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Abstract: In a declining market, companies must adapt their strategies during the
mature stage to maintain competitiveness. One of the effective approach to sustaining
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demand is through targeted promotional efforts, which can extend the products demand
in the market. Additionally, implementing an appropriate pricing strategy is essential
to ensure products are sold before its start deteriorate or the season ends. This paper
explores the role of promotional efforts in shaping pricing policies for non-instantaneous
deteriorating items in the declining demand scenario. In the model, we consider the
demand as a function of both price and time, incorporating assumptions of partial back-
logging for shortages, losts sales, fixed holding costs, and deterioration rate. Using these
assumptions, we develop an inventory model that starts with a shortage and ends with
zero inventory. The objective is to maximize expected profit per unit time by optimizing
both the selling price and replenishment schedules. The innovation of this study lies in
integrating promotional efforts with pricing strategies, specifically designed for deteri-
orating items in a declining market. We present a numerical example to demonstrate
the model’s effectiveness and conduct a sensitivity analysis to examine its performance
under varying conditions. Finally, we provide managerial insights and outline potential
directions for future research.

Keywords: Stochastic demand, price and time declining demand, non-instantaneous

Deterioration, promotional efforts, partial backlogging, lost sales.
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1. INTRODUCTION

In recent times, managing inventory decisions has become increasingly com-
plex for manufacturers and retailers, particularly when dealing with deteriorating
products. Specifically, for items categorized as non-instantaneous deteriorating
products—goods whose quality declines gradually over time—inventory manage-
ment presents significant challenges. This phenomenon, explored by Keswani &
Khedlekar [1], Shah et al. [2] are crucial for developing effective inventory models.
Such items include electronic components, medicines, foodstuffs, fruits, and veg-
etables, which maintain their quality for a period before beginning to deteriorate.
Given that many businesses face this issue, incorporating this phenomenon into
inventory models is essential for accurately reflecting real-world scenarios. The
selling price is a key factor influencing product demand, with lower prices gener-
ally leading to increased demand. Keswani & Khedlekar [3] have tackled this issue
by developing an inventory model that determines optimal pricing and lot sizes
for resellers, accounting for price-dependent demand, time-dependent deteriora-
tion, and partial backlogging. In today’s competitive global markets, where rapid
advancements in information technology and internet connectivity drive the land-
scape, effective pricing policies are crucial for sellers to craft profitable strategies.

Despite the wealth of research, as highlighted in the literature review and Table
1, a comprehensive model focusing specifically on non-instantaneous deteriorating
items—one that incorporates price, promotional efforts, time-dependent demand,
and backlogging rates—remains lacking. This article addresses this gap by propos-
ing a model tailored for managing non-instantaneous deteriorating inventory. Our
model integrates pricing and replenishment policies with the goal of maximizing
profits. We define criteria for identifying optimal decision variables and present a
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detailed algorithm to efficiently determine the best pricing and inventory strate-
gies.

Table 1: Gaps and Contributions of the Past Studies Related to Present Study

Authors Det. SD PE PDD TDD Dec.D

Keswani & Khedlekar [3] ✓ ✓ ✓ ✓

Hollier & Mak [4] ✓ ✓ ✓

Jalan & Chaudhuri [5] ✓ ✓ ✓

Wee [6] ✓ ✓ ✓ ✓

Zhang et.al [7] ✓ ✓

He et.al [8] ✓ ✓ ✓

Maihami & Karimi [9] ✓ ✓ ✓

Singh et.al [10] ✓ ✓ ✓

Chen et.al [11] ✓ ✓

Shah et.al [12] ✓ ✓ ✓

Soni & Chauhan [13] ✓ ✓ ✓ ✓

Rastogi & Singh [14] ✓ ✓

Rapolu & Kandpal [15] ✓ ✓ ✓ ✓

This model ✓ ✓ ✓ ✓ ✓ ✓

where, Det.=Deterioration, SD=Stochastic Demand, PE=Promotional Efforts, PDD=Price
Dependent Demand, TDD=Time Dependent Demand, Dec.D=Declining Demand

2. LITERATURE SURVEY

Inventory management is a technique of maintaining stock at the desired level,
encompassing various aspects such as product demand, storage capacity, main-
tenance, inventory decisions, strategies to stay competitive, promotional poli-
cies, quality maintenance, business reputation, and financial growth. Inventory
managers strive to increase demand and maintain profitability even in declining
markets. To address these challenges, mathematical models are needed to de-
termine how much and when to order, considering restrictions on production,
storage, time, and money. Inventory modeling involves developing optimal poli-
cies based on realistic parameters and results. Since the initial development of
the classical Economic Order Quantity (EOQ) model, numerous researchers have



4 M. Keswani et al. / Efficiency of Managing a Stochastic Inventory System

extended it to represent practical scenarios more accurately. In real markets,
decay or deterioration is a natural phenomenon affecting products such as vegeta-
bles, fruits, foods, perfumes, chemicals, pharmaceuticals, radioactive substances,
and electronic equipment. This deterioration is crucial in inventory management.
Subsequent researchers, including Keswani [16] incorporated non-instantaneous
deterioration into their models. Recently, Rapolu [15] proposed an inventory
model with different non-instantaneous deterioration rates, price, advertisement-
dependent demand under trade credit.

Declining markets introduce substantial challenges for inventory management,
particularly as markets transition from periods of maturity to declining sales. This
decline is driven by both internal and external factors that contribute to reduced
demand. Mak and Hollier [4] were pioneers in addressing this issue, proposing re-
plenishment policies for deteriorating items in markets where demand diminishes
exponentially and deterioration occurs at a constant rate. Building on their work,
researchers like Wee & Hui-Ming [6], Jalan & Chaudhuri [5], Mathur & Dwivedi
[17], have further explored how declining demand interacts with other influencing
factors. This study aims to achieve optimal results by considering the realities of
declining demand in the context of modern challenges such as pandemics, global
conflicts, and climate change. Demand plays a pivotal role in driving production
and ordering decisions, making it crucial for the success of businesses Rastogi [14].
Whether demand is constant, deterministic, or stochastic, it can be shaped by a
range of factors, including pricing, inventory levels, timing, promotions, advertis-
ing, and seasonal variations. Recent studies by Jose et al. [18], Saha et al. [19],
and Bhavani & Mahapatra [20] have delved into the effects of these variables on
demand. Traditional inventory models often simplify demand as predictable and
constant, but real-world demand is far more complex and uncertain, necessitating
its treatment as a random variable. The classic “newsvendor”problem, which deals
with random demand for perishable goods, is a well-known example of this chal-
lenge. Researchers such as Soni & Chauhan [13], Soni & Suthar [21], and Shah et
al. [12] have made significant strides in enhancing these models, integrating both
price-sensitive and time-dependent factors to create more realistic and practical
approaches for managing inventory in today’s fluctuating markets.

In today’s volatile market, shortages have become a critical concern for re-
searchers and businesses alike. Shortages occur when demand cannot be fulfilled
immediately, leading to unmet customer needs. Impatient customers may choose
to shop elsewhere, resulting in order cancellations and significant financial losses.
Traditionally, many inventory models have operated under the assumption that
“shortages are permitted and completely backlogged.” Two primary inventory
policies have been developed to address shortages: Inventory Followed by Short-
ages (IFS) and Shortages Followed by Inventory (SFI). Initially, most models relied
on the IFS policy, but the SFI policy, which starts each cycle with a shortage and
ends with zero inventory, has gained prominence. Goyal et al. [22] were the first
to demonstrate that the SFI policy could reduce inventory costs compared to the
IFS policy. Since then, inventory models by researchers like Shaikh et al. [23] have
increasingly adopted the SFI replenishment approach.
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Another essential aspect of inventory management is promotional efforts. Pro-
motions such as gifts, price discounts, special displays, extended payment terms,
and advertising can significantly influence customer purchasing behavior. For
instance, Maihami & Kamalabadi [24] developed an inventory model for non-
instantaneous deteriorating items that incorporates promotional efforts, price-
sensitive stochastic demand, and partially backlogged shortages. Similarly, Singh
& Rathore [10] presented a model for deteriorating items that accounts for pro-
duction reliability and stochastic demand, both with and without shortages. Chen
et al. [11] tackled optimization challenges related to inventory replenishment, pro-
duction, and promotion under the risks of production disruptions and stochastic
demand. Furthermore, Soni & Suthar [21] formulated a profit-maximization inven-
tory model for deteriorating items by incorporating both stochastic price-sensitive
demand and promotional activities. Shah et al. [12] explored the impact of sup-
plier discounts for bulk orders. Other researchers, such as Dash [25], Jaggi et al.
[26] and Palanivel et al. [27] have developed models that integrate pricing, pro-
motion, and inventory control to enable more effective decision-making.

Recent studies have yet to fully integrate contemporary challenges such as
economic volatility, global supply chain disruptions, and the rise of advanced pre-
dictive analytics. There is also a pressing need to incorporate multi-factor demand
influences and sophisticated promotional strategies into inventory models, which
could lead to more resilient and adaptive solutions. The literature review under-
scores the necessity for more comprehensive and up-to-date research, particularly
in areas like declining markets, stochastic demand, shortages, and promotional
efforts. Addressing these aspects is essential for developing robust inventory man-
agement strategies that can withstand unexpected market fluctuations. Table 1
outlines the specific research gaps identified in the current study, reinforcing the
call for more holistic approaches in future investigations.

3. RESEARCH GAP AND RELEVANCE OF THE PRESENT
STUDY

Table 1 highlights the distinctive features of this study in contrast to previ-
ous research. The existing literature identifies significant gaps in the analysis of
stochastic inventory models for non-instantaneous deteriorating items. This study
seeks to bridge these gaps by proposing a robust inventory model that integrates
joint promotional cost-sharing policies. The following research gaps have been
identified and addressed in this work:

1) Previous models often assume constant or deterministic demand rates, which
fail to capture the unpredictable nature of real-world demand. Stochastic
demand, which introduces variability and uncertainty, has been infrequently
studied. Our model addresses this by incorporating stochastic demand, mak-
ing it more applicable to practical scenarios where demand fluctuates.

2) Many decision-making models assume that unmet demand is fully back-
logged, an idealized scenario not reflective of real business environments. In
practice, some unmet demand results in lost sales, while other customers
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may be willing to wait, leading to partial backlogging. Our model provides a
more realistic representation by incorporating both partial backlogging and
lost sales.

3) While numerous studies have examined inventory management for deteri-
orating items, none have integrated critical factors such as price and time
sensitive demand, promotional efforts, partial backlogs (shortages), and lost
sales in a comprehensive manner. Additionally, the combined impact of
these factors on maximizing profit through promotional efforts in a declining
market has been rarely explored. Our model uniquely integrates all these
elements, offering a holistic approach to inventory management.

3.1. Novel Contributions

Addressing the challenges of a declining market and minimizing losses from de-
creased demand are crucial for sustaining products. Our proposed model tackles
these issues by developing an inventory model for non-instantaneous deteriorating
items with price and time dependent demand which is stochastic in nature, incor-
porating partial backlogging and lost sales. The novelty of our approach is rooted
in its comprehensive and integrated framework, which includes the following in-
novative features:

a) The model incorporates demand that varies with both price and time, offer-
ing a more realistic reflection of dynamic market conditions.

b) Unlike traditional models that assume fixed demand rates, our model em-
ploys stochastic (random) demand rates to better capture market volatility
and unpredictability.

c) By accounting for partial backlogging based on customer waiting time and
considering lost sales, our model presents a more accurate representation of
real-world scenarios and customer behavior.

d) The impact of promotional efforts on demand is integrated into the model,
aiding in the optimization of marketing strategies and enhancing profitabil-
ity. This aspect is especially crucial for maintaining product relevance and
stimulating demand in a declining market.

Additionally, we explore the influence of promotional efforts on stochastic de-
mand in a declining market and perform a sensitivity analysis to examine how these
efforts vary with different parameters. Our model provides efficient solutions for
determining optimal selling prices and replenishment strategies. We utilize graph-
ical analysis to demonstrate the concavity of the profit function, ensuring the
reliability of our results.

The proposed model aids retailers and manufacturers by addressing key ques-
tions such as:

1. How much inventory should be ordered, and for how long should it be held
to minimize costs and maximize profits?

2. How can demand be accelerated in a declining market through strategic
decisions and promotional efforts?

3. What pricing policy can enhance profits even in a declining market environ-
ment?
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4. What is the impact of with and without promotional efforts on the total profit
of retailers and manufacturers, and how can these efforts be optimized?

This study stands out for its comprehensive approach, integrating stochastic
demand, partial backlogging, lost sales, and promotional efforts into a single in-
ventory model for deteriorating items. By addressing these factors, our model
offers a robust tool for improving profitability and decision-making in challenging
market conditions.

4. NOTATIONS AND HYPOTHESES OF THE MODEL

4.1. Notations

Following notations are used throughout this paper.

Parameters

Oa : Ordering cost per order,

cp : Purchase cost per unit,

ch : Holding cost per unit per time period,

cs : Backorder cost per unit per time period,

c1 : Cost of lost sales per unit,

cd : Deterioration cost per unit over time,

I(t) : Inventory level at time t,

ϵ : Random variable representing uncertainty, with E(ϵ) = µ,

ρ : Promotional efforts (e.g., advertising), where ρ ≥ 1,

∗ : Denotes optimal value,

am : Market potential, where a > b, c,

b : Demand sensitivity to price,

c : Demand sensitivity to time,

θ : Deterioration rate, 0 ≤ θ < 1,

δb : Backlogging rate.

Decision Variables

tb : Time period allowing shortages, where 0 ≤ t ≤ tb,

tr : Time when inventory is depleted post-replenishment,

sp : Selling price per unit.
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Additional Variables

π : Total profit per time period for the inventory system,

πavg : Optimal average profit per time period,

Ishort(t) : Inventory level during shortages at time t, where 0 ≤ t ≤ tb,

Ihold(t) : On-hand inventory level at time t, where tb ≤ t ≤ tb + tr,

D(sp, t) : Demand function dependent on price and time, which decreases abruptly,

q : Total order quantity per cycle, with qb as backordered quantity and qr
as replenished quantity.

4.2. Hypotheses

To mathematically formulate the model, we propose the following hypotheses:

a) The inventory model considers a single item that experiences non-instantaneous
deterioration.

b) The product is abundantly available in the competitive market, implying an
infinite replenishment rate with zero lead time.

c) The stochastic demand function, D(sp, t) +E(ϵ), is continuous and depends
on both price and time. Here, D(sp, t) is expressed asD(sp, t) = am−bsp−ct,
where am > 0, b ̸= 0, c ̸= 0, sp > 0, and ϵ is a non-negative continuous
random variable with E(ϵ) = µ. The parameters am, b, and c represent
potential market demand, price sensitivity, and time sensitivity, respectively.

d) The distribution of the random variable ϵ is fixed and independent of time,
with the parameters of the demand function remaining constant over the
time horizon.

e) The cost of promotional effort, denoted as PC(ρ,D(sp, t)), increases with
both the effort and the basic demand. This cost is given by:

PC = K(ρ− 1)2
[∫ 1

0

(D(sp, t) + ϵ) dt

]η
where K > 0 and η is a constant. This formulation, adopted from Soni &
Chauhan [13] and Maihami & Karimi [9] captures the relationship between
promotional effort, market demand, and promotional costs. Notably, ρ = 1
represents a scenario with no promotional policy, as indicated in previous
studies.

f) The demand increases with the introduction of a promotional factor, ex-
pressed as ρ(D(sp, t) + ϵ), where ρ ≥ 1.

g) The item deteriorates at a constant rate θ, where 0 ≤ θ < 1.
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h) During periods of shortage, a portion of the unmet demand is back-ordered,
while the rest is lost or partially backlogged. The backlogging rate is given
by:

β(t) =

{
e−δbt if δb > 0

1 if δb = 0
(1)

where 0 < δb < 1 is the backlogging parameter, and t represents the waiting
time until the next replenishment.

5. MATHEMATICAL MODELLING AND ANALYSIS

Consider a scenario where the business experiences an initial shortage during
the interval [0, tb], which is partially backlogged. At time tb, the backlogged de-
mand qb is immediately fulfilled through a replenishment of quantity q, while the
remaining demand qr is satisfied over the interval [tb, tr], leading to a complete
depletion of inventory by time tr. Following this, the inventory decreases due
to price- and time-dependent stochastic demand as well as item deterioration. To
address the declining demand affected by price fluctuations and uncertainty, a pro-
motional effort parameter ρ is introduced to influence demand over time. Figure
1 illustrates the inventory depletion process, comparing the effect of promotional
efforts during the interval (tb, tr) with the scenario without promotional efforts
during the interval (tb, t

′
r). Both intervals demonstrate the interaction between

stochastic demand and reduced deterioration.

Figure 1: Graphical representation of inventory system

Based on the scenario described, the state of the shortage inventory at time t
within the interval [0, tb] can be represented by the following differential equation:

dIshort(t)

dt
= −ρ (D(sp, t) + ϵ)β(tb − t), 0 ≤ t ≤ tb (2)

with the initial condition Ishort(0) = 0.
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The solution to the above differential equation is given by:

Ishort(t) = −ρ
∫ t

0

(D(sp, t) + ϵ)β(tb − t) dt (3)

Next, the status of the on-hand inventory at any time t within the interval
[0, tr] is governed by the following differential equation:

dIhold(t)

dt
= −θIhold(t)− ρ (D(sp, t) + ϵ) , 0 ≤ t ≤ tr (4)

with the boundary condition Ihold(tr) = 0.
The solution to this differential equation is:

Ihold(t) = ρe−g(t)
(∫ tr

0

(D(sp, t) + ϵ) eg(x) dx

)
(5)

where g(t) =
∫ t
0
θ dt.

Consequently, the loss in sales at any time t is calculated as:

Ilost(t) = ρ (D(sp, t) + ϵ) (1− β(tb − t)) , 0 ≤ t ≤ tb (6)

Based on these inventory levels, we can now calculate the various inventory-
related costs and revenue per cycle. These include the following:

• Total Quantity: The total replenishment size (including backlog) is given
by:

q = Ihold(t)− Ishort(1)

= ρ (D(sp, t) + ϵ)

×
{
eg(0)

∫ tr

0

eg(x) dx+

∫ tb

0

β(tb − t) dt

} (7)

• Lost Sale Cost: The expected cost of lost sales during the interval [0, tb]
is:

TLC =E

(
cl

∫ tb

0

Ilost(t) dt

)
= c1ρ

∫ tb

0

(D(sp, x) + µ)

× [1− β(tb − x)] dx

(8)

• Shortage Cost: The expected cost of stock-outs and backlogs over the
interval [0, tb] is:

TSC =E

(
cs

∫ tb

0

[−Ishort(t)] dt
)

= csρ

[∫ tb

0

{∫ t

0

(D(sp, x) + µ)β(tb − x) dx

}
dt

] (9)
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• Holding Cost: The expected holding cost during the interval [0, tr] is:

TIC =E

(
ch

∫ tr

0

Ihold(t) dt

)
= chρ

[∫ tr

0

eg(x)
{∫ tr

t

(D(sp, x) + µ) eg(x) dx

}
dt

] (10)

• Purchasing Cost: The expected purchasing cost is:

TPC = E(c0q) = c0ρe
g(0)

{∫ tr

0

(D(sp, x) + µ) eg(x) dx

+

∫ tb

0

β(tb − t) (D(sp, t) + µ) dt

}
(11)

• Sales Revenue: The expected revenue from sales is:

TRV = E

(
spρ

∫ tr

0

(D(sp, x) + ϵ)dx− Ishort(tb)

)
= spρ

[∫ tr

0

(D(sp, x) + µ)dx

+

∫ tb

0

(D(sp, x) + µ)βb(tb − x)dx

]
(12)

• Promotional Investments: The expected cost of promotional efforts is:

PC = E

(
K(ρ− 1)2

[∫ tb+tr

0

(D(sp, t) + ϵ) dt

]η)
= K [(tb + tr)(D(sp, t) + µ)]

η
(−1 + ρ)2 (13)

• Deterioration Cost: The expected cost due to deterioration during the
shortage period is:

TDC = E

(
cd

∫ tr

0

θIhold(t) dt

)
= ρcdθ

∫ tr

0

eg(t)
{∫ tr

t

(D(sp, x) + µ) e(1−m(ξ))g(x) dx

}
dt (14)

6. SOLUTION PROCEDURE

6.1. Total Profit Function

When all of the cost and profit elements are added together, the total integrated
profit

π(tb, tr, sp) = TRV

− (Oa + TSC + TLC + TIC + TPC + PC + TDC) (15)
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π(tb, tr, sp) = spρ

{∫ tr

0

(D(sp, x) + µ)dx

+

∫ tb

0

(D(sp, x) + µ)β(tb − x)dx

}
−
(
Oa + csρ

[∫ tb

0

{∫ t

0

(D(sp, x) + µ)β(tb − x)dx

}
dt

]
+ c1ρ

∫ tb

0

(D(sp, x) + µ) (1− βb(tb − x)) dx

+ Chρ

[∫ tr

0

eg(x)
{∫ tr

t

(D(sp, x) + µ)eg(x)dx

}
dt

]
+ C0ρe

g(0)

{∫ tr

0

(D(sp, x) + µ)eg(x)dx

+

∫ tb

0

β(tb − x)(D(sp, x) + µ)dx

})
+K(ρ− 1)2

[∫ (tb+tr)

0

(D(sp, t) + µ)dt

]η

+ρCdθ

∫ tr

0

eg(t)
(∫ tr

t

(D(sp, x) + µ)eg(x)dx

)
dt (16)

Therefore, the total average profit is

πavg(tb, tr, sp) =
π(tb, tr, sp)

tb + tr
(17)

6.2. Optimization of the proposed inventory model

To optimize the proposed inventory model, we utilize a classical optimization
approach to analytically solve the mathematical formulation. The decision vari-
ables namely sp, tb, and tr are optimized through a continuous optimization tech-
nique. Since the problem involves multiple decision variables, the Hessian matrix
is employed to verify the optimality of the objective function.

Thus, the optimization problem tackled in this study is formulated as:

max
tb,tr,sp

πavg(tb, tr, sp) (18)

subject to cp ≤ sp, and tb, tr ≥ 0

The problem can be solved in two phases,

First Phase: To maximize the objective function with respect to (tb, tr),

max
tb,tr

πavg(tb, tr, sp) (19)
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Second Phase: To maximize with respect to sp, that is

max
sp

{
max
tb,tr

πavg(tb, tr, sp)

}
. (20)

subject to cp ≤ sp, and tb, tr ≥ 0

That is, first with regard to (tb, tr), then with respect to sp.

Now, fix sp, we have the first partial derivatives of πavg with respect to tb and tr
are

∂πavg (tb, tr)

∂tb
= − π(tb, tr)

(tb + tr)
2 +

1

tb + tr

(
∂π (tb, tr)

∂tb

)
(21)

∂πavg (tb, tr)

∂tr
= − π(tb, tr)

(tb + tr)
2 +

1

tb + tr

(
∂π (tb, tr)

∂tr

)
(22)

And, the second partial derivatives of πavg with respect to tb and tr are

∂2πavg (tb, tr)

∂t2b
=

2(tb, tr)

(tb + tr)
3 − 2

(tb + tr)
2

∂π (tb, tr)

∂tb
+

1

tb + tr

(
∂2π (tb, tr)

∂t2b

)

(23)

∂2πavg (tb, tr)

∂t2r
=

2π(tb, tr)

(tb + tr)
3 − 2

(tb + tr)
2

∂π (tb, tr)

∂tr
+

1

tb + tr

(
∂2π (tb, tr)

∂t2r

)

(24)

For the optimum value of πavg (tb, tr), we have the necessary condition

∂πavg(tb, tr)

∂tb
= 0 (25)

∂πavg(tb, tr)

∂tr
= 0 (26)

and we obtain,

π (tb, tr) = (tb + tr)
∂π (tb, tr)

∂tb
(27)

π (tb, tr) = (tb + tr)
∂π (tb, tr)

∂tr
(28)

From above two equations, we have

∂π (tb, tr)

∂tb
=
∂π (tb, tr)

∂tr
(29)
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Next, we find the first-order partial derivative of π(tb, tr) with respect to tb is

∂π (tb, tr)

∂tb
= ρ(sp + cl − c0) {(am − bp− ctb + µ)

+ (am − bp+ µ)(1− e−tbδb)

−c
(
tb +

1− e−tbδb

δ2b

)}

−csρ
{
c(1− e−tbδ)

δb
+ tbe

−tbδb
(
am − bsp + µ+

c

δ

)}
−Cl(am − bsp − ctb + µ)

+ηcK(ρ− 1)2 (tb + tr) (am − bsp + µ)

×
[
−1

2
c(tb + tr)

2 + (tb + tr)(am − bsp + µ)

]η−1

(30)

The first-order partial derivative of π(tb, tr) with respect to tr is

∂π (tb, tr)

∂tr
= ρsp(am − bsp − ctr + µ)

−(ch + θbcd)

∫ tr

0

(am − bsp − ctr + µ)eg(tr)−g(t)dt

−c0ρ(am − bsp − ctr + µ)eg(tr)

+cηK(tb + tr)(ρ− 1)2(am − bsp + µ)

×
[
−1

2
c(tb + tr)

2 + (tb + tr)(am − bsp + µ)

]η−1

(31)

putting the values of ∂π(tb,tr)
∂tb

and ∂π(tb,tr)
∂tr

in equation ∂π(tb,tr)
∂tb

= ∂π(tb,tr)
∂tr

, we
obtained

(sp − c0 + cl)
{
(am − bsp − ctb + µ) + (am − bsp + µ)(1− e−tbδb)

−c
(
tb +

1− e−tbδb

δ2

)}
−csρ

{ c
δ
(1− e−tbδ) + tbe

−tbδ
(
am − bsp + µ+

c

δ

)}
−cl(am − bsp − ctb + µ)

= sp (am − bsp − ct2 + µ)

−(ch + θcd)

∫ tr

0

(am − bsp − ct2 + µ)eg(tr)−g(t)dt

−c0ρeg(tr)(am − bsp − ct2 + µ) (32)

we assumed that the left hand side of above equation is W (sp, tb) and right
hand side is φ(tr).
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Putting values in equations (20) to (22) and we get,

e−tbδ W (sp, tb) = φ(tr)

From above expression we obtain the value of tb

tb =
1
δ ln

W (sp,tb)
φ(tr)

For convenience, we take

Oa
ρ

− φ(tr)(tb + tr)−K(ρ− 1)2
[
1

2
c(tb + tr)

2 − (tb + tr)(am − bsp + µ)

]η−1

+ c(tb + tr)(am − bsp + µ) + (ch + θcd)

[∫ tr

0

eg(t)
{∫ tr

t

(D(sp, x) + µ)eg(x)dx

}
dt

]
+ c0ρ

{∫ tr

0

(D(sp, x) + µ)eg(x)dx+

∫ tb

0

β(tb − x)(D(sp, x) + µ)dx

}
+
W (sp, tb)

δb
= 0

We suppose an auxiliary function above equation, say V (tr), tr ∈ [0,∞), where

V (tr) =
Oa
ρ

− φ(tr)(tb + tr) +
K(ρ− 1)2

[
c(tb + tr)

2 − 2(tb + tr)(am − bsp + µ)
]η

2ρ(
1−

2η
[
c(tb + tr)

2 − (am − bsp + µ)(tb + tr)
]

c(tb + tr)2 − 2(tb + tr)(am − bsp + µ)

)
+ U(sp, tb) +

(ch + θcd)

[∫ tr

0

eg(t)
{∫ tr

t

(D(sp, x) + µ)eg(x)dx

}
dt

]
+c0ρ

{∫ tr

0

(D(sp, x) + µ)eg(x)dx+

∫ tb

0

β(tb − x)(D(sp, x) + µ)dx

}
(33)

Differentiating V (tr) with respect to tr, we get
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dV (tr)

dtr
= −φ(tr)− φ′(tr)(tb + tr)K

[
1

2
c(tb + tr)

2 − (tb + tr)(am − bsp + µ)

]η
(
4η(tb + tr)(am − bsp − c(tb + tr) + µ)2

[c(tb + tr)2 − (tb + tr)(am − bsp + µ)]
2 +

2cη(tb + tr)

c(tb + tr)2 − (tb + tr)(am − bsp + µ)

)

−K

[
1

2
c(tb + tr)

2 + (tb + tr)(am − bsp + µ)

]η
[

2η(am − bsp − c(tb + tr) + µ)

−c(tb + tr)2 + (tb + tr)(am − bsp + µ)

]η−1

−K(ρ− 1)2η(am − bsp − c(tb + tr) + µ)

[
−1

2
c(tb + tr)

2 + (tb + tr)(am − bsp + µ)

]η−1

(
1 +

(tb + tr)η(am − bsp − c(tb + tr) + µ)
1
2c(tb + tr)2 − (tb + tr)(am − bsp + µ)

)
− C0ρ(am − bsp − ctr + µ)eg(tr)

− (ch + θCd)

∫ tr

0

(am − bsp − ctr + µ)eg(tr)−g(t)dt < 0

Thus, V (tr) is strictly decreasing function of tr ∈ [0,∞).

δbsp =
Oa
ρ

− (am − bsp + µ)(ρ− c0)

(
1

δb
ln
W (sp, tb)

φ(tr)

)
− K(ρ− 1)2

ρ[
−1

2
c

(
1

δb
ln
W (sp, tb)

φ(tr)

)2

+

(
1

δb
ln
W (sp, tb)

φ(tr)

)
(am − bsp + µ)

]η−1

1− η(−c
(

1
δb

ln
W (sp,tb)
φ(tr)

)
+ (am − bsp + µ)

−1
2 c
(

1
δ ln

W (sp,tb)
φ(tr)

)2
+
(

1
δ ln

W (sp,tb)
φ(tr)

)
(am − bsp + µ)

 tb + W (sp, tb)

δb

(34)

Lemma 1. For, fix value of sp the following inequality holds:

(i) If δbsp > 0, then the unique pair of (tob , t
o
r) exists which satisfy condition

∂πavg

∂tb
=

∂πavg

∂tr

(ii) If δbsp ≤ 0, then the optimal value of (t∗b , t
∗
r) obtain at fix point

(t∗b , t
∗
r) =

(
1

δb
ln

W (sp, tb)

(sp − c0)(am − bsp + µ)
, 0

)
if δbsp ≤ 0.
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6.3. Proof of Optimality of Profit function

Theorem 1. For a known value of sp, the total profit function πavg(tb, tr, sp) is
concave and its global maxima attains at the point (t∗b , t

∗
r)

Proof. Refer by Lemma 1

(t∗b , t
∗
r) =

{
(tob , t

o
r) if δbsp > 0(

1
δ ln

W (sp,tb)
((sp−C0)(am−bsp+µ) , 0

)
if δbsp ≤ 0

(35)

Taking optimal value of (tb, tr) = (t∗b , t
∗
r) for differentiation of ∂π

∂tb
with respect to

tb and tr, to get ∂2π
∂t2b

, ∂2π
∂tbtr

and ∂π
∂tr

, with respect to tr, to get ∂2π
∂t2r

. Taking optimal

value of (tb, tr) = (t∗b , t
∗
r) for differentiation of ∂π

∂tb
with respect to tb and tr, to get

∂2π
∂t2b

, ∂2π
∂tbtr

and ∂π
∂tr

, with respect to tr, to get ∂2π
∂t2r

.

∂2π

∂t2b
= −

[
ρ(sp − C0 + Cl)

(
−2c− (a− bsp + µ)e−t

∗
bδb

δb

+
e−t

∗
bδb

δ3

+ Csρ

(
e−t

∗
bδb(c− t∗bδb + 1)

δ2

)
−clc

−cK(−1 + ρ)2η

[
−1

2
c(t∗b + t∗r)

2 + (t∗b + t∗r)(am − bsp + µ)

]η−1

+K(η − 1)(am − bsp − c(t∗b + t∗r) + µ)2(ρ− 1)2η[
−1

2
c(t∗b + t∗r)

2 + (t∗b + t∗r)(am − bsp + µ)

]η−2
]

(36)

∂2π

∂tb∂tr
=−

[
3cK(η − 1) (am − bsp − c(t∗b + t∗r) + µ) (−1 + ρ)2η

×
(
−1

2
c(t∗b + t∗r)

2 + (t∗b + t∗r)(a− bsp + µ)

)η−2

+K(η − 2)(η − 1) (am − bsp − c(t∗b + t∗r) + µ)
3

×
(
−1

2
c(t∗b + t∗r)

2 + (t∗b + t∗r)(am − bsp + µ)

)η−3

+K(η − 1)(ρ− 1)2η

(
−1

2
c(t∗b + t∗r)

2 + (t∗b + t∗r)(am − bsp + µ)

)2

+(am − bsp − c(t∗b + t∗r) + µ)
3
(ρ− 1)2η

×
(
−1

2
c(t∗b + t∗r)

2 + (t∗b + t∗r)(am − bsp + µ)

)η−2
]

(37)
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∂2π

∂t2r
=− [spρ (c+ (ch + cd) [(am − bsp − ct∗r + µ)

+

∫ t∗r

0

eg(t
∗
r)−g(t) ∂g(t

∗
r)

∂tr
dt

]
+ c0ρ [(am − bsp − ct∗r + µ)

·eg(t
∗
r)
∂g(t∗r)

∂t∗r
− ceg(t

∗
r)

])
−K(ρ− 1)2η

[
−1

2
c(t∗b + t∗r)

2 + (t∗b + t∗r)(a− bsp + µ)

]η−1

+K(η − 1) (am − bsp − c(t∗b + t∗r) + µ)
2
(−1 + ρ)2η[

−1

2
c(t∗b + t∗r)

2 + (t∗b + t∗r)(a− bsp + µ)

]η−2

(38)

Next, we assess the optimality at the point (t∗b , t
∗
r) by evaluating the Hessian

matrix, denoted as H. If the determinant of the Hessian matrix |H| ≥ 0, and
is positive at the point (t∗b , t

∗
r), this indicates that the solution provides a global

maximum for the profit function. The optimality of the profit function with respect
to (t∗b , t

∗
r) is illustrated in Figure 2.

Figure 2: Variation in Profit Function with Respect to Shortage Time (tb) and Replenishment
Time (tr)

Theorem 2. For fixed values t∗b and t∗r, the total profit function π(t∗b , t
∗
r , sp) is

strictly concave with respect to sp. This concavity ensures that the profit function
π(t∗b , t

∗
r , sp) reaches its optimal value at the corresponding sp.

s∗p = ρ (t∗bδb − 1)

[2a(t∗b + t∗r + t∗bt
∗
rδb)− c

(
2t∗b

2 + t∗r
2 + t∗bt

∗
r
2δ
)
+2µ(t∗b + t∗r + t∗bt

∗
rδb)]

−
[
cp(−t∗b + t∗r + t∗b

2δb) +K(t∗b + t∗r)(ρ− 1)2 + ρclt
∗
b
2δb(1− t∗bδb)

2ρ(t∗bδb − 1)(t∗b + t∗r + t∗bt
∗
rδb)

] (39)
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Proof. First, we take partial derivative of profit function π(t∗b , t
∗
r , sp) with respect

to sp for fixed t∗b , t
∗
r , we get

∂πavg
∂sp

= bKη(t∗b + t∗r)(ρ− 1)2 [(t∗b + t∗r)(a− bsp − cx+ 2µ)]
η−1

+Clρ

∫ t∗b

0

b (β (t∗b − x)− 1) dx

+cp

(
b(et

∗
rθ − 1)

θ
+

∫ t∗b

0

bβ(t∗b − x)dx

)

+spρ

(
−bt∗r +

∫ t∗b

0

−bβ(t∗b − x)dx

)

bCbρ

∫ t∗b

0

(∫ t

0

β(t∗b − x) dx

)
dt+

b(ch + cdθ)(−1 + et
∗
rθ − t∗rθ)ρ

θ2

+ρ (t∗r (am − bsp − cx+ µ)

+

∫ t∗b

0

(am − cx− bsp + µ)β(t∗b − x) dx

)
(40)

Taking
∂πavg

∂sp
= 0, we get the analytical value of sp

sp = ρ (t∗bδb − 1) [2am (t∗b + t∗r + t∗bt
∗
rδb)

−c
(
2t∗b

2 + t∗r
2 + t∗bt

∗
r
2δb

)
+2µ (t∗b + t∗r + t∗bt

∗
rδb) ]

−

[
cp
(
−t∗b + t∗r + t∗b

2δb
)

2ρ (t∗bδb − 1) (t∗b + t∗r + t∗bt
∗
rδb)

+
K (t∗b + t∗r) (ρ− 1)2

2ρ (t∗bδb − 1) (t∗b + t∗r + t∗bt
∗
rδb)

+
ρclt

∗
b
2δb(1− t∗bδb)

2ρ (t∗bδb − 1) (t∗b + t∗r + t∗bt
∗
rδb)

]
Next, we take the partial derivative of the profit function π(t∗b , t

∗
r , sp) with
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respect to sp to verify the optimality of sp and ensure that the profit is maximized.

∂2πavg
∂s2p

=−
[
b2η(η − 1)(ρ− 1)2K(tb + tr)

2

tb + tr

× [(tb + tr)(am − cx− bsp + µ)]
(η−2)

+
2ρb

tb + tr

(
tr +

∫ tb

0

β(tb − x) dx

)]
(41)

Hence, we observe that
∂2πavg

∂s2p
< 0, and conclude that π(t∗b , t

∗
r , sp) is indeed

a strictly concave function of sp. Consequently, s∗p represents the optimal selling
price that maximizes the profit function for the fixed values of t∗b and t∗r .

s∗p = ρ (t∗bδb − 1) [2a (t∗b + t∗r + t∗bt
∗
rδb)

−c
(
2t∗b

2 + t∗r
2 + t∗bt

∗
r
2δb
)

+2µ (t∗b + t∗r + t∗bt
∗
rδb) ]

−
[
cp(−t∗b+t

∗
r+t

∗
b
2δb)+K(t∗b+t

∗
r)(ρ−1)2+ρclt

∗
b
2δb(1−t∗bδb)

2ρ(t∗bδb−1)(t∗b+t∗r+t∗b t∗rδb)

]
(42)

Figure 3: Expected average profit function (πavg) versus the selling price (s∗p).

Figure 3 represents the expected average profit function (πavg) versus the selling
price (s∗p).

Theorem 3. For fix tb, tr,and sp, the difference of total profit function with pro-
motional efforts and without promotional efforts is strictly positive.

[π(tb, tr, sp)]ρ>1 − [π(tb, tr, sp)]ρ=1 > 0 (43)
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Figure 4: The graph shows the impact of with and without promotional efforts in optimum profit

Proof. From equation (16)

[π(tb, tr, sp)]ρ>1 = spρ

{∫ tr

0

(D(sp, x) + µ)dx+

∫ tb

0

(D(sp, x) + µ)β(tb − x)dx

}
−
(
Oa + csρ

[∫ tb

0

{∫ t

0

(D(sp, x) + µ)β(tb − x)dx

}
dt

]
+c1ρ

∫ tb

0

(D(sp, x) + µ) (1− β(tb − x)) dx

+(ch + cdθ) ρ

[∫ tr

0

eg(x)
{∫ tr

t

(D(sp, x) + µ)eg(x)dx

}
dt

]
+c0ρ

{∫ tr

0

(D(sp, x) + µ)eg(x)dx+

∫ tb

0

β(tb − x)(D(sp, x) + µ)dx

})
+K(ρ− 1)2

[∫ (tb+tr)

0

(D(sp, t) + µ)dt

]η
(44)

and For ρ = 1,

[π(tb, tr, sp)]ρ=1 = −Oa − (ch + cdθ)

∫ tr

0

eg(t)
∫ tr

t

eg(x) (D(sp, x) + µ) dx dt

−cs
∫ tb

0

(∫ t

0

β(tb − x) (D(sp, x) + µ) dx

)
dt

−cl
∫ tb

0

(β(tb − x)− 1) (D(sp, x) + µ) dx

−c0
(∫ tr

0

eg(x) (D(sp, x) + µ) dx−
∫ tb

0

β(tb − x) (D(sp, x) + µ) dx

)
+sp

(∫ tr

0

(D(sp, x) + µ) dx+

∫ tb

0

β(tb − x) (D(sp, x) + µ) dx

(45)
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[π]ρ>1 − [π]ρ=1 =(ρ− 1)

[
sp

∫ tr

0

(D(sp, x) + µ) dx

+

∫ tb

0

(D(sp, x) + µ)β(tb − x) dx

]
− csρ

[∫ tb

0

{∫ t

0

(D(sp, x) + µ)β(tb − x) dx

}
dt

−c1
∫ tb

0

(D(sp, x) + µ) [1− β(tb − x)] dx

− (ch + cdθ) ρ

[∫ tr

0

eg(x)
{∫ tr

t

(D(sp, x) + µ) eg(x) dx

}
dt

−c0ρ
{∫ tr

0

(D(sp, x) + µ) eg(x) dx

+

∫ tb

0

β(tb − x) (D(sp, x) + µ) dx

}]
+K(ρ− 1)2

[∫ (t1+tr)

0

(D(sp, t) + µ) dt

]η

[π]ρ>1 − [π]ρ=1 = [π]ρ=1 +Oa +K(ρ− 1)2

[∫ (t1+t2)

0

(D(sp, t) + µ)dt

]η
> 0

Since, [π(tb, tr, sp)]ρ=1 > 0, Oa > 0, K(ρ− 1)2

[∫ (t1+t2)

0

(D(sp, t) + µ)dt

]η
> 0

Therefore, the profit funcion with promotoinal efforts is greater than the profit
funcion without promotoinal efforts.

i.e. [π(tb, tr, sp)]ρ>1 > [π(tb, tr, sp)]ρ=1 (46)

Hence, the above result shows that, we can maximize our profit function by apply-
ing promotional efforts and Figure 4, represents the impact of with and without
promotional efforts in optimum profit..

Theorem 4. If the selling price sp is a function of tb and tr, then the function
demonstrates concavity and reaches its global maximum at the point (t∗b , t

∗
r).

Proof. Refer by Lemma 1, Theroem 1, and Theroem 2. we have the optimal
points, (t∗b , t

∗
r), Now we have selling price function,
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Assume, sp (tb, tr) = ψp (tb, tr)

ψp (tb, tr) =
1

4bρ (tbδb − 1) (tb + tr + tbtrδb)
(tbδb − 1) [2a (tb + tr + tbtrδb)

−c
(
2t2b + t2r + tbt

2
rδb
)
+ 2 (tb + tr + tbtrδb)µ

]
− 2bρ

[
clt

2
bδb (1− tbδ)

−cp
(
tb − tr − t2bδb

)
+K (tb + tr) (ρ− 1)

2
]
(47)

Taking the partial derivative of ψp (tb, tr) with respect to tb and tr and we get,

∂ψp (tb, tr)

∂tb
=

−1

4bρ (tbδ − 1)
2
(tb + tr + tbtrδb)

2

[
c (tbδ − 1)

2 (
4tbtr − t2r

+2t2b (1 + trδ)
)

−2b
[
Cptr

(
2 + t2bδ

2 − 2tbδb (2 + trδb)
)

−tbδb
[
K (tb + 2tr) (1 + trδb) (ρ− 1)

2

−Cl (tbδ − 1)
2
(tb + 2tr + tbtrδb) ρ

]]]
< 0 (48)

∂ψp (tb, tr)

∂tr
=

1

4bρ (tbδb − 1) (tb + tr + tbtrδb)
2

[
cρ
(
t2bδ

2 − 1
)

×
(
2t2b − t2r − tbtr (2 + trδb)

)
+2btb

[
Cp
(
t2bδ

2 − 2
)

+tbδb

[
K (ρ− 1)

2 − Clρ
(
t2bδ

2 − 1
)]]]

(49)

Again, taking partial derivative with respect to tb and tr, we get[
∂2ψp (tb, tr)

∂t2b

]
(t∗b ,t

∗
r)

=
−1

2 (tb + tr + tbtrδb)
3

[
ct2r (3 + trδb)

b

+
2

ρ (tbδb − 1)
3

[
Cptr

(
2 + 2trδb + t2rδ

2
)

−6tbδb (1 + trδ)− t3bδ
3(trδb + 1)

+3t2bδ
2
(
2 + 3trδb + t2rδ

2
)]]

< 0 (50)



24 M. Keswani et al. / Efficiency of Managing a Stochastic Inventory System

[
∂2ψp (tb, tr)

∂t2r

]
(t∗b ,t

∗
r)

=−

[
ct2b (δb + 1)

ρ (1− δbtb) (δbtrtb + tb + tr)
3

×
[
δbtb

(
ρCl

(
1− δ2b t

2
b

)
+k(ρ− 1)2

)
+Cp

(
δ2b t

2
b − 2

)]
+
ct2b (δbtb + 1)

2b (δbtb − 1)

×
[
2δ2b t

2
b + δbtb − 3

]/
(δbtrtb + tb + tr)

3

]
< 0 (51)

[
∂2ψp (tb, tr)

∂tbtr

]
(t∗b ,t

∗
r)

=
−1

2bρ (δbtb − 1) 2 (δbtbtr + tb + tr) 3

×
[
b
(
Cp
(
δ2b t

3
b (1− δbtb)− δbt

2
b (δbtr + 4)

+2tb (δbtr + 1) + 2tr)

−δbtb
(
ρCl (δbtb − 1) 2

(
tr
(
δ2b t

2
b + 3δbtb + 2

)
+ δbt

2
b

)
−K(ρ− 1)2

(
tr
(
δ2b t

2
b − δbtb + 2

)
+ δbt

2
b

)))]
−cρtb

(
tr
(
δ2b t

2
b + 3δbtb + 3

)
+ δbt

2
b

)
× (δbtb − 1) 2 < 0 (52)

Next, we check the optimality of price function at point say, (t∗b , t
∗
r) by using

Hessian matrix. ∣∣∣∣∣∣
∂2ψp(t

∗
b ,t

∗
r)

∂t2b

∂2ψp(t
∗
b ,t

∗
r)

∂trtb
∂2ψp(t

∗
b ,t

∗
r)

∂tbtr

∂2ψp(t
∗
b ,t

∗
r)

∂t2r

∣∣∣∣∣∣ > 0

Since,
[
∂2ψp(tb,tr)

∂tbtr

]
(t∗b ,t

∗
r)

=
[
∂2ψp(tb,tr)

∂trtb

]
(t∗b ,t

∗
r)

and
[
∂2ψp(tb,tr)

∂t2b

]
(t∗b ,t

∗
r)
< 0

Thus, the determinant of Hessian matrix at (t∗b , t
∗
r) is positive definite and the pair

of (t∗b , t
∗
r) is global maximum for optimal selling price.

Theorem 5. The total profit function π(sp, tb, tr) is concave with respect to sp,
tb, and tr. Therefore, the global maximum of π(sp, tb, tr) is attained at the optimal
point s∗p, t

∗
b , t

∗
r.
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7. ALGORITHM FOR COMPUTATIONAL PROCEDURES

Step 1. Initialize: Begin the algorithm.
Step 2. Input Parameters: Enter all the assumed inventory parameters.
Step 3. Parameter Validation: Verify if the assumed parameters satisfy the

necessary hypotheses. If they do, proceed to the next step; if not,
return to Step 2 and adjust the parameters.

Step 4. Calculate Optimal Values: Determine the optimal values of t∗b and t
∗
r

using Equations (21) to (27) .
Step 5. Check Theorem Compliance: If t∗b and t∗r satisfy the conditions out-

lined in Theorem 2, proceed to Step 6. Otherwise, return to Step 4
to recalculate.

Step 6. Optimize Selling Price: Calculate the optimal selling price s∗p by sub-
stituting t∗b and t∗r into Equation (42).

Step 7. Maximize Profit: Substitute the optimal values of t∗b , t
∗
r , and s

∗
p into

Equation (17) to (19) to determine the maximum profit.
Step 8. Verify Optimality: Confirm the optimality of the solution using The-

orem 4, ensuring that the maximum profit is achieved at the point
(t∗b , t

∗
r , s

∗
p).

Step 9. Complete: End the algorithm.

The process of the algorithm is also illustrate in Figure 5.

Figure 5: Flowchart showing the steps to optimize the total profit
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8. NUMERICAL EXPERIENCE

The objectives of the numerical applications are two folds:

• To derive the optimal solutions for the retailer’s expected profit functions.

• To conduct a sensitivity analysis, demonstrating the impact of various pa-
rameters on the model’s outcomes.

8.1. Numerical Illustrations

This section presents numerical examples to validate the proposed inventory
model. We illustrate the model with a specific example to substantiate the mathe-
matical formulation. The majority of parameters are drawn from previous studies,
including Soni & Chauhan [13] and Maihimi & Karimi [9], while others are tailored
to suit the context of our problem.

Example 1. The following parameter-values are considered: am = 500 units,
b = 0.1, c = 0.15, cp = $200 per unit, cd = $0.1 per unit, ch = $0.1 per unit,
cb = $150 per unit per year, cl = $50 per unit, µ = 20, ρ = 2, θ = 0.01% per unit,
K = 1, η = 1, δb = 0.2, µ = 20, Oa = 1200 per unit
The numerical values of t∗b , t

∗
r, s

∗
p are computed by using wolfram MATHEMAT-

ICA software. The optimum values are: t∗b = 0.0410749, t∗r = 0.0717368, s∗p =
$354.078, πavg = $403527.00

Example 2. The following parameter-values are considered: a = 550 units, b =
4, c = 6.5, cp = $25, cd = $0.01, ch =$3 per unit, cb = $6, cl = $2 per unit,
µ = 20, θ = 0.001%, K = 1, η = 1, δb = 0.001, ϵ = 20, Oa = 200, which shows
the impact of with and without promotional efforts in proposed model.

9. SENSITIVITY ANALYSIS

The sensitivity analysis examines how variations in the input parameters am,
b, c, µ, and ρ affect the optimal decision variables and the total profit per unit
time for Example 1 (see Tables 3 and 4). By varying one parameter at a time while
holding the others constant, this analysis reveals how each parameter influences
the outcomes. The results offer valuable insights and practical recommendations
for managers seeking to optimize organizational profit. Notably, it is found that
parameters such as holding costs and purchasing costs have a negligible impact on
the decision variables, and as a result, these are not included in the tables.
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Table 3: Sensitivity analysis for different demand parameters
Parameters values Shortage (t∗b) Optimal Inventory (t∗r) Price (s∗p) Profit (π∗

avg)
Period (in years) Period (in years) ($) ($)

a 480 0.0410749 0.0717368 354.08 403527.00
500 0.0389683 0.0670058 363.71 455621.00
520 0.0370215 0.0627289 373.35 512534.00
540 0.0352186 0.0588499 383.02 574549.00
560 0.0334378 0.0554821 392.84 641951.00

b 0.14 0.0534788 0.1175230 262.12 188567.00
0.13 0.0505226 0.1047260 279.52 224138.00
0.12 0.0474752 0.0928916 300.03 269126.00
0.11 0.0443287 0.0819238 324.48 327106.00
0.10 0.0410749 0.0717368 354.08 403527.00

c 01 0.0410105 0.0718472 353.99 403573.00
02 0.0409349 0.0719775 353.88 403626.00
03 0.0408597 0.0721081 353.78 403677.00
04 0.0407159 0.0723603 353.75 403727.00
05 0.0407102 0.0723703 353.57 403772.00

Figure 6: Impact of Changing Parameter am

Figure 7: Impact of Changing Parameter b
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Figure 8: Impact of Changing Parameter c

Table 4: Sensitivity analysis of optimal results through a probability distribution

Random variable(ε) Shortage (t∗b) Optimal Inventory (t∗r) Price(s∗p) Profit (π∗
avg)

Period (in years) Period (in years) ($) ($)
ε ∼ N(2, 1) 0.0664 0.1940 206.16 093574.30

ε ∼ N(6, 1) 0.0586 0.1704 226.16 120412.00

ε ∼ N(9, 1) 0.0539 0.1561 241.16 142800.00

ε ∼ U(12, 4) 0.0518 0.1237 246.16 186417.00

ε ∼ exp(12) 0.0489 0.1123 256.16 217220.00

Figure 9: Sensitivity Analysis of Optimal Results for Different Values of ρ
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Table 5: Sensitivity analysis of the optimal result for different values of ρ
ρ tb ∆tb tr ∆tr sp ∆sp πavg ∆πavg q ∆q

(in years) (in years) (in years) (in years) ($) ($) ($) ($) (units) (units)

1.00 24.755 - 44.914 - 82.44 - 39867.30 - 188.22 -
1.01 24.121 0.6346 43.829 1.0845 82.65 0.207 40278.60 0411.30 484.91 296.68

1.02 23.487 1.2682 42.742 2.1716 82.86 0.420 40691.20 0823.90 773.60 585.38

1.03 22.854 1.9016 41.652 3.2623 83.08 0.638 41105.20 1237.90 1052.19 863.96

9.1. Sensitivity analysis of the three components of demand

In Table 3 and Figure 5, as parameter am increases, the selling price rises
sharply. In this situation, the proposed model suggests higher selling prices, which
assist management in decision-making. Furthermore, a higher selling price indi-
cates the retailer’s interest in the product. Thus, the profit increases accordingly.

• The impact of varying parameter am demonstrates that inventory depletes
more rapidly and the shortage duration shortens. Consequently, the model
encourages retailers to increase replenishment sizes and place orders earlier
due to the continually decreasing inventory holding period. This adaptabil-
ity highlights the model’s robustness in responding to changes in demand
dynamics.

• As the price dependency component of the demand function b decreases leads
to a simultaneous increase in both the optimal selling price and total profit.
Meanwhile, the shortage and replenishment periods decrease, as illustrated
in Table 3 and Figure 6. This indicates that as demand grows, the model
empowers retailers to adjust selling prices to sustain desired profit levels. Re-
tailers should strategically place orders earlier to mitigate backlogging costs
and lost sales, which otherwise diminish the profit. Furthermore, the model
provides the flexibility to either boost replenishment sizes or order sooner,
as both the shortage period tr and replenishment period tb are consistently
reduced.

• An increase in the retarded growth rate c leads to a slight reduction in the
optimal shortage period and selling price. Simultaneously, the optimal in-
ventory period and total profit see a rise, as depicted in Table 3 and Figure
7. This trend suggests that as the time component of demand grows, over-
all profit improves even in a declining market. The model advocates for
lowering product prices to attract more customers and stimulate higher de-
mand, thereby enhancing overall profitability. Also illustrate the analysis
graphically in Figures 7, 8, and 9.
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Figure 10: Random behaviour of demand with Normal Distribution N(2,1)

Figure 11: Random behaviour of demand with Exponential Distribution exp(12)

Figure 12: Random behaviour of demand with Uniform Distribution U(12,4)

9.2. Sensitivity Analysis of the Randomness in the Bivariate Demand
Function

We utilized the same input data from Example 1 to explore how variations in
the random variable E(ϵ) = µ impact the optimal solution. Table 4 summarizes the
optimal solutions for different values of this random variable. The results under-
score the significant influence that the distribution function of ϵ has on the model
variables, highlighting the critical need for precise estimation of this distribution
function. By accurately determining the distribution function for ϵ, retailers can
refine their estimates of expected sales, pricing, profit, replenishment schedules,
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and ordering policies. Our sensitivity analysis demonstrates that as the value of
the random variable ϵ increases, both the optimal selling price (s∗p) and the total
profit π(t∗b , t

∗
r , s

∗
p) rise, while the optimal shortage period (t∗b) and replenishment

period (t∗r) decrease. These trends are illustrated for various normal, uniform, and
exponential distribution functions of ϵ in Table 4. As the mean µ increases, so does
the demand, which leads to higher ordering quantities and mitigates the impact
of a declining market. Consequently, all types of distributions show increased de-
mand and improved total profit, which aligns with rational expectations. Figures
10, 11, and 12 visually represent the random behavior of the demand function
across these distributions.

Figure 13: Concavity of the Profit function with respect to sp and tb

Figure 14: Concavity of the Profit function with respect to sp and tr
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Figure 15: Concavity of the Profit function with respect to sp and ρ

9.3. Sensitivity analysis of the impact of with and without promotional
efforts

Table 4 presents the outcomes of the proposed model. In the absence of pro-
motional efforts (ρ = 1), the expected total profit per unit time is πavg(t

∗
b , t

∗
r , s

∗
p) =

39, 867.30, with an optimal order quantity of q∗ = 188.225 units per cycle. When
promotional efforts are introduced (ρ = 1.01, 1.02, 1.03), we observe a reduction
in both tb to 22.8543 and tr to 41.6519, while the selling price rises to 83.09.
Consequently, the optimal profit increases to 41,105.20, and the quantity ordered
per cycle grows to 1,052.19 units. The decrease in both the shortage period and
on-hand inventory period encourages earlier replenishment, and the increase in de-
mand boosts overall profit. These findings highlight the positive impact of promo-
tional efforts on business performance. They suggest that when using promotions
to enhance market demand, inventory managers should incorporate these demand
effects into their strategies to maximize profitability. Figures 13, 14, and 15 il-
lustrate the optimal profit function across various decision variable combinations:
with tr fixed and tb and sp varied, tb fixed with tr and sp varied, and variations in
sp and ρ. These visualizations confirm the robustness of the proposed model and
its effectiveness in addressing uncertainties in the global market.

9.4. Managerial Efficiency of the Proposed Study and Strategic Man-
agement Suggestions

The proposed model, along with its numerical illustrations and sensitivity anal-
yses, offers valuable managerial insights that can influence market strategies in the
context of declining demand:

a) The analysis of the model reveals that when demand experiences a rapid
initial surge, retailers have a strategic opportunity to increase product prices.
This approach helps manage inventory more effectively while maximizing
profits. Additionally, this surge in demand shortens both the shortage and
replenishment periods, implying that retailers must place larger orders than
usual to avoid lost sales and the costs associated with back-ordering.
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b) From a strategic management perspective, as the price sensitivity compo-
nent of demand b decreases, both the optimal price and profit rise signifi-
cantly. Retailers and manufacturers understand that pricing is a key lever in
controlling customer demand. Therefore, as market demand increases, the
model suggests raising prices accordingly. It also advises retailers to place
orders earlier than usual and minimize shortages to reduce unnecessary costs,
thereby optimizing profit margins.

c) As the time-sensitive parameter c increases, annual demand gradually decel-
erates, indicating that demand becomes more time-sensitive. In this scenario,
the model recommends reducing product prices to stimulate demand. Sen-
sitivity analysis of parameter c reveals an inverse relationship between price
and profit, suggesting that even in a declining market, retailers can boost
profits by adjusting prices strategically. This underscores the robustness of
the proposed model.

d) The model also addresses stochastic demand by considering a non-negative
continuous random variable in the additive case. By applying various distri-
butions, we assessed the sensitivity of random variables. The analysis con-
sistently shows that demand increases as the expected value of the random
variables rises, suggesting that random factors can drive demand growth.
The model advises retailers and manufacturers to adjust prices upward to
maintain inventory levels and maximize profits while increasing order quanti-
ties to meet the heightened demand. This demonstrates the model’s realistic
and sophisticated approach to tackling the complexities of a declining mar-
ket.

e) Furthermore, the impact of promotional efforts is highlighted through sensi-
tivity analysis. The findings reveal that promotional activities significantly
influence the profit function. We analytically demonstrate that the expected
total profit with promotional efforts is consistently higher than without them.
This suggests that promotional strategies can effectively boost market de-
mand, and inventory managers should account for these endogenous demand
effects when developing strategies to achieve optimal profit.

10. DISCUSSION OF CONCLUDING REMARKS AND
MANAGERIAL SUGGESTIONS FOR MARKET PLAYERS

The proposed model presents an optimal pricing strategy for deteriorating
items by integrating promotional efforts with price and time-dependent stochas-
tic demand in a declining market. Through rigorous theoretical analysis, we
established the existence and uniqueness of the optimal solution, ensuring that
the model is both effective and reliable. Sensitivity analysis further validates
the model’s robustness by examining how decision variables influence the desired
profit under various conditions. For inventory management, this model provides
actionable insights, demonstrating that managers can achieve optimal profit by
adopting the proposed policies and carefully considering key factors. The model is
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especially relevant for products that deteriorate over time, such as fruits, vegeta-
bles, medicine, grains, electronics, volatile liquids, and gas cylinders. It approaches
the problem from a retailer’s perspective within the framework of Economic Or-
der Quantity (EOQ), ensuring consistency with established theories and practices.
The model’s validity and stability are demonstrated through two numerical ex-
amples, which underscore its significance for industries handling perishable goods.
The results highlight the model’s robustness, making it particularly attractive for
businesses looking to optimize their systems in light of product deterioration.

From a managerial perspective, this model provides valuable insights for in-
dustries seeking to achieve financial gains at optimal levels. The sensitivity anal-
ysis offers different scenarios and solutions, providing an alternative approach to
traditional inventory management methods and opening the door to broader ap-
plications. The key contribution of this work lies in its practical relevance for
retail businesses dealing with perishable items, electronic components, fashionable
clothing, domestic goods, and similar products. This study is the first to address
time-dependent demand and time-varying holding costs in conjunction with short-
ages for non-instantaneously deteriorating items under a finite replenishment rate.
In conclusion, the proposed model is highly applicable to industries where time-
dependent demand rates and variable holding costs play a crucial role, offering a
practical solution for optimizing inventory management.

10.1. Future Recommendations for the Extension of the Proposed Study

There are several promising avenues for extending our proposed model. One
potential direction is to incorporate a stochastic deterioration rate, building on the
variable deterioration rate already considered. Additionally, the time-dependent
demand function could be replaced with a probabilistic demand function to better
capture real-world uncertainties. For more comprehensive modeling, the frame-
work could be expanded to include factors such as trade credits, warehouse man-
agement, quantity discounts, stochastic inflation, deteriorating costs, vdeteriora-
tion rates, and permissible delays in payments. Another intriguing area for future
research is the impact of selling defective items at a reduced price on overall de-
mand. Shifting the focus from single-item scenarios to multiple-item systems under
stochastic demand constraints would further enhance the model’s applicability. For
a more realistic approach, extending the model to encompass elements like ware-
house management, quality discounts, deteriorating costs, and time-dependent
deterioration rates in a declining market would be valuable.

Investigating the model under time-, price-, and stock-dependent stochastic
demand scenarios poses a challenge in a declining market, but it is a worthwhile
pursuit. Exploring the model within a fuzzy environment could also provide deeper
insights and more flexible decision-making tools. Additionally, considering variable
lead times—potentially controlled through additional investment—along with vari-
able holding and purchasing costs, opens up new possibilities for refinement. Ex-
tending the model to tackle the complexities of time-, price-, and stock-dependent
stochastic demand scenarios in a declining market, though demanding, would be a
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significant contribution. Moreover, expanding the model to operate within a fuzzy
environment offers an exciting research opportunity for further exploration.

10.2. Declarations

Conflict of interest. The authors declare that there is no conflict of interest
regarding the publication of this article.

Ethical approval. This proposed study does not contain any research with hu-
man participants or animals performed by any of the authors.

Consent for publication. Not applicable.

Funding. This research received no external funding from DST INSPIRE Fel-
lowship received by Author 1.

Availability of data and material. For numerical validation of different cases
are obtained by optimizing respective functions through MATHEMATICA and
Python software based on classical optimization method.

Acknowledgments. The authors express their gratitude to the reviewers and the
Area Editor for their constructive comments and suggestions, which significantly
enhanced the quality of this manuscript. This research was supported by the DST
INSPIRE Fellowship (IF 210205), awarded to Author 1.

Use of AI tools declaration. The authors declare they have not used Artificial
Intelligence (AI) tools in the creation of this article.

REFERENCES

[1] M. Keswani and U. Khedlekar, “Optimizing pricing and promotions for sustained profitabil-
ity in declining markets: A green-centric inventory model,” Data Science in Finance and
Economics, vol. 4, no. 1, pp. 83–131, 2024.

[2] N. H. Shah, M. Keswani, U. K. Khedlekar, and N. M. Prajapati, “Non-instantaneous con-
trolled deteriorating inventory model for stock-price-advertisement dependent probabilistic
demand under trade credit financing,” Opsearch, vol. 61, no. 1, pp. 421–459, 2024.

[3] M. Keswani and U. K. Khedlekar, “Optimal inventory management strategies for sequen-
tially convertible items with different distribution patterns: A comprehensive stochastic
approach,” Numerical Algebra, Control and Optimization, pp. 0–0, 2024.

[4] R. Hollier and K. Mak, “Inventory replenishment policies for deteriorating items in a de-
clining market,” International Journal of Production Research, vol. 21, no. 6, pp. 813–836,
1983.

[5] A. Jalan and K. Chaudhuri, “An eoq model for deteriorating items in a declining market
with sfi policy,” Korean Journal of Computational & Applied Mathematics, vol. 6, pp.
437–449, 1999.

[6] H.-M. Wee, “A deterministic lot-size inventory model for deteriorating items with shortages
and a declining market,” Computers & Operations Research, vol. 22, no. 3, pp. 345–356,
1995.

[7] J.-L. Zhang, J. Chen, and C.-Y. Lee, “Joint optimization on pricing, promotion and inven-
tory control with stochastic demand,” International Journal of Production Economics, vol.
116, no. 2, pp. 190–198, 2008.

[8] Y. He, X. Zhao, L. Zhao, and J. He, “Coordinating a supply chain with effort and price
dependent stochastic demand,” Applied Mathematical Modelling, vol. 33, no. 6, pp. 2777–
2790, 2009.

[9] R. Maihami and B. Karimi, “Optimizing the pricing and replenishment policy for non-
instantaneous deteriorating items with stochastic demand and promotional efforts,” Com-
puters & Operations Research, vol. 51, pp. 302–312, 2014.



36 M. Keswani et al. / Efficiency of Managing a Stochastic Inventory System

[10] S. Singh and H. Rathore, “Optimal payment policy with preservation technology investment
and shortages under trade credit,” Indian Journal of Science and Technology, vol. 8, p. 203,
2015.

[11] Z. Chen, C. Chen, and B. Bidanda, “Optimal inventory replenishment, production, and
promotion effect with risks of production disruption and stochastic demand,” Journal of
Industrial and Production Engineering, vol. 34, no. 2, pp. 79–89, 2017.

[12] N. H. Shah, P. H. Shah, and M. B. Patel, “Retailer’s inventory decisions with promotional
efforts and preservation technology investments when supplier offers quantity discounts,”
Opsearch, vol. 58, no. 4, pp. 1116–1132, 2021.

[13] H. N. Soni and A. D. Chauhan, “Joint pricing, inventory, and preservation decisions for
deteriorating items with stochastic demand and promotional efforts,” Journal of Industrial
Engineering International, vol. 14, no. 4, pp. 831–843, 2018.

[14] M. Rastogi and S. Singh, “An inventory system for varying deteriorating pharmaceutical
items with price-sensitive demand and variable holding cost under partial backlogging in
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mand dependent on both time and price assuming backlogged shortages,” European Journal
of Operational Research, vol. 270, no. 3, pp. 889–897, 2018.

[19] S. Saha and N. Sen, “An inventory model for deteriorating items with time and price
dependent demand and shortages under the effect of inflation,” International Journal of
Mathematics in Operational Research, vol. 14, no. 3, pp. 377–388, 2019.

[20] G. D. Bhavani, I. Meidute-Kavaliauskiene, G. S. Mahapatra, and R. Činčikaitė, “A sustain-
able green inventory system with novel eco-friendly demand incorporating partial backlog-
ging under fuzziness,” Sustainability, vol. 14, no. 15, p. 9155, 2022.

[21] H. N. Soni and D. N. Suthar, “Pricing and inventory decisions for non-instantaneous dete-
riorating items with price and promotional effort stochastic demand,” Journal of Control
and Decision, vol. 6, no. 3, pp. 191–215, 2019.

[22] S. Goyal, M. Hariga, and A. Alyan, “The trended inventory lot sizing problem with shortages
under a new replenishment policy,” Journal of the Operational Research Society, vol. 47,
no. 10, pp. 1286–1295, 1996.

[23] A. A. Shaikh, M. A.-A. Khan, G. C. Panda, and I. Konstantaras, “Price discount facility in
an eoq model for deteriorating items with stock-dependent demand and partial backlogging,”
International Transactions in Operational Research, vol. 26, no. 4, pp. 1365–1395, 2019.

[24] R. Maihami and I. N. Kamalabadi, “Joint pricing and inventory control for non-
instantaneous deteriorating items with partial backlogging and time and price dependent
demand,” International Journal of Production Economics, vol. 136, no. 1, pp. 116–122,
2012.

[25] B. Dash, M. Pattnaik, and H. Pattnaik, “The impact of promotional activities and infla-
tionary trends on a deteriorated inventory model allowing delay in payment,” J Bus Manag
Sci, vol. 2, no. 3A, pp. 1–16, 2014.

[26] C. K. Jaggi, A. Kishore et al., “Replenishment policies for imperfect inventory system under
natural idle time and shortages,” Yugoslav Journal of Operations Research, vol. 30, no. 3,
pp. 253–272, 2020.

[27] M. Palanivel and R. Uthayakumar, “A production-inventory model with promotional effort,
variable production cost and probabilistic deterioration,” International Journal of System
Assurance Engineering and Management, vol. 8, pp. 290–300, 2017.


