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Abstract: This study intends to present a Stackelberg game model for design of the
fractional type-2 fuzzy programming. In achieving this aspiration, we develop a proba-
bilistic fuzzy multi-objective fractional linear programming where the entire parameters
are of type-2 fuzzy numbers apart from the right-hand side of the constraints are follow
Weibull distribution. In the projected approach, the membership function allied with each
objective function is generated by using the first-order Taylor series approximation and
converted into a single objective function by assuming the weights of the objective func-
tions are equal. Type conversion is made in two ways by existing methods, and using
stochastic programming, the probabilistic constraints are transformed into a deterministic
form. The accessible model incorporates the non-linear programming viewpoint of the
decision-maker and is solved with the help of intuitionistic fuzzy programming (IFS). A
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comparison study on the optimum results by genetic algorithm (GA) and particle swarm
optimization (PSO) with the LINGO 15.0 iterative scheme is offered to resolve the created
bi-level programming problem (BLPP) in the course of the Stackelberg game. To make
obvious the feasibility of the projected representation and solution methodology, realistic
data are measured and results are presented through several discussions.

Keywords: Bi-level fractional programming, Taylor series, GA and PSO, type-2 fuzzy
number, Stackelberg game, intuitionistic fuzzy programming.

MSC: 91A10.

1. INTRODUCTION

Bi-level programming problem (BLPP) has a hierarchical association flanked by up-
per and lower levels. It is urbanized for decentralized scheduling systems in which the
upper level is designated as the leader and the lower level belongs to the objective of the
follower. Most of the previous studies [1], [2], [3], [4] functional to build the paramount
assessment with the leader and follower hierarchical dealings in an association. In a hier-
archical association, the Stackelberg game played a significant issue. H. von Stackelberg
[5] first originated it, as an economist to explain a non-cooperative assessment problem.
In this game, the leader has the potential to employ his/her assessment of the followers.
Roy [6] solved a Stackelberg game using a fuzzy programming technique and the solu-
tion has been compared with the Kuhn-Tucker transformation procedure. In recent times,
Roy and Maiti [17] presented an optimal solution for the Stackelberg game involving a
stochastic programming approach.

Zadeh [8] first initiated the type-2 fuzzy set (T2FS) in addition to the type-1 fuzzy set
(T1FS). The membership rank of a T2FS is a fuzzy number followed by the interval [0,1],
but the membership rank of a T1FS is a real number in [0,1]. In concrete applications,
suitable to requiring of a key in order, clamor in data etc., a foremost problem happens
to establish the precise membership ranks and consequently, to prepare, the problem in
requisites of TIFS.

At the same time as T2FS has prepared owing to fuzziness in the membership func-
tion. Mizumoto and Tanaka [9] designed consistent operations on T2FS. Afterward, a
group of hypothetical research works completed on the belongings of T2FS [10], [12],
[13] and its numerous applications [14], [15], [16], [17], [18], [19] have been developed.

Due to the large measurable intricacy of a T2FS [20], the T2FS is considered an in-
terval T2FS. In T2FS defuzzification procedure, are categories of two steps such as type
lessening and defuzzification proper. In the type-lessening process, a T2FS is condensed
into a type-reduced set (TRS). After that, TRS be able to effortlessly resolve by several
recognized defuzzify methods, say the centroid method. Kernik and Mendal [21] mea-
sured a centroid-type lessening procedure to convert interval T2FS towards the region
of T1FS. Many researchers contemplated exclusively on interval secondary membership
functions [22], [23], [24] for which an increasing number of implementations are be-
ing urbanized [25], [26], [27]. Karmakar et al. [28] solve a type-2 fuzzy matrix games
and applied to biogas-plant implementation problem. Dong and Wan [29] developed a
matrix game with type-2 interval-valued intuitionistic fuzzy payoffs and discussed some
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Hamacher aggregation operators for these fuzzy payoffs. Furthermore, Seikh and Dutta
[30] designed matrix games with picture fuzzy payoffs and solve by using a non-linear
mathematical approach and applied to cyberterrorism attack.

Application Type-2 fuzzy environments are precious as it allow for additional refined
modeling of uncertainty by integrating uncertainty not only in the membership function
but also in the membership grades themselves. Other generalizations of fuzzy sets may
not receive this level of complexity, creating Type-2 fuzzy environments mainly useful
for confident applications demanding higher reliability in uncertainty modeling. In uncer-
tainty supposition, randomness and fuzziness are the two courses of uncertainty. Based
on these courses, fuzzy programming has been developed by the parameters as fuzzy sets
while stochastic programming has been considered by the parameters as random vari-
ables. Due to versatility, Weibull distribution is extensively used in reliability and life
data investigation.

A proportion of two non-linear programming functions is to be maximized or mini-
mized. In former implementations, the objective function entangles exceeding one pro-
portion of functions. Proportion improvement problems are usually called fractional pro-
gramming (FP). In literature [31], [32], the multi-objective linear fractional programming
problem (MOLFP) is measured. Yano and Sakawa [33] designed a fuzzy approach for
solving MOLFP. Pal et al. [34] studied a goal programming procedure for a fuzzy multi-
objective linear fractional programming problem (FMOLFP). However, many procedures
are accessible for solving FMOLFP in the literature [35]. An outline of the research con-
tributions by numerous authors in this province is provided in Table 1.

Table 1: A briefly reviewed literature on the proposed study
References Nature of Problem Environment Additional Function No. of Objectives

Anandalingam and Apprey [37] – Fuzzy Multi-level Single
Barkat et al. [22] – T2FS Interval Single

Shimizu and Aiyushi [38] Non-cooperative Fuzzy Bi-level Two
Kumbasar [28] – T2FS Fractional Single

Maiti and Roy [2] Cooperative Fuzzy Multi-choice Two
Maiti and Roy [3] Non-cooperative IFS Ranking Two

Ren and Wang [39] – Fuzzy random Bi-level Two
Roy and Maiti [17] Non-cooperative T2FS Bi-level Two
Roy and Maiti [40] Non-cooperative T2FS Bi-level Two

Sakawa and Katagiri [41] – Fuzzy Fuzzy random Single
Wang et al. [26] Non-cooperative T2FS Bi-level Two

Wang and Chen [27] – T2FS Interval Single
Youness et al. [42] – Fuzzy Fractional Single

Our proposed model Non-cooperative T2FS Fractional Multi

In what follows, the most notable contributions of this study are outlined:
• By Kahraman et al. [36] approach, type-2 fuzzy number is transformed to crisp

value.
• Right-hand side parameters of the constraints are taken as Weibull distribution.
• Based on the Taylor series approximation, fractional multi-objective functions are

converted to a single objective.
• IFS is applied established on membership function as exponential and non-



684 S. K. Maiti et al. / Fractional Programming for Stackelberg Game

membership function as parabolic.
• A computational experiment among LINGO, GA and PSO is presented.
In this study, we consider a bi-level linear fractional programming (BLFP) for the

Stackelberg game with T2FVs. Kahraman et al. [36] defuzzification approach is applied
for T2FVs. In BLFP, each objective function is associated with the membership function
in each level and converted into a fractional membership function. Using the first-order
Taylor series approximation, multiple fractional membership functions are reduced into
a single objective function corresponding to each level by considering an equal weight.
Right-hand side parameters of the constraints are obtained into crisp numbers by apply-
ing Weibull distribution. Subsequently, using stochastic programming, the probabilistic
constraints are transformed into deterministic form and the corresponding crisp problem
becomes a non-linear problem and is solved by LINGO 15.0 iterative scheme, GA and
PSO respectively, and then compared the results.

The contribution of this study is to develop the Stackelberg game under a type-2 fuzzy
and probabilistic environment [43], [44]. The proposed work incorporated Kahraman et
al. [36] defuzzification process for T2FVs, first-order Taylor series approximation for
a linear form of membership functions, stochastic programming for probabilistic con-
straints, and intuitionistic fuzzy programming for designing a single objective problem.
Some enviable properties and special cases of these T2FVs are also investigated to reduce
the crisp form of T2FVs. In addition, we define three types of membership functions
simple linear, triangular, and trapezoidal with their meticulous cases. At long last, the ap-
plication of the proposed model is studied in multi-objective Stackelberg game problems
and developed a qualified study with these membership functions by using LINGO 15.0
iterative scheme, GA and PSO respectively.

The rest of this paper is organized as follows: Section 2 introduces some basic knowl-
edge and concepts of type-1 and type-2 fuzzy sets. In Section 3, the formulation of BLFP
for the Stackelberg game is presented. The solution procedure is discussed in Section
4, and the effectiveness of the intuitionistic fuzzy programming is illustrated by a nu-
merical example in Section 5. Implications and insights are displayed in Section 6. The
conclusion, limitations, and subsequent direction are described in Section 7.

2. PRELIMINARIES

Here, we recall some basic knowledge of type-1 and type-2 fuzzy sets, which will be
required for our subsequent developments.

2.1. T1FS

Definition 1. [11] A T1FS, denoted as Ã1, is defined on X, the universal set. It is consti-
tuted by Ã1 = (x,µÃ1

(x)) : x ∈ X and µÃ1
: X → [0,1] is the membership function. The

membership function µÃ1
(x) assigns a value of 0 if x /∈ Ã1 and a value of 1 if x ∈ Ã1.

2.2. T2FS

Definition 2. [12] A T2FS ˜̃D is described as a set of pairs ((x,r),µ ˜̃D(x,r)) rewarding the
conditions: ∀x in the domain X, the universal set and all r in the subset Mx of the interval
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[0,1]; µ ˜̃D(x,r), type-2 membership function satisfies 0 ≤ µD̃(x,r) ≤ 1. Here, Mx acts
for the primary membership function of x, and µ ˜̃D(x) acts for the secondary membership
function respectively. It ensures that ∀r in Mx corresponds to the point x, the primary
membership grades. The province of µ ˜̃D(x) is denoted by X. Alternatively, ˜̃D can be

expressed as the integral of µ ˜̃D(x) over x: ˜̃D=
∫

x∈X µ ˜̃D(x)/x=
∫

x∈X

[∫
r∈Mx

µ ˜̃D(x,r)/r

]
/x.

Remark 3. If the value µ ˜̃D(x,r) is equal to 1, ∀x,r, at that time
tildeD̃ is referred to as an interval type-2 fuzzy set (IT2FS).

Definition 4. The uncertainty associated with the primary membership of an IT2FS is
represented by the footprint of uncertainty (FOU), which is a bounded region. The FOU
is formed by combining all the primary memberships, denoted as Mx. The upper and
lower membership functions are represented by µ ˜̃D(x) and µ ˜̃D

(x), respectively. Thus, the
primary memberships Mx can be expressed as the interval [µ ˜̃D

(x),µ ˜̃D(x)].

Example 5. Consider ˜̃D be a type-2 fuzzy variable (T2FV) in which X = {6,8,9} and
Mx, the primary membership functions of X are given by M6 = {0.3,0.5,0.7}, M8 =
{0.4,0.8,0.9} and M9 = {0.1,0.7,0.8} separately. At that moment, µ̃ ˜̃D(6), the sec-
ondary membership function of 6 and interpreted by µ̃ ˜̃D(6) = (0.4/0.3)+(0.7/0.5)+

(1/0.7)∼
(

0.3 0.5 0.7
0.4 0.7 1

)
Here, µ̃ ˜̃D(6,0.3) = 0.4 characterizes that point 6, secondary membership grade can have

the point 0.4, primary membership grade. Thus, ˜̃D incorporates point 6 with the member-
ship: (

0.3 0.5 0.7
0.4 0.7 1

)
which represents a RFV.

Similarly, µ̃D̃(8) = (1/0.4)+(0.4/0.8)+(0.5/0.9)∼
(

0.4 0.8 0.9
1 0.4 0.5

)
µ̃D̃(9) = (0.4/0.1)+(1/0.7)+(0.6/0.8)∼

(
0.1 0.7 0.8
0.4 1 0.6

)

Consequently, ˜̃D can be written as ˜̃D =


6, together with membership µ̃ ˜̃D(6,r),
8, together with membership µ̃ ˜̃D(8,r),
9, together with membershipµ̃ ˜̃D(9,r).

Example 6. Let us consider ˜̃
ξ be a T2FV, defined as:

˜̃
ξ =


5, together with possibility (0.2,0.5,0.6,0.8),
6, together with possibility (0.1,0.3,0.4,0.7),
7, together with possibility (0.3,0.7,0.8,0.9).
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As µ ˜̃
ξ
(5,s) is a trapezoidal RFV, we have µ ˜̃

ξ
(5,s) =



0, if s < 0.2,
s−0.2

0.3 , if 0.2 ≤ s ≤ 0.5,
1, if 0.5 ≤ s ≤ 0.6,
0.8−s

0.2 , if 0.6 ≤ s ≤ 0.8,
0, if s > 0.8

µ ˜̃
ξ
(6,s) =



0, if s < 0.1,
s−0.1

0.2 , if 0.1 ≤ s ≤ 0.3,
1, if 0.3 ≤ s ≤ 0.4,
0.7−s

0.3 , if 0.4 ≤ s ≤ 0.7,
0, if s > 0.7

and µ ˜̃
ξ
(7,s) =



0, if s < 0.3,
s−0.3

0.4 , if 0.3 ≤ s ≤ 0.7,
1, if 0.7 ≤ s ≤ 0.8,
0.9−s

0.1 , if 0.8 ≤ s ≤ 0.9,
0, if s > 0.9

The graphical representation of ˜̃
ξ is depicted in Figure 1.

Figure 1: Type-2 fuzzy variable ˜̃
ξ

Definition 7. [12] A trapezoidal interval type-2 fuzzy variable (TrIT2FV) ˜̃A can be writ-
ten as ˜̃A=

(
(au

1,a
u
2,a

u
3,a

u
4;H1(Au),H2(Au)),(al

1,a
l
2,a

l
3,a

l
4;H1(Al),H2(Al))

)
, where au

1,a
u
2,a

u
3

and au
4 are real numbers associated with the upper membership function taking the mem-

bership values 0, H1(Au), H2(Au) and 0 respectively, whereas al
1,a

l
2,a

l
3,a

l
4 are allied with

the inferior membership function captivating the membership values 0, H1(Al),H2(Al)
and 0 respectively.

So the FOU of ˜̃A is characterized in Figure 2.

2.3. Arithmetic operations on T2FS

Let ˜̃A = (Au,Al) =
(
(au

11,a
u
12,a

u
13,a

u
14;H1(Au),H2(Au)),(al

11,a
l
12,a

l
13,a

l
14;H1(Al),

H2(Al))
)

and ˜̃B = (Bu,Bl) =
(
(bu

11,b
u
12,b

u
13,b

u
14;H1(Bu),H2(Bu)),(bl

11,b
l
12,b

l
13,

bl
14;H1(Bl),

H2(Bl))
)

be two TrIT2FVs. Then the arithmetic operations are as follows:
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Figure 2: FOU of ˜̃A

Addition: The addition of TrIT2FVs is given by

˜̃A+ ˜̃B = (Au,Al)+(Bu,Bl)

=
(
(au

11 +bu
11,a

u
12 +bu

12,a
u
13 +bu

13,a
u
14 +bu

14;H1(Au)+H2(Bu)

−H1(Au).H2(Bu)),(al
11 +bl

11,a
l
12 +bl

12,a
l
13 +bl

13,a
l
14 +bl

14;
H1(Al)+H2(Bl)−H1(Al).H2(Bl))

)
.

Subtraction: The subtraction of TrIT2FVs is given by

˜̃A− ˜̃B = (Au,Al)− (Bu,Bl)

=
(
(au

11 −bl
11,a

u
12 −bl

12,a
u
13 −bl

13,a
u
14 −bl

14;H1(Au)+H2(Bl)−

H1(Au).H2(Bl)),(al
11 −bu

11,a
l
12 −bu

12,a
l
13 −bu

13,a
l
14 −bu

14;
H1(Al)+H2(Bu)−H1(Al).H2(Bu))

)
.

Multiplication by a scalar quantity: The multiplication of ˜̃A by k (> 0), is given by

k ˜̃A = k(Au,Al)

=
(
(kau

11,kau
12,kau

13,kau
14;1− (1−H1(Au))k,1− (1−H2(Bu))k),

(kbu
11,kbu

12,kbu
13,kbu

14;1− (1−H1(Al))k,1− (1−H2(Bl))k))
)
.

3. MATHEMATICAL MODEL

In this study, we consider the following bi-level fractional programming with proba-
bilistic constraints in the Stackelberg game involving type-2 fuzzy numbers.
Model 1

maximize Z1r j(x) =

n
∑
j=1

(
˜̃a1r jx j +

˜̃b1r j
)

n
∑
j=1

(
˜̃c1r jx j +

˜̃d1r j
) , r = 1,2, . . . , l
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maximize Z2r j(x) =

n
∑
j=1

(
˜̃a2r jx j+ ˜̃b2r j

)
n
∑
j=1

(
˜̃c2r jx j +

˜̃d2r j
) , r = 1,2, . . . , l

subject to Pr

( n

∑
j=1

˜̃Ai jx j ≤ qi

)
≥ 1− γi, i = 1,2, . . . ,m

x j ≥ 0, ∀ j.

where 0 < γi < 1, ∀ i are the specified probabilities. The coefficients ˜̃agr j,
˜̃bgr j, ˜̃cgr j,

˜̃dgr j

and ˜̃Ai j, ∀ i, j, r are all type-2 fuzzy numbers, and only qi, ∀ i is a random variable follows
Weibull distribution. Also, Z1r j and Z2r j are the (r j)th objective functions corresponding
to the upper-level and lower-level DMs respectively.

3.1. Defuzzification of T2FV

In this section, we present a defuzzification procedure for T2FVs. It consists of two
ways: type conversion process and any existing defuzzification method for type-1 fuzzy
set. According to Kahraman et al. [36] defuzzification approach, the defuzzified value of
˜̃A is given by

A
′

=
1
2

{
1
4

(
(au

4 −au
1)+

(
H2(Au)×au

2 −au
1
)
+
(
H1(Au)×au

3 −au
1
))

+au
1 +

1
4

(
(al

4 −al
1)+

(
H2(Al)×al

2 −al
1
)
+
(
H1(Al)×al

3 −al
1
))

+al
1

}
(1)

Using the equation (1), Model 1 can be written as follows :
Model 2

maximize Z1r j(x) =

n
∑
j=1

(
a
′
1r jx j +b

′
1r j
)

n
∑
j=1

(
c′

1r jx j +d ′
1r j

)

maximize Z2r j(x) =

n
∑
j=1

(
a
′
2r jx j +b

′
2r j
)

n
∑
j=1

(
c′

2r jx j +d ′
2r j

)

subject to Pr

( n

∑
j=1

A
′
i jx j ≤ qi

)
≥ 1− γi, i = 1,2, . . . ,m (2)

x j ≥ 0, ∀ j; r = 1,2, . . . l.
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3.2. Crisp form of probabilistic constraint

Here, we consider the random variable qi, ∀ i which follows Weibull distribution. Then
the probability density function (pdf) of qi is given by

f (qi) =


(

αi
βi

)(
qi
βi

)
e
−
(

qi
βi

)αi

, if qi > 0, αi > 0, βi > 0,

0, otherwise.
(3)

with mean= βiΓ

(
1 + 1

αi

)
, αi > 0, βi > 0 and variance= β 2

i Γ

(
1 + 2

αi

)
−
[

βiΓ

(
1 +

1
αi

)]2

, αi > 0, βi > 0.

Now the probabilistic constraint can be written with the help of equation (3) as follows:∫
∞

ui

f (qi)dqi ≥ 1− γi, (4)

where ui =
n
∑
j=1

A
′
i jx j and ui ≥ 0.

Using equation (3), it can be further written the equation (4) as∫
∞

ui

(
αi

βi

)(
qi

βi

)
e
−
(

qi
βi

)αi

dqi ≥ 1− γi. (5)

On integration, we obtain from the equation (5)

e
−
(

ui
βi

)αi

≥ 1− γi

i.e., ui ≤
βi(

ln
(
1− γi

)) 1
αi

(6)

i.e.,
n

∑
j=1

A
′
i jx j ≤

βi(
ln
(
1− γi

)) 1
αi

(7)

Then Model 2 can be written as the following model as:
Model 3

maximize Z1r j(x) =

n
∑
j=1

(
a
′
1r jx j +b

′
1r j
)

n
∑
j=1

(
c′

1r jx j +d ′
1r j

)

maximize Z2r j(x) =

n
∑
j=1

(
a
′
2r jx j +b

′
2r j
)

n
∑
j=1

(
c′

2r jx j +d ′
2r j

)



690 S. K. Maiti et al. / Fractional Programming for Stackelberg Game

subject to
n

∑
j=1

A
′
i jx j ≤

βi(
ln
(
1− γi

)) 1
αi

x j ≥ 0, ∀ j, αi > 0, βi > 0 and 0 < γi < 1, ∀ i, r.

3.3. Bi-level fractional programming in Stackelberg game

In this section, we introduce fuzzy goals to each of the objective functions for both
levels respectively. Then, Model 3 can be written as:
Model 4

maximize Z1r j(x)≳̃ fr j, r = 1,2, . . . ,ro

or, Z1r j(x)≲̃ fr j, r = ro+1,ro+2, . . . , l

maximize Z2r j(x)≳̃hr j, r = 1,2, . . . ,rt

or, Z2r j(x)≲̃hr j, r = rt+1,rt+2, . . . , l

subject to
n

∑
j=1

A
′
i jx j ≤

βi(
ln
(
1− γi

)) 1
αi

x j ≥ 0, ∀ j, αi > 0, βi > 0 and 0 < γi < 1, ∀ i.

where fr j and hr j are the aspiration levels of the (r j)th objective function corresponding
to both level DMs respectively. Here the symbols ≲̃ and ≳̃ represent “essentially less
than” and “essentially more than” fuzziness of the aspiration levels. Now the membership
functions of both level objective functions for each goal can be written as follows:
For Z1r j≲̃ fr j,

µ1r j(x) =


1, if Z1r j(x)≤ fr j,
sr j−Z1r j(x)

sr j− fr j
, if fr j ≤ Z1r j(x)≤ sr j,

0, if Z1r j(x)≥ sr j.

For Z1r j≳̃ fr j,

µ1r j(x) =


1, if Z1r j(x)≥ fr j,
Z1r j(x)−sr j

fr j−sr j
, if sr j ≤ Z1r j(x)≤ fr j,

0, if Z1r j(x)≤ sr j.

where sr j and sr j are the upper and lower tolerance limits for (r j)th fuzzy goal of the
upper-level DM.
For Z2r j≲̃hr j,

µ2r j(x) =


1, if Z2r j(x)≤ hr j,
vr j−Z2r j(x)

vr j−hr j
, if hr j ≤ Z2r j(x)≤ vr j,

0, if Z2r j(x)≥ vr j.
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For Z2r j≳̃hr j,

µ2r j(x) =


1, if Z2r j(x)≥ hr j,
Z2r j(x)−vr j

hr j−vr j
, if vr j ≤ Z2r j(x)≤ hr j,

0, if Z2r j(x)≤ vr j.

where vr j and vr j are the upper and lower tolerance limits for (r j)th fuzzy goal of the
lower-level DM.

3.4. Taylor series approximation for membership linearization
The linearization process of a fractional bi-level multi-objective programming in the

Stackelberg game is to be summarized through the following steps:

Step 1: We find x∗1r j and x∗2r j from (r j)th membership function associated with the objec-
tive functions Z1r j and Z2r j respectively, where r = 1,2, . . . , l and j = 1,2, . . . ,n.
Step 2: Now apply the 1st order Taylor series approximation, the membership functions
corresponding to both level objective functions are transformed as follows:

µ1r j(x) ∼= µ̂1r j(x)

=
n

∑
j=1

µ1r j(x∗1r j)+

((
x1 − x∗1r1

)∂ µ1r1(x∗1r1)

∂x1r1
+ . . .+

(
xn − x∗1rn

)
∂ µ1rn(x∗1rn)

∂x1rn

)

=
n

∑
k=1

(
µ1rk(x∗1rk)+

(
xk − x∗1rk

)∂ µ1rk(x∗1rk)

∂x1rk

)
. (8)

µ2r j(x) ∼= µ̂2r j(x)

= µ2r j(x∗2r j)+

((
x1 − x∗2r1

)∂ µ2r1(x∗2r1)

∂x2r1
+ . . .+

(
xn − x∗2rn

)
∂ µ2rn(x∗2rn)

∂x2rn

)

=
n

∑
k=1

(
µ2rk(x∗2rk)+

(
xk − x∗2rk

)∂ µ2rk(x∗2rk)

∂x2rk

)
. (9)

Step 3: Next, add these membership values with equal weights and transform them into
a single objective function corresponding to each level i.e.,

Z1(x) =
n

∑
j=1

µ̂1r j(x), r = 1,2, . . . , l (10)

Z2(x) =
n

∑
j=1

µ̂2r j(x), r = 1,2, . . . , l (11)
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Using the equations (10) and (11), Model 4 can be written as follows:
Model 5

maximize Z1(x)
maximize Z2(x)

subject to
n

∑
j=1

A
′
i jx j ≤

βi(
ln
(
1− γi

)) 1
αi

x j ≥ 0, ∀ j, αi > 0, βi > 0 and 0 < γi < 1, ∀ i.

4. SOLUTION METHODOLOGY

In this section, we develop an algorithm deliberated to accomplish a satisfactory so-
lution for fractional bi-level programming in Stackelberg games under an intuitionistic
fuzzy environment. The algorithm outlines the steps involved in intuitionistic fuzzy pro-
gramming as follows:

4.1. Intuitionistic fuzzy programming

In the Stackelberg game, the upper-level DM will first select x1 variable, after that the
lower-level DM will specify x2 variable with the complete familiarity of the upper-level
DM. Keeping this tip of observation, we build up the subsequent algorithm for attaining
a satisfactory way out of a BLFP for the Stackelberg game. The IFS is fundamentally
grounded on membership and non-membership functions respectively. Here, we consider
the membership function as exponential and the non-membership function as parabolic in
nature. These are interpreted as follows:

µZg =


1, if Zg(x)≤ Z0

g ,

e
−t

(
Zg(x)−Z0

g
Z1g−Z0

g

)
−e−t

1−e−t , if Z0
g ≤ Zg(x)≤ Z1

g ,
0, if Zg(x)≥ Z1

g .

(12)

ωZg =


0, if Zg(x)≤ Z0

g ,(
Zg(x)−Z0

g
Z1

g−Z0
g

)2

, if Z0
g ≤ Zg(x)≤ Z1

g ,

1, if Zg(x)≥ Z1
g .

(13)

where g = 1,2 and Z0
g , Z1

g are the lower bound (worst solution) and upper bound (best
solution) of the objective function Zg(x). The algorithm sketches out the steps involved
in IFS as follows:
Step 1: Independently resolve both level objectives, taking the crisp correspondence con-
straints of Model 5 and calculating both bounds i.e. lower and upper of the objective
functions respectively.
Step 2: With the help of the equations (12) and (13), computing the membership and non-
membership functions for both level objective functions and also the upper-level decision
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variable x1.
Step 3: According to Zimmerman [11], Model 5 is converted to the following crisp model
as:
Model 6

maximize (ζ −ξ )

subject to
e
−t

(
Z
′
g(x)−Z

′0
g

Z
′1g −Z

′0
g

)
− e−t

1− e−t ≥ ζ ,
e
−t
(

x1−xu
1+d

d

)
− e−t

1− e−t ≥ ζ ,(
Z

′
g(x)−Z

′0
g

Z ′1
g −Z ′0

g

)2

≤ ξ ,

(
x1 − xu

1 +d
d

)2

≤ ξ ,A
′
x ≤ βi(

ln
(
1− γi

)) 1
αi

,

x ≥ 0, ζ ≥ ξ , ζ +ξ ≤ 1, 0 < γi < 1, αi > 0, βi > 0, g = 1,2.

Step 4: Model 6 can be resolved by LINGO, GA and PSO, and subsequent to that optimal
solutions ζ ∗ and ξ ∗ are obtained corresponding to ζ and ξ respectively.
Step 5: If the upper-level DM is convinced with the explanation recognized in Step 4,
subsequently go to Step 6, or else update the membership and non-membership functions
accordingly and next go to Step 2.
Step 6: Stop.

4.2. GA

GA ([45], [46]) is a biological evolution procedure that can solve both constrained
and unconstrained optimization problems. It produces various solutions in one run, so it
can be easily applied to a large number of data in dissimilar areas. In GA, a population is
a set of probable explanations of a problem and a component of the population is called a
genotype. Reproduction, mutation and crossover are the three main operators in GA.
Parameters: It depends on unlike parameters like the population size (PSize), maximum
number of generations (MAXGen), probability of crossover (PCross) and probability of
mutation (PMut). In this study, consider PSize= 500, PCross=
0.5, MAXGen= 500 and PMut =0.5.
Reproduction: It is a significant step in GA that regulates even if the exacting string will
contribute to the reproduction procedure or not. In the population initialization process,
settle on the limits of all types of dependent and independent variables in that order. The
renowned selection procedures are rank, tournament, roulette wheel, stochastic univer-
sal sampling and Boltzmann. Roulette wheel selection procedures depict all the achiev-
able strings onto a wheel with a segment of the wheel owed to them conforming to their
strength value. It is then rotated arbitrarily to choose definite solutions which will con-
tribute to the arrangement of the subsequent generation.
Crossover: Crossover is the process of generating offspring by combining the genetic
information of two or more parents. Subsequent to the selection development, the pop-
ulation is upgraded with improved individuals. The recognized crossover operators are
partially matched, precedence preserving crossover, single-point, two-point, k-point, uni-
form, order, shuffle, cycle and abridged surrogate. An arbitrary crossover point is partic-
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ular in a single-point crossover. Two parents’ genetic information away from that point
will be exchanged with each other.
Mutation: It is a genetic operator that is utilized to sustain genetic diversity from one
production of a population to the next generation. The recognized mutation operators are
simple inversion, displacement and mix-up mutation. The banishment mutation operator
changes a sub-string of a specified creature solution contained by itself. The place is ar-
bitrarily preferred from the specified sub-string for dislocation such that the consequent
solution is valid as well as an arbitrary banishment mutation. Exchange mutation and
insertion mutation are the two variants of banishment mutation. In insertion mutation and
exchange mutation operators, a part of an individual solution is either inserted in another
location or exchanged with another part, correspondingly.
Evaluation: In chromosome generations, the loop is terminated when assured conditions
are met. Subsequent to that, the preferred chromosome is rebounded while the most ex-
cellent solution is established. The general terminating circumstances are:

• Reached the permanent number of generations: This termination process ends the
progression when the user-defined highest numbers of progressions have been run.
So this process is constantly active.

• Fitness Threshold: This process ends the progression when the most excellent fit-
ness in the present population inclines a lesser amount of the user-defined strength
threshold and the intention is to locate to diminish the fitness.

• Evolution Time: This process ends the progression when the onward progression
time excels the user-defined maximum progression time.

In our study, for reaching the subsequently enhanced chromosomes, consider the roulette
wheel selection method, uniform mutation, and arithmetic crossover. The above steps
have been characterized with the assistance of a flowchart in Figure 3.

Figure 3: General structure of GA

4.3. PSO

PSO [47] is a metaheuristic global optimization method that has been gained from the
information exchange (behavior) of the birds in a swarm. Due to its cleanness of appli-
cation in unsupervised, complex multidimensional problems that cannot be solved using
conventional deterministic algorithms. In the PSO procedure, the population is said to be
a swarm and the subsequent individuals are named particles. Each particle is a probable
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solution and is inclined by the experiences of its neighbors as well as itself in search space.
It consists of three operators which are inertia weight, personal particle best (Pbest), and
global particle best (Gbest). In the iteration process, the particle utilizes a memory in
instruct to keep its finest position and take as a whole the best particle positions which
are saved as the Pbest. The Pbest is assigned to region particles, whereas the overall
finest particle position is restored as the Gbest, which is assigned to all particles in the
swarm.Each particle is denoted as Xi = (Xi1,Xi2, . . . ,Xiq) , where q is the q-dimensional
space. The velocity of each particle is Vi = (Vi1,Vi2, . . . ,Viq) and the velocity of the initial
population is generated arbitrarily. The best local position of each particle is given by
Pi = (Pi1,Pi2, . . . ,Piq). Every particle fits the best local and global position respectively.
On each iteration, the particle adjusts its Pbest and Gbest among particles in its neigh-
bourhood as follows:

V (k+1)
i =V (k)

i + c1 ×Ti1 ×
(
Pbest(k)−X (k)

i

)
+ c2 ×Ti2 ×

(
Gbest(k)−

X (k)
i

)
X (k+1)

i = X (k)
i +V (k+1)

i , i = 1,2, . . . ,P.

where c1 and c2 are called cognitives and social parameters; Ti1, Ti2 are random vectors
∈ (0,1).

5. NUMERICAL EXPERIMENT

In this section, we include a numerical example and real-life application to illustrate
the efficiency of the proposed approach.

5.1. Example

In the experiment, we consider a probabilistic fuzzy multi-objective fractional linear
bi-level programming in the Stackelberg game. The cost parameters of both level multi-
objective functions and the constraint parameters are T2FNs. Also, the right-hand side of
the constraints follows the Weibull distribution and all these data are tabulated.

5.1.1. Input data
Here all the relevant costs i.e., ˜̃agr j,

˜̃bgr j, ˜̃cgr j,
˜̃dgr j, ∀ r, j; g = 1,2 and the con-

straints parameters i.e., ˜̃Ai j, ∀ i, j which are constituted by trapezoidal T2FVs (TrT2FV)
respectively, specified in Tables 2-6. Again, the shape and scale parameters of the Weibull
distribution are given in Table 7.

5.1.2. Optimal result
Utilizing all Tables i.e., Tables 1 to 7, Model 3 can be rewritten as follows:

Model 7

maximize Z111 =
35.56x1 +36.18x2 +37.69x3 +45.39x4 +27.63
47.15x1 +48.53x2 +51.21x3 +54.61x4 +18.45
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Table 2: Input data for TrT2F ˜̃agr j
˜̃a113 = ((41,43,50,54;0.8,0.7),(42,46,48,52;0.5,0.4))

˜̃a114 = ((43,45,52,56;1,0.9),(44,48,50,54;0.8,0.7))
˜̃a111 = ((37,39,46,50;0.8,0.7),(38,42,44,48;0.6,0.5))
˜̃a112 = ((39,41,48,52;0.9,0.6),(40,44,46,50;0.5,0.4))

˜̃a211 = ((40,42,49,53;1,0.9),(41,45,47,51;0.8,0.7))
˜̃a212 = ((48,50,57,61;1,0.8),(49,53,55,59;0.6,0.5))
˜̃a213 = ((56,58,65,69;1,0.8),(57,61,63,67;0.7,0.6))

˜̃a214 = ((64,66,73,77;0.9,0.7),(65,69,71,75;0.6,0.4))
˜̃a121 = ((84,86,93,97;1,0.8),(85,89,91,95;0.7,0.6))

˜̃a221 = ((83,85,92,96;0.8,0.7),(84,88,90,94;0.6,0.4))
˜̃a122 = ((109,111,118,122;0.8,0.6),(110,114,116,120;0.5,0.4))
˜̃a123 = ((134,136,143,147;0.7,0.5),(135,139,141,145;0.4,0.3))

˜̃a124 = ((159,161,168,172;1,0.7),(160,164,166,170;0.5,0.4))
˜̃a222 = ((118,120,127,131;0.7,0.6),(119,123,125,129;0.5,0.2))
˜̃a223 = ((153,155,162,166;0.7,0.6),(154,158,160,164;0.5,0.4))

˜̃a224 = ((188,190,197,201;1,0.7),(189,193,195,199;0.6,0.5))

Table 3: Input data for TrT2F ˜̃bgr j
˜̃b11 = ((25,27,34,38;1.0,0.8),(26,30,32,36;0.7,0.6))
˜̃b21 = ((35,37,44,48;0.8,0.6),(36,40,42,46;0.5,0.4))

˜̃b12 = ((157,159,166,170;0.9,0.8),(158,162,164,168;0.6,0.5))
˜̃b22 = ((257,259,266,270;0.7,0.6),(258,262,264,268;0.5,0.4))

maximize Z112 =
79.99x1 +90.7x2 +103.4x3 +136.29x4 +138.63
28.98x1 +30.28x2 +30.06x3 +30.64x4 +91.91

maximize Z211 =
42.61x1 +46.69x2 +55.14x3 +57.89x4 +32.43
40.18x1 +42.49x2 +43.55x3 +46.65x4 +19.89

maximize Z212 =
72.41x1 +93.13x2 +123.33x3 +165.06x4 +203.93

34.2x1 +36.94x2 +41.23x3 +42.88x4 +145

subject to 34.89x1 +46.13x2 +48.03x3 +39.71x4 ≤ 198.93,
29.76x1 +40.28x2 +33.75x3 +30.44x4 ≥ 65.60,
43.28x1 +37.45x2 +16.68x3 +29.19x4 ≥ 50.92,

41.29x1 +70.41x2 +39.43x3 +62.19x4 ≤ 109.61,
x j ≥ 0, ∀ j


(14)

Now, we consider two objective functions of the upper-level DM being employed to be
more than 1.0, 2.6 respectively and for the lower-level to be more than 1.4, 2.2 respec-
tively. In other words, the fuzzy aspiration levels and tolerance limits of two objective
goals corresponding to both level DMs are (1.0,2.6),(1.4,2.2) and (−0.9,0.01),(−1.09,
−9.8) respectively. We now examine the solutions based on three different membership
functions and these are defined as follows.
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Table 4: Input data for TrT2F ˜̃dgr j
˜̃d11 = ((15,17,24,28;0.9,0.8),(16,20,22,26;0.7,0.6))
˜̃d21 = ((18,20,27,31;0.8,0.7),(19,23,25,29;0.6,0.5))

˜̃d12 = ((107,109,116,120;0.8,0.7),(108,112,114,118;0.6,0.4))
˜̃d22 = ((167,169,176,180;0.9,0.8),(168,172,174,178;0.7,0.3))

Table 5: Input data for TrT2F ˜̃dgr j
˜̃c111 = ((47,49,56,60;1.0,0.8),(48,52,54,58;0.7,0.6))
˜̃c112 = ((51,53,60,64;0.9,0.8),(52,56,58,62;0.6,0.5))
˜̃c113 = ((55,57,64,68;0.9,0.7),(56,60,62,66;0.6,0.5))
˜̃c114 = ((59,61,68,72;1.0,0.7),(60,64,66,70;0.6,0.4))
˜̃c211 = ((44,46,53,57;0.9,0.6),(45,49,51,55;0.5,0.4))
˜̃c212 = ((47,49,56,60;0.8,0.7),(48,52,54,58;0.5,0.4))
˜̃c213 = ((50,52,59,63;0.8,0.6),(51,55,57,61;0.5,0.3))
˜̃c214 = ((53,55,62,66;0.9,0.6),(54,58,60,64;0.5,0.3))
˜̃c121 = ((28,30,37,41;0.9,0.8),(29,33,35,39;0.6,0.5))
˜̃c122 = ((30,32,39,43;0.9,0.7),(31,35,37,41;0.6,0.5))
˜̃c123 = ((32,34,41,45;0.8,0.6),(33,37,39,43;0.5,0.4))
˜̃c124 = ((34,36,43,47;0.8,0.6),(35,39,41,45;0.4,0.3))
˜̃c221 = ((33,35,42,46;0.9,0.8),(34,38,40,44;0.7,0.6))
˜̃c222 = ((40,42,49,53;0.9,0.7),(41,45,47,51;0.5,0.3))
˜̃c223 = ((47,49,56,60;0.8,0.6),(48,52,54,58;0.5,0.3))
˜̃c224 = ((54,56,63,67;0.6,0.5),(55,59,61,65;0.4,0.2))

5.1.3. Linear membership function
In this case, the membership functions of the goals corresponding to both levels are ob-
tained and their graphical representations are in Figures 4 and 5 respectively.

Figure 4: Upper-level membership functions defined as simple linear

µ111(x) =


1, if Z111(x)≥ 1,
R1, if −0.9 ≤ Z111(x)≤ 1,
0, if Z111(x)≤ −0.9

&

µ112(x) =


1, if Z112(x)≥ 2.6,
R2, if 0.1 ≤ Z112(x)≤ 2.6,
0, if Z112(x)≤ 0.01

(15)
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Table 6: Input data for TrT2F ˜̃Ai j
˜̃A11 = ((28,33,43,58;0.9,0.8),(30,34,40,57;0.6,0.5))
˜̃A12 = ((35,40,70,90;0.8,0.6),(37,45,58,80;0.5,0.4))
˜̃A13 = ((38,44,73,96;0.7,0.6),(40,48,61,83;0.5,0.4))
˜̃A14 = ((42,44,49,56;0.9,0.8),(43,45,47,51;0.7,0.3))
˜̃A21 = ((20,27,40,59;0.9,0.7),(25,30,32,54;0.6,0.2))
˜̃A22 = ((40,55,63,67;0.8,0.4),(48,61,62,64;0.3,0.2))
˜̃A23 = ((30,38,46,70;0.7,0.4),(35,40,42,67;0.3,0.2))
˜̃A24 = ((24,41,49,53;0.6,0.5),(38,43,45,52;0.4,0.2))
˜̃A31 = ((32,44,52,56;1.0,0.9),(41,46,48,55;0.8,0.7))
˜̃A32 = ((36,47,55,59;0.8,0.5),(44,49,51,58;0.4,0.3))
˜̃A33 = ((16,24,29,31;0.5,0.4),(22,25,26,30;0.3,0.1))
˜̃A34 = ((23,27,32,54;0.9,0.8),(25,28,29,44;0.7,0.6))
˜̃A41 = ((40,50,55,59;0.8,0.7),(45,51,58,67;0.6,0.5))
˜̃A42 = ((61,90,97,99;0.9,0.6),(78,95,96,98,0.5,0.4))
˜̃A43 = ((25,38,50,97;0.6,0.5),(34,40,41,90;0.4,0.1))
˜̃A44 = ((28,67,89,99;0.9,0.8),(37,78,80,97;0.7,0.6))

Table 7: Input data for αi, βi and γi
α1 = 0.167 β1 = 0.25 γ1 = 0.28
α2 = 0.25 β2 = 0.23 γ2 = 0.22
α3 = 0.5 β3 = 0.17 γ3 = 0.065
α4 = 0.25 β4 = 0.14 γ4 = 0.18

µ211(x) =


1, if Z211(x)≥ 1.4,
R3, if −1.09 ≤ Z211(x)≤ 1.4,
0, if Z211(x)≤ −1.09

&

µ212(x) =


1, if Z212(x)≥ 2.2,
R4, if −9.8 ≤ Z212(x)≤ 2.2,
0, if Z212(x)≤ −9.8

(16)

where R1 = 77.995x1+79.86x2+83.78x3+94.54x4+44.24
89.58x1+90.21x2+97.3x3+103.76x4+35.06 ,

R2 =
79.7x1 +90.4x2 +103.01x3 +135.98x4 +137.71
75.06x1 +78.42x2 +77.86x3 +79.36x4 +238.05

,

Figure 5: Lower-level membership functions defined as simple linear
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R3 = 86.41x1+93x2+102.61x3+108.74x4+54.11
100.05x1+105.8x2+108.44x3+116.16x4+49.53 ,

R4 =
407.57x1 +455.14x2 +527.38x3 +585.28x4 +1624.93

410.4x1 +443.28x2 +494.76x3 +514.56x4 +1740

In Model 4, each objective function is associated with the corresponding membership
functions (15)-(16) respectively. Then by 1st order Taylor series approximation as dis-
cussed in subsection 3.4, the membership functions given by the equations (15)-(16) are
transformed as:

µ̂111(x) =−0.0273x1 −0.0298x2 −0.0335x3 −0.0144x4 +0.99 (17)
µ̂112(x) = 0.0164x1 +0.0349x2 +0.068x3 +0.1464x4 +0.7397 (18)
µ̂211(x) =−0.036x1 −0.0324x2 −0.0074x3 −0.0121x4 +0.9878 (19)
µ̂212(x) =−0.0009x1 +0.0044x2 +0.0119x3 +0.0255x4 +0.95 (20)

Now, both level objective functions are obtained by adding the pair of equations (17)-(20)
respectively. Then the objective functions are obtained as follows:

Z1(x) =−0.0109x1 +0.0051x2 +0.0345x3 +0.132x4 +1.7298
Z2(x) =−0.0369x1 −0.028x2 +0.0045x3 +0.0134x4 +1.9461

Thus, Model 7 can be stated as below:
Model 8

maximize Z1(x) =−0.0109x1 +0.0051x2 +0.0345x3 +0.132x4 +1.7298
maximize Z2(x) =−0.0369x1 −0.028x2 +0.0045x3 +0.0134x4 +1.9461
subject to the constraints (14).

Solve the Model 8 by LINGO software. We calculate Z0
g and Z1

g values for g = 1,2. These
values are Z0

1 = 1.7009, Z1
1 = 1.9192, Z0

2 = 1.8481, Z1
2 = 1.9647 at x1 = 0.0392, x2 =

0.0, x3 = 0.801 and x4 = 1.2286. So, we now rewrite Model 8 with the help of Model 6
as follows:
Model 9

maximize (ζ −ξ )

subject to
e−t

(
Z1(x)−1.7009
1.9192−1.7009

)
− e−t

1− e−t ≥ ζ ,
e−t

(
Z2(x)−1.8481
1.9647−1.8481

)
− e−t

1− e−t ≥ ζ ,

e−t
(

x1−0.0392+x2+d
d

)
− e−t

1− e−t ≥ ζ ,

(
Z1(x)−1.7009

1.9192−1.7009

)2

≤ ξ ,(
Z2(x)−1.8481

1.9647−1.8481

)2

≤ ξ ,

(
x1 −0.0392+ x2 +d

d

)2

≤ ξ ,

the constraints (14)
ζ ≥ ξ , ζ +ξ ≤ 1, 0 ≤ ζ ,ξ ≤ 1.
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Solve the Model 9 by LINGO software, GA and PSO respectively and the consequences
are listed in Table 8. Table 9 shows the corresponding parameter set for these two algo-
rithms: GA and PSO.

Table 8: Optimum results for linear membership function

Result Method
LINGO GA PSO

Z1 1.8357 1.0182 1.7009
Z2 1.9201 1.0223 1.8482
x1 0.0000 0.5152 2.6529
x2 0.0000 1.6054 0.0000
x3 0.7642 0.5182 0.0000
x4 1.3077 2.0600 0.0000
ζ 0.4813 0.8520 0.9985
ξ 0.2815 0.1431 0.0001

Table 9: Parameter set up
GA PSO
Population: 100 Population: 100
Crossover rate: 0.8 Vmax : 10
Mutation rate: 0.1 Inertial weight: 0.2-0.9
Generation: 500 Iteration: 100

5.1.4. Triangular membership function
In this case, the membership functions of the goals are obtained as follows, and their

graphical representations are in Figures 6 and 7 respectively.

Figure 6: Upper-level membership functions defined as triangular

Figure 7: Lower-level membership functions defined as triangular

µ1(x) =


0, if Z111(x)≥ 3,
R5, if 2 ≤ Z111(x)≤ 3,
R6, if 0 ≤ Z111(x)≤ 2,
0, if Z111(x)≤ 0

& µ2(x) =


0, if Z112(x)≥ 5,
R7, if 3 ≤ Z112(x)≤ 5,
R8, if 1 ≤ Z112(x)≤ 3,
0, if Z112(x)≤ 1



S. K. Maiti et al. / Fractional Programming for Stackelberg Game 701

µ3(x) =


0, if Z211(x)≥ 4,
R9, if 1 ≤ Z211(x)≤ 4,
R10, if 0 ≤ Z211(x)≤ 1,
0, if Z211(x)≤ 0

& µ4(x) =


0, if Z212(x)≥ 3,
R11, if 1 ≤ Z212(x)≤ 3,
R12, if 0 ≤ Z212(x)≤ 1,
0, if Z212(x)≤ 0

where R5 = 105.89x1+109.41x2+115.94x3+118.44x4+27.72
47.15x1+48.53x2+51.21x3+54.61x4+18.45 ,

R6 = 35.56x1+36.18x2+37.69x3+45.39x4+27.63
24.3x1+97.06x2+102.42x3+109.22x4+36.9

R7 = 64.91x1+60.7x2+46.9x3+16.91x4+320.92
57.96x1+60.56x2+60.12x3+61.28x4+183.82 ,

R8 = 51.01x1+60.42x2+73.34x3+75.01x4+46.72
57.96x1+60.56x2+60.12x3+61.28x4+367.64

R9 = 118.11x1+123.27x2+119.06x3+128.71x4+47.13
120.54x1+127.47x2+130.65x3+139.95x4+59.67 ,

R10 = 42.61x1+46.69x2+55.14x3+57.89x4+32.43
40.18x1+42.49x2+43.55x3+46.65x4+59.67

R11 = 30.19x1+17.69x2+0.36x3−36.42x4+231.07
68.4x1+73.88x2+82.46x3+85.76x4+290 ,

R12 = 72.41x1+93.13x2+123.33x3+165.06x4+203.93
34.21+36.94x2+41.23x3+42.88x4+145

Proceeding the same way as discussed in subsection 3.4, we formulate Model 10 as fol-
lows:
Model 10

maximize Z3(x) = 0.1422x1 +0.0304x2 +0.0514x3 +0.0717x4 +0.7218
maximize Z4(x) =−0.0268x1 −0.0673x2 −0.1388x3 −0.2252x4 +1.68
subject to the constraints (14).

Model 10 represents a linear programming problem and by LINGO software it has been
solved. The solutions are achieved through the proposed intuitionistic fuzzy programming
in subsection 4.1 by LINGO software, GA and PSO and the consequences are summarized
in Table 10.

Table 10: Optimum results for triangular membership function

Result Method
LINGO 15.0 GA PSO

Z3 0.9397 0.9505 0.8503
Z4 1.4571 1.4427 1.3277
x1 1.0834 1.1163 0.0000
x2 0.2183 0.4357 1.8160
x3 0.0231 0.0000 0.0000
x4 0.7814 0.7908 1.0217
ζ 0.4954 0.6992 0.7734
ξ 0.2533 0.2018 0.0572

5.1.5. Trapezoidal membership function
In this case, the membership functions (see Figures 8 and 9) of the goals depend on

four parameters and are computed as follows:
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Figure 8: Upper-level membership functions defined as trapezoidal

Figure 9: Lower-level membership functions defined as trapezoidal

µ5(x) =



0, if Z111(x)≥ 7,
P1, if 4 ≤ Z111(x)≤ 7,
1 if 3 ≤ Z111(x)≤ 4,
P2, if 0 ≤ Z111(x)≤ 3,
0, if Z111(x)≤ 0

& µ6(x) =



0, if Z112(x)≥ 8,
P3, if 7 ≤ Z112(x)≤ 8,
1 if 5 ≤ Z112(x)≤ 7,
P4, if 2 ≤ Z112(x)≤ 5,
0, if Z112(x)≤ 2

µ7(x) =



0, if Z211(x)≥ 9,
P5, if 8 ≤ Z211(x)≤ 9,
1 if 5 ≤ Z211(x)≤ 8,
P6, if 1 ≤ Z211(x)≤ 5,
0, if Z211(x)≤ 1

& µ8(x) =



0, if Z212(x)≥ 10,
P7, if 7 ≤ Z212(x)≤ 10,
1 if 3 ≤ Z212(x)≤ 7,
P8, if 1 ≤ Z212(x)≤ 3,
0, if Z212(x)≤ 1

where
P1 = 294.49x1+303.53x2+320.78x3+336.88x4+101.52

141.45x1+145.6x2+153.63x3+163.83x4+55.35 ,

P2 = 35.56x1+36.18x2+37.69x3+45.39x4+27.63
141.45x1+145.6x2+153.63x3+163.83x4+55.35 ,

P3 = 151.85x1+151.54x2+137.08x3+108.83x4+596.65
28.98x1+30.28x2+30.06x3+30.64x4+91.91 ,

P4 = 22.03x1+30.14x2+43.28x3+75.01x4−45.19
86.94x1+90.84x2+90.18x3+91.92x4+275.73 ,

P5 = 319.01x1+335.72x2+336.81x3+361.96x4+146.58
40.18x1+42.49x2+43.55x3+46.65x4+19.89 ,

P6 = 2.43x1+4.2x2+11.59x3+11.24x4+12.54
160.72x1+169.96x2+174.2x3+186.6x4+79.56 ,

P7 = 269.59x1+276.27x2+288.97x3+263.74x4+1246.07
102.6x1+110.82x2+123.69x3+128.64x4+435 ,

P8 = 38.21x1+56.19x2+82.1x3+122.18x4+58.93
68.4x1+73.88x2+82.46x3+85.76x4+290 .
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Proceeding the same way in subsection 3.4, we develop the following model as:
Model 11

maximize Z5(x) =−0.0031x1 +0.0113x2 +0.0375x3 +0.1173x4 +0.2917
maximize Z6(x) =−0.0278x1 +0.0062x2 +0.0665x3 +0.1457x4 +0.4428
subject to the constraints (14).

Using the intuitionistic fuzzy programming described in subsection 4.1, Model 11 is
solved by LINGO software, GA and PSO algorithms and the consequences are listed
in Table 11.

Table 11: Optimum results for trapezoidal membership function

Result Method
LINGO 15.0 GA PSO

Z5 0.3885 0.4575 0.3992
Z6 0.6105 0.6514 0.4736
x1 0.1763 0.0000 4.3711
x2 0.0000 0.0000 0.0000
x3 0.2.5952 0.1323 0.1000
x4 0.0000 1.3713 1.0000
ζ 0.4527 0.6396 0.5632
ξ 0.3319 0.3358 0.2147

A comparison of the results for three membership functions are presented under three
different algorithms i.e., LINGO software, GA and PSO respectively in Table 12.

Table 12: Comparison results under LINGO, GA and PSO
Membership function Method Z111 Z112 Z211 Z212

Simple linear
LINGO 0.8976 2.5549 1.3161 2.2101

GA 0.8359 2.8178 1.2185 2.3963
PSO 1.099 1.6089 1.1501 1.6800

Triangular
LINGO 0.8904 2.2903 1.2282 1.9349

GA 0.8787 2.3207 1.2162 1.9550
PSO 0.8604 2.4836 1.2187 2.1169

Trapezoidal
LINGO 15.0 0.8249 2.4057 1.3075 2.0802

GA 0.9475 2.4597 1.3290 2.1342
PSO 0.8169 2.5172 1.1442 2.0435

5.2. Real-life application

Sugar cane is an ancient crop of the Austronesian and Papuan people. It is the world’s
largest crop by production quantity, and India’s sugar cane farmers 32.2 million tonnes
had been produced by the end of 2017-18. Four types of basic products and by-products
are obtained from sugar cane processing. These are listed below:

• Sucrose: Refined sugar, white sugar, raw sugar, jaggery etc., all come in this cate-
gory. It depends on the process employed and purified of the final product. Basi-
cally, these are all sweetening agents used as food additives.
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• Bagasse: Bagasse is a fibrous object that is leftovers after the juice is extracted from
the sugar cane. It is utilized in the thermal power plant as fuel for the creation of
power. Dry bagasse has a calorific value of around 4600 Kcal/kg.

• Molasses: Molasses are the ultimate viscous liquid that is leftover once the prac-
tically possible sugar has been extracted from the juice. It is a by-product of the
sugar industry. It is fermented and distilled to produce ethanol or ENA. Ethanol is
utilized in petrol blending which ENA is for making alcoholic beverages/cosmetics
etc.

• Impurities/press mud: Apart from this impurities like wax, non-sugars, inorganic
compounds etc. whatever was removed during the juice explaining process, is uti-
lized as manufacture/manure of fertilizers.

Let us consider two sugar mill companies XYZ and PQR which are located in India
under the India Sugar Mills Association. The companies produce the above-mentioned
four products. Due to weather problems sugar cane cannot produce good quality prod-
ucts or by-products. Furthermore, it would have the same scenario for labour problems.
Henceforth, the input data for PQR and XYZ companies are not crisp values. They are
considered type-2 fuzzy variables and shown in Tables 13-16 respectively.

Table 13: Sucrose and Bagasse in PQR company
Capacity Demand per unit of product
available Sucrose Bagasse
Sugar cane (units ((77,90,130,140;0.7,0.6), ((35,67,89,99;1,0.8),
of quantity) (85,95,120,135;0.5,0.4)) (44,78,80,97;0.7,0.6))
Machines ((26,37,47,56;0.7,0.4), ((20,23,29,31;0.7,0.6),
(hours) (35,40,42,55;0.3,0.2)) (22,25,26,30;0.5,0.4))
Profit per unit ((742,747,760,786;1,0.9), ((170,290,305,314;0.9,0.8),

(746,748,750,770;0.8,0.7)) (180,295,300,310;0.3,0.1))
Owned capital ((234,250,262,280;0.8,0.7), ((131,147,200,287;0.8,0.6),

(245,255,260,276;0.4,0.3)) (143,150,156,268;0.5,0.3))
Inventory cost ((69,77,97,100;0.9,0.7), ((40,45,60,96;0.4,0.3),
per unit (75,80,90,98;0.5,0.4)) (44,47,55,87;0.2,0.1))

Table 14: Molasses and Impurities/press mud in PQR company
Capacity Demand per unit of product
available Molasses Impurities/press mud
Sugar cane (units ((40,44,52,80;1,0.9), ((24,42,49,53;0.6,0.5),
of quantity) (41,46,48,76;0.8,0.7)) (38,43,45,52;0.4,0.1))
Machines (7,9,15,28;0.4,0.3), ((1,3,6,9;0.4,0.3),
(hours) (8,10,12,25;0.2,0.1)) (2,4,5,8;0.2,0.1))
Profit per unit ((120,130,144,195;0.5,0.4), ((137,146,198,282;0.9,0.7),

(125,135,140,167;0.3,0.2)) (140,150,158,267;0.4,0.2))
Owned capital ((100,131,140,170;0.5,0.4), ((58,70,97,100;0.6,0.5),

(128,136,138,145;0.3,0.1)) (63,80,90,98;0.4,0.2))
Inventory cost ((25,28,45,55;0.5,0.3), ((9,15,20,42;0.4,0.3),
per unit (27,30,35,52;0.2,0.1)) (12,16,17,40;0.2,0.1))
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Table 15: Sucrose and Bagasse in XYZ company
Capacity Demand per unit of product
available Sucrose Bagasse
Sugar cane (units ((45,52,60,84;1,0.9), ((24,55,63,62;0.9,0.8),
of quantity) (50,55,57,70;0.8,0.7)) (53,58,60,44;0.7,0.6))
Machines ((21,37,47,66;0.5,0.4), ((9,13,28,47;0.6,0.4),
(hours) (35,40,42,47;0.3,0.1)) (10,14,25,34;0.2,0.1))
Profit per unit ((234,250,262,280;0.8,0.7), ((123,137,146,177;0.8,0.6),

(245,255,260,276;0.4,0.3)) (130,138,142,165;0.5,0.4))
Owned capital ((76,79,97,110;1,0.9), ((41,45,60,103;0.5,0.4),

(77,80,90,98;0.7,0.6)) (44,47,55,98;0.3,0.2))
Inventory cost ((25,41,49,53;0.6,0.5), ((19,24,29,31;0.6,0.5),
per unit (38,43,45,52;0.4,0.1)) (22,25,26,30;0.3,0.2))

Table 16: Molasses and Impurities/press mud in XYZ company
Capacity Demand per unit of product
available Molasses Impurities/press mud
Sugar cane (units ((32,37,47,66;0.6,0.4), ((20,23,29,31;0.7,0.6),
of quantity) (35,40,42,47;0.3,0.1)) (22,25,26,30;0.5,0.4))
Machines ((9,13,28,46;0.4,0.3), ((7,9,15,28;0.4,0.3),
(hours) (10,14,25,34;0.2,0.1)) (8,10,12,25;0.2,0.1))
Profit per unit ((63,70,97,110;1,0.8), ((33,40,50,60;0.8,0.6),

(65,80,90,98;0.7,0.6)) (36,45,48,54;0.4,0.3))
Owned capital ((11,25,33,45;0.6,0.5), ((7,25,31,33;0.4,0.3),

(20,30,31,42;0.2,0.1)) (20,26,29,32;0.2,0.1))
Inventory cost ((10,18,22,24;0.4,0.3), ((5,8,18,20;0.4,0.3),
per unit (17,20,21,23;0.2,0.1)) (6,14,16,19;0.2,0.1))

Again, the input parameters as sugar cane and machines corresponding to both com-
panies are treated as random variables, and the data are supplied in Table 17.

Table 17: Input parameters for sugar cane and machines

Companies Parameters
α β γ

PQR Sugar cane 0.167 0.25 0.2455
Machines 0.5 0.23 0.0372

XYZ Sugar cane 0.167 0.618 003
Machines 0.25 0.88 0.064

By assumption in both companies, the rising cost and the capital demands are needed
which comparative to the individual performances and they have a fixed capital demand of
((1038,1066,1190,1200;1,0.9),(1040,1180,1186,1198;0.8,0.7)) and ((745,747,760,790;
1,0.8),(746,748,750,787;0.3,0.2)) respectively. Also, they decide that the inventory
cost is additionally to 20% of the whole production in order to promise safety level.
Let the quantities of the four products be x11, x12, x13 and x14 respectively whereas
x15, x16, x17, x18 are the inventory quantities for them. Both companies have tried to
maximize the profitability of the return on investment as well as the general marginal
return on investment. Therefore, PQR company has the objective functions Z311, Z312
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which appeared in the first level whereas Z411, Z412 are the objective functions of XYZ
company in the second level. Now using Tables 12-16, a new model (Model 12) can be
formulated with the help of Model 3 as follows:
Model 12

maximize Z311 =
699.99x11 +200x12 +100x13 +149.95x14

200.01x11 +150.03x12 +90.05x13 +58.03x14 +1050.03

maximize Z312 =
699.99x11 +200x12 +100x13 +149.95x14

70.03x15 +40.03x16 +24.99x17 +15.06x18

maximize Z411 =
200.01x11 +115.03x12 +75x13 +34.96x14

80.01x11 +44.99x12 +19.94x13 +15.04x14 +600.03

maximize Z412 =
200.01x11 +115.03x12 +75x13 +34.96x14

30.03x15 +18.03x16 +11.8x17 +8.03x18

subject to 0.2(x11 + x12 + x13 + x14)≤ (x15 + x16 + x17 + x18),

85x11 +65.05x12 +49.9x13 +29.96x14 ≤ 500.29,
30.04x11 +20.01x12 +10.01x13 +3.09x14 ≤ 160.04,

54.99x11 +45.06x12 +29.95x13 +20.01x14 ≤ 300.16,
27.99x11 +16.05x12 +15.06x13 +10.01x14 ≤ 201.17,

x11 ≥ x15, x12 ≥ x16, x13 ≥ x17, x14 ≥ x18,

x1 j ≥ 0, ∀ j


(21)

Clearly, Model 12 is a bi-level fractional programming problem. We now study the
optimal solutions based on three different membership functions and these are discussed
as follows:

5.2.1. Linear membership function
In this case, the membership functions of the goals corresponding to both levels are

obtained, and their graphical representations are depicted in Figures 10 and 11 respec-
tively.

Figure 10: Upper-level membership functions defined as simple linear

µ9(x) =


1, if Z311(x)≥ 3.1,
Q1, if 0.1 ≤ Z311(x)≤ 3.1,
0, if Z311(x)≤ 0.1

& µ10(x) =


1, if Z312(x)≥ 5,
Q2, if 1 ≤ Z312(x)≤ 5,
0, if Z312(x)≤ 1

(22)
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Figure 11: Lower-level membership functions defined as simple linear

µ11(x) =


1, if Z411(x)≥ 1.1,
Q3, if 0.5 ≤ Z411(x)≤ 1.1,
0, if Z411(x)≤ 1.1

& µ12(x) =


1, if Z412(x)≥ 5.5,
Q4, if 0.1 ≤ Z412(x)≤ 5.5,
0, if Z412(x)≤ 0.1

(23)

where Q1 =
679.989x11 +184.997x12 +90.995x13 +144.147x14 −105.29
600.03x11 +450.09x12 +270.15x13 +174.09x14 +3150.09

,

Q2 =
699.99x11 +200x12 +100x13 +150x14 −70.03x15 −40.03x16 −25x17 −15.06x18

280.12x15 +160.12x16 +99.96x17 +60.24x18
,

Q3 = =
160.005x11 +92.535x12 +65.03x13 +27.44x14 −300.015
48.006x11 +26.994x12 +11.964x13 +9.024x14 +360.018

and

Q4 =
200.01x11 +115.03x12 +75x13 +34.96x14 −3x15 −1.8x16 −1.18x17 −0.803x18

162.162x15 +97.36x16 +63.72x17 +43.362x18
.

Using equations (22)-(23) and 1st order Taylor series approximation as discussed in
subsection 3.4 (For comprehensive calculation, we refer to Appendix A), Model 5 can be
written as Model 13 which is shown below:
Model 13

maximize Z7(x) = 17.3079x11 +4.9196x12 +2.4556x13 +3.6959x14 −
338.112x15 −193.269x16 −120.6543x17 −72.7112x18 +48.9819

maximize Z8(x) = 4.729x11 +2.7215x12 +1.7904x13 +0.8248x14 −70.871x15

−42.5511x16 −27.8482x17 −18.9509x18 +19.1253
subject to the constraints (21).

Solve the Model 13 by LINGO software. We derive the values Z0
7 = 49.2524, Z1

7 =
14.536, Z0

8 = 20.1133, Z1
8 = 5.942 at x11 = 5.0033, x12 = 0.0, x13 = 0.0, x14 = 1.2508, x15 =

0.0, x16 = 0.0, x17 = 0.0 and x18 = 1.2508. With the help of the above results, Model
9 is solved by using LINGO software, GA and PSO respectively and the optimal conse-
quences are shown in Table 18.
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Table 18: Optimum results for linear membership function

Result Method
LINGO 15.0 GA PSO

Z7 4.3807 4.6713 4.4674
Z8 7.1491 7.1906 7.1425
x11 1.1918 1.2018 1.1576
x12 0.0000 0.0000 0.0000
x13 0.0000 0.0000 0.0000
x14 4.4160 4.6788 4.5729
x15 0.0000 0.0000 0.0000
x16 0.0000 0.0000 0.0000
x17 0.0000 0.0000 0.0000
x18 1.1216 1.1333 1.1202
ζ 0.9144 0.9725 0.9875
ξ 0.0856 0.0258 0.0003

5.2.2. Triangular membership function
In this case, the membership functions of the goals corresponding to both levels are

obtained and their graphical representations are shown in Figures 12 and 13 respectively.

Figure 12: Upper-level membership functions defined as triangular

Figure 13: Lower-level membership functions defined as triangular

µ13 =


0, if Z311(x)≥ 4.1,
S1, if 2.1 ≤ Z311(x)≤ 4.1,
S2, if 0 ≤ Z311(x)≤ 2.1,
0, if Z311(x)≤ 0

and µ14 =


0, if Z312(x)≥ 10,
S3, if 6 ≤ Z312(x)≤ 10,
S4, if −0.9 ≤ Z312(x)≤ 6,
0, if Z312(x)≤ −0.9

(24)

µ15 =


0, if Z411(x)≥ 2.5,
S5, if 2 ≤ Z411(x)≤ 2.5,
S6, if 0.1 ≤ Z411(x)≤ 2,
0, if Z411(x)≤ 0.1

and µ16 =


0, if Z412(x)≥ 14.7,
S7, if 14.5 ≤ Z412(x)≤ 14.7,
S8, if 0.9 ≤ Z412(x)≤ 14.5,
0, if Z412(x)≤ 0.9

(25)
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where S1 =−120.051x11 +415.123x12 +269.205x13 +87.973x14 +4305.12
400.02x11 +300.06x12 +180.1x13 +116.06x14 +2100.06

,

S2 =
699.99x11 +200x12 +100x13 +149.95x14

420.021x11 +315.063x12 +189.105x13 +121.863x14 +2205.063
,

S3 =
699.99x11 +200x12 +100x13 +149.95x14 +149.94x17 +90.36x18

280.12x15 +160.12x16 +99.96x17 +60.24x18
,

S4 =
699.99x11 +200x12 +100x13 +149.95x14 +63.027x15 +13.554x18

483.207x15 +276.207x16 +172.431x17 +103.914x18
,

S5 =
39.99x11 +25.05x12 +35.12x13 +4.88x14 −1200.06

40.005x11 +22.495x12 +9.97x13 +7.52x14 +300.015
,

S6 =
192.009x11 +110.531x12 +73.006x13 +33.456x14 −60.003

152.019x11 +85.481x12 +37.886x13 +28.576x14 +1140.057
,

S7 =
200.01x11 +115.03x12 +75x13 +34.96x14 +171.1x17 +116.435x18

6.006x15 +3.606x16 +2.36x17 +1.606x18
,

S8 =
699.99x11 +200x12 +100x13 +149.95x14 +16.227x16 +10.62x17 +7.227x18

462.462x15 +277.662x16 +181.72x17 +123.662x18
.

Proceeding the same way as in subsection 5.1.4 (For comprehensive calculation, we
refer to Appendix B), we formulate Model 14 as follows:
Model 14

maximize Z9(x) = 9.8372x11 +2.7741x12 +1.3811x13 +2.1013x14 −191.264x15 −
109.329x16 −68.2521x17 −41.1315x18 +28.9451

maximize Z10(x) = 6.0245x11 +1.7392x12 +0.88x13 +1.2876x14 −94.0039x15 −
56.4399x16 −36.9379x17 −25.1366x18 +24.0883

subject to the constraints (21).

Using the proposed intuitionistic fuzzy programming which is discussed in subsection
4.1, the solutions are obtained by LINGO software, GA and PSO and the consequences
are summarized in Table 19.

Table 19: Optimum results for triangular membership function

Result Method
LINGO GA PSO

Z9 2.4701 2.5459 1.6472
Z10 7.9374 7.9845 7.4352
x11 1.0218 1.0209 1.0013
x12 0.0000 0.0000 0.0000
x13 0.0000 0.0000 0.0000
x14 4.5912 4.7901 4.8652
x15 0.0000 0.0000 0.0000
x16 0.0000 0.0000 0.0000
x17 0.0000 0.0000 0.0000
x18 1.1226 1.1307 1.1517
ζ 0.7209 0.9254 0.8579
ξ 0.0796 0.0212 0.0586
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5.2.3. Trapezoidal membership function
In this case, the membership functions (see Figures 14 and 15) of the goals depend on

four parameters and are computed as follows:

Figure 14: Upper-level membership functions defined as trapezoidal

Figure 15: Lower-level membership functions defined as trapezoidal

µ17(x)=



0, if Z311(x)≥ 7,
L1, if 5 ≤ Z311(x)≤ 7,
1 if 3 ≤ Z311(x)≤ 5,
L2, if 0.1 ≤ Z311(x)≤ 3,
0, if Z311(x)≤ 0.1

and µ18(x)=



0, if Z312(x)≥ 8,
L3, if 4 ≤ Z312(x)≤ 8,
1 if 2 ≤ Z312(x)≤ 4,
L4, if −40 ≤ Z312(x)≤ 2,
0, if Z312(x)≤ −40

(26)

µ19 =



0, if Z411(x)≥ 12,
L5, if 9 ≤ Z411(x)≤ 12,
1 if 5 ≤ Z411(x)≤ 9,
L6, if 1 ≤ Z411(x)≤ 5,
0, if Z411(x)≤ 1

and µ20 =



0, if Z412(x)≥ 11,
L7, if 7 ≤ Z412(x)≤ 11,
1 if 1.8 ≤ Z412(x)≤ 7,
L8, if −30 ≤ Z412(x)≤ 1.8,
0, if Z412(x)≤ −30

(27)

where L1 =−300.06x11 +550.15x12 +350.25x13 +140.2x14 +5250.15
400.02x11 +300.06x12 +180.1x13 +116.06x14 +2100.06

,

L2 =
679.989x11 +184.997x12 +90.995x13 +144.147x14 −105.003

580.029x11 +435.087x12 +261.145x13 +168.287x14 +3045.087
,

L3 =
699.99x11 +200x12 +100x13 +149.95x14 +99.96x17 +60.24x18

280.12x15 +160.12x16 +99.96x17 +60.24x18
,

L4 =
699.99x11 +200x12 +100x13 +149.95x14 +999.6x17 +602.4x18

2941.26x15 +1681.26x16 +1049.58x17 +632.52x18
,

L5 =−520.08x11 +289.88x12 +104.46x13 +100.4x14 +5400.27
240.03x11 +134.97x12 +59.82x13 +45.12x14 +1800.09

,

L6 =
184.008x11 +106.032x12 +71.012x13 +31.95x14 −120.006

144.018x11 +80.982x12 +35.892x13 +27.072x14 +1080.054
,
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L7 =
200.01x11 +115.03x12 +75x13 +34.96x14 +435.435x15 +116.435x18

6.006x15 +3.606x16 +2.36x17 +1.606x18
,

L8 =
201.01x11 +115.03x12 +75x13 +34.96x14 +900.9x15 +240.9x18

954.954x15 +573.354x16 +375.24x17 +255.354x18
.

Proceeding the same way which is described in subsection 5.1.5 (For comprehensive
calculation, we refer to Appendix C), we formulate the following model as:
Model 15

maximize Z11(x) = 0.9408x11 +0.2423x12 +0.1169x13 +0.1972x14 −
17.3386x15 −9.911x16 −6.1872x17 −3.7287x18 +5.8909

maximize Z12(x) = 0.8341x11 +0.4802x12 +0.3185x13 +0.1451x14 −
12.0347x15 −7.2257x16 −4.7289x17 −3.2181x18 +4.3423

subject to the constraints (21).

Using the intuitionistic fuzzy programming stated in subsection 4.1, Model 15 is solved
by LINGO software, GA and PSO, and the consequences are listed in Table 20.

Table 20: Optimum results for trapezoidal membership function

Result Method
LINGO 15.0 GA PSO

Z11 1.3480 1.4202 1.3793
Z12 0.2769 0.3760 0.3435
x11 0.0000 0.0000 0.0000
x12 0.0000 0.0000 0.0000
x13 0.0000 0.0000 0.0000
x14 5.7610 4.2920 4.1830
x15 0.0000 0.0000 0.0000
x16 0.0000 0.0000 0.0000
x17 0.0000 0.0000 0.0000
x18 1.5230 1.4260 1.4312
ζ 0.7209 0.9678 0.9257
ξ 0.0796 0.0213 0.0037

A comparison of the results for three membership functions is presented under LINGO
software, GA and PSO respectively in Table 21.

Table 21: Comparison results under LINGO, GA and PSO
Membership function Method Z311 Z312 Z411 Z412

Simple linear
LINGO 15.0 0.9688 88.5916 0.5156 43.6082

GA 0.9878 90.3960 0.5270 44.3874
PSO 0.9671 88.6779 0.5140 43.5121

Triangular
LINGO 15.0 0.9230 83.0280 0.4860 40.4770

GA 0.9352 84.1477 0.4931 40.9330
PSO 0.9333 82.4716 0.4916 40.0466

Trapezoidal
LINGO 15.0 0.6240 37.6634 0.2933 16.4685

GA 0.4954 29.9683 0.2258 13.1038
PSO 0.4852 29.1011 0.2206 12.7246
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5.3. Results implication and discussion

This section shows the discussion related to the optimal consequences for the crisp
form of the proposed model procured by the various methodologies and algorithms (PSO
and GA). Here, we present the symposium on the experimentation consequences per-
formed on the proposed model under this study. In this study, we solve a BLFP with
probabilistic constraints in the Stackelberg game under intuitionistic fuzzy programming.
From Table 12, it is observed that the optimal objective function values can be procured
using LINGO software, GA and PSO. In the case of GA, we have the best solutions as the
maximum objective function values for both levels DMs Z111 = 0.8359, Z112 = 2.8178
and Z211 = 1.2185, Z212 = 2.3963 respectively (for simple linear membership). In the
case of PSO, the results are obtained as Z111 = 1.099, Z112 = 1.6086, Z211 = 1.1501
and Z212 = 1.68 (for simple linear membership) which are less than the result of GA.
Similarly, the best results are achieved by using GA only for considering the other two
membership functions. Again, from Table 22, it is concluded that the maximum prof-
itability of the return on investment and the marginal return on investment corresponding
to PQR and XYZ companies are obtained for consideration of the simple linear member-
ship function using GA. Also, Model 6 is solved using intuitionistic fuzzy programming
discussed in subsection 4.1 corresponding to numerical example and real-life application
with t = 0.01 and d = 0.5.

In the manner of Kuo and Huang [1], the relative error rate (RE) is given by RE= |F
∗
L −F∗

A |
F∗

L
×

100, where F∗
A indicate the optimal solutions in accordance with GA/PSO whereas F∗

L
signify the optimal solutions on the basis of LINGO software. In addition, the standard

deviation (SD) is given by SD=

√
1
N

N
∑

i=1

(
F∗

Ai
−F∗

A f

)2
, where i = 1,2, . . . ,N and F∗

Ai
rep-

resents the optimal solution for GA/PSO at ith run and F∗
A f

indicates the average of N
optimal solutions for GA/PSO. To study the order of convergence, we have established
the RE and SD for each membership function subsequent to LINGO software, GA and
PSO respectively. The consequences are exposed in Tables 22-24 and compare the results
based on both levels of DMs respectively. Also, the results are displayed in Figures 16-19.

Table 22: Convergence results under LINGO
Membership LINGO

function Z311 Z312 Z411 Z412

Linear
optimal cost 0.9688 88.5916 0.5156 43.6082

RE 0.0206% 0.0005% 0.0776% 0.0005%
SD 0.00 0.00 0.00 0.00

Triangular
optimal cost 0.9230 83.0280 0.4860 40.4770

RE 0.0542% 0.0013% 0.1235% 0.0007%
SD 0.00 0.00 0.00 0.00

Trapezoidal
optimal cost 0.6240 37.6634 0.2933 16.4685

RE 0.0801% 0.0013% 0.1023% 0.0018%
SD 0.00 0.00 0.00 0.00
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Table 23: Convergence results under GA
Membership GA

function Z311 Z312 Z411 Z412

Linear
optimal cost 0.9690 88.5920 0.5160 43.6084

RE 0.00 0.00 0.00 0.00
SD 0.00003 0.00002 0.0001 0.0002

Triangular
optimal cost 0.9235 83.0291 0.4866 40.4773

RE 0.00 0.00 0.00 0.00
SD 0.00004 0.00014 0.0002 0.0001

Trapezoidal
optimal cost 0.6245 37.6639 0.2936 16.4688

RE 0.00 0.00 0.00 0.00
SD 0.00004 0.00002 0.0001 0.0002

Table 24: Convergence results under PSO
Membership PSO

function Z311 Z312 Z411 Z412

Linear
optimal cost 0.9689 88.5918 0.5154 43.6083

RE 0.0103% 0.0002% 0.1164% 0.0002%
SD 0.00004 0.00002 0.0001 0.0002

Triangular
optimal cost 0.9232 83.0278 0.4861 40.4772

RE 0.0325% 0.0016% 0.1029% 0.0002%
SD 0.00038 0.0018 0.0001 0.0001

Trapezoidal
optimal cost 0.6242 37.6635 0.2935 16.4686

RE 0.0481% 0.0011% 0.0341% 0.0012%
SD 0.00039 0.00017 0.0002 0.0016
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Figure 16: Comparison of results in Z311 under different membership function

It is noticed from Tables 22-24 that the GA contributes a superior solution in contrast
to LINGO software /PSO in each case and the SD in LINGO software is zero which
concludes to an established solution than GA/PSO.
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Figure 17: Comparison of results in Z312 under different membership function
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Figure 18: Comparison of results in Z411 under different membership function
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Figure 19: Comparison of results in Z412 under different membership function
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6. IMPLICATIONS AND INSIGHTS

In this Section, we have presented some practical and managerial implications. These
implications are discussed below:

6.1. Practical implications

The following practical implications are derived from this research:
• The proposed model incorporates the Stackelberg game and Weibull distribution

invention in improving decision-making models in consequences with uncertainty.
• It allows for additional realistic demonstration of imprecise information, important

to improve considered planning and compromise outcomes, principally in fields
like economics, supply chain management, or multi-agent systems.

• The combination of the Stackelberg game, probabilistic fractional multi-objective
programming, and type-2 fuzzy numbers provides a refined understanding of lead-
ership dynamics, enabling supplementary vigorous strategies in complex, uncertain
environments.

6.2. Managerial implications

The subsequent managerial implications are sketched from the proposed study as:
• To improve a Stackelberg game under a probabilistic fuzzy multi-objective frac-

tional linear programming, the introduction of type-2 fuzzy numbers and Weibull
distribution in the proposed model has different facilities from numerous sides.

• The proposed model will also be advantageous to demonstrate the uncertain pa-
rameters in problematical circumstances. Since uncertainty is predictable, only
lone-type uncertainty cannot picture the real-life parameters appropriately in a sub-
stitute situation. Therefore the encountered varied uncertainty will help to figure
out the parameters with the help of acceptance degrees as well as ancient data by
interrelating among different situations.

• The results of the model can advantage the managers. The results that are achieved
from three different methods can oblige the managers to use the additional suitable
solution approach. For example, the proposed model with t=0.01 and d=0.5 can
be beneficial to the managers to provide the maximum profitability of the return
on investment and the marginal return on investment. Moreover, RE and SD under
different membership functions will help the managers set the model parameters
and satisfactory levels.

7. CONCLUSION, LIMITATION AND SUBSEQUENT DIRECTION

In this study, we have addressed a BLFP where the cost parameters and the param-
eters of the constraint except the right-hand side are type-2 fuzzy numbers whereas the
right-hand side of the constraints follows the Weibull distribution. The most noteworthy
findings and deeds of the study have been momentarily stated as follows:

• A BLFP in Stackelberg game framework, incorporating T2FVs has been formu-
lated.



716 S. K. Maiti et al. / Fractional Programming for Stackelberg Game

• The 1st order Taylor series approximation has been utilized to solve in the Stackel-
berg game and considering the equal weights of the objective functions.

• Probabilistic constraints can be followed by Weibull distribution to convert into a
deterministic form using stochastic programming.

• An analysis of the objective functions by LINGO 15.0 iterative scheme, GA, and
PSO have been exhibited, utilizing real-life data.

This study has been structured for the original to establish the vital approach for in-
vestment and marginal return in Stackelberg game problems. The outcomes of this study
have substantial consequences for employing Trapezoidal type-2 fuzzy variables at con-
straint parameters except the right-hand side parameters of the constraints are taken as
Weibull distribution as well as both level fractional objective functions in order to not
only meet general marginal return on investment but also maximize profitability of the
return on investment.

In addition to all the advantages managed about by the proposed model, this study
has a little of limitations that can be skilled in further studies. The greatest significant
item on the list is assembling dependable, realistic, and precise data. Although peer-
reviewed journals are the main data source of this study, the uncertainty that comes from
the human aspect and software handling cannot be overlooked. Therefore, essential data
of the model have to be estimated in the course of statistical or neutrosophic fuzzy logic-
based approach in the future. However, the proposed model applies to different types
of BLFP including production planning under Pythagorean fuzzy TOPSIS environment
[48], and interval type-2 fuzzy sets [49] in a Stackelberg game context in further study.

As a search of this study, the model involves an extensive acceptance of functional
limitations like rising costs and capital demands. The investment and marginal return
problem in the Stackelberg game based on bi-level programming under the Trapezoidal
type-2 fuzzy variable would be an inspiring enhancement to this study.

Funding: This research received no external funding.
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APPENDIX

Appendix A

A comprehensive calculation to show Z7(x) and Z8(x) (for Linear membership function) are
given underneath:
Solve the equations (22) and (23) with the constraints (21) by using LINGO 15.0 iterative scheme,
we have
µ9(x) = 0.5551, at x11 = 5.2760, x14 = 0.5014, x15 = 0.9048, x18 = 0.2507; µ10(x) = 48.7193,
at x11 = 2.6941, x14 = 0.6735, x18 = 0.6735; µ11(x) = 0.9126, at x11 = 5.1213, x13 = 0.6190,

x15 = 5.1213,x17 = 0.6191, and µ12(x) = 19.2380, at x11 = 4.0643, x14 = 1.0161, x18 = 1.0161.
Now, from the equation (22)

µ9 =
679.989x11 +184.997x12 +90.995x13 +144.147x14 −105.29
600.03x11 +450.09x12 +270.15x13 +174.09x14 +3150.09

,

µ10 =
699.99x11 +200x12 +100x13 +150x14 −70.03x15 −40.03x16

280.12x15 +160.12x16 +99.96x17 +60.24x18

Therefore,
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µ̂9(x) = 0.5551+
(
(x11 −5.276) · ∂ µ9(x∗)

∂x11
+ x12 ·

∂ µ9(x∗)
∂x12

+ x13 ·
∂ µ9(x∗)

∂x13
+(x14 −0.5014) · ∂ µ9(x∗)

∂x14

)
= 0.5551+(x11 −5.276) ·0.0547− x12 ·0.01− x13 ·0.0092+(x14 −0.5014) ·0.0075

= 0.0547x11 −0.01x12 −0.0092x13 +0.0075x14 +0.2627

and

µ̂10(x) = 48.7193+
(
(x11 −2.6941)

∂ µ10(x∗)
∂x11

+ x12
∂ µ10(x∗)

∂x12
+ x13

∂ µ10(x∗)
∂x13

+(x14 −0.6735)
∂ µ10(x∗)

∂x14
+ x15

∂ µ10(x∗)
∂x15

+ x16
∂ µ10(x∗)

∂x16

+ x17
∂ µ10(x∗)

∂x17
+(x18 −0.6735)

∂ µ10(x∗)
∂x18

)
= 48.7193+(x11 −2.6941) ·17.2532+ x12 ·4.9296+ x13 ·2.4648

+(x14 −0.6735) ·3.6959− x15 ·333.112− x16 ·193.269

− x17 ·120.6543− (x18 −0.6735) ·72.7112

= 17.2532x11 +4.9296x12 +2.4648x13 +3.6959x14 −333.112x15

−193.269x16 −120.6543x17 −72.7112x18 +48.7192

Then

Z7(x) = µ̂9(x)+ µ̂10(x)
= 17.3079x11 +4.9196x12 +2.4556x13 +3.6959x14 −338.112x15

−193.269x16 −120.6543x17 −72.7112x18 +48.7192

Again, from the equation (23)

µ11 =
160.005x11 +92.535x12 +65.03x13 +27.44x14 −300.015
48.006x11 +26.994x12 +11.964x13 +9.024x14 +360.018

,

µ12 =
200.01x11 +115.1x12 +75x13 +34.96x14 −1.2x17 −0.8x18

162.162x15 +43.362x18

Therefore,

µ̂11(x) = 0.9126+

((
x11 −5.1213

)∂ µ11(x∗)
∂x11

+ x12
∂ µ11(x∗)

∂x12
+

(
x13 −0.6190

)∂ µ11(x∗)
∂x13

+ x14
∂ µ11(x∗)

∂x14

)
= 0.9126+(x11 −5.1213)×0.1895− x12 ×0.1107+(x13 −

0.6190)x13 ×0.0882+ x14 ×0.0313

= 0.1895x11 +0.1107x12 +0.0882x13 +0.0313x14 −0.1125
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and

µ̂12(x) = 19.2380+

((
x11 −4.0643

)∂ µ12(x∗)
∂x11

+ x12
∂ µ12(x∗)

∂x12
+

x13
∂ µ12(x∗)

∂x13
+
(
x14 −1.0161

)∂ µ12(x∗)
∂x14

+ x15
∂ µ12(x∗)

∂x15
+

x16
∂ µ12(x∗)

∂x16
+ x17

∂ µ12(x∗)
∂x17

+
(
x18 −1.0161

)∂ µ12(x∗)
∂x18

)
= 19.238+(x11 −4.0643)×4.5395+ x12 ×2.6108+ x13 ×1.7022

+(x14 −1.0161)×0.7935− x15 ×70.8713− x16 ×42.5511− x17

×27.8482− (x18 −1.0161)×18.9509

= 4.5395x11 +2.6108x12 +1.7022x13 +0.7935x14 −70.8713x15 −
42.5511x16 −27.8482x17 −18.9509x18 +19.2378

Then

Z8(x) = µ̂11(x)+ µ̂12(x)
= 4.7290x11 +2.7215x12 +1.7904x13 +0.8248x14 −70.8713x15 −

42.5511x16 −27.8482x17 −18.9509x18 +19.1253

Appendix B

A comprehensive calculation to show Z9(x) and Z10(x) (for Triangular membership function)
are given underneath:
Solve the equations (24) and (25) with the constraints (21) by using LINGO 15.0 iterative scheme,
we have µ13(x) = 0.8407, at x11 = 5.2760, x14 = 0.5014, x15 = 0.9048, x18 = 0.2507; µ14(x) =
28.5180, at x11 = 2.7609, x14 = 0.6902, x18 = 0.6902; µ15(x) = 0.4987, at x11 = 5.1213, x13 =
0.6191, x15 = 0.5290,x17 = 0.6191, and µ16(x) = 23.9131,
at x11 = 3.7960, x14 = 0.9490, x18 = 0.9490.

Now, from the equation (24)

µ13 =
699.99x11 +200x12 +100x13 +149.95x14

420.021x11 +315.063x12 +189.105x13 +121.863x14 +2205.063
,

µ14 =
699.99x11 +200x12 +100x13 +149.95x14 +63.027x15 +13.554x18

483.207x15 +276.207x16 +172.431x17 +103.914x18

Therefore,

µ̂13(x) = 0.8407+
(
(x11 −5.2760) · ∂ µ13(x∗)

∂x11
+ x12 · ∂ µ13(x∗)

∂x12
+ x13 · ∂ µ13(x∗)

∂x13

+(x14 −0.5014) · ∂ µ13(x∗)
∂x14

)
= 0.8407+(x11 −5.2760) ·0.0774− x12 ·0.0145− x13 ·0.0132+(x14 −0.5014) ·0.0106

= 0.0774x11 −0.0145x12 −0.0132x13 +0.0106x14 +0.4270

and
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µ̂14(x) = 28.5180+(x11 −2.7609)×9.7598+ x12 ×2.7886+ x13 ×1.3943+

(x14 −0.6902)×2.0907− x15 ×191.2643− x16 ×109.3290− x17 ×
68.2521+(x18 −0.6902)× (−41.1315)

= 9.7598x11 +2.7886x12 +1.3943x13 +2.090x14 −191.2643x15 −
109.3290x16 −68.2521x17 −41.1315x18 +28.5181

Then

Z9(x) = µ̂13(x)+ µ̂14(x)
= 9.8372x11 +2.7741x12 +1.3811x13 +201013x14 −191.2643x15

−109.3290x16 −68.2521x17 −41.1315x18 +28.9451

Again, from the equation (25)

µ15 =
192.009x11 +110.531x12 +73.006x13 +33.456x14 −60.003

152.019x11 +85.481x12 +37.886x13 +28.576x14 +1140.057
,

µ16 =
699.99x11 +200x12 +100x13 +149.95x14 +16.227x16 +7.27x18

462.462x15 +277.662x16 +181.72x17 +123.662x18

Therefore,

µ̂15(x) = 0.4987+(x11 −5.1213)×0.0598+ x12 ×0.0350+(x13 −0.6191)x13

×0.0279+ x14 ×0.0099

= 0.0598x11 +0.0350x12 +0.0279x13 +0.0099x14 +0.1751

and

µ̂16(x) = 23.9131+(x11 −3.7960)×5.9647+ x12 ×1.7042+ x13 ×0.8521

+(x14 −0.9490)×1.2777− x15 ×94.0039− x16 ×56.4399− x17 ×
36.9379+(x18 −0.9490)× (−25.1366)

= 5.9647x11 +1.7042x12 +0.8521x13 +1.2777x14 −94.0039x15 −
56.4399x16 −36.9379x17 −25.1366x18 +23.9132

Then

Z10(x) = µ̂15(x)+ µ̂16(x)
= 6.0245x11 +1.7392x12 +0.88x13 +1.2876x14 −94.0039x15 −

56.4399x16 −36.9379x17 −25.1366x18 +24.0883

Appendix C

A comprehensive calculation to show Z11(x) and Z12(x) (for Trapezoida membership function)
are given underneath:
Solve the equations (26) and (27) with the constraints (21) by using LINGO 15.0 iterative scheme,
we have µ17(x) = 0.5743, at x11 = 5.2760, x14 = 0.5014, x15 = 0.9048, x18 = 0.2507; µ18(x) =
5.6161, at x11 = 5.0033, x14 = 1.2508, x18 = 1.2508; µ19(x) = 0.4709, at x11 = 5.1213, x13 =
0.6191, x15 = 0.5290,x17 = 0.6191, and µ20(x) = 4.2134, at x11 = 4.0643, x14 = 1.0161, x18 =
1.0161.
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Now, from the equation (26)

µ17 =
679.989x11 +184.997x12 +90.995x13 +144.147x14 −105.003

580.029x11 +435.087x12 +261.145x13 +168.287x14 +3045.087
,

µ18 =
699.99x11 +200x12 +100x13 +149.95x14 +999.6x17 +602.4x18

2941.26x15 +1681.26x16 +1049.58x17 +632.52x18

Therefore,

µ̂17(x) = 0.5743+(x11 −5.2760)×0.0560− x12 ×0.0105− x13 ×0.0095+

(x14 −0.5014)×0.0077

= 0.0560x11 −0.0105x12 −0.0095x13 +0.0077x14 +0.2749

and

µ̂18(x) = 5.6161+(x11 −5.0033)×0.8848+ x12 ×0.2528+ x13 ×0.1264+

(x14 −1.2508)×0.1895− x15 ×17.3386− x16 ×9.9110− x17 ×
6.1872+(x18 −1.2508)× (−3.7287)

= 0.8848x11 +0.2528x12 +0.1264x13 +0.1895x14 −17.3386x15 −
9.9110x16 −6.1872x17 −3.7287x18 +5.6160

Then

Z11(x) = µ̂17(x)+ µ̂18(x)
= 0.9408x11 +0.2423x12 +0.1169x13 +0.1972x14 −17.3386x15 −

9.9110x16 −6.1872x17 −3.7287x18 +5.8909

Again, from the equation (27)

µ19 =
184.008x11 +106.032x12 +71.012x13 +31.95x14 −120.006
144.018x11 +80.982x12 +35.892x13 +27.072x14 +1080.054

,

µ20 =
201.01x11 +115.03x12 +75x13 +34.96x14 +900.9x15 +240.9x18

954.954x15 +573.354x16 +375.24x17 +255.354x18

Therefore,

µ̂19(x) = 0.4709+(x11 −5.1213)×0.0632+ x12 ×0.0369+(x13 −0.6191)x13

×0.0294+ x14 ×0.0104

= 0.0632x11 +0.0369x12 +0.02940x13 +0.0104x14 +0.1290

and

µ̂20(x) = 4.2134+(x11 −4.0643)×0.7709+ x12 ×0.4433+ x13 ×0.2891+

(x14 −1.0161)×0.1347− x15 ×12.0347− x16 ×7.2257− x17 ×
4.7289+(x18 −1.0161)× (−3.2181)

= 0.7709x11 +0.4433x12 +0.2891x13 +0.1347x14 −12.0347x15 −
7.2257x16 −4.7289x17 −3.2181x18 +4.2133

Then

Z12(x) = µ̂19(x)+ µ̂20(x)
= 0.8341x11 +0.4802x12 +0.3185x13 +0.1451x14 −12.0347x15 −

7.2257x16 −4.7289x17 −3.2181x18 +4.3423


