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1. INTRODUCTION

Mathematical science, economics, and operational research are the primary fields of
study for a class of problems known as fractional minimax programming problems, or
FMPPs for short. In 1990, two alternative duality models were developed and the the-
orems of duality for FMPPs were established by Yadav and Mukherjee [2] for differen-
tiable case of FMPPs. Later, in 1995, the theorems of duality of FMPPs were identified
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and two distinct forms of modified duality models were established by Chandra and Ku-
mar [3] for differentiable case of FMPPs. The optimality criteria and the strong and weak
theorems of duality of FMPPs were investigated by Weir [4] and Bector and Bhatia [5].
Zamlai [6] established the sufficient and necessary criteria of optimality and derived the-
orems of duality for FMPPs under the assumption of generalized invexity. Liu and Wu
[7] established the theorems of duality of FMPPs and articulated the necessary criteria of
optimality under the assumption of (F,α)-convexity concept. Ahmad [8] established the
necessary conditions of optimality and developed the theorems of duality for FMPPs us-
ing the assumption of α-invexity hypothesis. Liang and Shi [9] established the theorems
of duality for FMPPs and presented sufficient criteria of optimality via the assumption of
(F,α,ρ,d)-convexity hypothesis. Lai et al. [10] investigated the parametric theorems of
duality and established the necessary and sufficient criteria of optimality under the gen-
eralized convexity supposition for nondifferentiable case of FMPPs. Lai and Lee [11]
developed the theorems of duality under the generalized convexity supposition for non-
differentiable case of FMPPs. Ahmad and Husain [12] developed the necessary criteria
of optimality and demonstrated the theorems of duality of FMPPs under the (F,α,ρ,d)-
convexity supposition. Using higher-order contingent derivatives, Li et al. [13, 14] es-
tablished the sufficient and necessary criteria of optimality of set-valued optimization
problems (in short, SVOPs) in 2008. Additionally, the higher-order Mond-Weir dual of
SVOPs was presented, and the theorems of duality under convexity suppositions were
examined. In 1976, Avriel [15] presented arcwisely connectivity, a generalized form of
convexity where a continuous arc is used instead of the line segment connecting two el-
ements. The class of convex set-valued maps (abbreviated as SVMs) is a special type of
set-valued cone arcwisely maps. This concept was established by Fu and Wang [16] and
Lalitha et al. [17].

The notion of contingent derivative is a fundamental generalization of Frechet differ-
entiability from the single-valued to the set-valued case. This concept has been widely
applied in set-valued optimization theory as well. The sufficient and necessary optimality
criteria do not generally coincide under the assumption of contingent derivative. There-
fore, contingent derivatives are not exactly the right tool for developing optimality criteria
in set-valued optimization. The notion of contingent epiderivative is one potential gener-
alization of directional derivatives in the single-valued convex case. In the contingent epi-
derivative, the epigraph is used in place of the graph, and the derivative is single-valued.
These are the primary distinctions of two derivatives from one another. For cone-convex
SVMs, contingent epiderivatives have the unique characteristic of being sublinear, if they
exist at all. Therefore, higher-order contingent epiderivatives are of greater interest while
studying set-valued optimization problems.

Arcwise connectedness is a generalization of convexity where the line segment con-
necting two places is replaced by a continuous arc. We introduce the notion of higher-
order α-cone arcwise connectedness of SVMs as a generalization of cone arcwise con-
nected SVMs. For α = 0, we derive the conventional notion of higher-order cone arcwise
connectedness of SVMs. We also develop an example of a SVM that is not higher-order
cone arcwise connected, but is higher-order α-cone arcwise connected.

We employ the notion of higher-order α-cone arcwisely connectivity of SVMs, in-
troduced by Das [1], to solve SVFMPPs. The concept of higher-order α-cone arcwisely
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connectivity is more widely applicable than higher-order α-cone convexity. We illus-
trate it by studying an example in our work. As objective functions and constraints in
SVFMPPs, we primarily deal with α-cone arcwisely connected SVMs of higher order.

Das and Nahak [18] established the higher-order sufficient KKT requirements via
higher-order contingent epiderivative and higher-order α-cone convexity assumptions for
the set-valued optimization problem. Under α-cone convexity assumptions, the duals
of higher-order Mond-Weir, Wolfe, and mixed types are formulated, and the associated
higher-order duality theorems are proved. In this study, however, we have demonstrated
the duality theorems and sufficient KKT conditions of SVFMPPs under the hypothesis
of α-cone arcwise connectedness. Instead of α-cone convex SVMs, we essentially deal
with α-cone arcwise connected SVMs as objective function and constraint. This study
presents more broadly relevant cases than previous ones.

In order to establish the sufficient optimality conditions of SVFMPPs in a more gener-
alized case, our main objective is to implement the higher-order contingent epiderivative
and higher-order α-cone arcwise connectedness assumptions on the objective functions
and constraints. We also investigate the weak, strong, and converse duality theorems
of Mond-Weir type under higher-order contingent epiderivative and higher-order α-cone
arcwise connectivity assumptions. For α = 0, our results improve the ones currently
available in the literature.

The following abbreviations have been used often in this paper. Set-valued frac-
tional minimax programming problems are denoted by SVFMPPs, Karush-Kuhn-Tucker
by KKT, set-valued optimization problems by SVOPs, fractional minimax programming
problems by FMPPs, arcwise connected subsets by ACS, real normed space by RNS,
set-valued maps by SVMs, and “with respect to” by “w.r.t.”.

This is how the paper is organized. Section 2 covers the definitions and fundamental
concepts of SVMs. The concept of higher-order α-cone arcwisely connectivity of SVMs
is discussed in Section 3. A SVFMPP (MFP) is formulated in Section 4, and higher-
order sufficient KKT requirements of the problem are finally demonstrated in Section 5.
In Section 6, the higher-order duality theorem of Mond-Weir type are presented under
generalized higher-order cone arcwisely connectivity suppositions. Section 7 ends with
the concluding remarks.

2. DEFINITIONS AND OVERVIEWS

Assume that ∆ is a real normed space (in short, RNS) and /0 ̸= Ψ ⊆ ∆. Then Ψ is
defined to be a cone if τδ ∈ Ψ, ∀δ ∈ Ψ and τ ∈ R with τ ≥ 0. Moreover, Ψ is defined to
be proper if Ψ ̸= ∆, nontrivial if Ψ ̸= {θ∆}, solid if int(Ψ) ̸= /0, closed if Ψ = Ψ, pointed
if Ψ∩ (−Ψ) = {θ∆}, and convex if

τΨ+(1− τ)Ψ ⊆ Ψ,∀τ ∈ [0,1],

where int(Ψ) and Ψ indicate the interior and closure of Ψ, correspondingly and θ∆ repre-
sents the zero of ∆.

Let Ψ be a pointed cone in ∆. There are two different types of cone orders w.r.t. Ψ in
∆. For δ1,δ2 ∈ ∆, we have

δ1 ≤ δ2 if δ2 −δ1 ∈ Ψ
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and

δ1 < δ2 if δ2 −δ1 ∈ int(Ψ).

The following minimality concepts are usually introduced w.r.t. a pointed solid convex
cone Ψ in a RNS ∆, .

Definition 2.1. Let /0 ̸= ∆̃ ⊆ ∆. Then weakly minimal, ideal minimal, and minimal ele-
ments of ∆̃ are defined as

(i) δ ′ ∈ ∆̃ is called a weakly minimal element of ∆̃ if there exists no δ ∈ ∆̃, fulfilling
δ < δ ′.

(ii) δ ′ ∈ ∆̃ is called an ideal minimal element of ∆̃ if δ ′ ≤ δ ,∀δ ∈ ∆̃.

(iii) δ ′ ∈ ∆̃ is called a minimal element of ∆̃ if there exists no δ ∈ ∆̃ \ {δ ′}, fulfilling
δ ≤ δ ′.

We presume that w-min(∆̃), I-min(∆̃), and min(∆̃) correspondingly represent the sets of
weakly minimal elements, ideal minimal elements, and minimal elements of ∆̃.

Aubin [19, 20] introduced the concept of contingent cone in a RNS.

Definition 2.2. [19, 20] Let ∆ be a RNS, /0 ̸= ∆̃ ⊆ ∆, and δ ′ ∈ ∆̃. The contingent cone to
∆̃ at δ ′ is specified by T (∆̃,δ ′) and is defined as follows:

An element δ ∈ T (∆̃,δ ′) if there exist sequences {τn} in R, with τn → 0+ and {δn} in
∆, with δn → δ , fulfilling

δ ′+ τnδn ∈ ∆̃, ∀n ∈ N,

or, there exist sequences {τn} in R, with τn > 0 and {δ ′
n} in ∆̃, with δ ′

n → δ ′, fulfilling

τn(δ
′
n −δ ′)→ δ , as n → ∞.

Aubin [19, 20] also introduced the concept of contingent set of higher order in a RNS.

Definition 2.3. [19, 20] Assume that ∆ is a RNS and /0 ̸= ∆̃ ⊆ ∆, δ ′ ∈ ∆̃, k ∈N, with k ≥ 2,
and δ1, ...,δk−1 ∈ ∆. Then the contingent set T (k)(∆̃,δ ′,δ1, ...,δk−1) of k-th order to ∆̃ at
(δ ′,δ1, ...,δk−1) is defined as:

δ ∈ T (k)(∆̃,δ ′,δ1, ...,δk−1) if there exist some sequences {τn} in R and {δn} in ∆,
together with τn → 0+ and δn → δ , so that

δ ′+ τnδ1 + ...+ τn
k−1δk−1 + τn

kδn ∈ ∆̃,∀n ∈ N,

equivalently, δ ∈ T (k)(∆̃,δ ′,δ1, ...,δk−1) if there exist some sequences {τn} in R and {δ ′
n}

in ∆, together with δ ′
n ∈ ∆̃,∀n ∈ N, τn → 0+, and δ ′

n → δ ′, so that

δ ′
n−δ ′−τnδ1−...−τn

k−1δk−1
τnk → δ , as n → ∞.

Let Γ, ∆ be RNSs, and Let Ψ be a pointed cone in ∆.. Let χ : Γ → 2∆ be a SVM. The
definitions given for the image, domain, epigraph, and graph χ are as follows:
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χ(Γ̃) =
⋃
γ∈Γ̃

{χ(γ)}, for any /0 ̸= Γ̃ ⊆ Γ,

dom(χ) = {γ ∈ Γ : χ(γ) ̸= /0},

epi(χ) = {(γ,δ ) ∈ Γ×∆ : δ ∈ χ(γ)+Ψ},

and

gr(χ) = {(γ,δ ) ∈ Γ×∆ : δ ∈ χ(γ)}.

Jahn and Rauh [21] introduced the concept of contingent epiderivative of SVMs.

Definition 2.4. [21] Assume that Γ, ∆ are RNSs, χ : Γ → 2∆ is a SVM with dom(χ) =

Γ, and (γ ′,δ ′) ∈ gr(χ). A function
−→
d χ(γ ′,δ ′) : Γ → ∆ having epigraph similar to the

contingent cone to the epigraph of χ at (γ ′,δ ′), i.e.,

epi(
−→
d χ(γ ′,δ ′)) = T (epi(χ),(γ ′,δ ′)),

is stated to be contingent epiderivative of χ at (γ ′,δ ′).

The notion of contingent derivatives of higher-order of SVMs were originally introduced
by Aubin and Frankowska [20].

Definition 2.5. [20] Suppose that k ∈ N, with k ≥ 2, Γ, ∆ are RNSs, χ : Γ → 2∆ is a
SVM with dom(χ) = Γ, (γ ′,δ ′) ∈ gr(χ), and (γ1,δ1), ...,(γk−1,δk−1) ∈ Γ×∆. Then the
contingent derivative d(k)χ(γ ′,δ ′,γ1,δ1, ...,γk−1,δk−1) of k-th order of χ at (γ ′,δ ′) for
(γ1,δ1), ...,(γk−1,δk−1) is the SVM from Γ to ∆ defined by

gr(d(k)
χ(γ ′,δ ′,γ1,δ1, ...,γk−1,δk−1))

= T (k)(gr(χ),(γ ′,δ ′),(γ1,δ1), ...,(γk−1,δk−1)).

Let Γ, ∆ be RNSs, Ψ be a pointed cone in ∆, and χ : Γ → 2∆ be a SVM. Let us define a
SVM χ +Ψ : Γ → 2∆ by

(χ +Ψ)(γ) = χ(γ)+Ψ,∀γ ∈ dom(χ).

Li and Chen [22] developed the concept of generalized contingent epi-derivative of higher-
order of SVMs.

Definition 2.6. [22] Suppose that k ∈N, with k ≥ 2, Γ, ∆ are RNSs, χ : Γ → 2∆ is a SVM
with dom(χ) = Γ, (γ ′,δ ′) ∈ gr(χ), and (γ1,δ1), ...,(γk−1,δk−1) ∈ Γ×∆. Then the gener-
alized contingent epi-derivative of k-th order of χ at (γ ′,δ ′) for (γ1,δ1), ...,(γk−1,δk−1),
specified by

−→
d (k)

g χ(γ ′,δ ′,γ1,δ1, ...,γk−1,δk−1), is the SVM from Γ to ∆ defined by

−→
d (k)

g χ(γ ′,δ ′,γ1,δ1, ...,γk−1,δk−1)(γ)

= min{δ ∈ ∆ : (γ,δ ) ∈ T (k)(epi(χ),(γ ′,δ ′),(γ1,δ1), ...,(γk−1,δk−1))},

γ ∈ dom(d(k)(χ +Ψ)(γ ′,δ ′,γ1,δ1, ...,γk−1,δk−1)).
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We now focus on the concept of cone convexity of SVMs, which was presented by
Borwein [23].

Definition 2.7. [23] Let /0 ̸= Γ̃ ⊆ Γ and Γ̃ is a convex set. A SVM χ : Γ → 2∆, with
Γ̃ ⊆ dom(χ), is defined to be Ψ-convex on Γ̃ if ∀γ1,γ2 ∈ Γ̃ and τ ∈ [0,1],

τχ(γ1)+(1− τ)χ(γ2)⊆ χ(τγ1 +(1− τ)γ2)+Ψ.

The following proposition was developed for contingent derivative of higher-order of
SVMs by Li et al. [14].

Proposition 2.1. [14] Suppose that Γ, ∆ are RNSs and χ is Ψ-convex on a nonempty
convex subset Γ̃ of Γ, then ∀γ,γ ′ ∈ Γ̃ and ∀δ ′ ∈ χ(γ ′),

χ(γ)−δ
′ ⊆ d(k)

χ(γ ′,δ ′,γ1 − γ
′,δ1 −δ

′, ...,γk−1 − γ
′,δk−1 −δ

′)(γ − γ
′),

where γ1, ...,γk−1 ∈ Γ̃, δ1 ∈ χ(γ1)+Ψ, ...,δk−1 ∈ χ(γk−1)+Ψ.

Avriel [15] established the concept of arcwisely connectivity as a generalization of
convexity.

Definition 2.8. [15] A subset Γ̃ of a RNS Γ is stated to be an arcwisely connected set if
∀γ1,γ2 ∈ Γ̃ there exists a continuous arc Λγ1,γ2 : [0,1] → Γ̃ fulfilling Λγ1,γ2(0) = γ1 and
Λγ1,γ2(1) = γ2.

Fu and Wang [16] and Lalitha et al. [17] developed the concept of cone arcwisely
connected SVMs.

Definition 2.9. [16, 17] Let Γ̃ be an arcwisely connected subset (in short, ACS) of a RNS
Γ and χ : Γ → 2∆ be a SVM, with Γ̃ ⊆ dom(χ). Then χ is stated to be Ψ-arcwisely
connected on Γ̃ if

(1− τ)χ(γ1)+ τχ(γ2)⊆ χ(Λγ1,γ2(τ))+Ψ, ∀γ1,γ2 ∈ Γ̃ and ∀τ ∈ [0,1].

Khanh and Tung [24] developed the concept of η-arcwisely connectivity of SVMs.

Definition 2.10. [24] A subset Γ̃ of a RNS Γ is stated to be an η-arcwisely connected set,
with η : Γ̃× Γ̃× [0,1]→ Γ, if for every γ1,γ2 ∈ Γ̃ and τ ∈ [0,1],

γ1 + τη(γ1,γ2,τ) ∈ Γ̃.

For η : Γ̃× Γ̃× [0,1]→ Γ, a SVM χ : Γ → 2∆ is stated to be Ψ-η-arcwisely connected on
an η-arcwisely connected set Γ̃ if for every γ1,γ2 ∈ Γ̃ and τ ∈ [0,1],

lim
τ→0+

τη(γ1,γ2,τ) = 0

and
(1− τ)χ(γ1)+ τχ(γ2)⊆ χ(γ1 + τη(γ1,γ2,τ))+Ψ.
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Suppose that χ : Γ → 2∆ is a SVM, together with /0 ̸= Γ̃ ⊆ Γ and Γ̃ ⊆ dom(χ).
Let us assume that (γ ′,δ ′),(γ1,δ1), ...,(γk−1,δk−1)∈Γ×∆ together with γ ′,γ1, ...,γk−1 ∈

Γ̃, δ ′ ∈ χ(γ ′), δ1 ∈ χ(γ1)+Ψ, ...,δk−1 ∈ χ(γk−1)+Ψ.
The α-cone convexity of higher-order of SVMs was introduced by Das and Nahak

[18].

Definition 2.11. [18] Assume that Γ,∆ are RNSs, /0 ̸= Γ̃ ⊆ Γ, Ψ is a convex cone of ∆

which is both pointed and solid, α ∈ R, e ∈ int(Ψ), and χ : Γ → 2∆ is a SVM, together
with Γ̃ ⊆ dom(χ). Assume that χ is generalized contingent epiderivable of k-th order at
(γ ′,δ ′) for (γ1 − γ ′,δ1 −δ ′), ...,(γk−1 − γ ′,δk−1 −δ ′). Then χ is stated to be α-Ψ-convex
of k-th order w.r.t. e at (γ ′,δ ′) for (γ1,δ1), ...,(γk−1,δk−1) on Γ̃ if

χ(γ)−δ
′ ⊆

−→
d (k)

g χ(γ ′,δ ′,γ1 − γ
′,δ1 −δ

′, ...,γk−1 − γ
′,δk−1 −δ

′)

(γ − γ
′)+α∥γ − γ

′∥2e+Ψ,∀γ ∈ Γ̃.

Das et al. [25] presented the concept of α-cone arcwisely connectivity of SVMs
by generalizing cone arcwisely connected SVMs and therefore developed the sufficient
conditions of optimality for various forms of SVOPs.

Definition 2.12. [25] Let Γ̃ be an ACS of a RNS Γ, e ∈ int(Ψ), and χ : Γ → 2∆ be a SVM,
with Γ̃ ⊆ dom(χ). Then χ is stated to be α-Ψ-arcwisely connected w.r.t. e on Γ̃ if there
exists α ∈ R, fulfilling

(1− τ)χ(γ1)+ τχ(γ2)⊆ χ(Λγ1,γ2(τ))+ατ(1− τ)∥γ1 − γ2∥2e+Ψ,

∀γ1,γ2 ∈ Γ̃ and ∀τ ∈ [0,1].

Theorem 2.1. [25] Let Γ̃ be an ACS of a RNS Γ, e ∈ int(Ψ), and χ : Γ → 2∆ be α-Ψ-
arcwisely connected w.r.t. e on Γ̃. Let γ ′ ∈ Γ̃ and δ ′ ∈ χ(γ ′). Then,

χ(γ)−δ
′ ⊆

−→
d χ(γ ′,δ ′)(Λ′

γ ′,γ(0+))+α∥γ − γ
′∥2e+Ψ, ∀γ ∈ Γ̃.

Let Γ̃ be an ACS of a RNS Γ. Throughout the paper, we assume that Λ′
γ ′,γ(0+) exists

∀γ,γ ′ ∈ Γ̃, where

Λ
′
γ ′,γ(0+) = lim

τ→0+

Λγ ′,γ(τ)−Λγ ′,γ(0)
τ

.

Let Γ,∆ be RNSs, /0 ̸= Γ̃ ⊆ Γ, χ : Γ → 2∆ be a SVM, and Ψ be a pointed convex cone
in ∆.

Definition 2.13. A SVM χ : Γ → 2∆ is defined to be upper semicontinuous if χ+(∆̃) =

{γ ∈ Γ : χ(γ)⊆ ∆̃} is open in Γ for arbitrary open subset ∆̃ of ∆.

Definition 2.14. Let /0 ̸= ∆̃ ⊆ ∆. Then ∆̃ is stated to be Ψ-semicompact if all open cover
of complements having the form

{(δ j +Ψ)c : δ j ∈ ∆̃, j ∈ J}

possesses a finite subcover, in which case J is an arbitrary index set.
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Definition 2.15. A SVM χ : Γ → 2∆ is defined to be Ψ-semicompact-valued if χ(γ) is
Ψ-semicompact, ∀γ ∈ dom(χ).

We consider the following SVOP (P):

max
γ∈Γ̃

χ(γ), (P)

The maximizer for the problem (P) is defined as follows:

Definition 2.16. Let γ ′ ∈ Γ̃ and δ ′ ∈ χ(γ ′). Then (γ ′,δ ′) is defined to be a maximizer of
(P) if there exist no γ ∈ Γ̃ and δ ∈ χ(γ) fulfilling

δ
′ < δ .

The existence results for the solutions of SVOPs in RNSs were established by Corley
[26] when the objective map is an upper semicontinuous and cone semicompact-valued.

Theorem 2.2. [26] Let Γ,∆ be RNSs, /0 ̸= Γ̃ ⊆ Γ, /0 ̸= Ψ ⊆ ∆, and Ψ is a pointed convex
cone in ∆. Assume that χ : Γ → 2∆ be Ψ-semicompact-valued and upper semicontinuous.
In this case, there exists a maximizer for (P).

3. HIGHER-ORDER α-CONE ARCWISELY CONNECTIVITY

Das [27] and Das and Nahak [28] established the second-order sufficient optimality
conditions and developed the duality results of set-valued fractional programming prob-
lems and set-valued optimization problems, respectively. Pokharna and Tripathi [29]
introduced the optimality conditions and studied the duality theorems for E-minimax
fractional programming problems. The concept of higher-order α-cone arcwisely con-
nectivity of SVMs was first introduced by Das [1]. He developed the results of duality
for set-valued parametric optimization problems under the contingent epiderivative and
higher-order α-cone arcwisely connectivity suppositions and provided sufficient KKT
conditions of optimality. For α = 0, we have the standard notion of cone arcwisely con-
nectivity of SVMs, introduced by Fu and Wang [16] and Lalitha et al. [17].

Assume that χ : Γ → 2∆ is a SVM, together with Γ̃ ⊆ dom(χ). Suppose that (γ ′,δ ′),

(γ1,δ1), ...,(γk−1,δk−1) ∈ Γ×∆ together with γ ′,γ1, ...,γk−1 ∈ Γ̃, δ ′ ∈ χ(γ ′), δ1 ∈ χ(γ1)+
Ψ, ...,δk−1 ∈ χ(γk−1)+Ψ.

Definition 3.1. [1] Suppose that Γ,∆ are RNSs, Γ̃ is an ACS of Γ, Ψ is a solid pointed
convex cone of ∆, α ∈R, e ∈ int(Ψ), and χ : Γ → 2∆ is a SVM, together with Γ̃ ⊆ dom(χ).
Suppose that χ is generalized contingent epiderivable of k-th order at (γ ′,δ ′) for (γ1 −
γ ′,δ1 −δ ′), ...,(γk−1 − γ ′,δk−1 −δ ′). Then χ is stated to be α-Ψ-arcwisely connected of
k-th order w.r.t. e at (γ ′,δ ′) for (γ1,δ1), ...,(γk−1,δk−1) on Γ̃ if

χ(γ)−δ
′ ⊆

−→
d (k)

g χ(γ ′,δ ′,γ1 − γ
′,δ1 −δ

′, ...,γk−1 − γ
′,δk−1 −δ

′)(Λ′
γ ′,γ(0+))

+α∥γ − γ
′∥2e+Ψ,∀γ ∈ Γ̃.
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Remark 3.1. If α > 0, then χ is stated to be strongly α-Ψ-arcwisely connected of k-th
order, if α = 0, we have the usual concept of Ψ-arcwisely connectivity of k-th order, and
if α < 0, then χ is stated to be weakly α-Ψ-arcwisely connected of k-th order. Obviously,
strongly α-Ψ-arcwisely connectivity of k-th order ⇒ Ψ-arcwisely connectivity of k-th
order ⇒ weakly α-Ψ-arcwisely connectivity of k-th order.

For α = 0 and Λγ1,γ2(τ) = γ1 + τη(γ1,γ2,τ), with γ1 + η(γ1,γ2,1) = γ2, we have
the concept of η-arcwisely connectivity of k-th order. When Λγ1,γ2(τ) = γ1+τη(γ1,γ2,τ),
with γ1+η(γ1,γ2,1)= γ2, strongly α-Ψ-arcwisely connectivity of k-th order ⇒ η-arcwisely
connectivity of k-th order ⇒ weakly α-Ψ-arcwisely connectivity of k-th order.

4. FORMULATION OF THE MAIN PROBLEM

Let /0 ̸= Γ̃ ⊆ Rn and ∆̃ be a nonempty compact subset of Rm. Let M1 and M2 be n×n
positive semidefinite matrices. Let χ,ζ : Rn ×Rm → 2R and Ω : Rn → 2R

p
be SVMs,

with
Γ̃× ∆̃ ⊆ dom(χ)∩dom(ζ ) and Γ̃ ⊆ dom(Ω).

Let (a,b) ∈ Rn ×Rm. Consider a SVFMPP

minimize
a∈Γ̃

max
⋃
b∈∆̃

χ(a,b)+(aT M1a)
1
2

ζ (a,b)− (aT M2a)
1
2

subject to Ω(a)∩ (−Rp
+) ̸= /0.

(MFP)

Assume that /0+X = /0 and /0−X = /0 for every X ⊆R. Define a SVM µ : Rn ×Rm → 2R

by

µ(a,b) =
χ(a,b)+(aT M1a)

1
2

ζ (a,b)− (aT M2a)
1
2
,∀(a,b) ∈ Rn ×Rm.

assuming that
χ(a,b)+(aT M1a)

1
2 ≥ 0

and
ζ (a,b)− (aT M2a)

1
2 > 0,∀(a,b) ∈ Γ̃× ∆̃.

We assume that the SVM µ(a, .) : Rm → 2R is upper semicontinuous as well as R+-
semicompact-valued on ∆̃, ∀a ∈ Γ̃. Hence, by Theorem 2.2, max

⋃
b∈∆̃

µ(a,b) always exists,

∀a∈ Γ̃. Since µ(a,b)⊆R, for every a∈ Γ̃ there exists only one solution of max
⋃

b∈∆̃

µ(a,b).

The feasible set of (MFP) is

S′ = {a ∈ Γ̃ : Ω(a)∩ (−Rp
+) ̸= /0}.

The following defines the minimizer of (MFP).
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Definition 4.1. Let a′ ∈ S′ be a feasible element of (MFP) and c′ = max
⋃

b∈∆̃

µ(a′,b).

Then (a′,c′) is defined to be a minimizer of (MFP) if there exist no a ∈ S′ and c =
max

⋃
b∈∆̃

µ(a,b), with a ̸= a′, fulfilling

c < c′.

For a ∈ Γ̃, define
I(a) = { j : 0 ∈ Ω j(a),1 ≤ j ≤ p}

J(a) = {1, ..., p}\ I(a),

B(a) =
{

b′ ∈ ∆̃ : max
⋃
b∈∆̃

µ(a,b) ∈ µ(a,b′)
}
,

and
K(a) =

{
(r,c∗, b̃) ∈ N×Rr

+×Rmr : 1 ≤ r ≤ n,c∗ = (c∗1, ...,c
∗
r ) ∈ Rr

+,

with
r

∑
i=1

c∗i = 1, b̃ = (b1, ...,br), with b j ∈ B(a), j = 1, ...,r
}
.

As µ(a, .) is upper semicontinuous as well as R+-semicompact-valued on ∆̃,∀a ∈ Γ̃, we
have

B(a′) ̸= /0,∀a′ ∈ S′.

Let M be an n×n positive semidefinite matrix. Then, ∀a,d ∈ Rn,

aT Md ≤ (aT Ma)
1
2 (dT Md)

1
2 .

Moreover, if (dT Md)
1
2 ≤ 1, we have

aT Md ≤ (aT Ma)
1
2 . (4.1)

5. HIGHER-ORDER SUFFICIENT CRITERIA OF OPTIMALITY

Assume that χ,ζ : Rn ×Rm → 2R and Ω : Rn → 2R
p

be SVMs, with

Γ̃× ∆̃ ⊆ dom(χ)∩dom(ζ ) and Γ̃ ⊆ dom(Ω).

Suppose that a′ ∈ Γ̃, k,r ∈N, with k≥ 2, and bi ∈B(a′), (1≤ i≤ r). Let (a′,c′i),(a1,c1i),

...,(ak−1,c(k−1)i),(a′,c′′i ),(a1,c′1i), ...,(ak−1,c′(k−1)i)∈Rn×R with a′,a1, ...,ak−1 ∈ Γ̃, c′i ∈
χ(a′,bi), c1i ∈ χ(a1,bi) +R+, ...,c(k−1)i ∈ χ(ak−1,bi) +R+, c′′i ∈ ζ (a′,bi), and c′1i ∈
ζ (a1,bi)+R+, ...,c′(k−1)i ∈ ζ (ak−1,bi)+R+.

Also, assume that (a′,d′
j),(a1,d1 j), ...,(ak−1,d(k−1) j) ∈ Rn ×R together with d′

j ∈
Ω j(a′), d1 j ∈Ω j(a1)+R+, ...,d(k−1) j ∈Ω j(ak−1)+R+, (1≤ j ≤ p), where Ω=(Ω1, ...,Ωp).

We establish the higher-order sufficient KKT conditions of SVFMPP (MFP) using the
assumption of the higher-order α-cone arcwisely connectivity.
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Theorem 5.1. (Higher-order sufficient criteria of optimality) Let Γ̃ be an ACS of Rn, a′

be a feasible element of (MFP), and c′ = max
⋃

b∈∆̃

µ(a′,b). Assume that there exist r ∈ N,

where 1 ≤ r ≤ n, c∗ = (c∗1, ...,c
∗
r ) ∈Rr

+, with
r

∑
i=1

c∗i = 1, bi ∈ B(a′), (1 ≤ i ≤ r), d,δ ∈Rn,

d∗ = (d∗
1 , ...,d

∗
p) ∈ Rp

+, and d′
j ∈ Ω j(a′)∩ (−R+), (1 ≤ j ≤ p), fulfilling

r

∑
i=1

c∗i
(−→

d (k)
g χ(.,bi)(a′,c′i,a1 −a′,c1i − c′i, ...,ak−1 −a′,c(k−1)i − c′i)

+M1d − c′(
−→
d (k)

g (−ζ )

(.,bi)(a′,−c′′i ,a1 −a′,−c′1i + c′′i , ...,ak−1 −a′,−c′(k−1)i + c′′i )−M2δ )
)

(Λ′
a′,a(0+))

+
p

∑
j=1

d∗
j
−→
d (k)

g Ω j(a′,d′
j,a1 −a′,d1 j −d′

j, ...,ak−1 −a′,d(k−1) j −d′
j)

(Λ′
a′,a(0+))≥ 0,∀a ∈ Γ̃,

(5.2)

p

∑
j=1

d∗
j d′

j = 0, (5.3)

dT M1d ≤ 1,δ T M2δ ≤ 1, (5.4)

(a′T M1a′)
1
2 = a′T M1d, (5.5)

and

(a′T M2a′)
1
2 = a′T M2δ . (5.6)

Suppose that χ(.,bi) is αi-R+-arcwisely connected of k-th order w.r.t. 1 at (a′,c′i) for
the elements (a1,c1i), ...,(ak−1,c(k−1)i), (.)T M1d is α i-R+-arcwisely connected w.r.t. 1,
−ζ (.,bi) is α ′

i -R+-arcwisely connected of k-th order w.r.t. 1 at (a′,−c′′i ) for the el-
ements (a1,−c′1i), ...,(ak−1,−c′(k−1)i), (.)

T M2δ is α ′i-R+-arcwisely connected w.r.t. 1

and Ω j, (1 ≤ j ≤ p), is ν j-R+-arcwisely connected of k-th order w.r.t. 1 at (a′,d′
j) for

(a1,d1 j), ...,(ak−1,d(k−1) j), on Γ̃, satisfying

r

∑
i=1

c∗i
(

αi +αi − c′(α ′
i +α ′

i )
)
+

p

∑
j=1

d∗
j ν j ≥ 0. (5.7)

Then (a′,c′) is a minimizer of (MFP).

Proof. Assume that (a′,c′) is not a minimizer of (MFP). Then there exist a ∈ S′ and
c = max

⋃
b∈∆̃

µ(a,b), with a ̸= a′, fulfilling

c < c′.
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Since bi ∈ B(a′), i = 1, ...,r, we have

max
⋃
b∈∆̃

µ(a′,b) ∈ µ(a′,bi).

As c′ = max
⋃

b∈∆̃

µ(a′,b), we have

c′ ∈ µ(a′,bi), i = 1, ...,r.

Let ci ∈ µ(a,bi). Again, as c = max
⋃

b∈∆̃

µ(a,b) and bi ∈ B(a′)⊆ ∆̃, we have

ci ≤ c.

Hence,
ci < c′.

As c′ ∈ µ(a′,bi), there exist c′i ∈ χ(a′,bi) and c′′i ∈ ζ (a′,bi) fulfilling

c′ =
c′i +(a′T M1a′)

1
2

c′′i − (a′T M2a′)
1
2
.

So,

c′i +(a′T M1a′)
1
2 − c′(c′′i − (a′T M2a′)

1
2 ) = 0,∀i = 1, ...,r. (5.8)

Since ci ∈ µ(a,bi), there exist c′i ∈ χ(a,bi) and c′′i ∈ ζ (a,bi) fulfilling

ci =
c′i +(aT M1a)

1
2

c′′i − (aT M2a)
1
2
.

Hence,
c′i +(aT M1a)

1
2

c′′i − (aT M2a)
1
2
< c′.

So,

c′i +(aT M1a)
1
2 − c′(c′′i − (aT M2a)

1
2 )< 0,∀i = 1, ...,r. (5.9)

From (4.1) and (5.4), we have
r

∑
i=1

c∗i
(

c′i +(aT M1d)− c′(c′′i − (aT M2δ ))
)

≤
r

∑
i=1

c∗i
(

c′i +(aT M1a)
1
2 − c′(c′′i − (aT M2a)

1
2 )
)
.

Again, from (5.9), we have

r

∑
i=1

c∗i
(

c′i +(aT M1a)
1
2 − c′(c′′i − (aT M2a)

1
2 )
)
< 0.
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From (5.8),
r

∑
i=1

c∗i
(

c′i +(a′T M1a′)
1
2 − c′(c′′i − (a′T M2a′)

1
2 )
)
= 0.

Again, from (5.5) and (5.6) we have
r

∑
i=1

c∗i
(

c′i +(a′T M1a′)
1
2 − c′(c′′i − (a′T M2a′)

1
2 )
)

=
r

∑
i=1

c∗i
(

c′i +(a′T M1d)− c′(c′′i − (a′T M2δ ))
)
.

Hence, we have
r

∑
i=1

c∗i
(

c′i +(aT M1d)− c′(c′′i − (aT M2δ ))
)

<
r

∑
i=1

c∗i
(

c′i +(a′T M1d)− c′(c′′i − (a′T M2δ ))
)
.

As a ∈ S′, there exists
d j ∈ Ω j(a)∩ (−R+).

Since d∗
j ≥ 0 (1 ≤ j ≤ p), we have

d∗
j d j ≤ 0,∀ j, with 1 ≤ j ≤ p.

So,
p

∑
j=1

d∗
j d j ≤ 0.

From (5.3), we have
p

∑
j=1

d∗
j d′

j = 0.

Hence,
p

∑
j=1

d∗
j d j ≤

p

∑
j=1

d∗
j d′

j.

Hence,
r

∑
i=1

c∗i
(

c′i +(aT M1d)− c′(c′′i − (aT M2δ ))
)
+

p

∑
j=1

d∗
j d j

<
r

∑
i=1

c∗i
(

c′i +(a′T M1d)− c′(c′′i − (a′T M2δ ))
)
+

p

∑
j=1

d∗
j d′

j.

(5.10)

As it is presumed that χ(.,bi) is αi-R+-arcwisely connected of k-th order w.r.t. 1 at (a′,c′i)
for (a1,c1i), ...,(ak−1,c(k−1)i), on Γ̃ and c′i ∈ χ(a′,bi), we have

χ(a,bi)− c′i

⊆
−→
d (k)

g χ(.,bi)(a′,c′i,a1 −a′,c1i − c′i, ...,ak−1 −a′,c(k−1)i − c′i)

(Λ′
a′,a(0+))+αi∥a−a′∥2 +R+.
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Again, as c′i ∈ χ(a,bi), we have

c′i − c′i

∈
−→
d (k)

g χ(.,bi)(a′,c′i,a1 −a′,c1i − c′i, ...,ak−1 −a′,c(k−1)i − c′i)

(Λ′
a′,a(0+))+αi∥a−a′∥2 +R+.

(5.11)

Suppose that (.)T M1d is α i-R+-arcwisely connected w.r.t. 1, on Γ̃, we have

aT M1d −a′T M1d ≥ M1d(Λ′
a′,a(0+))+αi∥a−a′∥2 +R+. (5.12)

As it is presumed that −ζ (.,bi) is α ′
i -R+-arcwisely connected of k-th order w.r.t. 1 at

(a′,−c′′i ) for (a1,−c′1i), ...,(ak−1,−c′(k−1)i), on Γ̃ and c′′i ∈ ζ (a′,bi), we have

−ζ (a,bi)+ c′′i

⊆
−→
d (k)

g (−ζ )(.,bi)(a′,−c′′i ,a1 −a′,−c′1i + c′′i , ...,ak−1 −a′,−c′(k−1)i + c′′i )

(Λ′
a′,a(0+))+α

′
i∥a−a′∥2 +R+.

Again, as c′′i ∈ ζ (a,bi), we have

− c′′i + c′′i ∈
−→
d (k)

g (−ζ )(.,bi)

(a′,−c′′i ,a1 −a′,−c′1i + c′′i , ...,ak−1 −a′,−c′(k−1)i + c′′i )

(Λ′
a′,a(0+))+α

′
i∥a−a′∥2 +R+.

(5.13)

Since (.)T M2δ is α ′i-R+-arcwisely connected w.r.t. 1, on Γ̃, we have

aT M2δ −a′T M2δ ≥ M2δ (Λ′
a′,a(0+))+α ′

i∥a−a′∥2 +R+. (5.14)

As Ω j, (1 ≤ j ≤ p), is ν j-R+-arcwisely connected of k-th order w.r.t. 1 at (a′,d′
j) for the

elements (a1,d1 j), ...,(ak−1,d(k−1) j), on Γ̃ and d′
j ∈ Ω j(a′)∩ (−R+), we have

Ω j(a)−d′
j ⊆

−→
d (k)

g Ω j(a′,d′
j,a1 −a′,d1 j −d′

j, ...,ak−1 −a′,d(k−1) j −d′
j)

(Λ′
a′,a(0+))+ν j∥a−a′∥2 +R+.

Since d j ∈ Ω j(a)∩ (−R+), we have

d j −d′
j

∈
−→
d (k)

g Ω j(a′,d′
j,a1 −a′,d1 j −d′

j, ...,ak−1 −a′,d(k−1) j −d′
j)

(Λ′
a′,a(0+))+ν j∥a−a′∥2 +R+.

(5.15)

From (5.2), (5.7), (5.11), (5.12), (5.13), (5.14), and (5.15), we have
r

∑
i=1

c∗i
(

c′i +(aT M1d)− c′(c′′i − (aT M2δ ))
)
+

p

∑
j=1

d∗
j d j

≥
r

∑
i=1

c∗i
(

c′i +(a′T M1d)− c′(c′′i − (a′T M2δ ))
)
+

p

∑
j=1

d∗
j d′

j,
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which contradicts (5.10). Hence, (a′,c′) is a minimizer of (MFP).

6. HIGHER-ORDER MOND-WEIR TYPE DUAL

We consider a higher-order dual (MWD) of Mond-Weir form in accordance with the
primal problem (MFP), where the SVMs χ(.,bi), −ζ (.,bi); bi ∈ B(a′),a′ ∈ Γ̃, and Ω j are
higher-order contingent epiderivable SVMs.

maximize c′ (MWD)
subject to

r

∑
i=1

c∗i
(−→

d (k)
g χ(.,bi)(a′,c′i,a1 −a′,c1i − c′i, ...,ak−1 −a′,

c(k−1)i − c′i)+M1d

− c′(
−→
d (k)

g (−ζ )(.,bi)(a′,−c′′i ,a1 −a′,−c′1i + c′′i , ...,ak−1 −a′,

− c′(k−1)i + c′′i )−M2δ )
)

(Λ′
a′,a(0+))

+
p

∑
j=1

d∗
j
−→
d (k)

g Ω j(a′,d′
j,a1 −a′,d1 j −d′

j, ...,ak−1 −a′,

d(k−1) j −d′
j)(Λ

′
a′,a(0+))≥ 0,∀a ∈ Γ̃,

for some r ∈ N,(1 ≤ r ≤ n) and bi ∈ B(a′),
p

∑
j=1

d∗
j d′

j ≥ 0,

dT M1d ≤ 1,δ T M2δ ≤ 1,(a′T M1a′)
1
2 = a′T M1d,

(a′T M2a′)
1
2 = a′T M2δ , for some d,δ ∈ Rn,

a′ ∈ Γ̃,c′ = max
⋃
b∈∆̃

µ(a′,b),d′ = (d′
1, ...,d

′
p),d

′
j ∈ Ω j(a′),

c∗ = (c∗1, ...,c
∗
r ),d

∗ = (d∗
1 , ...,d

∗
p),c

∗
i ≥ 0,d∗

j ≥ 0,
r

∑
i=1

c∗i = 1,

where 1 ≤ i ≤ r and 1 ≤ j ≤ p.

A element (a′,c′,d′,c∗,d∗) meeting every constraints of (MWD) is defined to be a feasible
element of (MWD).

Definition 6.1. A feasible element (a′,c′,d′,c∗,d∗) of the problem (MWD) is defined to
be a maximizer of (MWD) if there exists no feasible element (a,c,d,c∗1,d

∗
1) of (MWD)

fulfilling
c′ < c.
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Theorem 6.1. (Higher-order weak duality) Let Γ̃ be an ACS of Rn, a0 be feasible to
(MFP) and (a′,c′,d′,c∗,d∗) be a feasible element of (MWD).

Suppose that χ(.,bi) is αi-R+-arcwisely connected of k-th order w.r.t. 1 at (a′,c′i) for
the elements (a1,c1i), ...,(ak−1,c(k−1)i), (.)T M1d is α i-R+-arcwisely connected w.r.t. 1,
−ζ (.,bi) is α ′

i -R+-arcwisely connected of k-th order w.r.t. 1 at (a′,−c′′i ) for (a1,−c′1i), ...,
(ak−1,−c′(k−1)i), (.)

T M2δ is α ′i-R+-arcwisely connected w.r.t. 1 and Ω j, (1 ≤ j ≤ p), is

ν j-R+-arcwisely connected of k-th order w.r.t. 1 at (a′,d′
j) for (a1,d1 j), ...,(ak−1,d(k−1) j),

on Γ̃, satisfying(
αi +αi − c′(α ′

i +α ′
i )
)
+

p

∑
j=1

d∗
j ν j ≥ 0. (6.16)

Then,
max

⋃
b∈∆̃

µ(a0,b)≮ c′.

Proof. Using the method of contradiction, we demonstrate the proof. Assume that for
c0 = max

⋃
b∈∆̃

µ(a0,b), c0 < c′. Since bi ∈ B(a′), i = 1, ...,r, we have

max
⋃
b∈∆̃

µ(a′,b) ∈ µ(a′,bi).

As c′ = max
⋃

b∈∆̃

µ(a′,b), we have

c′ ∈ µ(a′,bi), i = 1, ...,r.

Let ci ∈ µ(a0,bi). Again, as c0 = max
⋃

b∈∆̃

µ(a0,b) and bi ∈ B(a′)⊆ ∆̃, we have

ci ≤ c0.

Hence,
ci < c′.

As c′ ∈ µ(a′,bi), there exist c′i ∈ χ(a′,bi) and c′′i ∈ ζ (a′,bi) fulfilling

c′ =
c′i +(a′T M1a′)

1
2

c′′i − (a′T M2a′)
1
2
.

So,

c′i +(a′T M1a′)
1
2 − c′(c′′i − (a′T M2a′)

1
2 ) = 0,∀i = 1, ...,r. (6.17)

Since ci ∈ µ(a0,bi), there exist c′i ∈ χ(a0,bi) and c′′i ∈ ζ (a0,bi) fulfilling

ci =
c′i +(aT

0 M1a0)
1
2

c′′i − (aT
0 M2a0)

1
2
.
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Hence,
c′i +(aT

0 M1a0)
1
2

c′′i − (aT
0 M2a0)

1
2
< c′.

So,

c′i +(aT
0 M1a0)

1
2 − c′(c′′i − (aT

0 M2a0)
1
2 )< 0,∀i = 1, ...,r. (6.18)

From (4.1) and the constraints of the problem (MWD), we have

r

∑
i=1

c∗i
(

c′i +(aT
0 M1d)− c′(c′′i − (aT

0 M2δ ))
)

≤
r

∑
i=1

c∗i
(

c′i +(aT
0 M1a0)

1
2 − c′(c′′i − (aT

0 M2a0)
1
2 )
)
.

Again, from (6.18), we have

r

∑
i=1

c∗i
(

c′i +(aT
0 M1a0)

1
2 − c′(c′′i − (aT

0 M2a0)
1
2 )
)
< 0.

From (6.17),
r

∑
i=1

c∗i
(

c′i +(a′T M1a′)
1
2 − c′(c′′i − (a′T M2a′)

1
2 )
)
= 0.

Again, from the constraints of the problem (MWD), we have

r

∑
i=1

c∗i
(

c′i +(a′T M1a′)
1
2 − c′(c′′i − (a′T M2a′)

1
2 )
)

=
r

∑
i=1

c∗i
(

c′i +(a′T M1d)− c′(c′′i − (a′T M2δ ))
)
.

Hence, we have
r

∑
i=1

c∗i
(

c′i +(aT
0 M1d)− c′(c′′i − (aT

0 M2δ ))
)

<
r

∑
i=1

c∗i
(

c′i +(a′T M1d)− c′(c′′i − (a′T M2δ ))
)
.

As a0 ∈ S′, there exists
d j ∈ Ω j(a0)∩ (−R+).

As d∗
j ≥ 0, where (1 ≤ j ≤ p),

d∗
j d j ≤ 0,∀ j,(1 ≤ j ≤ p).

So,
p

∑
j=1

d∗
j d j ≤ 0.
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From (MWD),
p

∑
j=1

d∗
j d′

j ≥ 0.

Hence,
p

∑
j=1

d∗
j d j ≤

p

∑
j=1

d∗
j d′

j.

Hence,
r

∑
i=1

c∗i
(

c′i +(aT
0 M1d)− c′(c′′i − (aT

0 M2δ ))
)
+

p

∑
j=1

d∗
j d j

<
r

∑
i=1

c∗i
(

c′i +(a′T M1d)− c′(c′′i − (a′T M2δ ))
)
+

p

∑
j=1

d∗
j d′

j.

(6.19)

As it is presumed that χ(.,bi) is αi-R+-arcwisely connected of k-th order w.r.t. 1 at (a′,c′i)
for (a1,c1i), ...,(ak−1,c(k−1)i), on Γ̃ and c′i ∈ χ(a′,bi),

χ(a0,bi)− c′i ⊆
−→
d (k)

g χ(.,bi)(a′,c′i,a1 −a′,c1i − c′i, ...,ak−1 −a′,c(k−1)i − c′i)&

(Λ′
a′,a0

(0+))+αi∥a0 −a′∥2 +R+.

As c′i ∈ χ(a0,bi),

c′i − c′i

∈
−→
d (k)

g χ(.,bi)(a′,c′i,a1 −a′,c1i − c′i, ...,ak−1 −a′,c(k−1)i − c′i)

(Λ′
a′,a0

(0+))+αi∥a0 −a′∥2 +R+.

(6.20)

Suppose that (.)T M1d is α i-R+-arcwisely connected w.r.t. 1, on Γ̃,

aT
0 M1d −a′T M1d ≥ M1d(Λ′

a′,a0
(0+))+αi∥a0 −a′∥2 +R+. (6.21)

As it is presumed that −ζ (.,bi) is α ′
i -R+-arcwisely connected of k-th order w.r.t. 1 at

(a′,−c′′i ) for (a1,−c′1i), ...,(ak−1,−c′(k−1)i), on Γ̃ and c′′i ∈ ζ (a′,bi), we have

−ζ (a0,bi)+ c′′i

⊆
−→
d (k)

g (−ζ )(.,bi)(a′,−c′′i ,a1 −a′,−c′1i + c′′i , ...,ak−1 −a′,−c′(k−1)i + c′′i )

(Λ′
a′,a0

(0+))+α
′
i∥a0 −a′∥2 +R+.

Again, as c′′i ∈ ζ (a0,bi), we have

− c′′i + c′′i ∈
−→
d (k)

g (−ζ )(.,bi)

(a′,−c′′i ,a1 −a′,−c′1i + c′′i , ...,ak−1 −a′,−c′(k−1)i + c′′i )

(Λ′
a′,a0

(0+))+α
′
i∥a0 −a′∥2 +R+.

(6.22)
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Since (.)T M2δ is α ′i-R+-arcwisely connected w.r.t. 1, on Γ̃,

aT
0 M2δ −a′T M2δ ≥ M2δ (Λ′

a′,a0
(0+))+α ′

i∥a0 −a′∥2 +R+. (6.23)

As Ω j, (1 ≤ j ≤ p), is ν j-R+-arcwisely connected of k-th order w.r.t. 1 at (a′,d′
j) for the

elements (a1,d1 j), ...,(ak−1,d(k−1) j), on Γ̃ and d′
j ∈ Ω j(a′)∩ (−R+), we have

Ω j(a0)−d′
j ⊆

−→
d (k)

g Ω j(a′,d′
j,a1 −a′,d1 j −d′

j, ...,ak−1 −a′,d(k−1) j −d′
j)

(Λ′
a′,a0

(0+))+ν j∥a0 −a′∥2 +R+.

Since d j ∈ Ω j(a0)∩ (−R+), we have

d j −d′
j

∈
−→
d (k)

g Ω j(a′,d′
j,a1 −a′,d1 j −d′

j, ...,ak−1 −a′,d(k−1) j −d′
j)

(Λ′
a′,a0

(0+))+ν j∥a0 −a′∥2 +R+.

(6.24)

From (6.16), (6.20), (6.21), (6.22), (6.23), (6.24), and (MWD),

r

∑
i=1

c∗i
(

c′i +(aT
0 M1d)− c′(c′′i − (aT

0 M2δ ))
)
+

p

∑
j=1

d∗
j d j

≥
r

∑
i=1

c∗i
(

c′i +(a′T M1d)− c′(c′′i − (a′T M2δ ))
)
+

p

∑
j=1

d∗
j d′

j,

which contradicts (6.19). Hence,

max
⋃

b∈∆̃

µ(a0,b)≮ c′.

It concludes the proof of the theorem.

Theorem 6.2. (Higher-order strong duality) Let (a′,c′) be a minimizer of (MFP) and
d′

j ∈ Ω j(a′)∩ (−R+), (1 ≤ j ≤ p). Suppose that for arbitrary k ∈ Z, (1 ≤ r ≤ n), c∗i ≥

0, bi ∈ B(a′), (1 ≤ i ≤ r) with
r

∑
i=1

c∗i = 1 and d∗
j ≥ 0, (1 ≤ j ≤ p), Eqs. (5.2), (5.3),

(5.4), (5.5), and (5.6) are fulfilled at (a′,c′,d′,c∗,d∗). Then (a′,c′,d′,c∗,d∗) is feasible to
(MWD). If Theorem 6.1 is satisfied, then (a′,c′,d′,c∗,d∗) is a maximizer of (MWD).
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Proof. As Eqs. Eqs. (5.2), (5.3), (5.4), (5.5), and (5.6) are fulfilled at (a′,c′,d′,c∗,d∗),

r

∑
i=1

c∗i
(−→

d (k)
g χ(.,bi)(a′,c′i,a1 −a′,

c1i − c′i, ...,ak−1 −a′,c(k−1)i − c′i)+M1d

− c′(
−→
d (k)

g (−ζ )(.,bi)(a′,−c′′i ,a1 −a′,−c′1i + c′′i , ...,ak−1 −a′,

− c′(k−1)i + c′′i )−M2δ )
)
(Λ′

a′,a(0+))

+
p

∑
j=1

d∗
j
−→
d (k)

g Ω j(a′,d′
j,a1 −a′,d1 j −d′

j, ...,ak−1 −a′,

d(k−1) j −d′
j)(Λ

′
a′,a(0+))≥ 0,∀a ∈ Γ̃,

p

∑
j=1

d∗
j d′

j = 0,

dT M1d ≤ 1,δ T M2δ ≤ 1,

(a′T M1a′)
1
2 = a′T M1d,

and
(a′T M2a′)

1
2 = a′T M2δ .

Hence, (a′,c′,d′,c∗,d∗) is feasible to (MWD). Assume that Theorem 6.1 is satisfied and
(a′,c′,d′,c∗,d∗) is not a maximizer of (MWD). Let (a,c,d,c∗1,d

∗
1) be a feasible element

for (MWD) fulfilling

c′ < c.

It contradicts Theorem 6.1. Hence, (a′,c′,d′,c∗,d∗) is a maximizer for (MWD).

Theorem 6.3. (Higher-order converse duality) Let Γ̃ be an ACS of Rn and (a′,c′,d′,c∗,d∗)
be a feasible element of (MWD).

Suppose that χ(.,bi) is αi-R+-arcwisely connected of k-th order w.r.t. 1 at (a′,c′i) for
(a1,c1i), ...,(ak−1,c(k−1)i), (.)T M1d is α i-R+-arcwisely connected w.r.t. 1, −ζ (.,bi) is α ′

i -
R+-arcwisely connected of k-th order w.r.t. 1 at (a′,−c′′i ) for the elements (a1,−c′1i), ...,
(ak−1,−c′(k−1)i), (.)

T M2δ is α ′i-R+-arcwisely connected w.r.t. 1 and Ω j, (1 ≤ j ≤ p), is

ν j-R+-arcwisely connected of k-th order w.r.t. 1 at (a′,d′
j) for (a1,d1 j), ...,(ak−1,d(k−1) j),

on Γ̃, satisfying (6.16). If a′ is feasible to (MFP), then (a′,c′) is a minimizer of (MFP).

Proof. Assume that (a′,c′) is not a minimizer of (MFP). Hence there exist a ∈ S′ and
c = max

⋃
b∈∆̃

µ(a,b), with a ̸= a′, fulfilling

c < c′.
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Since bi ∈ B(a′), i = 1, ...,r,

max
⋃
b∈∆̃

µ(a′,b) ∈ µ(a′,bi).

As c′ = max
⋃

b∈∆̃

µ(a′,b),

c′ ∈ µ(a′,bi), i = 1, ...,r.

Let ci ∈ µ(a,bi). Again, as c = max
⋃

b∈∆̃

µ(a,b) and bi ∈ B(a′)⊆ ∆̃,

ci ≤ c.

Hence,
ci < c′.

As c′ ∈ µ(a′,bi), there exist c′i ∈ χ(a′,bi) and c′′i ∈ ζ (a′,bi) fulfilling

c′ =
c′i +(a′T M1a′)

1
2

c′′i − (a′T M2a′)
1
2
.

So,

c′i +(a′T M1a′)
1
2 − c′(c′′i − (a′T M2a′)

1
2 ) = 0,∀i = 1, ...,r. (6.25)

Since ci ∈ µ(a,bi), there exist c′i ∈ χ(a,bi) and c′′i ∈ ζ (a,bi) fulfilling

ci =
c′i +(aT M1a)

1
2

c′′i − (aT M2a)
1
2
.

Hence,
c′i +(aT M1a)

1
2

c′′i − (aT M2a)
1
2
< c′.

So,

c′i +(aT M1a)
1
2 − c′(c′′i − (aT M2a)

1
2 )< 0,∀i = 1, ...,r. (6.26)

From (4.1) and the constraints of the problem (MWD), we have

r

∑
i=1

c∗i
(

c′i +(aT M1d)− c′(c′′i − (aT M2δ ))
)

≤
r

∑
i=1

c∗i
(

c′i +(aT M1a)
1
2 − c′(c′′i − (aT M2a)

1
2 )
)
.

Again, from (6.26), we have

r

∑
i=1

c∗i
(

c′i +(aT M1a)
1
2 − c′(c′′i − (aT M2a)

1
2 )
)
< 0.
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From (6.25),
r

∑
i=1

c∗i
(

c′i +(a′T M1a′)
1
2 − c′(c′′i − (a′T M2a′)

1
2 )
)
= 0.

Again, from the constraints of the problem (MWD), we have

r

∑
i=1

c∗i
(

c′i +(a′T M1a′)
1
2 − c′(c′′i − (a′T M2a′)

1
2 )
)

=
r

∑
i=1

c∗i
(

c′i +(a′T M1d)− c′(c′′i − (a′T M2δ ))
)
.

Hence, we have
r

∑
i=1

c∗i
(

c′i +(aT M1d)− c′(c′′i − (aT M2δ ))
)

=
r

∑
i=1

c∗i
(

c′i +(a′T M1d)− c′(c′′i − (a′T M2δ ))
)
.

As a ∈ S′, there exists d j ∈ Ω j(a)∩ (−R+). As d∗
j ≥ 0 (1 ≤ j ≤ p),

d∗
j d j ≤ 0,∀ j, with 1 ≤ j ≤ p.

So,
p

∑
j=1

d∗
j d j ≤ 0.

From (MWD),
p

∑
j=1

d∗
j d′

j ≥ 0.

Hence,
p

∑
j=1

d∗
j d j ≤

p

∑
j=1

d∗
j d′

j.

Hence,
r

∑
i=1

c∗i
(

c′i +(aT M1d)− c′(c′′i − (aT M2δ ))
)
+

p

∑
j=1

d∗
j d j

<
r

∑
i=1

c∗i
(

c′i +(a′T M1d)− c′(c′′i − (a′T M2δ ))
)
+

p

∑
j=1

d∗
j d′

j.

(6.27)

As it is presumed that χ(.,bi) is αi-R+-arcwisely connected of k-th order w.r.t. 1 at (a′,c′i)
for (a1,c1i), ...,(ak−1,c(k−1)i), on Γ̃ and c′i ∈ χ(a′,bi),

χ(a,bi)− c′i ⊆
−→
d (k)

g χ(.,bi)(a′,c′i,a1 −a′,c1i − c′i, ...,ak−1 −a′,c(k−1)i − c′i)

(Λ′
a′,a(0+))+αi∥a−a′∥2 +R+.
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As c′i ∈ χ(a,bi),

c′i − c′i

∈
−→
d (k)

g χ(.,bi)(a′,c′i,a1 −a′,c1i − c′i, ...,ak−1 −a′,c(k−1)i − c′i)

(Λ′
a′,a(0+))+αi∥a−a′∥2 +R+.

(6.28)

Suppose that (.)T M1d is α i-R+-arcwisely connected w.r.t. 1, on Γ̃,

aT M1d −a′T M1d ≥ M1d(Λ′
a′,a(0+))+αi∥a−a′∥2 +R+. (6.29)

As it is presumed that −ζ (.,bi) is α ′
i -R+-arcwisely connected of k-th order w.r.t. 1 at

(a′,−c′′i ) for (a1,−c′1i), ...,(ak−1,−c′(k−1)i), on Γ̃ and c′′i ∈ ζ (a′,bi), we have

−ζ (a,bi)+ c′′i

⊆
−→
d (k)

g (−ζ )(.,bi)(a′,−c′′i ,a1 −a′,−c′1i + c′′i , ...,ak−1 −a′,−c′(k−1)i + c′′i )

(Λ′
a′,a(0+))+α

′
i∥a−a′∥2 +R+.

Again, as c′′i ∈ ζ (a,bi), we have

− c′′i + c′′i ∈
−→
d (k)

g (−ζ )(.,bi)

(a′,−c′′i ,a1 −a′,−c′1i + c′′i , ...,ak−1 −a′,−c′(k−1)i + c′′i )

(Λ′
a′,a(0+))+α

′
i∥a−a′∥2 +R+.

(6.30)

Since (.)T M2δ is α ′i-R+-arcwisely connected w.r.t. 1, on Γ̃,

aT M2δ −a′T M2δ ≥ M2δ (Λ′
a′,a(0+))+α ′

i∥a−a′∥2 +R+. (6.31)

As Ω j, (1 ≤ j ≤ p), is ν j-R+-arcwisely connected of k-th order w.r.t. 1 at (a′,d′
j) for the

elements (a1,d1 j), ...,(ak−1,d(k−1) j), on Γ̃ and d′
j ∈ Ω j(a′)∩ (−R+), we have

Ω j(a)−d′
j ⊆

−→
d (k)

g Ω j(a′,d′
j,a1 −a′,d1 j −d′

j, ...,ak−1 −a′,d(k−1) j −d′
j)

(Λ′
a′,a(0+))+ν j∥a−a′∥2 +R+.

Since d j ∈ Ω j(a)∩ (−R+), we have

d j −d′
j

∈
−→
d (k)

g Ω j(a′,d′
j,a1 −a′,d1 j −d′

j, ...,ak−1 −a′,d(k−1) j −d′
j)

(Λ′
a′,a(0+))+ν j∥a−a′∥2 +R+.

(6.32)

From (6.16), (6.28), (6.29), (6.30), (6.31), (6.32), and (MWD),
r

∑
i=1

c∗i
(

c′i +(aT M1d)− c′(c′′i − (aT M2δ ))
)
+

p

∑
j=1

d∗
j d j

≥
r

∑
i=1

c∗i
(

c′i +(a′T M1d)− c′(c′′i − (a′T M2δ ))
)
+

p

∑
j=1

d∗
j d′

j,
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which contradicts (6.27). Hence, (a′,c′) is a minimizer of (MFP).

7. CONCLUSIONS

In light of the broader concept of higher-order cone arcwisely connected SVMs, we
use the concept of higher-order α-cone arcwisely connectivity of SVMs, introduced by
Das [1]. We have the standard notion of higher-order cone arcwisely connected SVMs for
α = 0. We investigate the higher-order converse, strong, and weak theorems of duality for
the Mond-Weir (MWD) form under the higher-order generalized contingent epiderivative
and α-cone arcwisely connectivity suppositions.

For k = 1 and Λγ1,γ2(τ) = (1 − τ)γ1 + τγ2, our results correspond with the suffi-
cient optimality conditions and duality results of the problem (MFP) under the contin-
gent epiderivative and α-cone convexity suppositions as explored in [30]. For k = 2
and Λγ1,γ2(τ) = (1− τ)γ1 + τγ2, our findings coincides with the second-order sufficient
optimality conditions and duality results of the problem (MFP) under the second-order
contingent epiderivative and second-order α-cone convexity suppositions as discussed in
[31]. For k = 1, our findings correspond with the sufficient optimality conditions and dual-
ity results of the problem (MFP) under the contingent epiderivative and α-cone arcwisely
connectivity suppositions as presented in [32].
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