi-
derivative and higher-order α-cone arcwise connectivity assumptions. For α = 0,
our results improve the ones currently available in the literature.

The following abbreviations have been used often in this paper. Set-valued
fractional minimax programming problems are denoted by SVFMPPs, Karush-
Kuhn-Tucker by KKT, set-valued optimization problems by SVOPs, fractional
minimax programming problems by FMPPs, arcwise connected subsets by ACS,
real normed space by RNS, set-valued maps by SVMs, and “with respect to” by
“w.r.t.”.

This is how the paper is organized. Section 2 covers the definitions and fun-
damental concepts of SVMs. The concept of higher-order α-cone arcwisely con-
nectivity of SVMs is discussed in Section 3. A SVFMPP (MFP) is formulated
in Section 4, and higher-order sufficient KKT requirements of the problem are
finally demonstrated in Section 5. In Section 6, the higher-order duality theorem
of Mond-Weir type are presented under generalized higher-order cone arcwisely
connectivity suppositions. Section 7 ends with the concluding remarks.

2. DEFINITIONS AND OVERVIEWS

Assume that ∆ is a real normed space (in short, RNS) and ∅ ̸= Ψ ⊆ ∆. Then
Ψ is defined to be a cone if τδ ∈ Ψ, ∀δ ∈ Ψ and τ ∈ R with τ ≥ 0. Moreover, Ψ is
defined to be proper if Ψ ̸= ∆, nontrivial if Ψ ̸= {θ∆}, solid if int(Ψ) ̸= ∅, closed
if Ψ = Ψ, pointed if Ψ ∩ (−Ψ) = {θ∆}, and convex if

τΨ+ (1− τ)Ψ ⊆ Ψ,∀τ ∈ [0, 1],

where int(Ψ) and Ψ indicate the interior and closure of Ψ, correspondingly and
θ∆ represents the zero of ∆.
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Let Ψ be a pointed cone in ∆. There are two different types of cone orders
w.r.t. Ψ in ∆. For δ1, δ2 ∈ ∆, we have

δ1 ≤ δ2 if δ2 − δ1 ∈ Ψ

and

δ1 < δ2 if δ2 − δ1 ∈ int(Ψ).

The following minimality concepts are usually introduced w.r.t. a pointed solid
convex cone Ψ in a RNS ∆, .

Definition 2.1. Let ∅ ≠ ∆̃ ⊆ ∆. Then weakly minimal, ideal minimal, and
minimal elements of ∆̃ are defined as

(i) δ′ ∈ ∆̃ is called a weakly minimal element of ∆̃ if there exists no δ ∈ ∆̃,
fulfilling δ < δ′.

(ii) δ′ ∈ ∆̃ is called an ideal minimal element of ∆̃ if δ′ ≤ δ, ∀δ ∈ ∆̃.

(iii) δ′ ∈ ∆̃ is called a minimal element of ∆̃ if there exists no δ ∈ ∆̃ \ {δ′},
fulfilling δ ≤ δ′.

We presume that w-min(∆̃), I-min(∆̃), and min(∆̃) correspondingly represent the
sets of weakly minimal elements, ideal minimal elements, and minimal elements of
∆̃.

Aubin [19, 20] introduced the concept of contingent cone in a RNS.

Definition 2.2. [19, 20] Let ∆ be a RNS, ∅ ̸= ∆̃ ⊆ ∆, and δ′ ∈ ∆̃. The contin-

gent cone to ∆̃ at δ′ is specified by T (∆̃, δ′) and is defined as follows:

An element δ ∈ T (∆̃, δ′) if there exist sequences {τn} in R, with τn → 0+ and
{δn} in ∆, with δn → δ, fulfilling

δ′ + τnδn ∈ ∆̃, ∀n ∈ N,

or, there exist sequences {τn} in R, with τn > 0 and {δ′n} in ∆̃, with δ′n → δ′,
fulfilling

τn(δ
′
n − δ′) → δ, as n → ∞.

Aubin [19, 20] also introduced the concept of contingent set of higher order in
a RNS.

Definition 2.3. [19, 20] Assume that ∆ is a RNS and ∅ ≠ ∆̃ ⊆ ∆, δ′ ∈ ∆̃, k ∈ N,
with k ≥ 2, and δ1, ..., δk−1 ∈ ∆. Then the contingent set T (k)(∆̃, δ′, δ1, ..., δk−1)

of k-th order to ∆̃ at (δ′, δ1, ..., δk−1) is defined as:

δ ∈ T (k)(∆̃, δ′, δ1, ..., δk−1) if there exist some sequences {τn} in R and {δn} in
∆, together with τn → 0+ and δn → δ, so that
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δ′ + τnδ1 + ...+ τn
k−1δk−1 + τn

kδn ∈ ∆̃,∀n ∈ N,

equivalently, δ ∈ T (k)(∆̃, δ′, δ1, ..., δk−1) if there exist some sequences {τn} in R
and {δ′n} in ∆, together with δ′n ∈ ∆̃,∀n ∈ N, τn → 0+, and δ′n → δ′, so that

δ′n−δ′−τnδ1−...−τn
k−1δk−1

τnk → δ, as n → ∞.

Let Γ, ∆ be RNSs, and Let Ψ be a pointed cone in ∆.. Let χ : Γ → 2∆ be a
SVM. The definitions given for the image, domain, epigraph, and graph χ are as
follows:

χ(Γ̃) =
⋃
γ∈Γ̃

{χ(γ)}, for any ∅ ≠ Γ̃ ⊆ Γ,

dom(χ) = {γ ∈ Γ : χ(γ) ̸= ∅},

epi(χ) = {(γ, δ) ∈ Γ×∆ : δ ∈ χ(γ) + Ψ},

and

gr(χ) = {(γ, δ) ∈ Γ×∆ : δ ∈ χ(γ)}.

Jahn and Rauh [21] introduced the concept of contingent epiderivative of
SVMs.

Definition 2.4. [21] Assume that Γ, ∆ are RNSs, χ : Γ → 2∆ is a SVM with

dom(χ) = Γ, and (γ′, δ′) ∈ gr(χ). A function
−→
d χ(γ′, δ′) : Γ → ∆ having epigraph

similar to the contingent cone to the epigraph of χ at (γ′, δ′), i.e.,

epi(
−→
d χ(γ′, δ′)) = T (epi(χ), (γ′, δ′)),

is stated to be contingent epiderivative of χ at (γ′, δ′).

The notion of contingent derivatives of higher-order of SVMs were originally in-
troduced by Aubin and Frankowska [20].

Definition 2.5. [20] Suppose that k ∈ N, with k ≥ 2, Γ, ∆ are RNSs, χ : Γ → 2∆

is a SVM with dom(χ) = Γ, (γ′, δ′) ∈ gr(χ), and (γ1, δ1), ..., (γk−1, δk−1) ∈ Γ×∆.
Then the contingent derivative d(k)χ(γ′, δ′, γ1, δ1, ..., γk−1, δk−1) of k-th order of χ
at (γ′, δ′) for (γ1, δ1), ..., (γk−1, δk−1) is the SVM from Γ to ∆ defined by

gr(d(k)χ(γ′, δ′, γ1, δ1, ..., γk−1, δk−1))

= T (k)(gr(χ), (γ′, δ′), (γ1, δ1), ..., (γk−1, δk−1)).

Let Γ, ∆ be RNSs, Ψ be a pointed cone in ∆, and χ : Γ → 2∆ be a SVM. Let us
define a SVM χ+Ψ : Γ → 2∆ by

(χ+Ψ)(γ) = χ(γ) + Ψ,∀γ ∈ dom(χ).

Li and Chen [22] developed the concept of generalized contingent epi-derivative of
higher-order of SVMs.
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Definition 2.6. [22] Suppose that k ∈ N, with k ≥ 2, Γ, ∆ are RNSs, χ : Γ → 2∆

is a SVM with dom(χ) = Γ, (γ′, δ′) ∈ gr(χ), and (γ1, δ1), ..., (γk−1, δk−1) ∈ Γ×∆.
Then the generalized contingent epi-derivative of k-th order of χ at (γ′, δ′) for

(γ1, δ1), ..., (γk−1, δk−1), specified by
−→
d

(k)
g χ(γ′, δ′, γ1, δ1, ..., γk−1, δk−1), is the SVM

from Γ to ∆ defined by

−→
d (k)

g χ(γ′, δ′, γ1, δ1, ..., γk−1, δk−1)(γ)

= min{δ ∈ ∆ : (γ, δ) ∈ T (k)(epi(χ), (γ′, δ′), (γ1, δ1), ..., (γk−1, δk−1))},
γ ∈ dom(d(k)(χ+Ψ)(γ′, δ′, γ1, δ1, ..., γk−1, δk−1)).

We now focus on the concept of cone convexity of SVMs, which was presented
by Borwein [23].

Definition 2.7. [23] Let ∅ ̸= Γ̃ ⊆ Γ and Γ̃ is a convex set. A SVM χ : Γ → 2∆,

with Γ̃ ⊆ dom(χ), is defined to be Ψ-convex on Γ̃ if ∀γ1, γ2 ∈ Γ̃ and τ ∈ [0, 1],

τχ(γ1) + (1− τ)χ(γ2) ⊆ χ(τγ1 + (1− τ)γ2) + Ψ.

The following proposition was developed for contingent derivative of higher-order
of SVMs by Li et al. [14].

Proposition 2.1. [14] Suppose that Γ, ∆ are RNSs and χ is Ψ-convex on a

nonempty convex subset Γ̃ of Γ, then ∀γ, γ′ ∈ Γ̃ and ∀δ′ ∈ χ(γ′),

χ(γ)− δ′ ⊆ d(k)χ(γ′, δ′, γ1 − γ′, δ1 − δ′, ..., γk−1 − γ′, δk−1 − δ′)(γ − γ′),

where γ1, ..., γk−1 ∈ Γ̃, δ1 ∈ χ(γ1) + Ψ, ..., δk−1 ∈ χ(γk−1) + Ψ.

Avriel [15] established the concept of arcwisely connectivity as a generalization
of convexity.

Definition 2.8. [15] A subset Γ̃ of a RNS Γ is stated to be an arcwisely con-

nected set if ∀γ1, γ2 ∈ Γ̃ there exists a continuous arc Λγ1,γ2
: [0, 1] → Γ̃ fulfilling

Λγ1,γ2
(0) = γ1 and Λγ1,γ2

(1) = γ2.

Fu andWang [16] and Lalitha et al. [17] developed the concept of cone arcwisely
connected SVMs.

Definition 2.9. [16, 17] Let Γ̃ be an arcwisely connected subset (in short, ACS)

of a RNS Γ and χ : Γ → 2∆ be a SVM, with Γ̃ ⊆ dom(χ). Then χ is stated to be

Ψ-arcwisely connected on Γ̃ if

(1− τ)χ(γ1) + τχ(γ2) ⊆ χ(Λγ1,γ2
(τ)) + Ψ, ∀γ1, γ2 ∈ Γ̃ and ∀τ ∈ [0, 1].

Khanh and Tung [24] developed the concept of η-arcwisely connectivity of
SVMs.
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Definition 2.10. [24] A subset Γ̃ of a RNS Γ is stated to be an η-arcwisely con-

nected set, with η : Γ̃× Γ̃× [0, 1] → Γ, if for every γ1, γ2 ∈ Γ̃ and τ ∈ [0, 1],

γ1 + τη(γ1, γ2, τ) ∈ Γ̃.

For η : Γ̃ × Γ̃ × [0, 1] → Γ, a SVM χ : Γ → 2∆ is stated to be Ψ-η-arcwisely

connected on an η-arcwisely connected set Γ̃ if for every γ1, γ2 ∈ Γ̃ and τ ∈ [0, 1],

lim
τ→0+

τη(γ1, γ2, τ) = 0

and
(1− τ)χ(γ1) + τχ(γ2) ⊆ χ(γ1 + τη(γ1, γ2, τ)) + Ψ.

Suppose that χ : Γ → 2∆ is a SVM, together with ∅ ≠ Γ̃ ⊆ Γ and Γ̃ ⊆ dom(χ).
Let us assume that (γ′, δ′), (γ1, δ1), ..., (γk−1, δk−1) ∈ Γ × ∆ together with

γ′, γ1, ..., γk−1 ∈ Γ̃, δ′ ∈ χ(γ′), δ1 ∈ χ(γ1) + Ψ, ..., δk−1 ∈ χ(γk−1) + Ψ.
The α-cone convexity of higher-order of SVMs was introduced by Das and

Nahak [18].

Definition 2.11. [18] Assume that Γ,∆ are RNSs, ∅ ≠ Γ̃ ⊆ Γ, Ψ is a convex cone
of ∆ which is both pointed and solid, α ∈ R, e ∈ int(Ψ), and χ : Γ → 2∆ is a SVM,

together with Γ̃ ⊆ dom(χ). Assume that χ is generalized contingent epiderivable
of k-th order at (γ′, δ′) for (γ1 − γ′, δ1 − δ′), ..., (γk−1 − γ′, δk−1 − δ′). Then χ is
stated to be α-Ψ-convex of k-th order w.r.t. e at (γ′, δ′) for (γ1, δ1), ..., (γk−1, δk−1)

on Γ̃ if

χ(γ)− δ′ ⊆
−→
d (k)

g χ(γ′, δ′, γ1 − γ′, δ1 − δ′, ..., γk−1 − γ′, δk−1 − δ′)

(γ − γ′) + α∥γ − γ′∥2e+Ψ,∀γ ∈ Γ̃.

Das et al. [25] presented the concept of α-cone arcwisely connectivity of SVMs
by generalizing cone arcwisely connected SVMs and therefore developed the suffi-
cient conditions of optimality for various forms of SVOPs.

Definition 2.12. [25] Let Γ̃ be an ACS of a RNS Γ, e ∈ int(Ψ), and χ : Γ → 2∆

be a SVM, with Γ̃ ⊆ dom(χ). Then χ is stated to be α-Ψ-arcwisely connected w.r.t.

e on Γ̃ if there exists α ∈ R, fulfilling

(1− τ)χ(γ1) + τχ(γ2) ⊆ χ(Λγ1,γ2
(τ)) + ατ(1− τ)∥γ1 − γ2∥2e+Ψ,

∀γ1, γ2 ∈ Γ̃ and ∀τ ∈ [0, 1].

Theorem 2.1. [25] Let Γ̃ be an ACS of a RNS Γ, e ∈ int(Ψ), and χ : Γ → 2∆ be

α-Ψ-arcwisely connected w.r.t. e on Γ̃. Let γ′ ∈ Γ̃ and δ′ ∈ χ(γ′). Then,

χ(γ)− δ′ ⊆
−→
d χ(γ′, δ′)(Λ′

γ′,γ(0+)) + α∥γ − γ′∥2e+Ψ, ∀γ ∈ Γ̃.
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Let Γ̃ be an ACS of a RNS Γ. Throughout the paper, we assume that Λ′
γ′,γ(0+)

exists ∀γ, γ′ ∈ Γ̃, where

Λ′
γ′,γ(0+) = lim

τ→0+

Λγ′,γ(τ)− Λγ′,γ(0)

τ
.

Let Γ,∆ be RNSs, ∅ ≠ Γ̃ ⊆ Γ, χ : Γ → 2∆ be a SVM, and Ψ be a pointed
convex cone in ∆.

Definition 2.13. A SVM χ : Γ → 2∆ is defined to be upper semicontinuous if
χ+(∆̃) = {γ ∈ Γ : χ(γ) ⊆ ∆̃} is open in Γ for arbitrary open subset ∆̃ of ∆.

Definition 2.14. Let ∅ ̸= ∆̃ ⊆ ∆. Then ∆̃ is stated to be Ψ-semicompact if all
open cover of complements having the form

{(δj +Ψ)c : δj ∈ ∆̃, j ∈ J}

possesses a finite subcover, in which case J is an arbitrary index set.

Definition 2.15. A SVM χ : Γ → 2∆ is defined to be Ψ-semicompact-valued if
χ(γ) is Ψ-semicompact, ∀γ ∈ dom(χ).

We consider the following SVOP (P):

max
γ∈Γ̃

χ(γ), (P)

The maximizer for the problem (P) is defined as follows:

Definition 2.16. Let γ′ ∈ Γ̃ and δ′ ∈ χ(γ′). Then (γ′, δ′) is defined to be a

maximizer of (P) if there exist no γ ∈ Γ̃ and δ ∈ χ(γ) fulfilling

δ′ < δ.

The existence results for the solutions of SVOPs in RNSs were established
by Corley [26] when the objective map is an upper semicontinuous and cone
semicompact-valued.

Theorem 2.2. [26] Let Γ,∆ be RNSs, ∅ ≠ Γ̃ ⊆ Γ, ∅ ≠ Ψ ⊆ ∆, and Ψ is a pointed
convex cone in ∆. Assume that χ : Γ → 2∆ be Ψ-semicompact-valued and upper
semicontinuous. In this case, there exists a maximizer for (P).

3. HIGHER-ORDER α-CONE ARCWISELY CONNECTIVITY

Das [27] and Das and Nahak [28] established the second-order sufficient opti-
mality conditions and developed the duality results of set-valued fractional pro-
gramming problems and set-valued optimization problems, respectively. Pokharna
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and Tripathi [29] introduced the optimality conditions and studied the duality the-
orems for E-minimax fractional programming problems. The concept of higher-
order α-cone arcwisely connectivity of SVMs was first introduced by Das [1]. He
developed the results of duality for set-valued parametric optimization problems
under the contingent epiderivative and higher-order α-cone arcwisely connectivity
suppositions and provided sufficient KKT conditions of optimality. For α = 0, we
have the standard notion of cone arcwisely connectivity of SVMs, introduced by
Fu and Wang [16] and Lalitha et al. [17].

Assume that χ : Γ → 2∆ is a SVM, together with Γ̃ ⊆ dom(χ). Suppose

that (γ′, δ′), (γ1, δ1), ..., (γk−1, δk−1) ∈ Γ × ∆ together with γ′, γ1, ..., γk−1 ∈ Γ̃,
δ′ ∈ χ(γ′), δ1 ∈ χ(γ1) + Ψ, ..., δk−1 ∈ χ(γk−1) + Ψ.

Definition 3.1. [1] Suppose that Γ,∆ are RNSs, Γ̃ is an ACS of Γ, Ψ is a solid
pointed convex cone of ∆, α ∈ R, e ∈ int(Ψ), and χ : Γ → 2∆ is a SVM, together

with Γ̃ ⊆ dom(χ). Suppose that χ is generalized contingent epiderivable of k-th
order at (γ′, δ′) for (γ1−γ′, δ1−δ′), ..., (γk−1−γ′, δk−1−δ′). Then χ is stated to be
α-Ψ-arcwisely connected of k-th order w.r.t. e at (γ′, δ′) for (γ1, δ1), ..., (γk−1, δk−1)

on Γ̃ if

χ(γ)− δ′ ⊆
−→
d (k)

g χ(γ′, δ′, γ1 − γ′, δ1 − δ′, ..., γk−1 − γ′, δk−1 − δ′)(Λ′
γ′,γ(0+))

+α∥γ − γ′∥2e+Ψ,∀γ ∈ Γ̃.

Remark 3.1. If α > 0, then χ is stated to be strongly α-Ψ-arcwisely connected of
k-th order, if α = 0, we have the usual concept of Ψ-arcwisely connectivity of k-th
order, and if α < 0, then χ is stated to be weakly α-Ψ-arcwisely connected of k-th
order. Obviously, strongly α-Ψ-arcwisely connectivity of k-th order ⇒ Ψ-arcwisely
connectivity of k-th order ⇒ weakly α-Ψ-arcwisely connectivity of k-th order.

For α = 0 and Λγ1,γ2(τ) = γ1 + τη(γ1, γ2, τ), with γ1 + η(γ1, γ2, 1) = γ2,
we have the concept of η-arcwisely connectivity of k-th order. When Λγ1,γ2

(τ) =
γ1 + τη(γ1, γ2, τ), with γ1 + η(γ1, γ2, 1) = γ2, strongly α-Ψ-arcwisely connectivity
of k-th order ⇒ η-arcwisely connectivity of k-th order ⇒ weakly α-Ψ-arcwisely
connectivity of k-th order.

4. FORMULATION OF THE MAIN PROBLEM

Let ∅ ≠ Γ̃ ⊆ Rn and ∆̃ be a nonempty compact subset of Rm. Let M1 and M2

be n×n positive semidefinite matrices. Let χ, ζ : Rn×Rm → 2R and Ω : Rn → 2R
p

be SVMs, with

Γ̃× ∆̃ ⊆ dom(χ) ∩ dom(ζ) and Γ̃ ⊆ dom(Ω).

Let (a, b) ∈ Rn × Rm. Consider a SVFMPP

minimize
a∈Γ̃

max
⋃
b∈∆̃

χ(a, b) + (aTM1a)
1
2

ζ(a, b)− (aTM2a)
1
2

subject to Ω(a) ∩ (−Rp
+) ̸= ∅.

(MFP)
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Assume that ∅ + X = ∅ and ∅ − X = ∅ for every X ⊆ R. Define a SVM µ :
Rn × Rm → 2R by

µ(a, b) =
χ(a, b) + (aTM1a)

1
2

ζ(a, b)− (aTM2a)
1
2

,∀(a, b) ∈ Rn × Rm.

assuming that
χ(a, b) + (aTM1a)

1
2 ≥ 0

and
ζ(a, b)− (aTM2a)

1
2 > 0,∀(a, b) ∈ Γ̃× ∆̃.

We assume that the SVM µ(a, .) : Rm → 2R is upper semicontinuous as well as

R+-semicompact-valued on ∆̃, ∀a ∈ Γ̃. Hence, by Theorem 2.2, max
⋃

b∈∆̃

µ(a, b)

always exists, ∀a ∈ Γ̃. Since µ(a, b) ⊆ R, for every a ∈ Γ̃ there exists only one
solution of max

⋃
b∈∆̃

µ(a, b). The feasible set of (MFP) is

S′ = {a ∈ Γ̃ : Ω(a) ∩ (−Rp
+) ̸= ∅}.

The following defines the minimizer of (MFP).

Definition 4.1. Let a′ ∈ S′ be a feasible element of (MFP) and c′ = max
⋃

b∈∆̃

µ(a′, b).

Then (a′, c′) is defined to be a minimizer of (MFP) if there exist no a ∈ S′ and
c = max

⋃
b∈∆̃

µ(a, b), with a ̸= a′, fulfilling

c < c′.

For a ∈ Γ̃, define
I(a) = {j : 0 ∈ Ωj(a), 1 ≤ j ≤ p}

J(a) = {1, ..., p} \ I(a),

B(a) =
{
b′ ∈ ∆̃ : max

⋃
b∈∆̃

µ(a, b) ∈ µ(a, b′)
}
,

and

K(a) =
{
(r, c∗, b̃) ∈ N× Rr

+ × Rmr : 1 ≤ r ≤ n, c∗ = (c∗1, ..., c
∗
r) ∈ Rr

+,

with

r∑
i=1

c∗i = 1, b̃ = (b1, ..., br), with bj ∈ B(a), j = 1, ..., r
}
.

As µ(a, .) is upper semicontinuous as well as R+-semicompact-valued on ∆̃,∀a ∈ Γ̃,
we have

B(a′) ̸= ∅,∀a′ ∈ S′.
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Let M be an n× n positive semidefinite matrix. Then, ∀a, d ∈ Rn,

aTMd ≤ (aTMa)
1
2 (dTMd)

1
2 .

Moreover, if (dTMd)
1
2 ≤ 1, we have

aTMd ≤ (aTMa)
1
2 . (4.1)

5. HIGHER-ORDER SUFFICIENT CRITERIA OF OPTIMALITY

Assume that χ, ζ : Rn × Rm → 2R and Ω : Rn → 2R
p

be SVMs, with

Γ̃× ∆̃ ⊆ dom(χ) ∩ dom(ζ) and Γ̃ ⊆ dom(Ω).

Suppose that a′ ∈ Γ̃, k, r ∈ N, with k ≥ 2, and bi ∈ B(a′), (1 ≤ i ≤ r).
Let (a′, c′i), (a1, c1i), ..., (ak−1, c(k−1)i), (a

′, c′′i ), (a1, c
′
1i), ..., (ak−1, c

′
(k−1)i) ∈ Rn ×

R with a′, a1, ..., ak−1 ∈ Γ̃, c′i ∈ χ(a′, bi), c1i ∈ χ(a1, bi) + R+, ..., c(k−1)i ∈
χ(ak−1, bi) +R+, c′′i ∈ ζ(a′, bi), and c′1i ∈ ζ(a1, bi) +R+, ..., c

′
(k−1)i ∈ ζ(ak−1, bi) +

R+.
Also, assume that (a′, d′j), (a1, d1j), ..., (ak−1, d(k−1)j) ∈ Rn × R together with

d′j ∈ Ωj(a
′), d1j ∈ Ωj(a1) + R+, ..., d(k−1)j ∈ Ωj(ak−1) + R+, (1 ≤ j ≤ p), where

Ω = (Ω1, ...,Ωp).
We establish the higher-order sufficient KKT conditions of SVFMPP (MFP)

using the assumption of the higher-order α-cone arcwisely connectivity

Theorem 5.1. (Higher-order sufficient criteria of optimality) Let Γ̃ be an
ACS of Rn, a′ be a feasible element of (MFP), and c′ = max

⋃
b∈∆̃

µ(a′, b). Assume

that there exist r ∈ N, where 1 ≤ r ≤ n, c∗ = (c∗1, ..., c
∗
r) ∈ Rr

+, with

r∑
i=1

c∗i = 1,

bi ∈ B(a′), (1 ≤ i ≤ r), d, δ ∈ Rn, d∗ = (d∗1, ..., d
∗
p) ∈ Rp

+, and d′j ∈ Ωj(a
′)∩(−R+),

(1 ≤ j ≤ p), fulfilling

r∑
i=1

c∗i

(−→
d (k)

g χ(., bi)(a
′, c′i, a1 − a′, c1i − c′i, ..., ak−1 − a′, c(k−1)i − c′i)

+M1d− c′(
−→
d (k)

g (−ζ)

(., bi)(a
′,−c′′i , a1 − a′,−c′1i + c′′i , ..., ak−1 − a′,−c′(k−1)i + c′′i )−M2δ)

)
(Λ′

a′,a(0+))

+

p∑
j=1

d∗j
−→
d (k)

g Ωj(a
′, d′j , a1 − a′, d1j − d′j , ..., ak−1 − a′, d(k−1)j − d′j)

(Λ′
a′,a(0+)) ≥ 0,∀a ∈ Γ̃,

(5.2)
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p∑
j=1

d∗jd
′
j = 0, (5.3)

dTM1d ≤ 1, δTM2δ ≤ 1, (5.4)

(a′TM1a
′)

1
2 = a′TM1d, (5.5)

and

(a′TM2a
′)

1
2 = a′TM2δ. (5.6)

Suppose that χ(., bi) is αi-R+-arcwisely connected of k-th order w.r.t. 1 at (a′, c′i)
for the elements (a1, c1i), ..., (ak−1, c(k−1)i), (.)

TM1d is αi-R+-arcwisely connected

w.r.t. 1, −ζ(., bi) is α′
i-R+-arcwisely connected of k-th order w.r.t. 1 at (a′,−c′′i )

for the elements (a1,−c′1i), ..., (ak−1,−c′(k−1)i), (.)
TM2δ is α′

i-R+-arcwisely con-

nected w.r.t. 1 and Ωj, (1 ≤ j ≤ p), is νj-R+-arcwisely connected of k-th order

w.r.t. 1 at (a′, d′j) for (a1, d1j), ..., (ak−1, d(k−1)j), on Γ̃, satisfying

r∑
i=1

c∗i

(
αi + αi − c′(α′

i + α′
i)
)
+

p∑
j=1

d∗jνj ≥ 0. (5.7)

Then (a′, c′) is a minimizer of (MFP).

Proof. Assume that (a′, c′) is not a minimizer of (MFP). Then there exist a ∈ S′

and c = max
⋃

b∈∆̃

µ(a, b), with a ̸= a′, fulfilling

c < c′.

Since bi ∈ B(a′), i = 1, ..., r, we have

max
⋃
b∈∆̃

µ(a′, b) ∈ µ(a′, bi).

As c′ = max
⋃

b∈∆̃

µ(a′, b), we have

c′ ∈ µ(a′, bi), i = 1, ..., r.

Let ci ∈ µ(a, bi). Again, as c = max
⋃

b∈∆̃

µ(a, b) and bi ∈ B(a′) ⊆ ∆̃, we have

ci ≤ c.

Hence,
ci < c′.
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As c′ ∈ µ(a′, bi), there exist c′i ∈ χ(a′, bi) and c′′i ∈ ζ(a′, bi) fulfilling

c′ =
c′i + (a′TM1a

′)
1
2

c′′i − (a′TM2a′)
1
2

.

So,

c′i + (a′TM1a
′)

1
2 − c′(c′′i − (a′TM2a

′)
1
2 ) = 0,∀i = 1, ..., r. (5.8)

Since ci ∈ µ(a, bi), there exist c′i ∈ χ(a, bi) and c′′i ∈ ζ(a, bi) fulfilling

ci =
c′i + (aTM1a)

1
2

c′′i − (aTM2a)
1
2

.

Hence,
c′i + (aTM1a)

1
2

c′′i − (aTM2a)
1
2

< c′.

So,

c′i + (aTM1a)
1
2 − c′(c′′i − (aTM2a)

1
2 ) < 0,∀i = 1, ..., r. (5.9)

From (4.1) and (5.4), we have

r∑
i=1

c∗i

(
c′i + (aTM1d)− c′(c′′i − (aTM2δ))

)
≤

r∑
i=1

c∗i

(
c′i + (aTM1a)

1
2 − c′(c′′i − (aTM2a)

1
2 )
)
.

Again, from (5.9), we have

r∑
i=1

c∗i

(
c′i + (aTM1a)

1
2 − c′(c′′i − (aTM2a)

1
2 )
)
< 0.

From (5.8),

r∑
i=1

c∗i

(
c′i + (a′TM1a

′)
1
2 − c′(c′′i − (a′TM2a

′)
1
2 )
)
= 0.

Again, from (5.5) and (5.6) we have

r∑
i=1

c∗i

(
c′i + (a′TM1a

′)
1
2 − c′(c′′i − (a′TM2a

′)
1
2 )
)

=

r∑
i=1

c∗i

(
c′i + (a′TM1d)− c′(c′′i − (a′TM2δ))

)
.
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Hence, we have

r∑
i=1

c∗i

(
c′i + (aTM1d)− c′(c′′i − (aTM2δ))

)
<

r∑
i=1

c∗i

(
c′i + (a′TM1d)− c′(c′′i − (a′TM2δ))

)
.

As a ∈ S′, there exists
dj ∈ Ωj(a) ∩ (−R+).

Since d∗j ≥ 0 (1 ≤ j ≤ p), we have

d∗jdj ≤ 0,∀j, with 1 ≤ j ≤ p.

So,
p∑

j=1

d∗jdj ≤ 0.

From (5.3), we have
p∑

j=1

d∗jd
′
j = 0.

Hence,
p∑

j=1

d∗jdj ≤
p∑

j=1

d∗jd
′
j .

Hence,

r∑
i=1

c∗i

(
c′i + (aTM1d)− c′(c′′i − (aTM2δ))

)
+

p∑
j=1

d∗jdj

<

r∑
i=1

c∗i

(
c′i + (a′TM1d)− c′(c′′i − (a′TM2δ))

)
+

p∑
j=1

d∗jd
′
j .

(5.10)

As it is presumed that χ(., bi) is αi-R+-arcwisely connected of k-th order w.r.t. 1

at (a′, c′i) for (a1, c1i), ..., (ak−1, c(k−1)i), on Γ̃ and c′i ∈ χ(a′, bi), we have

χ(a, bi)− c′i

⊆
−→
d (k)

g χ(., bi)(a
′, c′i, a1 − a′, c1i − c′i, ..., ak−1 − a′, c(k−1)i − c′i)

(Λ′
a′,a(0+)) + αi∥a− a′∥2 + R+.

Again, as c′i ∈ χ(a, bi), we have

c′i − c′i

∈
−→
d (k)

g χ(., bi)(a
′, c′i, a1 − a′, c1i − c′i, ..., ak−1 − a′, c(k−1)i − c′i)

(Λ′
a′,a(0+)) + αi∥a− a′∥2 + R+.

(5.11)
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Suppose that (.)TM1d is αi-R+-arcwisely connected w.r.t. 1, on Γ̃, we have

aTM1d− a′TM1d ≥ M1d(Λ
′
a′,a(0+)) + αi∥a− a′∥2 + R+. (5.12)

As it is presumed that −ζ(., bi) is α
′
i-R+-arcwisely connected of k-th order w.r.t.

1 at (a′,−c′′i ) for (a1,−c′1i), ..., (ak−1,−c′(k−1)i), on Γ̃ and c′′i ∈ ζ(a′, bi), we have

−ζ(a, bi) + c′′i

⊆
−→
d (k)

g (−ζ)(., bi)(a
′,−c′′i , a1 − a′,−c′1i + c′′i , ..., ak−1 − a′,−c′(k−1)i + c′′i )

(Λ′
a′,a(0+)) + α′

i∥a− a′∥2 + R+.

Again, as c′′i ∈ ζ(a, bi), we have

−c′′i + c′′i ∈
−→
d (k)

g (−ζ)(., bi)

(a′,−c′′i , a1 − a′,−c′1i + c′′i , ..., ak−1 − a′,−c′(k−1)i + c′′i )

(Λ′
a′,a(0+)) + α′

i∥a− a′∥2 + R+.

(5.13)

Since (.)TM2δ is α′
i-R+-arcwisely connected w.r.t. 1, on Γ̃, we have

aTM2δ − a′TM2δ ≥ M2δ(Λ
′
a′,a(0+)) + α′

i∥a− a′∥2 + R+. (5.14)

As Ωj , (1 ≤ j ≤ p), is νj-R+-arcwisely connected of k-th order w.r.t. 1 at (a′, d′j)

for the elements (a1, d1j), ..., (ak−1, d(k−1)j), on Γ̃ and d′j ∈ Ωj(a
′) ∩ (−R+), we

have

Ωj(a)− d′j ⊆
−→
d (k)

g Ωj(a
′, d′j , a1 − a′, d1j − d′j , ..., ak−1 − a′, d(k−1)j − d′j)

(Λ′
a′,a(0+)) + νj∥a− a′∥2 + R+.

Since dj ∈ Ωj(a) ∩ (−R+), we have

dj − d′j

∈
−→
d (k)

g Ωj(a
′, d′j , a1 − a′, d1j − d′j , ..., ak−1 − a′, d(k−1)j − d′j)

(Λ′
a′,a(0+)) + νj∥a− a′∥2 + R+.

(5.15)

From (5.2), (5.7), (5.11), (5.12), (5.13), (5.14), and (5.15), we have

r∑
i=1

c∗i

(
c′i + (aTM1d)− c′(c′′i − (aTM2δ))

)
+

p∑
j=1

d∗jdj

≥
r∑

i=1

c∗i

(
c′i + (a′TM1d)− c′(c′′i − (a′TM2δ))

)
+

p∑
j=1

d∗jd
′
j ,

which contradicts (5.10). Hence, (a′, c′) is a minimizer of (MFP).
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6. HIGHER-ORDER MOND-WEIR TYPE DUAL

We consider a higher-order dual (MWD) of Mond-Weir form in accordance with

the primal problem (MFP), where the SVMs χ(., bi), −ζ(., bi); bi ∈ B(a′), a′ ∈ Γ̃,
and Ωj are higher-order contingent epiderivable SVMs.

maximize c′ (MWD)

subject to
r∑

i=1

c∗i

(−→
d (k)

g χ(., bi)(a
′, c′i, a1 − a′, c1i − c′i, ..., ak−1 − a′,

c(k−1)i − c′i) +M1d

− c′(
−→
d (k)

g (−ζ)(., bi)(a
′,−c′′i , a1 − a′,−c′1i + c′′i , ..., ak−1 − a′,

− c′(k−1)i + c′′i )−M2δ)
)

(Λ′
a′,a(0+))

+

p∑
j=1

d∗j
−→
d (k)

g Ωj(a
′, d′j , a1 − a′, d1j − d′j , ..., ak−1 − a′,

d(k−1)j − d′j)(Λ
′
a′,a(0+)) ≥ 0,∀a ∈ Γ̃,

for some r ∈ N, (1 ≤ r ≤ n) and bi ∈ B(a′),
p∑

j=1

d∗jd
′
j ≥ 0,

dTM1d ≤ 1, δTM2δ ≤ 1, (a′TM1a
′)

1
2 = a′TM1d,

(a′TM2a
′)

1
2 = a′TM2δ, for some d, δ ∈ Rn,

a′ ∈ Γ̃, c′ = max
⋃
b∈∆̃

µ(a′, b), d′ = (d′1, ..., d
′
p), d

′
j ∈ Ωj(a

′),

c∗ = (c∗1, ..., c
∗
r), d

∗ = (d∗1, ..., d
∗
p), c

∗
i ≥ 0, d∗j ≥ 0,

r∑
i=1

c∗i = 1,

where 1 ≤ i ≤ r and 1 ≤ j ≤ p.

A element (a′, c′, d′, c∗, d∗) meeting every constraints of (MWD) is defined to be
a feasible element of (MWD).

Definition 6.1. A feasible element (a′, c′, d′, c∗, d∗) of the problem (MWD) is de-
fined to be a maximizer of (MWD) if there exists no feasible element (a, c, d, c∗1, d

∗
1)

of (MWD) fulfilling
c′ < c.

Theorem 6.1. (Higher-order weak duality) Let Γ̃ be an ACS of Rn, a0 be
feasible to (MFP) and (a′, c′, d′, c∗, d∗) be a feasible element of (MWD).
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Suppose that χ(., bi) is αi-R+-arcwisely connected of k-th order w.r.t. 1 at
(a′, c′i) for the elements (a1, c1i), ..., (ak−1, c(k−1)i), (.)TM1d is αi-R+-arcwisely

connected w.r.t. 1, −ζ(., bi) is α
′
i-R+-arcwisely connected of k-th order w.r.t. 1 at

(a′,−c′′i ) for (a1,−c′1i), ..., (ak−1,−c′(k−1)i), (.)
TM2δ is α′

i-R+-arcwisely connected

w.r.t. 1 and Ωj, (1 ≤ j ≤ p), is νj-R+-arcwisely connected of k-th order w.r.t. 1

at (a′, d′j) for (a1, d1j), ..., (ak−1, d(k−1)j), on Γ̃, satisfying

(
αi + αi − c′(α′

i + α′
i)
)
+

p∑
j=1

d∗jνj ≥ 0. (6.16)

Then,

max
⋃
b∈∆̃

µ(a0, b) ≮ c′.

Proof. Using the method of contradiction, we demonstrate the proof. Assume that
for c0 = max

⋃
b∈∆̃

µ(a0, b), c0 < c′. Since bi ∈ B(a′), i = 1, ..., r, we have

max
⋃
b∈∆̃

µ(a′, b) ∈ µ(a′, bi).

As c′ = max
⋃

b∈∆̃

µ(a′, b), we have

c′ ∈ µ(a′, bi), i = 1, ..., r.

Let ci ∈ µ(a0, bi). Again, as c0 = max
⋃

b∈∆̃

µ(a0, b) and bi ∈ B(a′) ⊆ ∆̃, we have

ci ≤ c0.

Hence,
ci < c′.

As c′ ∈ µ(a′, bi), there exist c′i ∈ χ(a′, bi) and c′′i ∈ ζ(a′, bi) fulfilling

c′ =
c′i + (a′TM1a

′)
1
2

c′′i − (a′TM2a′)
1
2

.

So,

c′i + (a′TM1a
′)

1
2 − c′(c′′i − (a′TM2a

′)
1
2 ) = 0,∀i = 1, ..., r. (6.17)

Since ci ∈ µ(a0, bi), there exist c′i ∈ χ(a0, bi) and c′′i ∈ ζ(a0, bi) fulfilling

ci =
c′i + (aT0 M1a0)

1
2

c′′i − (aT0 M2a0)
1
2

.
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Hence,
c′i + (aT0 M1a0)

1
2

c′′i − (aT0 M2a0)
1
2

< c′.

So,

c′i + (aT0 M1a0)
1
2 − c′(c′′i − (aT0 M2a0)

1
2 ) < 0,∀i = 1, ..., r. (6.18)

From (4.1) and the constraints of the problem (MWD), we have

r∑
i=1

c∗i

(
c′i + (aT0 M1d)− c′(c′′i − (aT0 M2δ))

)
≤

r∑
i=1

c∗i

(
c′i + (aT0 M1a0)

1
2 − c′(c′′i − (aT0 M2a0)

1
2 )
)
.

Again, from (6.18), we have

r∑
i=1

c∗i

(
c′i + (aT0 M1a0)

1
2 − c′(c′′i − (aT0 M2a0)

1
2 )
)
< 0.

From (6.17),

r∑
i=1

c∗i

(
c′i + (a′TM1a

′)
1
2 − c′(c′′i − (a′TM2a

′)
1
2 )
)
= 0.

Again, from the constraints of the problem (MWD), we have

r∑
i=1

c∗i

(
c′i + (a′TM1a

′)
1
2 − c′(c′′i − (a′TM2a

′)
1
2 )
)

=

r∑
i=1

c∗i

(
c′i + (a′TM1d)− c′(c′′i − (a′TM2δ))

)
.

Hence, we have

r∑
i=1

c∗i

(
c′i + (aT0 M1d)− c′(c′′i − (aT0 M2δ))

)
<

r∑
i=1

c∗i

(
c′i + (a′TM1d)− c′(c′′i − (a′TM2δ))

)
.

As a0 ∈ S′, there exists
dj ∈ Ωj(a0) ∩ (−R+).

As d∗j ≥ 0, where (1 ≤ j ≤ p),

d∗jdj ≤ 0,∀j, (1 ≤ j ≤ p).
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So,
p∑

j=1

d∗jdj ≤ 0.

From (MWD),
p∑

j=1

d∗jd
′
j ≥ 0.

Hence,
p∑

j=1

d∗jdj ≤
p∑

j=1

d∗jd
′
j .

Hence,

r∑
i=1

c∗i

(
c′i + (aT0 M1d)− c′(c′′i − (aT0 M2δ))

)
+

p∑
j=1

d∗jdj

<

r∑
i=1

c∗i

(
c′i + (a′TM1d)− c′(c′′i − (a′TM2δ))

)
+

p∑
j=1

d∗jd
′
j .

(6.19)

As it is presumed that χ(., bi) is αi-R+-arcwisely connected of k-th order w.r.t. 1

at (a′, c′i) for (a1, c1i), ..., (ak−1, c(k−1)i), on Γ̃ and c′i ∈ χ(a′, bi),

χ(a0, bi)− c′i ⊆
−→
d (k)

g χ(., bi)(a
′, c′i, a1 − a′, c1i − c′i, ..., ak−1 − a′, c(k−1)i − c′i)

(Λ′
a′,a0

(0+)) + αi∥a0 − a′∥2 + R+.

As c′i ∈ χ(a0, bi),

c′i − c′i

∈
−→
d (k)

g χ(., bi)(a
′, c′i, a1 − a′, c1i − c′i, ..., ak−1 − a′, c(k−1)i − c′i)

(Λ′
a′,a0

(0+)) + αi∥a0 − a′∥2 + R+.

(6.20)

Suppose that (.)TM1d is αi-R+-arcwisely connected w.r.t. 1, on Γ̃,

aT0 M1d− a′TM1d ≥ M1d(Λ
′
a′,a0

(0+)) + αi∥a0 − a′∥2 + R+. (6.21)

As it is presumed that −ζ(., bi) is α
′
i-R+-arcwisely connected of k-th order w.r.t.

1 at (a′,−c′′i ) for (a1,−c′1i), ..., (ak−1,−c′(k−1)i), on Γ̃ and c′′i ∈ ζ(a′, bi), we have

−ζ(a0, bi) + c′′i

⊆
−→
d (k)

g (−ζ)(., bi)(a
′,−c′′i , a1 − a′,−c′1i + c′′i , ..., ak−1 − a′,−c′(k−1)i + c′′i )

(Λ′
a′,a0

(0+)) + α′
i∥a0 − a′∥2 + R+.
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Again, as c′′i ∈ ζ(a0, bi), we have

−c′′i + c′′i ∈
−→
d (k)

g (−ζ)(., bi)

(a′,−c′′i , a1 − a′,−c′1i + c′′i , ..., ak−1 − a′,−c′(k−1)i + c′′i )

(Λ′
a′,a0

(0+)) + α′
i∥a0 − a′∥2 + R+.

(6.22)

Since (.)TM2δ is α′
i-R+-arcwisely connected w.r.t. 1, on Γ̃,

aT0 M2δ − a′TM2δ ≥ M2δ(Λ
′
a′,a0

(0+)) + α′
i∥a0 − a′∥2 + R+. (6.23)

As Ωj , (1 ≤ j ≤ p), is νj-R+-arcwisely connected of k-th order w.r.t. 1 at (a′, d′j)

for the elements (a1, d1j), ..., (ak−1, d(k−1)j), on Γ̃ and d′j ∈ Ωj(a
′) ∩ (−R+), we

have

Ωj(a0)− d′j ⊆
−→
d (k)

g Ωj(a
′, d′j , a1 − a′, d1j − d′j , ..., ak−1 − a′, d(k−1)j − d′j)

(Λ′
a′,a0

(0+)) + νj∥a0 − a′∥2 + R+.

Since dj ∈ Ωj(a0) ∩ (−R+), we have

dj − d′j

∈
−→
d (k)

g Ωj(a
′, d′j , a1 − a′, d1j − d′j , ..., ak−1 − a′, d(k−1)j − d′j)

(Λ′
a′,a0

(0+)) + νj∥a0 − a′∥2 + R+.

(6.24)

From (6.16), (6.20), (6.21), (6.22), (6.23), (6.24), and (MWD),

r∑
i=1

c∗i

(
c′i + (aT0 M1d)− c′(c′′i − (aT0 M2δ))

)
+

p∑
j=1

d∗jdj

≥
r∑

i=1

c∗i

(
c′i + (a′TM1d)− c′(c′′i − (a′TM2δ))

)
+

p∑
j=1

d∗jd
′
j ,

which contradicts (6.19). Hence,

max
⋃

b∈∆̃

µ(a0, b) ≮ c′.

It concludes the proof of the theorem.

Theorem 6.2. (Higher-order strong duality) Let (a′, c′) be a minimizer of
(MFP) and d′j ∈ Ωj(a

′) ∩ (−R+), (1 ≤ j ≤ p). Suppose that for arbitrary k ∈ Z,

(1 ≤ r ≤ n), c∗i ≥ 0, bi ∈ B(a′), (1 ≤ i ≤ r) with

r∑
i=1

c∗i = 1 and d∗j ≥ 0, (1 ≤

j ≤ p), Eqs. (5.2), (5.3), (5.4), (5.5), and (5.6) are fulfilled at (a′, c′, d′, c∗, d∗).
Then (a′, c′, d′, c∗, d∗) is feasible to (MWD). If Theorem 6.1 is satisfied, then
(a′, c′, d′, c∗, d∗) is a maximizer of (MWD).
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Proof. As Eqs. Eqs. (5.2), (5.3), (5.4), (5.5), and (5.6) are fulfilled at (a′, c′, d′, c∗, d∗),

r∑
i=1

c∗i

(−→
d (k)

g χ(., bi)(a
′, c′i, a1 − a′,

c1i − c′i, ..., ak−1 − a′, c(k−1)i − c′i) +M1d

−c′(
−→
d (k)

g (−ζ)(., bi)(a
′,−c′′i , a1 − a′,−c′1i + c′′i , ..., ak−1 − a′,

−c′(k−1)i + c′′i )−M2δ)
)
(Λ′

a′,a(0+))

+

p∑
j=1

d∗j
−→
d (k)

g Ωj(a
′, d′j , a1 − a′, d1j − d′j , ..., ak−1 − a′,

d(k−1)j − d′j)(Λ
′
a′,a(0+)) ≥ 0,∀a ∈ Γ̃,

p∑
j=1

d∗jd
′
j = 0,

dTM1d ≤ 1, δTM2δ ≤ 1,

(a′TM1a
′)

1
2 = a′TM1d,

and
(a′TM2a

′)
1
2 = a′TM2δ.

Hence, (a′, c′, d′, c∗, d∗) is feasible to (MWD). Assume that Theorem 6.1 is satisfied
and (a′, c′, d′, c∗, d∗) is not a maximizer of (MWD). Let (a, c, d, c∗1, d

∗
1) be a feasible

element for (MWD) fulfilling

c′ < c.

It contradicts Theorem 6.1. Hence, (a′, c′, d′, c∗, d∗) is a maximizer for (MWD).

Theorem 6.3. (Higher-order converse duality) Let Γ̃ be an ACS of Rn and
(a′, c′, d′, c∗, d∗) be a feasible element of (MWD).

Suppose that χ(., bi) is αi-R+-arcwisely connected of k-th order w.r.t. 1 at
(a′, c′i) for (a1, c1i), ..., (ak−1, c(k−1)i), (.)

TM1d is αi-R+-arcwisely connected w.r.t.

1, −ζ(., bi) is α′
i-R+-arcwisely connected of k-th order w.r.t. 1 at (a′,−c′′i ) for

the elements (a1,−c′1i), ..., (ak−1,−c′(k−1)i), (.)
TM2δ is α′

i-R+-arcwisely connected

w.r.t. 1 and Ωj, (1 ≤ j ≤ p), is νj-R+-arcwisely connected of k-th order w.r.t. 1

at (a′, d′j) for (a1, d1j), ..., (ak−1, d(k−1)j), on Γ̃, satisfying (6.16). If a′ is feasible
to (MFP), then (a′, c′) is a minimizer of (MFP).

Proof. Assume that (a′, c′) is not a minimizer of (MFP). Hence there exist a ∈ S′

and c = max
⋃

b∈∆̃

µ(a, b), with a ̸= a′, fulfilling

c < c′.
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Since bi ∈ B(a′), i = 1, ..., r,

max
⋃
b∈∆̃

µ(a′, b) ∈ µ(a′, bi).

As c′ = max
⋃

b∈∆̃

µ(a′, b),

c′ ∈ µ(a′, bi), i = 1, ..., r.

Let ci ∈ µ(a, bi). Again, as c = max
⋃

b∈∆̃

µ(a, b) and bi ∈ B(a′) ⊆ ∆̃,

ci ≤ c.

Hence,
ci < c′.

As c′ ∈ µ(a′, bi), there exist c′i ∈ χ(a′, bi) and c′′i ∈ ζ(a′, bi) fulfilling

c′ =
c′i + (a′TM1a

′)
1
2

c′′i − (a′TM2a′)
1
2

.

So,

c′i + (a′TM1a
′)

1
2 − c′(c′′i − (a′TM2a

′)
1
2 ) = 0,∀i = 1, ..., r. (6.25)

Since ci ∈ µ(a, bi), there exist c′i ∈ χ(a, bi) and c′′i ∈ ζ(a, bi) fulfilling

ci =
c′i + (aTM1a)

1
2

c′′i − (aTM2a)
1
2

.

Hence,
c′i + (aTM1a)

1
2

c′′i − (aTM2a)
1
2

< c′.

So,

c′i + (aTM1a)
1
2 − c′(c′′i − (aTM2a)

1
2 ) < 0,∀i = 1, ..., r. (6.26)

From (4.1) and the constraints of the problem (MWD), we have

r∑
i=1

c∗i

(
c′i + (aTM1d)− c′(c′′i − (aTM2δ))

)
≤

r∑
i=1

c∗i

(
c′i + (aTM1a)

1
2 − c′(c′′i − (aTM2a)

1
2 )
)
.

Again, from (6.26), we have

r∑
i=1

c∗i

(
c′i + (aTM1a)

1
2 − c′(c′′i − (aTM2a)

1
2 )
)
< 0.
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From (6.25),

r∑
i=1

c∗i

(
c′i + (a′TM1a

′)
1
2 − c′(c′′i − (a′TM2a

′)
1
2 )
)
= 0.

Again, from the constraints of the problem (MWD), we have

r∑
i=1

c∗i

(
c′i + (a′TM1a

′)
1
2 − c′(c′′i − (a′TM2a

′)
1
2 )
)

=

r∑
i=1

c∗i

(
c′i + (a′TM1d)− c′(c′′i − (a′TM2δ))

)
.

Hence, we have

r∑
i=1

c∗i

(
c′i + (aTM1d)− c′(c′′i − (aTM2δ))

)
=

r∑
i=1

c∗i

(
c′i + (a′TM1d)− c′(c′′i − (a′TM2δ))

)
.

As a ∈ S′, there exists dj ∈ Ωj(a) ∩ (−R+). As d∗j ≥ 0 (1 ≤ j ≤ p),

d∗jdj ≤ 0,∀j, with 1 ≤ j ≤ p.

So,
p∑

j=1

d∗jdj ≤ 0.

From (MWD),
p∑

j=1

d∗jd
′
j ≥ 0.

Hence,
p∑

j=1

d∗jdj ≤
p∑

j=1

d∗jd
′
j .

Hence,

r∑
i=1

c∗i

(
c′i + (aTM1d)− c′(c′′i − (aTM2δ))

)
+

p∑
j=1

d∗jdj

<

r∑
i=1

c∗i

(
c′i + (a′TM1d)− c′(c′′i − (a′TM2δ))

)
+

p∑
j=1

d∗jd
′
j .

(6.27)
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As it is presumed that χ(., bi) is αi-R+-arcwisely connected of k-th order w.r.t. 1

at (a′, c′i) for (a1, c1i), ..., (ak−1, c(k−1)i), on Γ̃ and c′i ∈ χ(a′, bi),

χ(a, bi)− c′i ⊆
−→
d (k)

g χ(., bi)(a
′, c′i, a1 − a′, c1i − c′i, ..., ak−1 − a′, c(k−1)i − c′i)

(Λ′
a′,a(0+)) + αi∥a− a′∥2 + R+.

As c′i ∈ χ(a, bi),

c′i − c′i

∈
−→
d (k)

g χ(., bi)(a
′, c′i, a1 − a′, c1i − c′i, ..., ak−1 − a′, c(k−1)i − c′i)

(Λ′
a′,a(0+)) + αi∥a− a′∥2 + R+.

(6.28)

Suppose that (.)TM1d is αi-R+-arcwisely connected w.r.t. 1, on Γ̃,

aTM1d− a′TM1d ≥ M1d(Λ
′
a′,a(0+)) + αi∥a− a′∥2 + R+. (6.29)

As it is presumed that −ζ(., bi) is α
′
i-R+-arcwisely connected of k-th order w.r.t.

1 at (a′,−c′′i ) for (a1,−c′1i), ..., (ak−1,−c′(k−1)i), on Γ̃ and c′′i ∈ ζ(a′, bi), we have

−ζ(a, bi) + c′′i

⊆
−→
d (k)

g (−ζ)(., bi)(a
′,−c′′i , a1 − a′,−c′1i + c′′i , ..., ak−1 − a′,−c′(k−1)i + c′′i )

(Λ′
a′,a(0+)) + α′

i∥a− a′∥2 + R+.

Again, as c′′i ∈ ζ(a, bi), we have

−c′′i + c′′i ∈
−→
d (k)

g (−ζ)(., bi)

(a′,−c′′i , a1 − a′,−c′1i + c′′i , ..., ak−1 − a′,−c′(k−1)i + c′′i )

(Λ′
a′,a(0+)) + α′

i∥a− a′∥2 + R+.

(6.30)

Since (.)TM2δ is α′
i-R+-arcwisely connected w.r.t. 1, on Γ̃,

aTM2δ − a′TM2δ ≥ M2δ(Λ
′
a′,a(0+)) + α′

i∥a− a′∥2 + R+. (6.31)

As Ωj , (1 ≤ j ≤ p), is νj-R+-arcwisely connected of k-th order w.r.t. 1 at (a′, d′j)

for the elements (a1, d1j), ..., (ak−1, d(k−1)j), on Γ̃ and d′j ∈ Ωj(a
′) ∩ (−R+), we

have

Ωj(a)− d′j ⊆
−→
d (k)

g Ωj(a
′, d′j , a1 − a′, d1j − d′j , ..., ak−1 − a′, d(k−1)j − d′j)

(Λ′
a′,a(0+)) + νj∥a− a′∥2 + R+.

Since dj ∈ Ωj(a) ∩ (−R+), we have

dj − d′j

∈
−→
d (k)

g Ωj(a
′, d′j , a1 − a′, d1j − d′j , ..., ak−1 − a′, d(k−1)j − d′j)

(Λ′
a′,a(0+)) + νj∥a− a′∥2 + R+.

(6.32)
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From (6.16), (6.28), (6.29), (6.30), (6.31), (6.32), and (MWD),

r∑
i=1

c∗i

(
c′i + (aTM1d)− c′(c′′i − (aTM2δ))

)
+

p∑
j=1

d∗jdj

≥
r∑

i=1

c∗i

(
c′i + (a′TM1d)− c′(c′′i − (a′TM2δ))

)
+

p∑
j=1

d∗jd
′
j ,

which contradicts (6.27). Hence, (a′, c′) is a minimizer of (MFP).

7. CONCLUSIONS

In light of the broader concept of higher-order cone arcwisely connected SVMs,
we use the concept of higher-order α-cone arcwisely connectivity of SVMs, intro-
duced by Das [1]. We have the standard notion of higher-order cone arcwisely
connected SVMs for α = 0. We investigate the higher-order converse, strong, and
weak theorems of duality for the Mond-Weir (MWD) form under the higher-order
generalized contingent epiderivative and α-cone arcwisely connectivity supposi-
tions.

For k = 1 and Λγ1,γ2
(τ) = (1 − τ)γ1 + τγ2, our results correspond with the

sufficient optimality conditions and duality results of the problem (MFP) under
the contingent epiderivative and α-cone convexity suppositions as explored in [30].
For k = 2 and Λγ1,γ2(τ) = (1− τ)γ1 + τγ2, our findings coincides with the second-
order sufficient optimality conditions and duality results of the problem (MFP)
under the second-order contingent epiderivative and second-order α-cone convexity
suppositions as discussed in [31]. For k = 1, our findings correspond with the
sufficient optimality conditions and duality results of the problem (MFP) under
the contingent epiderivative and α-cone arcwisely connectivity suppositions as
presented in [32].

Acknowledgements: The author is very thankful to referees for their valuable
comments which improved the presentation of the paper.
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