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Abstract: This study intends to present a Stackelberg game model for design of the
fractional type-2 fuzzy programming. In achieving this aspiration, we develop a proba-
bilistic fuzzy multi-objective fractional linear programming where the entire parameters
are of type-2 fuzzy numbers apart from the right-hand side of the constraints are follow
Weibull distribution. In the projected approach, the membership function allied with
each objective function is generated by using the first-order Taylor series approximation
and converted into a single objective function by assuming the weights of the objective
functions are equal. Type conversion is made in two ways by existing methods, and using
stochastic programming, the probabilistic constraints are transformed into a determinis-
tic form. The accessible model incorporates the non-linear programming viewpoint of the
decision-maker and is solved with the help of intuitionistic fuzzy programming (IFS). A
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comparison study on the optimum results by genetic algorithm (GA) and particle swarm
optimization (PSO) with the LINGO 15.0 iterative scheme is offered to resolve the cre-
ated bi-level programming problem (BLPP) in the course of the Stackelberg game. To
make obvious the feasibility of the projected representation and solution methodology,
realistic data are measured and results are presented through several discussions.

Keywords: Bi-level fractional programming, Taylor series, GA and PSO, type-2 fuzzy

number, stackelberg game, intuitionistic fuzzy programming.

MSC: 91A10.

1. INTRODUCTION

Bi-level programming problem (BLPP) has a hierarchical association flanked
by upper and lower levels. It is urbanized for decentralized scheduling systems in
which the upper level is designated as the leader and the lower level belongs to the
objective of the follower. Most of the previous studies [1], [2], [3], [4] functional to
build the paramount assessment with the leader and follower hierarchical dealings
in an association. In a hierarchical association, the Stackelberg game played a sig-
nificant issue. H. von Stackelberg [5] first originated it, as an economist to explain
a non-cooperative assessment problem. In this game, the leader has the potential
to employ his/her assessment of the followers. Roy [6] solved a Stackelberg game
using a fuzzy programming technique and the solution has been compared with
the Kuhn-Tucker transformation procedure. In recent times, Roy and Maiti [17]
presented an optimal solution for the Stackelberg game involving a stochastic pro-
gramming approach.
Zadeh [8] first initiated the type-2 fuzzy set (T2FS) in addition to the type-1
fuzzy set (T1FS). The membership rank of a T2FS is a fuzzy number followed by
the interval [0, 1], but the membership rank of a T1FS is a real number in [0, 1].
In concrete applications, suitable to requiring of a key in order, clamor in data
etc., a foremost problem happens to establish the precise membership ranks and
consequently, to prepare, the problem in requisites of TIFS. At the same time as
T2FS has prepared owing to fuzziness in the membership function. Mizumoto and
Tanaka [9] designed consistent operations on T2FS. Afterward, a group of hypo-
thetical research works completed on the belongings of T2FS [10], [12], [13] and
its numerous applications [14], [15], [16], [17], [18], [19] have been developed.
Due to the large measurable intricacy of a T2FS [20], the T2FS is considered an
interval T2FS. In T2FS defuzzification procedure, are categories of two steps such
as type lessening and defuzzification proper. In the type-lessening process, a T2FS
is condensed into a type-reduced set (TRS). After that, TRS be able to effortlessly
resolve by several recognized defuzzify methods, say the centroid method. Kernik
and Mendal [21] measured a centroid-type lessening procedure to convert interval
T2FS towards the region of T1FS. Many researchers contemplated exclusively on
interval secondary membership functions [22], [23], [24] for which an increasing
number of implementations are being urbanized [25], [26], [27]. Karmakar et al.
[28] solve a type-2 fuzzy matrix games and applied to biogas-plant implementation
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problem. Dong and Wan [29] developed a matrix game with type-2 interval-valued
intuitionistic fuzzy payoffs and discussed some Hamacher aggregation operators
for these fuzzy payoffs. Furthermore, Seikh and Dutta [30] designed matrix games
with picture fuzzy payoffs and solve by using a non-linear mathematical approach
and applied to cyberterrorism attack.
Application Type-2 fuzzy environments are precious as it allow for additional re-
fined modeling of uncertainty by integrating uncertainty not only in the member-
ship function but also in the membership grades themselves. Other generalizations
of fuzzy sets may not receive this level of complexity, creating Type-2 fuzzy en-
vironments mainly useful for confident applications demanding higher reliability
in uncertainty modeling. In uncertainty supposition, randomness and fuzziness
are the two courses of uncertainty. Based on these courses, fuzzy programming
has been developed by the parameters as fuzzy sets while stochastic programming
has been considered by the parameters as random variables. Due to versatility,
Weibull distribution is extensively used in reliability and life data investigation.
A proportion of two non-linear programming functions is to be maximized or
minimized. In former implementations, the objective function entangles exceed-
ing one proportion of functions. Proportion improvement problems are usually
called fractional programming (FP). In literature [31], [32], the multi-objective
linear fractional programming problem (MOLFP) is measured. Yano and Sakawa
[33] designed a fuzzy approach for solving MOLFP. Pal et al. [34] studied a
goal programming procedure for a fuzzy multi-objective linear fractional program-
ming problem (FMOLFP). However, many procedures are accessible for solving
FMOLFP in the literature [35]. An outline of the research contributions by nu-
merous authors in this province is provided in Table 1.

In what follows, the most notable contributions of this study are outlined:

� By Kahraman et al. [36] approach, type-2 fuzzy number is transformed to
crisp value.

� Right-hand side parameters of the constraints are taken as Weibull distribu-
tion.

� Based on the Taylor series approximation, fractional multi-objective func-
tions are converted to a single objective.

� IFS is applied established on membership function as exponential and non-
membership function as parabolic.

� A computational experiment among LINGO, GA and PSO is presented.

In this study, we consider a bi-level linear fractional programming (BLFP) for the
Stackelberg game with T2FVs. Kahraman et al. [36] defuzzification approach is
applied for T2FVs. In BLFP, each objective function is associated with the mem-
bership function in each level and converted into a fractional membership function.
Using the first-order Taylor series approximation, multiple fractional membership
functions are reduced into a single objective function corresponding to each level
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by considering an equal weight. Right-hand side parameters of the constraints are
obtained into crisp numbers by applying Weibull distribution. Subsequently, using
stochastic programming, the probabilistic constraints are transformed into deter-
ministic form and the corresponding crisp problem becomes a non-linear problem
and is solved by LINGO 15.0 iterative scheme, GA and PSO respectively, and then
compared the results.
The contribution of this study is to develop the Stackelberg game under a type-2
fuzzy and probabilistic environment [43], [44]. The proposed work incorporated
Kahraman et al. [36] defuzzification process for T2FVs, first-order Taylor series
approximation for a linear form of membership functions, stochastic programming
for probabilistic constraints, and intuitionistic fuzzy programming for designing
a single objective problem. Some enviable properties and special cases of these
T2FVs are also investigated to reduce the crisp form of T2FVs. In addition, we
define three types of membership functions simple linear, triangular, and trape-
zoidal with their meticulous cases. At long last, the application of the proposed
model is studied in multi-objective Stackelberg game problems and developed a
qualified study with these membership functions by using LINGO 15.0 iterative
scheme, GA and PSO respectively.
The rest of this paper is organized as follows: Section 2 introduces some basic
knowledge and concepts of type-1 and type-2 fuzzy sets. In Section 3, the formu-
lation of BLFP for the Stackelberg game is presented. The solution procedure is
discussed in Section 4, and the effectiveness of the intuitionistic fuzzy program-
ming is illustrated by a numerical example in Section 5. Implications and insights
are displayed in Section 6. The conclusion, limitations, and subsequent direction
are described in Section 7.

2. PRELIMINARIES

Here, we recall some basic knowledge of type-1 and type-2 fuzzy sets, which will
be required for our subsequent developments.

2.1. T1FS

Definition 1. [11] A T1FS, denoted as Ã1, is defined on X, the universal set. It
is constituted by Ã1 = (x, µÃ1

(x)) : x ∈ X and µÃ1
: X → [0, 1] is the membership

function. The membership function µÃ1
(x) assigns a value of 0 if x /∈ Ã1 and a

value of 1 if x ∈ Ã1.

2.2. T2FS

Definition 2. [12] A T2FS ˜̃D is described as a set of pairs ((x, r), µ ˜̃D
(x, r)) re-

warding the conditions: ∀x in the domain X, the universal set and all r in the
subset Mx of the interval [0, 1]; µ ˜̃D

(x, r), type-2 membership function satisfies

0 ≤ µD̃(x, r) ≤ 1. Here, Mx acts for the primary membership function of x, and
µ ˜̃D

(x) acts for the secondary membership function respectively. It ensures that ∀r
in Mx corresponds to the point x, the primary membership grades. The province
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of µ ˜̃D
(x) is denoted by X. Alternatively, ˜̃D can be expressed as the integral of

µ ˜̃D
(x) over x: ˜̃D =

∫
x∈X

µ ˜̃D
(x)/x =

∫
x∈X

[ ∫
r∈Mx

µ ˜̃D
(x, r)/r

]
/x.

Remark 3. If the value µ ˜̃D
(x, r) is equal to 1, ∀x, r, at that time

tildeD̃ is referred to as an interval type-2 fuzzy set (IT2FS).

Definition 4. The uncertainty associated with the primary membership of an
IT2FS is represented by the footprint of uncertainty (FOU), which is a bounded
region. The FOU is formed by combining all the primary memberships, denoted
as Mx. The upper and lower membership functions are represented by µ ˜̃D

(x) and

µ ˜̃D
(x), respectively. Thus, the primary memberships Mx can be expressed as the

interval [µ ˜̃D
(x), µ ˜̃D

(x)].

Example 5. Consider ˜̃D be a type-2 fuzzy variable (T2FV) in which X = {6, 8, 9}
and Mx, the primary membership functions of X are given by M6 = {0.3, 0.5, 0.7},
M8 = {0.4, 0.8, 0.9} and M9 = {0.1, 0.7, 0.8} separately. At that moment, µ̃ ˜̃D

(6),

the secondary membership function of 6 and interpreted by µ̃ ˜̃D
(6) = (0.4/0.3)+

(0.7/0.5) + (1/0.7) ∼
(
0.3 0.5 0.7
0.4 0.7 1

)
Here, µ̃ ˜̃D

(6, 0.3) = 0.4 characterizes that point 6, secondary membership grade can

have the point 0.4, primary membership grade. Thus, ˜̃D incorporates point 6 with
the membership:(

0.3 0.5 0.7
0.4 0.7 1

)
, which represents a RFV. Similarly, µ̃D̃(8) = (1/0.4) + (0.4/0.8) + (0.5/0.9) ∼(
0.4 0.8 0.9
1 0.4 0.5

)
µ̃D̃(9) = (0.4/0.1) + (1/0.7) + (0.6/0.8) ∼

(
0.1 0.7 0.8
0.4 1 0.6

)

Consequently, ˜̃D can be written as ˜̃D =


6, together with membership µ̃ ˜̃D

(6, r),

8, together with membership µ̃ ˜̃D
(8, r),

9, together with membershipµ̃ ˜̃D
(9, r).

Example 6. Let us consider
˜̃
ξ be a T2FV, defined as:

˜̃
ξ =


5, together with possibility (0.2, 0.5, 0.6, 0.8),

6, together with possibility (0.1, 0.3, 0.4, 0.7),

7, together with possibility (0.3, 0.7, 0.8, 0.9).
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As µ ˜̃
ξ
(5, s) is a trapezoidal RFV, we have µ ˜̃

ξ
(5, s) =



0, if s < 0.2,
s−0.2
0.3 , if 0.2 ≤ s ≤ 0.5,

1, if 0.5 ≤ s ≤ 0.6,
0.8−s
0.2 , if 0.6 ≤ s ≤ 0.8,

0, if s > 0.8

µ ˜̃
ξ
(6, s) =



0, if s < 0.1,
s−0.1
0.2 , if 0.1 ≤ s ≤ 0.3,

1, if 0.3 ≤ s ≤ 0.4,
0.7−s
0.3 , if 0.4 ≤ s ≤ 0.7,

0, if s > 0.7

and µ ˜̃
ξ
(7, s) =



0, if s < 0.3,
s−0.3
0.4 , if 0.3 ≤ s ≤ 0.7,

1, if 0.7 ≤ s ≤ 0.8,
0.9−s
0.1 , if 0.8 ≤ s ≤ 0.9,

0, if s > 0.9

The graphical representation of
˜̃
ξ is depicted in Figure 1.

Figure 1: Type-2 fuzzy variable
˜̃
ξ

Definition 7. [12] A trapezoidal interval type-2 fuzzy variable (TrIT2FV) ˜̃A can

be written as ˜̃A =
(
(au1 , a

u
2 , a

u
3 , a

u
4 ;H1(A

u), H2(A
u)), (al1, a

l
2, a

l
3, a

l
4;H1(A

l), H2(A
l))
)
,

where au1 , a
u
2 , a

u
3 and au4 are real numbers associated with the upper membership

function taking the membership values 0, H1(A
u), H2(A

u) and 0 respectively,
whereas al1, a

l
2, a

l
3, a

l
4 are allied with the inferior membership function captivating

the membership values 0, H1(A
l), H2(A

l) and 0 respectively.

So the FOU of ˜̃A is characterized in Figure 2.

2.3. Arithmetic operations on T2FS

Let ˜̃A = (Au, Al) =
(
(au11, a

u
12, a

u
13, a

u
14;H1(A

u), H2(A
u)), (al11, a

l
12, a

l
13, a

l
14;H1(A

l)

, H2(A
l))
)
and ˜̃B = (Bu, Bl) =

(
(bu11, b

u
12, b

u
13, b

u
14;H1(B

u), H2(B
u)), (bl11, b

l
12, b

l
13,

bl14;H1(B
l),
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Figure 2: FOU of ˜̃A

H2(B
l))
)
be two TrIT2FVs. Then the arithmetic operations are as follows:

Addition: The addition of TrIT2FVs is given by

˜̃A+ ˜̃B = (Au, Al) + (Bu, Bl)

=
(
(au11 + bu11, a

u
12 + bu12, a

u
13 + bu13, a

u
14 + bu14;H1(A

u) +H2(B
u)

−H1(A
u).H2(B

u)), (al11 + bl11, a
l
12 + bl12, a

l
13 + bl13, a

l
14 + bl14;

H1(A
l) +H2(B

l)−H1(A
l).H2(B

l))
)
.

Subtraction: The subtraction of TrIT2FVs is given by

˜̃A− ˜̃B = (Au, Al)− (Bu, Bl)

=
(
(au11 − bl11, a

u
12 − bl12, a

u
13 − bl13, a

u
14 − bl14;H1(A

u) +H2(B
l)−

H1(A
u).H2(B

l)), (al11 − bu11, a
l
12 − bu12, a

l
13 − bu13, a

l
14 − bu14;

H1(A
l) +H2(B

u)−H1(A
l).H2(B

u))
)
.

Multiplication by a scalar quantity: The multiplication of ˜̃A by k (> 0), is
given by

k ˜̃A = k(Au, Al)

=
(
(kau11, ka

u
12, ka

u
13, ka

u
14; 1− (1−H1(A

u))k, 1− (1−H2(B
u))k),

(kbu11, kb
u
12, kb

u
13, kb

u
14; 1− (1−H1(A

l))k, 1− (1−H2(B
l))k))

)
.

3. MATHEMATICAL MODEL

In this study, we consider the following bi-level fractional programming with
probabilistic constraints in the Stackelberg game involving type-2 fuzzy numbers.
Model 1

maximize Z1rj(x) =

n∑
j=1

(
˜̃a1rjxj +

˜̃
b1rj

)
n∑

j=1

(
˜̃c1rjxj +

˜̃
d1rj

) , r = 1, 2, . . . , l
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maximize Z2rj(x) =

n∑
j=1

(
˜̃a2rjxj +

˜̃
b2rj

)
n∑

j=1

(
˜̃c2rjxj +

˜̃
d2rj

) , r = 1, 2, . . . , l

subject to Pr

( n∑
j=1

˜̃Aijxj ≤ qi

)
≥ 1− γi, i = 1, 2, . . . ,m

xj ≥ 0, ∀ j.

where 0 < γi < 1, ∀ i are the specified probabilities. The coefficients ˜̃agrj ,
˜̃
bgrj ,

˜̃cgrj ,
˜̃
dgrj and ˜̃Aij , ∀ i, j, r are all type-2 fuzzy numbers, and only qi, ∀ i

is a random variable follows Weibull distribution. Also, Z1rj and Z2rj are the
(rj)th objective functions corresponding to the upper-level and lower-level DMs
respectively.

3.1. Defuzzification of T2FV

In this section, we present a defuzzification procedure for T2FVs. It consists
of two ways: type conversion process and any existing defuzzification method for
type-1 fuzzy set. According to Kahraman et al. [36] defuzzification approach, the

defuzzified value of ˜̃A is given by

A
′

=
1

2

{
1

4

(
(au4 − au1 ) +

(
H2(A

u)× au2 − au1
)
+
(
H1(A

u)× au3 − au1
))

+ au1 +

1

4

(
(al4 − al1) +

(
H2(A

l)× al2 − al1
)
+
(
H1(A

l)× al3 − al1
))

+ al1

}
(1)

Using the equation (1), Model 1 can be written as follows :
Model 2

maximize Z1rj(x) =

n∑
j=1

(
a

′

1rjxj + b
′

1rj

)
n∑

j=1

(
c
′
1rjxj + d

′
1rj

)

maximize Z2rj(x) =

n∑
j=1

(
a

′

2rjxj + b
′

2rj

)
n∑

j=1

(
c
′
2rjxj + d

′
2rj

)

subject to Pr

( n∑
j=1

A
′

ijxj ≤ qi

)
≥ 1− γi, i = 1, 2, . . . ,m (2)

xj ≥ 0, ∀ j; r = 1, 2, . . . l.
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3.2. Crisp form of probabilistic constraint

Here, we consider the random variable qi, ∀ i which follows Weibull distribution.
Then the probability density function (pdf) of qi is given by

f(qi) =


(

αi

βi

)(
qi
βi

)
e
−
(

qi
βi

)αi

, if qi > 0, αi > 0, βi > 0,

0, otherwise.
(3)

with mean= βiΓ

(
1+ 1

αi

)
, αi > 0, βi > 0 and variance= β2

i Γ

(
1+ 2

αi

)
−
[
βiΓ

(
1+

1
αi

)]2
, αi > 0, βi > 0.

Now the probabilistic constraint can be written with the help of equation (3) as
follows:∫ ∞

ui

f(qi)dqi ≥ 1− γi, (4)

where ui =
n∑

j=1

A
′

ijxj and ui ≥ 0.

Using equation (3), it can be further written the equation (4) as∫ ∞

ui

(
αi

βi

)(
qi
βi

)
e
−
(

qi
βi

)αi

dqi ≥ 1− γi. (5)

On integration, we obtain from the equation (5)

e
−
(

ui
βi

)αi

≥ 1− γi

i.e., ui ≤
βi(

ln
(
1− γi

)) 1
αi

(6)

i.e.,

n∑
j=1

A
′

ijxj ≤
βi(

ln
(
1− γi

)) 1
αi

(7)

Then Model 2 can be written as the following model as:
Model 3

maximize Z1rj(x) =

n∑
j=1

(
a

′

1rjxj + b
′

1rj

)
n∑

j=1

(
c
′
1rjxj + d

′
1rj

)

maximize Z2rj(x) =

n∑
j=1

(
a

′

2rjxj + b
′

2rj

)
n∑

j=1

(
c
′
2rjxj + d

′
2rj

)
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subject to

n∑
j=1

A
′

ijxj ≤
βi(

ln
(
1− γi

)) 1
αi

xj ≥ 0, ∀ j, αi > 0, βi > 0 and 0 < γi < 1, ∀ i, r.

3.3. Bi-level fractional programming in Stackelberg game

In this section, we introduce fuzzy goals to each of the objective functions for
both levels respectively. Then, Model 3 can be written as:
Model 4

maximize Z1rj(x)≳̃frj , r = 1, 2, . . . , ro

or, Z1rj(x)≲̃frj , r = ro+1, ro+2, . . . , l

maximize Z2rj(x)≳̃hrj , r = 1, 2, . . . , rt

or, Z2rj(x)≲̃hrj , r = rt+1, rt+2, . . . , l

subject to

n∑
j=1

A
′

ijxj ≤
βi(

ln
(
1− γi

)) 1
αi

xj ≥ 0, ∀ j, αi > 0, βi > 0 and 0 < γi < 1, ∀ i.

where frj and hrj are the aspiration levels of the (rj)th objective function cor-

responding to both level DMs respectively. Here the symbols ≲̃ and ≳̃ represent
“essentially less than” and “essentially more than” fuzziness of the aspiration lev-
els. Now the membership functions of both level objective functions for each goal
can be written as follows:
For Z1rj≲̃frj ,

µ1rj(x) =


1, if Z1rj(x) ≤ frj ,
srj−Z1rj(x)

srj−frj
, if frj ≤ Z1rj(x) ≤ srj ,

0, if Z1rj(x) ≥ srj .

For Z1rj≳̃frj ,

µ1rj(x) =


1, if Z1rj(x) ≥ frj ,
Z1rj(x)−srj

frj−srj
, if srj ≤ Z1rj(x) ≤ frj ,

0, if Z1rj(x) ≤ srj .

where srj and srj are the upper and lower tolerance limits for (rj)th fuzzy goal of
the upper-level DM.
For Z2rj≲̃hrj ,

µ2rj(x) =


1, if Z2rj(x) ≤ hrj ,
vrj−Z2rj(x)

vrj−hrj
, if hrj ≤ Z2rj(x) ≤ vrj ,

0, if Z2rj(x) ≥ vrj .
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For Z2rj≳̃hrj ,

µ2rj(x) =


1, if Z2rj(x) ≥ hrj ,
Z2rj(x)−vrj

hrj−vrj
, if vrj ≤ Z2rj(x) ≤ hrj ,

0, if Z2rj(x) ≤ vrj .

where vrj and vrj are the upper and lower tolerance limits for (rj)th fuzzy goal of
the lower-level DM.

3.4. Taylor series approximation for membership linearization

The linearization process of a fractional bi-level multi-objective programming
in the Stackelberg game is to be summarized through the following steps:

Step 1: We find x∗
1rj and x∗

2rj from (rj)th membership function associated
with the objective functions Z1rj and Z2rj respectively, where r = 1, 2, . . . , l and
j = 1, 2, . . . , n.
Step 2: Now apply the 1st order Taylor series approximation, the membership
functions corresponding to both level objective functions are transformed as fol-
lows:

µ1rj(x) ∼= µ̂1rj(x)

=

n∑
j=1

µ1rj(x
∗
1rj) +

((
x1 − x∗

1r1

)∂µ1r1(x
∗
1r1)

∂x1r1
+ . . .+

(
xn − x∗

1rn

)
∂µ1rn(x

∗
1rn)

∂x1rn

)

=

n∑
k=1

(
µ1rk(x

∗
1rk) +

(
xk − x∗

1rk

)∂µ1rk(x
∗
1rk)

∂x1rk

)
. (8)

µ2rj(x) ∼= µ̂2rj(x)

= µ2rj(x
∗
2rj) +

((
x1 − x∗

2r1

)∂µ2r1(x
∗
2r1)

∂x2r1
+ . . .+

(
xn − x∗

2rn

)
∂µ2rn(x

∗
2rn)

∂x2rn

)

=

n∑
k=1

(
µ2rk(x

∗
2rk) +

(
xk − x∗

2rk

)∂µ2rk(x
∗
2rk)

∂x2rk

)
. (9)



S. K. Maiti et al. / Fractional Programming for Stackelberg Game 13

Step 3: Next, add these membership values with equal weights and transform
them into a single objective function corresponding to each level i.e.,

Z1(x) =

n∑
j=1

µ̂1rj(x), r = 1, 2, . . . , l (10)

Z2(x) =

n∑
j=1

µ̂2rj(x), r = 1, 2, . . . , l (11)

Using the equations (10) and (11), Model 4 can be written as follows:
Model 5

maximize Z1(x)

maximize Z2(x)

subject to

n∑
j=1

A
′

ijxj ≤
βi(

ln
(
1− γi

)) 1
αi

xj ≥ 0, ∀ j, αi > 0, βi > 0 and 0 < γi < 1, ∀ i.

4. SOLUTION METHODOLOGY

In this section, we develop an algorithm deliberated to accomplish a satis-
factory solution for fractional bi-level programming in Stackelberg games under
an intuitionistic fuzzy environment. The algorithm outlines the steps involved in
intuitionistic fuzzy programming as follows:

4.1. Intuitionistic fuzzy programming

In the Stackelberg game, the upper-level DM will first select x1 variable, after
that the lower-level DM will specify x2 variable with the complete familiarity of
the upper-level DM. Keeping this tip of observation, we build up the subsequent
algorithm for attaining a satisfactory way out of a BLFP for the Stackelberg game.
The IFS is fundamentally grounded on membership and non-membership functions
respectively. Here, we consider the membership function as exponential and the
non-membership function as parabolic in nature. These are interpreted as follows:

µZg
=


1, if Zg(x) ≤ Z0

g ,

e
−t

Zg(x)−Z0
g

Z1
g−Z0

g


−e−t

1−e−t , if Z0
g ≤ Zg(x) ≤ Z1

g ,

0, if Zg(x) ≥ Z1
g .

(12)

ωZg =


0, if Zg(x) ≤ Z0

g ,(
Zg(x)−Z0

g

Z1
g−Z0

g

)2
, if Z0

g ≤ Zg(x) ≤ Z1
g ,

1, if Zg(x) ≥ Z1
g .

(13)
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where g = 1, 2 and Z0
g , Z

1
g are the lower bound (worst solution) and upper bound

(best solution) of the objective function Zg(x). The algorithm sketches out the
steps involved in IFS as follows:
Step 1: Independently resolve both level objectives, taking the crisp correspon-
dence constraints of Model 5 and calculating both bounds i.e. lower and upper of
the objective functions respectively.
Step 2: With the help of the equations (12) and (13), computing the member-
ship and non-membership functions for both level objective functions and also the
upper-level decision variable x1.
Step 3: According to Zimmerman [11], Model 5 is converted to the following crisp
model as:
Model 6

maximize (ζ − ξ)

subject to
e
−t

(
Z

′
g(x)−Z

′0
g

Z
′1
g −Z

′0
g

)
− e−t

1− e−t
≥ ζ,

e
−t
(

x1−xu
1 +d

d

)
− e−t

1− e−t
≥ ζ,(

Z
′

g(x)− Z
′0
g

Z ′1
g − Z ′0

g

)2

≤ ξ,

(
x1 − xu

1 + d

d

)2

≤ ξ, A
′
x ≤ βi(

ln
(
1− γi

)) 1
αi

,

x ≥ 0, ζ ≥ ξ, ζ + ξ ≤ 1, 0 < γi < 1, αi > 0, βi > 0, g = 1, 2.

Step 4: Model 6 can be resolved by LINGO, GA and PSO, and subsequent to that
optimal solutions ζ∗ and ξ∗ are obtained corresponding to ζ and ξ respectively.
Step 5: If the upper-level DM is convinced with the explanation recognized in Step
4, subsequently go to Step 6, or else update the membership and non-membership
functions accordingly and next go to Step 2.
Step 6: Stop.

4.2. GA

GA ([45], [46]) is a biological evolution procedure that can solve both con-
strained and unconstrained optimization problems. It produces various solutions
in one run, so it can be easily applied to a large number of data in dissimilar
areas. In GA, a population is a set of probable explanations of a problem and a
component of the population is called a genotype. Reproduction, mutation and
crossover are the three main operators in GA.
Parameters: It depends on unlike parameters like the population size (PSize),
maximum number of generations (MAXGen), probability of crossover (PCross)
and probability of mutation (PMut). In this study, consider PSize= 500, PCross=
0.5, MAXGen= 500 and PMut =0.5.
Reproduction: It is a significant step in GA that regulates even if the exacting
string will contribute to the reproduction procedure or not. In the population ini-
tialization process, settle on the limits of all types of dependent and independent
variables in that order. The renowned selection procedures are rank, tournament,
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roulette wheel, stochastic universal sampling and Boltzmann. Roulette wheel se-
lection procedures depict all the achievable strings onto a wheel with a segment
of the wheel owed to them conforming to their strength value. It is then rotated
arbitrarily to choose definite solutions which will contribute to the arrangement
of the subsequent generation.
Crossover: Crossover is the process of generating offspring by combining the
genetic information of two or more parents. Subsequent to the selection devel-
opment, the population is upgraded with improved individuals. The recognized
crossover operators are partially matched, precedence preserving crossover, single-
point, two-point, k-point, uniform, order, shuffle, cycle and abridged surrogate.
An arbitrary crossover point is particular in a single-point crossover. Two par-
ents’ genetic information away from that point will be exchanged with each other.
Mutation: It is a genetic operator that is utilized to sustain genetic diversity
from one production of a population to the next generation. The recognized mu-
tation operators are simple inversion, displacement and mix-up mutation. The
banishment mutation operator changes a sub-string of a specified creature so-
lution contained by itself. The place is arbitrarily preferred from the specified
sub-string for dislocation such that the consequent solution is valid as well as an
arbitrary banishment mutation. Exchange mutation and insertion mutation are
the two variants of banishment mutation. In insertion mutation and exchange
mutation operators, a part of an individual solution is either inserted in another
location or exchanged with another part, correspondingly.
Evaluation: In chromosome generations, the loop is terminated when assured
conditions are met. Subsequent to that, the preferred chromosome is rebounded
while the most excellent solution is established. The general terminating circum-
stances are:

� Reached the permanent number of generations: This termination process
ends the progression when the user-defined highest numbers of progressions
have been run. So this process is constantly active.

� Fitness Threshold: This process ends the progression when the most excel-
lent fitness in the present population inclines a lesser amount of the user-
defined strength threshold and the intention is to locate to diminish the
fitness.

� Evolution Time: This process ends the progression when the onward pro-
gression time excels the user-defined maximum progression time.

In our study, for reaching the subsequently enhanced chromosomes, consider the
roulette wheel selection method, uniform mutation, and arithmetic crossover. The
above steps have been characterized with the assistance of a flowchart in Figure
3.

4.3. PSO

PSO [47] is a metaheuristic global optimization method that has been gained
from the information exchange (behavior) of the birds in a swarm. Due to its



16 S. K. Maiti et al. / Fractional Programming for Stackelberg Game

Figure 3: General structure of GA

cleanness of application in unsupervised, complex multidimensional problems that
cannot be solved using conventional deterministic algorithms. In the PSO pro-
cedure, the population is said to be a swarm and the subsequent individuals are
named particles. Each particle is a probable solution and is inclined by the experi-
ences of its neighbors as well as itself in search space. It consists of three operators
which are inertia weight, personal particle best (Pbest), and global particle best
(Gbest). In the iteration process, the particle utilizes a memory in instruct to
keep its finest position and take as a whole the best particle positions which are
saved as the Pbest. The Pbest is assigned to region particles, whereas the overall
finest particle position is restored as the Gbest, which is assigned to all particles
in the swarm.Each particle is denoted as Xi = (Xi1, Xi2, . . . , Xiq) , where q is
the q-dimensional space. The velocity of each particle is Vi = (Vi1, Vi2, . . . , Viq)
and the velocity of the initial population is generated arbitrarily. The best local
position of each particle is given by Pi = (Pi1, Pi2, . . . , Piq). Every particle fits the
best local and global position respectively. On each iteration, the particle adjusts
its Pbest and Gbest among particles in its neighbourhood as follows:

V
(k+1)
i = V

(k)
i + c1 × Ti1 ×

(
Pbest(k) −X

(k)
i

)
+ c2 × Ti2 ×

(
Gbest(k) −

X
(k)
i

)
X

(k+1)
i = X

(k)
i + V

(k+1)
i , i = 1, 2, . . . , P.

where c1 and c2 are called cognitives and social parameters; Ti1, Ti2 are random
vectors ∈ (0, 1).

5. NUMERICAL EXPERIMENT

In this section, we include a numerical example and real-life application to
illustrate the efficiency of the proposed approach.

5.1. Example

In the experiment, we consider a probabilistic fuzzy multi-objective fractional
linear bi-level programming in the Stackelberg game. The cost parameters of both
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level multi-objective functions and the constraint parameters are T2FNs. Also,
the right-hand side of the constraints follows the Weibull distribution and all these
data are tabulated.

5.1.1. Input data

Here all the relevant costs i.e., ˜̃agrj ,
˜̃
bgrj , ˜̃cgrj ,

˜̃
dgrj , ∀ r, j; g = 1, 2 and

the constraints parameters i.e., ˜̃Aij , ∀ i, j which are constituted by trapezoidal
T2FVs (TrT2FV) respectively, specified in Tables 2-6. Again, the shape and scale
parameters of the Weibull distribution are given in Table 7.

Table 2: Input data for TrT2F ˜̃agrj
˜̃a113 = ((41, 43, 50, 54; 0.8, 0.7), (42, 46, 48, 52; 0.5, 0.4))
˜̃a114 = ((43, 45, 52, 56; 1, 0.9), (44, 48, 50, 54; 0.8, 0.7))

˜̃a111 = ((37, 39, 46, 50; 0.8, 0.7), (38, 42, 44, 48; 0.6, 0.5))
˜̃a112 = ((39, 41, 48, 52; 0.9, 0.6), (40, 44, 46, 50; 0.5, 0.4))
˜̃a211 = ((40, 42, 49, 53; 1, 0.9), (41, 45, 47, 51; 0.8, 0.7))
˜̃a212 = ((48, 50, 57, 61; 1, 0.8), (49, 53, 55, 59; 0.6, 0.5))
˜̃a213 = ((56, 58, 65, 69; 1, 0.8), (57, 61, 63, 67; 0.7, 0.6))

˜̃a214 = ((64, 66, 73, 77; 0.9, 0.7), (65, 69, 71, 75; 0.6, 0.4))
˜̃a121 = ((84, 86, 93, 97; 1, 0.8), (85, 89, 91, 95; 0.7, 0.6))

˜̃a221 = ((83, 85, 92, 96; 0.8, 0.7), (84, 88, 90, 94; 0.6, 0.4))
˜̃a122 = ((109, 111, 118, 122; 0.8, 0.6), (110, 114, 116, 120; 0.5, 0.4))
˜̃a123 = ((134, 136, 143, 147; 0.7, 0.5), (135, 139, 141, 145; 0.4, 0.3))
˜̃a124 = ((159, 161, 168, 172; 1, 0.7), (160, 164, 166, 170; 0.5, 0.4))

˜̃a222 = ((118, 120, 127, 131; 0.7, 0.6), (119, 123, 125, 129; 0.5, 0.2))
˜̃a223 = ((153, 155, 162, 166; 0.7, 0.6), (154, 158, 160, 164; 0.5, 0.4))
˜̃a224 = ((188, 190, 197, 201; 1, 0.7), (189, 193, 195, 199; 0.6, 0.5))

Table 3: Input data for TrT2F
˜̃
bgrj

˜̃
b11 = ((25, 27, 34, 38; 1.0, 0.8), (26, 30, 32, 36; 0.7, 0.6))
˜̃
b21 = ((35, 37, 44, 48; 0.8, 0.6), (36, 40, 42, 46; 0.5, 0.4))

˜̃
b12 = ((157, 159, 166, 170; 0.9, 0.8), (158, 162, 164, 168; 0.6, 0.5))
˜̃
b22 = ((257, 259, 266, 270; 0.7, 0.6), (258, 262, 264, 268; 0.5, 0.4))
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Table 4: Input data for TrT2F
˜̃
dgrj

˜̃
d11 = ((15, 17, 24, 28; 0.9, 0.8), (16, 20, 22, 26; 0.7, 0.6))
˜̃
d21 = ((18, 20, 27, 31; 0.8, 0.7), (19, 23, 25, 29; 0.6, 0.5))

˜̃
d12 = ((107, 109, 116, 120; 0.8, 0.7), (108, 112, 114, 118; 0.6, 0.4))
˜̃
d22 = ((167, 169, 176, 180; 0.9, 0.8), (168, 172, 174, 178; 0.7, 0.3))

Table 5: Input data for TrT2F
˜̃
dgrj

˜̃c111 = ((47, 49, 56, 60; 1.0, 0.8), (48, 52, 54, 58; 0.7, 0.6))
˜̃c112 = ((51, 53, 60, 64; 0.9, 0.8), (52, 56, 58, 62; 0.6, 0.5))
˜̃c113 = ((55, 57, 64, 68; 0.9, 0.7), (56, 60, 62, 66; 0.6, 0.5))
˜̃c114 = ((59, 61, 68, 72; 1.0, 0.7), (60, 64, 66, 70; 0.6, 0.4))
˜̃c211 = ((44, 46, 53, 57; 0.9, 0.6), (45, 49, 51, 55; 0.5, 0.4))
˜̃c212 = ((47, 49, 56, 60; 0.8, 0.7), (48, 52, 54, 58; 0.5, 0.4))
˜̃c213 = ((50, 52, 59, 63; 0.8, 0.6), (51, 55, 57, 61; 0.5, 0.3))
˜̃c214 = ((53, 55, 62, 66; 0.9, 0.6), (54, 58, 60, 64; 0.5, 0.3))
˜̃c121 = ((28, 30, 37, 41; 0.9, 0.8), (29, 33, 35, 39; 0.6, 0.5))
˜̃c122 = ((30, 32, 39, 43; 0.9, 0.7), (31, 35, 37, 41; 0.6, 0.5))
˜̃c123 = ((32, 34, 41, 45; 0.8, 0.6), (33, 37, 39, 43; 0.5, 0.4))
˜̃c124 = ((34, 36, 43, 47; 0.8, 0.6), (35, 39, 41, 45; 0.4, 0.3))
˜̃c221 = ((33, 35, 42, 46; 0.9, 0.8), (34, 38, 40, 44; 0.7, 0.6))
˜̃c222 = ((40, 42, 49, 53; 0.9, 0.7), (41, 45, 47, 51; 0.5, 0.3))
˜̃c223 = ((47, 49, 56, 60; 0.8, 0.6), (48, 52, 54, 58; 0.5, 0.3))
˜̃c224 = ((54, 56, 63, 67; 0.6, 0.5), (55, 59, 61, 65; 0.4, 0.2))
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Table 6: Input data for TrT2F ˜̃Aij

˜̃A11 = ((28, 33, 43, 58; 0.9, 0.8), (30, 34, 40, 57; 0.6, 0.5))
˜̃A12 = ((35, 40, 70, 90; 0.8, 0.6), (37, 45, 58, 80; 0.5, 0.4))
˜̃A13 = ((38, 44, 73, 96; 0.7, 0.6), (40, 48, 61, 83; 0.5, 0.4))
˜̃A14 = ((42, 44, 49, 56; 0.9, 0.8), (43, 45, 47, 51; 0.7, 0.3))
˜̃A21 = ((20, 27, 40, 59; 0.9, 0.7), (25, 30, 32, 54; 0.6, 0.2))
˜̃A22 = ((40, 55, 63, 67; 0.8, 0.4), (48, 61, 62, 64; 0.3, 0.2))
˜̃A23 = ((30, 38, 46, 70; 0.7, 0.4), (35, 40, 42, 67; 0.3, 0.2))
˜̃A24 = ((24, 41, 49, 53; 0.6, 0.5), (38, 43, 45, 52; 0.4, 0.2))
˜̃A31 = ((32, 44, 52, 56; 1.0, 0.9), (41, 46, 48, 55; 0.8, 0.7))
˜̃A32 = ((36, 47, 55, 59; 0.8, 0.5), (44, 49, 51, 58; 0.4, 0.3))
˜̃A33 = ((16, 24, 29, 31; 0.5, 0.4), (22, 25, 26, 30; 0.3, 0.1))
˜̃A34 = ((23, 27, 32, 54; 0.9, 0.8), (25, 28, 29, 44; 0.7, 0.6))
˜̃A41 = ((40, 50, 55, 59; 0.8, 0.7), (45, 51, 58, 67; 0.6, 0.5))
˜̃A42 = ((61, 90, 97, 99; 0.9, 0.6), (78, 95, 96, 98, 0.5, 0.4))
˜̃A43 = ((25, 38, 50, 97; 0.6, 0.5), (34, 40, 41, 90; 0.4, 0.1))
˜̃A44 = ((28, 67, 89, 99; 0.9, 0.8), (37, 78, 80, 97; 0.7, 0.6))

Table 7: Input data for αi, βi and γi
α1 = 0.167 β1 = 0.25 γ1 = 0.28
α2 = 0.25 β2 = 0.23 γ2 = 0.22
α3 = 0.5 β3 = 0.17 γ3 = 0.065
α4 = 0.25 β4 = 0.14 γ4 = 0.18

5.1.2. Optimal result

Utilizing all Tables i.e., Tables 1 to 7, Model 3 can be rewritten as follows:
Model 7

maximize Z111 =
35.56x1 + 36.18x2 + 37.69x3 + 45.39x4 + 27.63

47.15x1 + 48.53x2 + 51.21x3 + 54.61x4 + 18.45

maximize Z112 =
79.99x1 + 90.7x2 + 103.4x3 + 136.29x4 + 138.63

28.98x1 + 30.28x2 + 30.06x3 + 30.64x4 + 91.91

maximize Z211 =
42.61x1 + 46.69x2 + 55.14x3 + 57.89x4 + 32.43

40.18x1 + 42.49x2 + 43.55x3 + 46.65x4 + 19.89

maximize Z212 =
72.41x1 + 93.13x2 + 123.33x3 + 165.06x4 + 203.93

34.2x1 + 36.94x2 + 41.23x3 + 42.88x4 + 145
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subject to 34.89x1 + 46.13x2 + 48.03x3 + 39.71x4 ≤ 198.93,

29.76x1 + 40.28x2 + 33.75x3 + 30.44x4 ≥ 65.60,

43.28x1 + 37.45x2 + 16.68x3 + 29.19x4 ≥ 50.92,

41.29x1 + 70.41x2 + 39.43x3 + 62.19x4 ≤ 109.61,

xj ≥ 0, ∀ j


(14)

Now, we consider two objective functions of the upper-level DM being employed to
be more than 1.0, 2.6 respectively and for the lower-level to be more than 1.4, 2.2
respectively. In other words, the fuzzy aspiration levels and tolerance limits of
two objective goals corresponding to both level DMs are (1.0, 2.6), (1.4, 2.2) and
(−0.9, 0.01), (−1.09,−9.8) respectively. We now examine the solutions based on
three different membership functions and these are defined as follows.

5.1.3. Linear membership function

In this case, the membership functions of the goals corresponding to both levels are
obtained and their graphical representations are in Figures 4 and 5 respectively.

Figure 4: Upper-level membership functions defined as simple linear

Figure 5: Lower-level membership functions defined as simple linear

µ111(x) =


1, if Z111(x) ≥ 1,

R1, if −0.9 ≤ Z111(x) ≤ 1,

0, if Z111(x) ≤ −0.9

&

µ112(x) =


1, if Z112(x) ≥ 2.6,

R2, if 0.1 ≤ Z112(x) ≤ 2.6,

0, if Z112(x) ≤ 0.01

(15)

µ211(x) =


1, if Z211(x) ≥ 1.4,

R3, if −1.09 ≤ Z211(x) ≤ 1.4,

0, if Z211(x) ≤ −1.09

&
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µ212(x) =


1, if Z212(x) ≥ 2.2,

R4, if −9.8 ≤ Z212(x) ≤ 2.2,

0, if Z212(x) ≤ −9.8

(16)

where R1 = 77.995x1+79.86x2+83.78x3+94.54x4+44.24
89.58x1+90.21x2+97.3x3+103.76x4+35.06 ,

R2 =
79.7x1 + 90.4x2 + 103.01x3 + 135.98x4 + 137.71

75.06x1 + 78.42x2 + 77.86x3 + 79.36x4 + 238.05
,

R3 = 86.41x1+93x2+102.61x3+108.74x4+54.11
100.05x1+105.8x2+108.44x3+116.16x4+49.53 ,

R4 =
407.57x1 + 455.14x2 + 527.38x3 + 585.28x4 + 1624.93

410.4x1 + 443.28x2 + 494.76x3 + 514.56x4 + 1740

In Model 4, each objective function is associated with the corresponding mem-
bership functions (15)-(16) respectively. Then by 1st order Taylor series approx-
imation as discussed in subsection 3.4, the membership functions given by the
equations (15)-(16) are transformed as:

µ̂111(x) = −0.0273x1 − 0.0298x2 − 0.0335x3 − 0.0144x4 + 0.99 (17)

µ̂112(x) = 0.0164x1 + 0.0349x2 + 0.068x3 + 0.1464x4 + 0.7397 (18)

µ̂211(x) = −0.036x1 − 0.0324x2 − 0.0074x3 − 0.0121x4 + 0.9878 (19)

µ̂212(x) = −0.0009x1 + 0.0044x2 + 0.0119x3 + 0.0255x4 + 0.95 (20)

Now, both level objective functions are obtained by adding the pair of equations
(17)-(20) respectively. Then the objective functions are obtained as follows:

Z1(x) = −0.0109x1 + 0.0051x2 + 0.0345x3 + 0.132x4 + 1.7298

Z2(x) = −0.0369x1 − 0.028x2 + 0.0045x3 + 0.0134x4 + 1.9461

Thus, Model 7 can be stated as below:
Model 8

maximize Z1(x) = −0.0109x1 + 0.0051x2 + 0.0345x3 + 0.132x4 + 1.7298

maximize Z2(x) = −0.0369x1 − 0.028x2 + 0.0045x3 + 0.0134x4 + 1.9461

subject to the constraints (14).

Solve the Model 8 by LINGO software. We calculate Z0
g and Z1

g values for g = 1, 2.
These values are Z0

1 = 1.7009, Z1
1 = 1.9192, Z0

2 = 1.8481, Z1
2 = 1.9647 at

x1 = 0.0392, x2 = 0.0, x3 = 0.801 and x4 = 1.2286. So, we now rewrite Model 8
with the help of Model 6 as follows:
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Model 9

maximize (ζ − ξ)

subject to
e
−t
(

Z1(x)−1.7009
1.9192−1.7009

)
− e−t

1− e−t
≥ ζ,

e
−t
(

Z2(x)−1.8481
1.9647−1.8481

)
− e−t

1− e−t
≥ ζ,

e−t( x1−0.0392+x2+d
d ) − e−t

1− e−t
≥ ζ,

(
Z1(x)− 1.7009

1.9192− 1.7009

)2

≤ ξ,(
Z2(x)− 1.8481

1.9647− 1.8481

)2

≤ ξ,

(
x1 − 0.0392 + x2 + d

d

)2

≤ ξ,

the constraints (14)

ζ ≥ ξ, ζ + ξ ≤ 1, 0 ≤ ζ, ξ ≤ 1.

Solve the Model 9 by LINGO software, GA and PSO respectively and the conse-
quences are listed in Table 8. Table 9 shows the corresponding parameter set for
these two algorithms: GA and PSO.

Table 8: Optimum results for linear membership function

Result
Method

LINGO GA PSO
Z1 1.8357 1.0182 1.7009
Z2 1.9201 1.0223 1.8482
x1 0.0000 0.5152 2.6529
x2 0.0000 1.6054 0.0000
x3 0.7642 0.5182 0.0000
x4 1.3077 2.0600 0.0000
ζ 0.4813 0.8520 0.9985
ξ 0.2815 0.1431 0.0001

Table 9: Parameter set up

GA PSO
Population: 100 Population: 100
Crossover rate: 0.8 Vmax : 10
Mutation rate: 0.1 Inertial weight: 0.2-0.9
Generation: 500 Iteration: 100

5.1.4. Triangular membership function

In this case, the membership functions of the goals are obtained as follows, and
their graphical representations are in Figures 6 and 7 respectively.

µ1(x) =


0, if Z111(x) ≥ 3,

R5, if 2 ≤ Z111(x) ≤ 3,

R6, if 0 ≤ Z111(x) ≤ 2,

0, if Z111(x) ≤ 0

& µ2(x) =


0, if Z112(x) ≥ 5,

R7, if 3 ≤ Z112(x) ≤ 5,

R8, if 1 ≤ Z112(x) ≤ 3,

0, if Z112(x) ≤ 1
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Figure 6: Upper-level membership functions defined as triangular

Figure 7: Lower-level membership functions defined as triangular

µ3(x) =


0, if Z211(x) ≥ 4,

R9, if 1 ≤ Z211(x) ≤ 4,

R10, if 0 ≤ Z211(x) ≤ 1,

0, if Z211(x) ≤ 0

& µ4(x) =


0, if Z212(x) ≥ 3,

R11, if 1 ≤ Z212(x) ≤ 3,

R12, if 0 ≤ Z212(x) ≤ 1,

0, if Z212(x) ≤ 0

where R5 = 105.89x1+109.41x2+115.94x3+118.44x4+27.72
47.15x1+48.53x2+51.21x3+54.61x4+18.45 ,

R6 = 35.56x1+36.18x2+37.69x3+45.39x4+27.63
24.3x1+97.06x2+102.42x3+109.22x4+36.9

R7 = 64.91x1+60.7x2+46.9x3+16.91x4+320.92
57.96x1+60.56x2+60.12x3+61.28x4+183.82 ,

R8 = 51.01x1+60.42x2+73.34x3+75.01x4+46.72
57.96x1+60.56x2+60.12x3+61.28x4+367.64

R9 = 118.11x1+123.27x2+119.06x3+128.71x4+47.13
120.54x1+127.47x2+130.65x3+139.95x4+59.67 ,

R10 = 42.61x1+46.69x2+55.14x3+57.89x4+32.43
40.18x1+42.49x2+43.55x3+46.65x4+59.67

R11 = 30.19x1+17.69x2+0.36x3−36.42x4+231.07
68.4x1+73.88x2+82.46x3+85.76x4+290 ,

R12 = 72.41x1+93.13x2+123.33x3+165.06x4+203.93
34.21+36.94x2+41.23x3+42.88x4+145

Proceeding the same way as discussed in subsection 3.4, we formulate Model 10
as follows:
Model 10

maximize Z3(x) = 0.1422x1 + 0.0304x2 + 0.0514x3 + 0.0717x4 + 0.7218

maximize Z4(x) = −0.0268x1 − 0.0673x2 − 0.1388x3 − 0.2252x4 + 1.68

subject to the constraints (14).

Model 10 represents a linear programming problem and by LINGO software it
has been solved. The solutions are achieved through the proposed intuitionistic
fuzzy programming in subsection 4.1 by LINGO software, GA and PSO and the
consequences are summarized in Table 10.
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Table 10: Optimum results for triangular membership function

Result
Method
LINGO 15.0 GA PSO

Z3 0.9397 0.9505 0.8503
Z4 1.4571 1.4427 1.3277
x1 1.0834 1.1163 0.0000
x2 0.2183 0.4357 1.8160
x3 0.0231 0.0000 0.0000
x4 0.7814 0.7908 1.0217
ζ 0.4954 0.6992 0.7734
ξ 0.2533 0.2018 0.0572

5.1.5. Trapezoidal membership function

In this case, the membership functions (see Figures 8 and 9) of the goals depend
on four parameters and are computed as follows:

Figure 8: Upper-level membership functions defined as trapezoidal

Figure 9: Lower-level membership functions defined as trapezoidal

µ5(x) =



0, if Z111(x) ≥ 7,

P1, if 4 ≤ Z111(x) ≤ 7,

1 if 3 ≤ Z111(x) ≤ 4,

P2, if 0 ≤ Z111(x) ≤ 3,

0, if Z111(x) ≤ 0

& µ6(x) =



0, if Z112(x) ≥ 8,

P3, if 7 ≤ Z112(x) ≤ 8,

1 if 5 ≤ Z112(x) ≤ 7,

P4, if 2 ≤ Z112(x) ≤ 5,

0, if Z112(x) ≤ 2

µ7(x) =



0, if Z211(x) ≥ 9,

P5, if 8 ≤ Z211(x) ≤ 9,

1 if 5 ≤ Z211(x) ≤ 8,

P6, if 1 ≤ Z211(x) ≤ 5,

0, if Z211(x) ≤ 1

& µ8(x) =



0, if Z212(x) ≥ 10,

P7, if 7 ≤ Z212(x) ≤ 10,

1 if 3 ≤ Z212(x) ≤ 7,

P8, if 1 ≤ Z212(x) ≤ 3,

0, if Z212(x) ≤ 1



S. K. Maiti et al. / Fractional Programming for Stackelberg Game 25

where

P1 = 294.49x1+303.53x2+320.78x3+336.88x4+101.52
141.45x1+145.6x2+153.63x3+163.83x4+55.35 ,

P2 = 35.56x1+36.18x2+37.69x3+45.39x4+27.63
141.45x1+145.6x2+153.63x3+163.83x4+55.35 ,

P3 = 151.85x1+151.54x2+137.08x3+108.83x4+596.65
28.98x1+30.28x2+30.06x3+30.64x4+91.91 ,

P4 = 22.03x1+30.14x2+43.28x3+75.01x4−45.19
86.94x1+90.84x2+90.18x3+91.92x4+275.73 ,

P5 = 319.01x1+335.72x2+336.81x3+361.96x4+146.58
40.18x1+42.49x2+43.55x3+46.65x4+19.89 ,

P6 = 2.43x1+4.2x2+11.59x3+11.24x4+12.54
160.72x1+169.96x2+174.2x3+186.6x4+79.56 ,

P7 = 269.59x1+276.27x2+288.97x3+263.74x4+1246.07
102.6x1+110.82x2+123.69x3+128.64x4+435 ,

P8 = 38.21x1+56.19x2+82.1x3+122.18x4+58.93
68.4x1+73.88x2+82.46x3+85.76x4+290 .

Proceeding the same way in subsection 3.4, we develop the following model as:
Model 11

maximize Z5(x) = −0.0031x1 + 0.0113x2 + 0.0375x3 + 0.1173x4 + 0.2917

maximize Z6(x) = −0.0278x1 + 0.0062x2 + 0.0665x3 + 0.1457x4 + 0.4428

subject to the constraints (14).

Using the intuitionistic fuzzy programming described in subsection 4.1, Model 11
is solved by LINGO software, GA and PSO algorithms and the consequences are
listed in Table 11.

Table 11: Optimum results for trapezoidal membership function

Result
Method

LINGO 15.0 GA PSO
Z5 0.3885 0.4575 0.3992
Z6 0.6105 0.6514 0.4736
x1 0.1763 0.0000 4.3711
x2 0.0000 0.0000 0.0000
x3 0.2.5952 0.1323 0.1000
x4 0.0000 1.3713 1.0000
ζ 0.4527 0.6396 0.5632
ξ 0.3319 0.3358 0.2147

A comparison of the results for three membership functions are presented under
three different algorithms i.e., LINGO software, GA and PSO respectively in Table
12.
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Table 12: Comparison results under LINGO, GA and PSO

Membership function Method Z111 Z112 Z211 Z212

Simple linear
LINGO 0.8976 2.5549 1.3161 2.2101

GA 0.8359 2.8178 1.2185 2.3963
PSO 1.099 1.6089 1.1501 1.6800

Triangular
LINGO 0.8904 2.2903 1.2282 1.9349

GA 0.8787 2.3207 1.2162 1.9550
PSO 0.8604 2.4836 1.2187 2.1169

Trapezoidal
LINGO 15.0 0.8249 2.4057 1.3075 2.0802

GA 0.9475 2.4597 1.3290 2.1342
PSO 0.8169 2.5172 1.1442 2.0435

5.2. Real-life application

Sugar cane is an ancient crop of the Austronesian and Papuan people. It is
the world’s largest crop by production quantity, and India’s sugar cane farmers
32.2 million tonnes had been produced by the end of 2017-18. Four types of basic
products and by-products are obtained from sugar cane processing. These are
listed below:

� Sucrose: Refined sugar, white sugar, raw sugar, jaggery etc., all come in
this category. It depends on the process employed and purified of the final
product. Basically, these are all sweetening agents used as food additives.

� Bagasse: Bagasse is a fibrous object that is leftovers after the juice is ex-
tracted from the sugar cane. It is utilized in the thermal power plant as fuel
for the creation of power. Dry bagasse has a calorific value of around 4600
Kcal/kg.

� Molasses: Molasses are the ultimate viscous liquid that is leftover once the
practically possible sugar has been extracted from the juice. It is a by-
product of the sugar industry. It is fermented and distilled to produce ethanol
or ENA. Ethanol is utilized in petrol blending which ENA is for making
alcoholic beverages/cosmetics etc.

� Impurities/press mud: Apart from this impurities like wax, non-sugars, in-
organic compounds etc. whatever was removed during the juice explaining
process, is utilized as manufacture/manure of fertilizers.

Let us consider two sugar mill companies XYZ and PQR which are located in
India under the India Sugar Mills Association. The companies produce the above-
mentioned four products. Due to weather problems sugar cane cannot produce
good quality products or by-products. Furthermore, it would have the same sce-
nario for labour problems. Henceforth, the input data for PQR and XYZ compa-
nies are not crisp values. They are considered type-2 fuzzy variables and shown
in Tables 13-16 respectively.
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Table 13: Sucrose and Bagasse in PQR company

Capacity Demand per unit of product
available Sucrose Bagasse
Sugar cane (units ((77, 90, 130, 140; 0.7, 0.6), ((35, 67, 89, 99; 1, 0.8),
of quantity) (85, 95, 120, 135; 0.5, 0.4)) (44, 78, 80, 97; 0.7, 0.6))
Machines ((26, 37, 47, 56; 0.7, 0.4), ((20, 23, 29, 31; 0.7, 0.6),
(hours) (35, 40, 42, 55; 0.3, 0.2)) (22, 25, 26, 30; 0.5, 0.4))
Profit per unit ((742, 747, 760, 786; 1, 0.9), ((170, 290, 305, 314; 0.9, 0.8),

(746, 748, 750, 770; 0.8, 0.7)) (180, 295, 300, 310; 0.3, 0.1))
Owned capital ((234, 250, 262, 280; 0.8, 0.7), ((131, 147, 200, 287; 0.8, 0.6),

(245, 255, 260, 276; 0.4, 0.3)) (143, 150, 156, 268; 0.5, 0.3))
Inventory cost ((69, 77, 97, 100; 0.9, 0.7), ((40, 45, 60, 96; 0.4, 0.3),
per unit (75, 80, 90, 98; 0.5, 0.4)) (44, 47, 55, 87; 0.2, 0.1))

Table 14: Molasses and Impurities/press mud in PQR company

Capacity Demand per unit of product
available Molasses Impurities/press mud
Sugar cane (units ((40, 44, 52, 80; 1, 0.9), ((24, 42, 49, 53; 0.6, 0.5),
of quantity) (41, 46, 48, 76; 0.8, 0.7)) (38, 43, 45, 52; 0.4, 0.1))
Machines (7, 9, 15, 28; 0.4, 0.3), ((1, 3, 6, 9; 0.4, 0.3),
(hours) (8, 10, 12, 25; 0.2, 0.1)) (2, 4, 5, 8; 0.2, 0.1))
Profit per unit ((120, 130, 144, 195; 0.5, 0.4), ((137, 146, 198, 282; 0.9, 0.7),

(125, 135, 140, 167; 0.3, 0.2)) (140, 150, 158, 267; 0.4, 0.2))
Owned capital ((100, 131, 140, 170; 0.5, 0.4), ((58, 70, 97, 100; 0.6, 0.5),

(128, 136, 138, 145; 0.3, 0.1)) (63, 80, 90, 98; 0.4, 0.2))
Inventory cost ((25, 28, 45, 55; 0.5, 0.3), ((9, 15, 20, 42; 0.4, 0.3),
per unit (27, 30, 35, 52; 0.2, 0.1)) (12, 16, 17, 40; 0.2, 0.1))

Table 15: Sucrose and Bagasse in XYZ company

Capacity Demand per unit of product
available Sucrose Bagasse
Sugar cane (units ((45, 52, 60, 84; 1, 0.9), ((24, 55, 63, 62; 0.9, 0.8),
of quantity) (50, 55, 57, 70; 0.8, 0.7)) (53, 58, 60, 44; 0.7, 0.6))
Machines ((21, 37, 47, 66; 0.5, 0.4), ((9, 13, 28, 47; 0.6, 0.4),
(hours) (35, 40, 42, 47; 0.3, 0.1)) (10, 14, 25, 34; 0.2, 0.1))
Profit per unit ((234, 250, 262, 280; 0.8, 0.7), ((123, 137, 146, 177; 0.8, 0.6),

(245, 255, 260, 276; 0.4, 0.3)) (130, 138, 142, 165; 0.5, 0.4))
Owned capital ((76, 79, 97, 110; 1, 0.9), ((41, 45, 60, 103; 0.5, 0.4),

(77, 80, 90, 98; 0.7, 0.6)) (44, 47, 55, 98; 0.3, 0.2))
Inventory cost ((25, 41, 49, 53; 0.6, 0.5), ((19, 24, 29, 31; 0.6, 0.5),
per unit (38, 43, 45, 52; 0.4, 0.1)) (22, 25, 26, 30; 0.3, 0.2))
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Table 16: Molasses and Impurities/press mud in XYZ company

Capacity Demand per unit of product
available Molasses Impurities/press mud
Sugar cane (units ((32, 37, 47, 66; 0.6, 0.4), ((20, 23, 29, 31; 0.7, 0.6),
of quantity) (35, 40, 42, 47; 0.3, 0.1)) (22, 25, 26, 30; 0.5, 0.4))
Machines ((9, 13, 28, 46; 0.4, 0.3), ((7, 9, 15, 28; 0.4, 0.3),
(hours) (10, 14, 25, 34; 0.2, 0.1)) (8, 10, 12, 25; 0.2, 0.1))
Profit per unit ((63, 70, 97, 110; 1, 0.8), ((33, 40, 50, 60; 0.8, 0.6),

(65, 80, 90, 98; 0.7, 0.6)) (36, 45, 48, 54; 0.4, 0.3))
Owned capital ((11, 25, 33, 45; 0.6, 0.5), ((7, 25, 31, 33; 0.4, 0.3),

(20, 30, 31, 42; 0.2, 0.1)) (20, 26, 29, 32; 0.2, 0.1))
Inventory cost ((10, 18, 22, 24; 0.4, 0.3), ((5, 8, 18, 20; 0.4, 0.3),
per unit (17, 20, 21, 23; 0.2, 0.1)) (6, 14, 16, 19; 0.2, 0.1))

Again, the input parameters as sugar cane and machines corresponding to both
companies are treated as random variables, and the data are supplied in Table 17.

Table 17: Input parameters for sugar cane and machines

Companies
Parameters
α β γ

PQR
Sugar cane 0.167 0.25 0.2455
Machines 0.5 0.23 0.0372

XYZ
Sugar cane 0.167 0.618 003
Machines 0.25 0.88 0.064

By assumption in both companies, the rising cost and the capital demands are
needed which comparative to the individual performances and they have a fixed
capital demand of ((1038, 1066, 1190, 1200; 1, 0.9), (1040, 1180, 1186, 1198; 0.8, 0.7))
and ((745, 747, 760, 790;
1, 0.8), (746, 748, 750, 787; 0.3, 0.2)) respectively. Also, they decide that the inven-
tory cost is additionally to 20% of the whole production in order to promise safety
level.
Let the quantities of the four products be x11, x12, x13 and x14 respectively
whereas x15, x16, x17, x18 are the inventory quantities for them. Both companies
have tried to maximize the profitability of the return on investment as well as the
general marginal return on investment. Therefore, PQR company has the objec-
tive functions Z311, Z312 which appeared in the first level whereas Z411, Z412 are
the objective functions of XYZ company in the second level. Now using Tables
12-16, a new model (Model 12) can be formulated with the help of Model 3 as
follows:
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Model 12

maximize Z311 =
699.99x11 + 200x12 + 100x13 + 149.95x14

200.01x11 + 150.03x12 + 90.05x13 + 58.03x14 + 1050.03

maximize Z312 =
699.99x11 + 200x12 + 100x13 + 149.95x14

70.03x15 + 40.03x16 + 24.99x17 + 15.06x18

maximize Z411 =
200.01x11 + 115.03x12 + 75x13 + 34.96x14

80.01x11 + 44.99x12 + 19.94x13 + 15.04x14 + 600.03

maximize Z412 =
200.01x11 + 115.03x12 + 75x13 + 34.96x14

30.03x15 + 18.03x16 + 11.8x17 + 8.03x18

subject to 0.2(x11 + x12 + x13 + x14) ≤ (x15 + x16 + x17 + x18),

85x11 + 65.05x12 + 49.9x13 + 29.96x14 ≤ 500.29,

30.04x11 + 20.01x12 + 10.01x13 + 3.09x14 ≤ 160.04,

54.99x11 + 45.06x12 + 29.95x13 + 20.01x14 ≤ 300.16,

27.99x11 + 16.05x12 + 15.06x13 + 10.01x14 ≤ 201.17,

x11 ≥ x15, x12 ≥ x16, x13 ≥ x17, x14 ≥ x18,

x1j ≥ 0, ∀ j


(21)

Clearly, Model 12 is a bi-level fractional programming problem. We now study
the optimal solutions based on three different membership functions and these are
discussed as follows:

5.2.1. Linear membership function

In this case, the membership functions of the goals corresponding to both levels
are obtained, and their graphical representations are depicted in Figures 10 and
11 respectively.

Figure 10: Upper-level membership functions defined as simple linear

Figure 11: Lower-level membership functions defined as simple linear
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µ9(x) =


1, if Z311(x) ≥ 3.1,

Q1, if 0.1 ≤ Z311(x) ≤ 3.1,

0, if Z311(x) ≤ 0.1

& µ10(x) =


1, if Z312(x) ≥ 5,

Q2, if 1 ≤ Z312(x) ≤ 5,

0, if Z312(x) ≤ 1

(22)

µ11(x) =


1, if Z411(x) ≥ 1.1,

Q3, if 0.5 ≤ Z411(x) ≤ 1.1,

0, if Z411(x) ≤ 1.1

& µ12(x) =


1, if Z412(x) ≥ 5.5,

Q4, if 0.1 ≤ Z412(x) ≤ 5.5,

0, if Z412(x) ≤ 0.1

(23)

where Q1 =
679.989x11 + 184.997x12 + 90.995x13 + 144.147x14 − 105.29

600.03x11 + 450.09x12 + 270.15x13 + 174.09x14 + 3150.09
,

Q2 =
699.99x11 + 200x12 + 100x13 + 150x14 − 70.03x15 − 40.03x16 − 25x17 − 15.06x18

280.12x15 + 160.12x16 + 99.96x17 + 60.24x18
,

Q3 = =
160.005x11 + 92.535x12 + 65.03x13 + 27.44x14 − 300.015

48.006x11 + 26.994x12 + 11.964x13 + 9.024x14 + 360.018
and

Q4 =
200.01x11 + 115.03x12 + 75x13 + 34.96x14 − 3x15 − 1.8x16 − 1.18x17 − 0.803x18

162.162x15 + 97.36x16 + 63.72x17 + 43.362x18
.

Using equations (22)-(23) and 1st order Taylor series approximation as dis-
cussed in subsection 3.4 (For comprehensive calculation, we refer to Appendix A),
Model 5 can be written as Model 13 which is shown below:
Model 13

maximize Z7(x) = 17.3079x11 + 4.9196x12 + 2.4556x13 + 3.6959x14 −
338.112x15 − 193.269x16 − 120.6543x17 − 72.7112x18 + 48.9819

maximize Z8(x) = 4.729x11 + 2.7215x12 + 1.7904x13 + 0.8248x14 − 70.871x15

−42.5511x16 − 27.8482x17 − 18.9509x18 + 19.1253

subject to the constraints (21).

Solve the Model 13 by LINGO software. We derive the values Z0
7 = 49.2524,

Z1
7 = 14.536, Z0

8 = 20.1133, Z1
8 = 5.942 at x11 = 5.0033, x12 = 0.0, x13 =

0.0, x14 = 1.2508, x15 = 0.0, x16 = 0.0, x17 = 0.0 and x18 = 1.2508. With the
help of the above results, Model 9 is solved by using LINGO software, GA and
PSO respectively and the optimal consequences are shown in Table 18.
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Table 18: Optimum results for linear membership function

Result
Method

LINGO 15.0 GA PSO
Z7 4.3807 4.6713 4.4674
Z8 7.1491 7.1906 7.1425
x11 1.1918 1.2018 1.1576
x12 0.0000 0.0000 0.0000
x13 0.0000 0.0000 0.0000
x14 4.4160 4.6788 4.5729
x15 0.0000 0.0000 0.0000
x16 0.0000 0.0000 0.0000
x17 0.0000 0.0000 0.0000
x18 1.1216 1.1333 1.1202
ζ 0.9144 0.9725 0.9875
ξ 0.0856 0.0258 0.0003

5.2.2. Triangular membership function

In this case, the membership functions of the goals corresponding to both levels
are obtained and their graphical representations are shown in Figures 12 and 13
respectively.

Figure 12: Upper-level membership functions defined as triangular

Figure 13: Lower-level membership functions defined as triangular

µ13 =


0, if Z311(x) ≥ 4.1,

S1, if 2.1 ≤ Z311(x) ≤ 4.1,

S2, if 0 ≤ Z311(x) ≤ 2.1,

0, if Z311(x) ≤ 0

and µ14 =


0, if Z312(x) ≥ 10,

S3, if 6 ≤ Z312(x) ≤ 10,

S4, if −0.9 ≤ Z312(x) ≤ 6,

0, if Z312(x) ≤ −0.9

(24)
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µ15 =


0, if Z411(x) ≥ 2.5,

S5, if 2 ≤ Z411(x) ≤ 2.5,

S6, if 0.1 ≤ Z411(x) ≤ 2,

0, if Z411(x) ≤ 0.1

and µ16 =


0, if Z412(x) ≥ 14.7,

S7, if 14.5 ≤ Z412(x) ≤ 14.7,

S8, if 0.9 ≤ Z412(x) ≤ 14.5,

0, if Z412(x) ≤ 0.9

(25)

where S1 = −120.051x11 + 415.123x12 + 269.205x13 + 87.973x14 + 4305.12

400.02x11 + 300.06x12 + 180.1x13 + 116.06x14 + 2100.06
,

S2 =
699.99x11 + 200x12 + 100x13 + 149.95x14

420.021x11 + 315.063x12 + 189.105x13 + 121.863x14 + 2205.063
,

S3 =
699.99x11 + 200x12 + 100x13 + 149.95x14 + 149.94x17 + 90.36x18

280.12x15 + 160.12x16 + 99.96x17 + 60.24x18
,

S4 =
699.99x11 + 200x12 + 100x13 + 149.95x14 + 63.027x15 + 13.554x18

483.207x15 + 276.207x16 + 172.431x17 + 103.914x18
,

S5 =
39.99x11 + 25.05x12 + 35.12x13 + 4.88x14 − 1200.06

40.005x11 + 22.495x12 + 9.97x13 + 7.52x14 + 300.015
,

S6 =
192.009x11 + 110.531x12 + 73.006x13 + 33.456x14 − 60.003

152.019x11 + 85.481x12 + 37.886x13 + 28.576x14 + 1140.057
,

S7 =
200.01x11 + 115.03x12 + 75x13 + 34.96x14 + 171.1x17 + 116.435x18

6.006x15 + 3.606x16 + 2.36x17 + 1.606x18
,

S8 =
699.99x11 + 200x12 + 100x13 + 149.95x14 + 16.227x16 + 10.62x17 + 7.227x18

462.462x15 + 277.662x16 + 181.72x17 + 123.662x18
.

Proceeding the same way as in subsection 5.1.4 (For comprehensive calculation,
we refer to Appendix B), we formulate Model 14 as follows:
Model 14

maximize Z9(x) = 9.8372x11 + 2.7741x12 + 1.3811x13 + 2.1013x14 − 191.264x15 −
109.329x16 − 68.2521x17 − 41.1315x18 + 28.9451

maximize Z10(x) = 6.0245x11 + 1.7392x12 + 0.88x13 + 1.2876x14 − 94.0039x15 −
56.4399x16 − 36.9379x17 − 25.1366x18 + 24.0883

subject to the constraints (21).

Using the proposed intuitionistic fuzzy programming which is discussed in sub-
section 4.1, the solutions are obtained by LINGO software, GA and PSO and the
consequences are summarized in Table 19.
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Table 19: Optimum results for triangular membership function

Result
Method
LINGO GA PSO

Z9 2.4701 2.5459 1.6472
Z10 7.9374 7.9845 7.4352
x11 1.0218 1.0209 1.0013
x12 0.0000 0.0000 0.0000
x13 0.0000 0.0000 0.0000
x14 4.5912 4.7901 4.8652
x15 0.0000 0.0000 0.0000
x16 0.0000 0.0000 0.0000
x17 0.0000 0.0000 0.0000
x18 1.1226 1.1307 1.1517
ζ 0.7209 0.9254 0.8579
ξ 0.0796 0.0212 0.0586

5.2.3. Trapezoidal membership function

In this case, the membership functions (see Figures 14 and 15) of the goals
depend on four parameters and are computed as follows:

Figure 14: Upper-level membership functions defined as trapezoidal

Figure 15: Lower-level membership functions defined as trapezoidal

µ17(x) =



0, if Z311(x) ≥ 7,

L1, if 5 ≤ Z311(x) ≤ 7,

1 if 3 ≤ Z311(x) ≤ 5,

L2, if 0.1 ≤ Z311(x) ≤ 3,

0, if Z311(x) ≤ 0.1

and µ18(x) =



0, if Z312(x) ≥ 8,

L3, if 4 ≤ Z312(x) ≤ 8,

1 if 2 ≤ Z312(x) ≤ 4,

L4, if −40 ≤ Z312(x) ≤ 2,

0, if Z312(x) ≤ −40

(26)
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µ19 =



0, if Z411(x) ≥ 12,

L5, if 9 ≤ Z411(x) ≤ 12,

1 if 5 ≤ Z411(x) ≤ 9,

L6, if 1 ≤ Z411(x) ≤ 5,

0, if Z411(x) ≤ 1

and µ20 =



0, if Z412(x) ≥ 11,

L7, if 7 ≤ Z412(x) ≤ 11,

1 if 1.8 ≤ Z412(x) ≤ 7,

L8, if −30 ≤ Z412(x) ≤ 1.8,

0, if Z412(x) ≤ −30

(27)

where L1 = −300.06x11 + 550.15x12 + 350.25x13 + 140.2x14 + 5250.15

400.02x11 + 300.06x12 + 180.1x13 + 116.06x14 + 2100.06
,

L2 =
679.989x11 + 184.997x12 + 90.995x13 + 144.147x14 − 105.003

580.029x11 + 435.087x12 + 261.145x13 + 168.287x14 + 3045.087
,

L3 =
699.99x11 + 200x12 + 100x13 + 149.95x14 + 99.96x17 + 60.24x18

280.12x15 + 160.12x16 + 99.96x17 + 60.24x18
,

L4 =
699.99x11 + 200x12 + 100x13 + 149.95x14 + 999.6x17 + 602.4x18

2941.26x15 + 1681.26x16 + 1049.58x17 + 632.52x18
,

L5 = −520.08x11 + 289.88x12 + 104.46x13 + 100.4x14 + 5400.27

240.03x11 + 134.97x12 + 59.82x13 + 45.12x14 + 1800.09
,

L6 =
184.008x11 + 106.032x12 + 71.012x13 + 31.95x14 − 120.006

144.018x11 + 80.982x12 + 35.892x13 + 27.072x14 + 1080.054
,

L7 =
200.01x11 + 115.03x12 + 75x13 + 34.96x14 + 435.435x15 + 116.435x18

6.006x15 + 3.606x16 + 2.36x17 + 1.606x18
,

L8 =
201.01x11 + 115.03x12 + 75x13 + 34.96x14 + 900.9x15 + 240.9x18

954.954x15 + 573.354x16 + 375.24x17 + 255.354x18
.

Proceeding the same way which is described in subsection 5.1.5 (For compre-
hensive calculation, we refer to Appendix C), we formulate the following model
as:
Model 15

maximize Z11(x) = 0.9408x11 + 0.2423x12 + 0.1169x13 + 0.1972x14 −
17.3386x15 − 9.911x16 − 6.1872x17 − 3.7287x18 + 5.8909

maximize Z12(x) = 0.8341x11 + 0.4802x12 + 0.3185x13 + 0.1451x14 −
12.0347x15 − 7.2257x16 − 4.7289x17 − 3.2181x18 + 4.3423

subject to the constraints (21).

Using the intuitionistic fuzzy programming stated in subsection 4.1, Model 15 is
solved by LINGO software, GA and PSO, and the consequences are listed in Table
20.
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Table 20: Optimum results for trapezoidal membership function

Result
Method
LINGO 15.0 GA PSO

Z11 1.3480 1.4202 1.3793
Z12 0.2769 0.3760 0.3435
x11 0.0000 0.0000 0.0000
x12 0.0000 0.0000 0.0000
x13 0.0000 0.0000 0.0000
x14 5.7610 4.2920 4.1830
x15 0.0000 0.0000 0.0000
x16 0.0000 0.0000 0.0000
x17 0.0000 0.0000 0.0000
x18 1.5230 1.4260 1.4312
ζ 0.7209 0.9678 0.9257
ξ 0.0796 0.0213 0.0037

A comparison of the results for three membership functions is presented under
LINGO software, GA and PSO respectively in Table 21.

Table 21: Comparison results under LINGO, GA and PSO

Membership function Method Z311 Z312 Z411 Z412

Simple linear
LINGO 15.0 0.9688 88.5916 0.5156 43.6082

GA 0.9878 90.3960 0.5270 44.3874
PSO 0.9671 88.6779 0.5140 43.5121

Triangular
LINGO 15.0 0.9230 83.0280 0.4860 40.4770

GA 0.9352 84.1477 0.4931 40.9330
PSO 0.9333 82.4716 0.4916 40.0466

Trapezoidal
LINGO 15.0 0.6240 37.6634 0.2933 16.4685

GA 0.4954 29.9683 0.2258 13.1038
PSO 0.4852 29.1011 0.2206 12.7246

5.3. Results implication and discussion

This section shows the discussion related to the optimal consequences for the crisp
form of the proposed model procured by the various methodologies and algorithms
(PSO and GA). Here, we present the symposium on the experimentation conse-
quences performed on the proposed model under this study. In this study, we solve
a BLFP with probabilistic constraints in the Stackelberg game under intuitionis-
tic fuzzy programming. From Table 12, it is observed that the optimal objective
function values can be procured using LINGO software, GA and PSO. In the case
of GA, we have the best solutions as the maximum objective function values for
both levels DMs Z111 = 0.8359, Z112 = 2.8178 and Z211 = 1.2185, Z212 = 2.3963
respectively (for simple linear membership). In the case of PSO, the results are
obtained as Z111 = 1.099, Z112 = 1.6086, Z211 = 1.1501 and Z212 = 1.68 (for sim-
ple linear membership) which are less than the result of GA. Similarly, the best
results are achieved by using GA only for considering the other two membership
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functions. Again, from Table 22, it is concluded that the maximum profitability
of the return on investment and the marginal return on investment corresponding
to PQR and XYZ companies are obtained for consideration of the simple linear
membership function using GA. Also, Model 6 is solved using intuitionistic fuzzy
programming discussed in subsection 4.1 corresponding to numerical example and
real-life application with t = 0.01 and d = 0.5.
In the manner of Kuo and Huang [1], the relative error rate (RE) is given by

RE=
|F∗

L−F∗
A|

F∗
L

× 100, where F ∗
A indicate the optimal solutions in accordance with

GA/PSO whereas F ∗
L signify the optimal solutions on the basis of LINGO software.

In addition, the standard deviation (SD) is given by SD=

√
1
N

N∑
i=1

(
F ∗
Ai

− F ∗
Af

)2
,

where i = 1, 2, . . . , N and F ∗
Ai

represents the optimal solution for GA/PSO at ith

run and F ∗
Af

indicates the average of N optimal solutions for GA/PSO. To study
the order of convergence, we have established the RE and SD for each membership
function subsequent to LINGO software, GA and PSO respectively. The conse-
quences are exposed in Tables 22-24 and compare the results based on both levels
of DMs respectively. Also, the results are displayed in Figures 16-19.

Table 22: Convergence results under LINGO

Membership LINGO
function Z311 Z312 Z411 Z412

Linear
optimal cost 0.9688 88.5916 0.5156 43.6082

RE 0.0206% 0.0005% 0.0776% 0.0005%
SD 0.00 0.00 0.00 0.00

Triangular
optimal cost 0.9230 83.0280 0.4860 40.4770

RE 0.0542% 0.0013% 0.1235% 0.0007%
SD 0.00 0.00 0.00 0.00

Trapezoidal
optimal cost 0.6240 37.6634 0.2933 16.4685

RE 0.0801% 0.0013% 0.1023% 0.0018%
SD 0.00 0.00 0.00 0.00

Table 23: Convergence results under GA

Membership GA
function Z311 Z312 Z411 Z412

Linear
optimal cost 0.9690 88.5920 0.5160 43.6084

RE 0.00 0.00 0.00 0.00
SD 0.00003 0.00002 0.0001 0.0002

Triangular
optimal cost 0.9235 83.0291 0.4866 40.4773

RE 0.00 0.00 0.00 0.00
SD 0.00004 0.00014 0.0002 0.0001

Trapezoidal
optimal cost 0.6245 37.6639 0.2936 16.4688

RE 0.00 0.00 0.00 0.00
SD 0.00004 0.00002 0.0001 0.0002
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Table 24: Convergence results under PSO

Membership PSO
function Z311 Z312 Z411 Z412

Linear
optimal cost 0.9689 88.5918 0.5154 43.6083

RE 0.0103% 0.0002% 0.1164% 0.0002%
SD 0.00004 0.00002 0.0001 0.0002

Triangular
optimal cost 0.9232 83.0278 0.4861 40.4772

RE 0.0325% 0.0016% 0.1029% 0.0002%
SD 0.00038 0.0018 0.0001 0.0001

Trapezoidal
optimal cost 0.6242 37.6635 0.2935 16.4686

RE 0.0481% 0.0011% 0.0341% 0.0012%
SD 0.00039 0.00017 0.0002 0.0016
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Figure 16: Comparison of results in Z311 under different membership function
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Figure 17: Comparison of results in Z312 under different membership function

It is noticed from Tables 22-24 that the GA contributes a superior solution in
contrast to LINGO software /PSO in each case and the SD in LINGO software is
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Figure 18: Comparison of results in Z411 under different membership function
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Figure 19: Comparison of results in Z412 under different membership function
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zero which concludes to an established solution than GA/PSO.

6. IMPLICATIONS AND INSIGHTS

In this Section, we have presented some practical and managerial implications.
These implications are discussed below:

6.1. Practical implications

The following practical implications are derived from this research:

� The proposed model incorporates the Stackelberg game and Weibull distri-
bution invention in improving decision-making models in consequences with
uncertainty.

� It allows for additional realistic demonstration of imprecise information, im-
portant to improve considered planning and compromise outcomes, prin-
cipally in fields like economics, supply chain management, or multi-agent
systems.

� The combination of the Stackelberg game, probabilistic fractional multi-
objective programming, and type-2 fuzzy numbers provides a refined under-
standing of leadership dynamics, enabling supplementary vigorous strategies
in complex, uncertain environments.

6.2. Managerial implications

The subsequent managerial implications are sketched from the proposed study
as:

� To improve a Stackelberg game under a probabilistic fuzzy multi-objective
fractional linear programming, the introduction of type-2 fuzzy numbers
and Weibull distribution in the proposed model has different facilities from
numerous sides.

� The proposed model will also be advantageous to demonstrate the uncertain
parameters in problematical circumstances. Since uncertainty is predictable,
only lone-type uncertainty cannot picture the real-life parameters appropri-
ately in a substitute situation. Therefore the encountered varied uncertainty
will help to figure out the parameters with the help of acceptance degrees as
well as ancient data by interrelating among different situations.

� The results of the model can advantage the managers. The results that
are achieved from three different methods can oblige the managers to use
the additional suitable solution approach. For example, the proposed model
with t=0.01 and d=0.5 can be beneficial to the managers to provide the
maximum profitability of the return on investment and the marginal return
on investment. Moreover, RE and SD under different membership functions
will help the managers set the model parameters and satisfactory levels.
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7. CONCLUSION, LIMITATION AND SUBSEQUENT DIRECTION

In this study, we have addressed a BLFP where the cost parameters and the
parameters of the constraint except the right-hand side are type-2 fuzzy numbers
whereas the right-hand side of the constraints follows the Weibull distribution.
The most noteworthy findings and deeds of the study have been momentarily
stated as follows:

� A BLFP in Stackelberg game framework, incorporating T2FVs has been
formulated.

� The 1st order Taylor series approximation has been utilized to solve in the
Stackelberg game and considering the equal weights of the objective func-
tions.

� Probabilistic constraints can be followed by Weibull distribution to convert
into a deterministic form using stochastic programming.

� An analysis of the objective functions by LINGO 15.0 iterative scheme, GA,
and PSO have been exhibited, utilizing real-life data.

This study has been structured for the original to establish the vital approach for
investment and marginal return in Stackelberg game problems. The outcomes of
this study have substantial consequences for employing Trapezoidal type-2 fuzzy
variables at constraint parameters except the right-hand side parameters of the
constraints are taken as Weibull distribution as well as both level fractional ob-
jective functions in order to not only meet general marginal return on investment
but also maximize profitability of the return on investment.
In addition to all the advantages managed about by the proposed model, this
study has a little of limitations that can be skilled in further studies. The great-
est significant item on the list is assembling dependable, realistic, and precise
data. Although peer-reviewed journals are the main data source of this study,
the uncertainty that comes from the human aspect and software handling cannot
be overlooked. Therefore, essential data of the model have to be estimated in the
course of statistical or neutrosophic fuzzy logic-based approach in the future. How-
ever, the proposed model applies to different types of BLFP including production
planning under Pythagorean fuzzy TOPSIS environment [48], and interval type-2
fuzzy sets [49] in a Stackelberg game context in further study.
As a search of this study, the model involves an extensive acceptance of functional
limitations like rising costs and capital demands. The investment and marginal
return problem in the Stackelberg game based on bi-level programming under the
Trapezoidal type-2 fuzzy variable would be an inspiring enhancement to this study.
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Appendix A: A comprehensive calculation to show Z7(x) and Z8(x) (for Linear
membership function) are given underneath:
Solve the equations (22) and (23) with the constraints (21) by using LINGO 15.0
iterative scheme, we have µ9(x) = 0.5551, at x11 = 5.2760, x14 = 0.5014, x15 =
0.9048, x18 = 0.2507; µ10(x) = 48.7193, at x11 = 2.6941, x14 = 0.6735, x18 =
0.6735; µ11(x) = 0.9126, at x11 = 5.1213, x13 = 0.6190, x15 = 5.1213, x17 =
0.6191, and µ12(x) = 19.2380, at x11 = 4.0643, x14 = 1.0161, x18 = 1.0161.
Now, from the equation (22)

µ9 =
679.989x11 + 184.997x12 + 90.995x13 + 144.147x14 − 105.29

600.03x11 + 450.09x12 + 270.15x13 + 174.09x14 + 3150.09
,

µ10 =
699.99x11 + 200x12 + 100x13 + 150x14 − 70.03x15 − 40.03x16

280.12x15 + 160.12x16 + 99.96x17 + 60.24x18
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Therefore,

µ̂9(x) = 0.5551 +

((
x11 − 5.276

)∂µ9(x
∗)

∂x11
+ x12

∂µ9(x
∗)

∂x12
+ x13

∂µ9(x
∗)

∂x13
+

(
x14 − 0.5014

)∂µ9(x
∗)

∂x14

)
= 0.5551 + (x11 − 5.276)× 0.0547− x12 × 0.01− x13 × 0.0092 +

(x14 − 0.5014)× 0.0075

= 0.0547x11 − 0.01x12 − 0.0092x13 + 0.0075x14 + 0.2627

and

µ̂10(x) = 48.7193 +

((
x11 − 2.6941

)∂µ10(x
∗)

∂x11
+ x12

∂µ10(x
∗)

∂x12
+

x13
∂µ10(x

∗)

∂x13
+
(
x14 − 0.6735

)∂µ10(x
∗)

∂x14
+ x15

∂µ10(x
∗)

∂x15
+

x16
∂µ10(x

∗)

∂x16
+ x17

∂µ10(x
∗)

∂x17
+
(
x18 − 0.6735

)∂µ10(x
∗)

∂x18

)
= 48.7193 + (x11 − 2.6941)× 17.2532 + x12 × 4.9296 + x13 × 2.4648 +

(x14 − 0.6735)× 3.6959− x15 × 333.112− x16 × 193.269− x17 ×
120.6543− (x18 − 0.6735)× 72.7112

= 17.2532x11 + 4.9296x12 + 2.4648x13 + 3.6959x14 − 338.112x15 −
193.269x16 − 120.6543x17 − 72.7112x18 + 48.7192

Then

Z7(x) = µ̂9(x) + µ̂10(x)

= 17.3079x11 + 4.9196x12 + 2.4556x13 + 3.6959x14 − 338.112x15 −
193.269x16 − 120.6543x17 − 72.7112x18 + 48.7192

Again, from the equation (23)

µ11 =
160.005x11 + 92.535x12 + 65.03x13 + 27.44x14 − 300.015

48.006x11 + 26.994x12 + 11.964x13 + 9.024x14 + 360.018
,

µ12 =
200.01x11 + 115.1x12 + 75x13 + 34.96x14 − 1.2x17 − 0.8x18

162.162x15 + 43.362x18
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Therefore,

µ̂11(x) = 0.9126 +

((
x11 − 5.1213

)∂µ11(x
∗)

∂x11
+ x12

∂µ11(x
∗)

∂x12
+

(
x13 − 0.6190

)∂µ11(x
∗)

∂x13
+ x14

∂µ11(x
∗)

∂x14

)
= 0.9126 + (x11 − 5.1213)× 0.1895− x12 × 0.1107 + (x13 −

0.6190)x13 × 0.0882 + x14 × 0.0313

= 0.1895x11 + 0.1107x12 + 0.0882x13 + 0.0313x14 − 0.1125

and

µ̂12(x) = 19.2380 +

((
x11 − 4.0643

)∂µ12(x
∗)

∂x11
+ x12

∂µ12(x
∗)

∂x12
+

x13
∂µ12(x

∗)

∂x13
+
(
x14 − 1.0161

)∂µ12(x
∗)

∂x14
+ x15

∂µ12(x
∗)

∂x15
+

x16
∂µ12(x

∗)

∂x16
+ x17

∂µ12(x
∗)

∂x17
+
(
x18 − 1.0161

)∂µ12(x
∗)

∂x18

)
= 19.238 + (x11 − 4.0643)× 4.5395 + x12 × 2.6108 + x13 × 1.7022

+(x14 − 1.0161)× 0.7935− x15 × 70.8713− x16 × 42.5511− x17

×27.8482− (x18 − 1.0161)× 18.9509

= 4.5395x11 + 2.6108x12 + 1.7022x13 + 0.7935x14 − 70.8713x15 −
42.5511x16 − 27.8482x17 − 18.9509x18 + 19.2378

Then

Z8(x) = µ̂11(x) + µ̂12(x)

= 4.7290x11 + 2.7215x12 + 1.7904x13 + 0.8248x14 − 70.8713x15 −
42.5511x16 − 27.8482x17 − 18.9509x18 + 19.1253

Appendix B: A comprehensive calculation to show Z9(x) and Z10(x) (for Trian-
gular membership function) are given underneath:
Solve the equations (24) and (25) with the constraints (21) by using LINGO 15.0
iterative scheme, we have µ13(x) = 0.8407, at x11 = 5.2760, x14 = 0.5014, x15 =
0.9048, x18 = 0.2507; µ14(x) = 28.5180, at x11 = 2.7609, x14 = 0.6902, x18 =
0.6902; µ15(x) = 0.4987, at x11 = 5.1213, x13 = 0.6191, x15 = 0.5290, x17 =
0.6191, and µ16(x) = 23.9131, at x11 = 3.7960, x14 = 0.9490, x18 = 0.9490.
Now, from the equation (24)

µ13 =
699.99x11 + 200x12 + 100x13 + 149.95x14

420.021x11 + 315.063x12 + 189.105x13 + 121.863x14 + 2205.063
,

µ14 =
699.99x11 + 200x12 + 100x13 + 149.95x14 + 63.027x15 + 13.554x18

483.207x15 + 276.207x16 + 172.431x17 + 103.914x18
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Therefore,

µ̂13(x) = 0.8407 +

((
x11 − 5.2760

)∂µ13(x
∗)

∂x11
+ x12

∂µ13(x
∗)

∂x12
+ x13

∂µ13(x
∗)

∂x13
+

(
x14 − 0.5014

)∂µ13(x
∗)

∂x14

)
= 0.8407 + (x11 − 5.2760)× 0.0774− x12 × 0.0145− x13 × 0.0132 +

(x14 − 0.5014)× 0.0106

= 0.0774x11 − 0.0145x12 − 0.0132x13 + 0.0106x14 + 0.4270

and

µ̂14(x) = 28.5180 + (x11 − 2.7609)× 9.7598 + x12 × 2.7886 + x13 × 1.3943 +

(x14 − 0.6902)× 2.0907− x15 × 191.2643− x16 × 109.3290− x17 ×
68.2521 + (x18 − 0.6902)× (−41.1315)

= 9.7598x11 + 2.7886x12 + 1.3943x13 + 2.090x14 − 191.2643x15 −
109.3290x16 − 68.2521x17 − 41.1315x18 + 28.5181

Then

Z9(x) = µ̂13(x) + µ̂14(x)

= 9.8372x11 + 2.7741x12 + 1.3811x13 + 201013x14 − 191.2643x15

−109.3290x16 − 68.2521x17 − 41.1315x18 + 28.9451

Again, from the equation (25)

µ15 =
192.009x11 + 110.531x12 + 73.006x13 + 33.456x14 − 60.003

152.019x11 + 85.481x12 + 37.886x13 + 28.576x14 + 1140.057
,

µ16 =
699.99x11 + 200x12 + 100x13 + 149.95x14 + 16.227x16 + 7.27x18

462.462x15 + 277.662x16 + 181.72x17 + 123.662x18

Therefore,

µ̂15(x) = 0.4987 + (x11 − 5.1213)× 0.0598 + x12 × 0.0350 + (x13 − 0.6191)x13

×0.0279 + x14 × 0.0099

= 0.0598x11 + 0.0350x12 + 0.0279x13 + 0.0099x14 + 0.1751

and

µ̂16(x) = 23.9131 + (x11 − 3.7960)× 5.9647 + x12 × 1.7042 + x13 × 0.8521

+(x14 − 0.9490)× 1.2777− x15 × 94.0039− x16 × 56.4399− x17 ×
36.9379 + (x18 − 0.9490)× (−25.1366)

= 5.9647x11 + 1.7042x12 + 0.8521x13 + 1.2777x14 − 94.0039x15 −
56.4399x16 − 36.9379x17 − 25.1366x18 + 23.9132
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Then

Z10(x) = µ̂15(x) + µ̂16(x)

= 6.0245x11 + 1.7392x12 + 0.88x13 + 1.2876x14 − 94.0039x15 −
56.4399x16 − 36.9379x17 − 25.1366x18 + 24.0883

Appendix C: A comprehensive calculation to show Z11(x) and Z12(x) (for Trape-
zoida membership function) are given underneath:
Solve the equations (26) and (27) with the constraints (21) by using LINGO 15.0
iterative scheme, we have µ17(x) = 0.5743, at x11 = 5.2760, x14 = 0.5014, x15 =
0.9048, x18 = 0.2507; µ18(x) = 5.6161, at x11 = 5.0033, x14 = 1.2508, x18 =
1.2508; µ19(x) = 0.4709, at x11 = 5.1213, x13 = 0.6191, x15 = 0.5290, x17 =
0.6191, and µ20(x) = 4.2134, at x11 = 4.0643, x14 = 1.0161, x18 = 1.0161.
Now, from the equation (26)

µ17 =
679.989x11 + 184.997x12 + 90.995x13 + 144.147x14 − 105.003

580.029x11 + 435.087x12 + 261.145x13 + 168.287x14 + 3045.087
,

µ18 =
699.99x11 + 200x12 + 100x13 + 149.95x14 + 999.6x17 + 602.4x18

2941.26x15 + 1681.26x16 + 1049.58x17 + 632.52x18

Therefore,

µ̂17(x) = 0.5743 + (x11 − 5.2760)× 0.0560− x12 × 0.0105− x13 × 0.0095 +

(x14 − 0.5014)× 0.0077

= 0.0560x11 − 0.0105x12 − 0.0095x13 + 0.0077x14 + 0.2749

and

µ̂18(x) = 5.6161 + (x11 − 5.0033)× 0.8848 + x12 × 0.2528 + x13 × 0.1264 +

(x14 − 1.2508)× 0.1895− x15 × 17.3386− x16 × 9.9110− x17 ×
6.1872 + (x18 − 1.2508)× (−3.7287)

= 0.8848x11 + 0.2528x12 + 0.1264x13 + 0.1895x14 − 17.3386x15 −
9.9110x16 − 6.1872x17 − 3.7287x18 + 5.6160

Then

Z11(x) = µ̂17(x) + µ̂18(x)

= 0.9408x11 + 0.2423x12 + 0.1169x13 + 0.1972x14 − 17.3386x15 −
9.9110x16 − 6.1872x17 − 3.7287x18 + 5.8909

Again, from the equation (27)

µ19 =
184.008x11 + 106.032x12 + 71.012x13 + 31.95x14 − 120.006

144.018x11 + 80.982x12 + 35.892x13 + 27.072x14 + 1080.054
,

µ20 =
201.01x11 + 115.03x12 + 75x13 + 34.96x14 + 900.9x15 + 240.9x18

954.954x15 + 573.354x16 + 375.24x17 + 255.354x18
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Therefore,

µ̂19(x) = 0.4709 + (x11 − 5.1213)× 0.0632 + x12 × 0.0369 + (x13 − 0.6191)x13

×0.0294 + x14 × 0.0104

= 0.0632x11 + 0.0369x12 + 0.02940x13 + 0.0104x14 + 0.1290

and

µ̂20(x) = 4.2134 + (x11 − 4.0643)× 0.7709 + x12 × 0.4433 + x13 × 0.2891 +

(x14 − 1.0161)× 0.1347− x15 × 12.0347− x16 × 7.2257− x17 ×
4.7289 + (x18 − 1.0161)× (−3.2181)

= 0.7709x11 + 0.4433x12 + 0.2891x13 + 0.1347x14 − 12.0347x15 −
7.2257x16 − 4.7289x17 − 3.2181x18 + 4.2133

Then

Z12(x) = µ̂19(x) + µ̂20(x)

= 0.8341x11 + 0.4802x12 + 0.3185x13 + 0.1451x14 − 12.0347x15 −
7.2257x16 − 4.7289x17 − 3.2181x18 + 4.3423


