

Yugoslav Journal of Operations Research

(20##), Number #, #-#

DOI: https://doi.org/10.2298/YJOR240315054A

DIAGNOSIS OF DIABETES USING BAYESIAN AND

BOOSTING CLASSIFIER

Zahra AHMADIAN

Faculty of Statistics, Mathematics, and Computer Science, Allameh

Tabataba’i University, Tehran, Iran

zahmdyan0@gmail.com

Farzad ESKANDARI

Faculty of Statistics, Mathematics, and Computer Science, Allameh

Tabataba’i University, Tehran, Iran

askandari@atu.ac.ir

Shokouh SHAHBEYK

Faculty of Statistics, Mathematics, and Computer Science, Allameh

Tabataba’i University, Tehran, Iran

sh_shahbeyk@atu.ac.ir

Received: March 2024 / Accepted: October 2024

Abstract: In recent years, the diagnosis of diseases using artificial intelligence and

machine learning algorithms has gained significant importance. Using data from relevant

medical studies enables the extraction of valuable insights that can reduce the occurrence

of numerous fatalities. One of the rapidly growing chronic diseases is diabetes, which has

shown a growing prevalence due to urbanization and reduced physical activity. Hence,

early detection of diabetes in individuals has immense significance. This paper utilizes a

dataset comprising information from individuals who underwent diabetes diagnostic tests

and employs classification techniques to determine whether their test results were positive

or negative for diabetes. The novelty of this work lies in the comparative analysis of

Bayesian classifiers and boosting methods, which have not been extensively explored in

the literature. The utilized classification methods include Bayesian classifiers such as

Bayesian Support Vector Machine, Bayesian k-nearest neighbor, Bayesian decision tree

and boosting methods like Catboost, Adaboost, and XGboost. Performance evaluation

metrics, including accuracy, precision, recall, F1-score, and ROC curve analysis, are

employed to compare the efficacy of these methods in analyzing the data. The findings of

this study will contribute to the advancement of accurate and efficient diabetes diagnosis

https://doi.org/10.2298/YJOR240315054A
mailto:zahmdyan0@gmail.com
mailto:askandari@atu.ac.ir
mailto:sh_shahbeyk@atu.ac.ir

 Z. Ahmadian, et al. / Diagnosis of Diabetes Using Bayesian and Boosting Classifier 2

using machine learning techniques, potentially helping in early intervention and

management of the disease.

Keywords: Bayesian support vector machine, Bayesian k-nearest neighbor, Bayesian

decision tree, boosting classification, diagnosis of diabetes.

MSC: 62H30, 62F15, 68T05, 62P10.

1. INTRODUCTION

The main goal of data science is to develop theoretical foundations and concepts for

extracting valuable information and useful insights from given data and finally apply them

to solve real-world problems. One of these important real-world problems is to classify

people based on their diabetes test results into positive and negative categories. Early and

accurate diagnosis of diabetes is critical because it allows for timely intervention,

management, and treatment, which can significantly reduce the risk of severe

complications such as heart disease, kidney failure, stroke, and blindness. This highlights

the importance of developing and comparing various machine learning algorithms to

identify the most effective method for diabetes diagnosis.

In this paper, we address a notable gap in the existing literature: the comparative

analysis of Bayesian and boosting classification methods specifically for diabetes

diagnosis. Despite extensive research on machine learning applications in healthcare, there

is a lack of studies directly comparing the efficacy of Bayesian classifiers against boosting

methods in the context of diabetes, which is critical given the complexity and variability

of the disease's clinical manifestations. Our objective is to rigorously compare these

methods to identify the most effective approach for early and accurate diabetes diagnosis,

potentially contributing to better patient management and treatment outcomes.

Recent advancements in artificial intelligence (AI) have opened new avenues for

managing chronic diseases, including diabetes. AI-powered applications have shown the

potential to improve patient outcomes by providing continuous monitoring and

personalized treatment plans, as discussed in the work by Arefin [1] on chronic disease

management. These AI tools actively engage patients in their healthcare, which is crucial

for managing chronic conditions effectively. Furthermore, AI's role in enhancing disease

diagnosis is demonstrated by Abdollahi and Safa [2], who explored its applications in

Parkinson’s disease diagnosis, showing how machine-learning techniques can lead to early

and accurate detection. This highlights the potential for similar AI-driven methods to be

applied to diabetes diagnosis.

The potential of AI in healthcare extends beyond direct diagnosis and management.

Khalifa and Albadawy [3] emphasized AI's transformative role in diabetes care, including

prevention, diagnosis, and effective management through predictive modeling and

personalized care. Mackenzie et al. [4] further explore AI's broader applications in

diabetes, beyond commonly discussed closed-loop systems, highlighting its role in patient

education, self-management, and clinical decision support systems.

A lot of research has been carried out in the diagnosis of diabetes in the past, using

machine learning algorithms such as logistic regression, Naive Bayes, and K-Nearest

Neighbor (KNN) to diagnose diabetes, concluding that logistic regression has high

accuracy for classifying people [5]. Choudhury and Gupta [6] predict diabetes during the

design of medical diagnosis software. They used machine learning algorithms such as

 Z. Ahmadian, et al. / Diagnosis of Diabetes Using Bayesian and Boosting Classifier 3

neural network, decision tree (DT), Naive Bayes, random forest (RF), KNN, support vector

machine (SVM), and logistic regression.

Khanam and Foo [7] have used six machine learning algorithms, such as support vector

machine, KNN, gradient boosting, decision tree, random forest, and logistic regression, to

detect patterns and risk factors in India’s Pima diabetes dataset. Sonar and JayaMalini [8]

used classification methods such as Naive Bayes, SVM, artificial neural network (ANN),

and decision trees to predict the diabetes risk level of patients. They concluded that the

accuracy of the decision tree is higher than the rest of the algorithms. After preprocessing

the data and selecting the critical features, Sivaranjani and coworkers [9] used principal

component analysis (PCA) as a method to reduce the dimension and finally used random

forest algorithms and support vector machine to diagnose diabetes and concluded that the

accuracy of the random forest algorithm is more than the support vector machine.

Algorithms such as KNN, random forest, logistic regression, decision tree, and the

Ensemble approach to classifying type 2 diabetes datasets are used by Roobini and

Mohandoss [10].

Rajput and Alashetty [11] analyzed PIMA diabetes data, using several classification

algorithms such as SVM, logistic regression, decision tree, and random forest, and

concluded that SVM and random forest have high accuracy. Patel and Briskilal [12] used

machine learning techniques such as KNN, logistic regression, decision tree, SVM, Light

Gradient Boosting Machine (LightGBM), and random forest for early diagnosis of

diabetes. They concluded that random forest is more accurate than other algorithms.

Louk et al. [13] focused on PE Malware Analysis, using various tree-based ensemble

learning methods such as random forest, Extreme Gradient Boosting (XGBoost),

Categorical Boosting (Cat Boost), Gradient Boosting Machine (GBM), and LightGBM.

Wee et al. [14] provided a comprehensive review of diabetes detection using machine

learning and deep learning approaches. Their study emphasized the potential of non-

invasive and anthropometric measurements in creating cost-effective and high-

performance diabetes detection systems. They also discussed the impacts of oversampling

techniques and data dimensionality reduction through feature selection approaches,

pointing out the future direction for improving accuracy and reliability in diabetes

identification.

The comparison of different machine learning methods for predicting diabetes has

shown varying results. For instance, the study by Yulia Resti et al. [15] found that

Multinomial Naive Bayes outperformed other methods like Fisher Discriminant Analysis

and Logistic Regression, achieving performance measures exceeding 93%. Additionally,

G. Parthiban et al. [16] demonstrated the use of the Naive Bayes classifier in predicting

heart disease in diabetic patients, showcasing the effectiveness of Bayesian methods in

medical diagnostics.

Moreover, Chou et al. [17] explored predicting the onset of diabetes using machine

learning methods. Their study, based on outpatient examination data from a Taipei

Municipal Medical Center, highlighted the efficacy of neural networks and boosted

decision trees in predicting diabetes. Their study comparing various BERT models from

Hugging Face with traditional machine learning techniques demonstrated the superiority

of these models in predicting mental health disorders, reinforcing the broader applicability

of machine learning in healthcare diagnostics.

 Z. Ahmadian, et al. / Diagnosis of Diabetes Using Bayesian and Boosting Classifier 4

In another study, Ebrahimzadeh and Safa [18] discussed the transformative potential of

the Metaverse in healthcare, emphasizing how machine learning can use data generated

within this virtual environment to improve medical services. Finally, a study by

Pourkeyvan and colleagues [19] highlights the application of machine learning techniques

for predicting mental health disorders using social media data. This approach underscores

the potential of using diverse data sources and advanced machine learning models to

enhance early detection and intervention in healthcare, drawing a parallel to this work in

diabetes diagnosis.

By reviewing past research, we find that different algorithms have been compared in

the diagnosis of diabetes, and it can be argued that boosting algorithms have been

compared with most classification methods in machine learning. However, the vital point

in this article is the comparison between boosting classification algorithms and Bayesian

classification methods, which has not been done so far, highlighting the uniqueness of this

study. By identifying the most effective classification method for diabetes diagnosis, this

study aims to contribute to the development of more accurate and reliable diagnostic tools,

which can ultimately enhance clinical decision-making and patient outcomes.

The rest of the article is organized as follows, Section 2 explains the algorithms and

methods used. Section 3 defines model evaluation metrics such as confusion matrix, ROC

curve, accuracy, precision, recall, and F-measure. Section 4 deals with implementing the

methods mentioned in Section 2 on the data. Section 5 deals with the conclusion and

summary.

2. MATERIALS AND ALGORITHMS

This section will be dedicated to the detailed examination and discussion of several

algorithms, namely, CatBoost, AdaBoost, XGBoost, Bayesian support vector machine

(BSVM), Bayesian K-nearest neighbor (BKNN), and Bayesian decision tree (BDT).

2.1 Categorical Boosting (CatBoost)

Before defining and examining the CatBoost algorithm, we will give a general

explanation of ensemble classification methods. As the name suggests, these methods

utilize a collection of learners, such as different classification algorithms and techniques,

in a repetitive manner. This leads to the creating models and classifications that are

significantly more accurate and have fewer weaknesses. In general, ensemble algorithms

can be divided into two categories: Bagging algorithms and Boosting algorithms. The

CatBoost algorithm is a subset of Boosting algorithms. CatBoost was introduced by

Yandex company in 2017 [20]. This algorithm has successfully managed to handle

categorical inputs without directly performing encoding operations in the preprocessing

stage. It also handles numerical and textual features. The existence of appropriate encoding

within the algorithm has led to its recognition and has provided more advantages compared

to other classification algorithms. Furthermore, during the training process of this

algorithm, a set of symmetric decision trees (symmetric tree: a tree in which each parent

node has either zero or two child nodes) is sequentially built with reduced cost compared

to the previous tree. This algorithm uses a novel scheme for computing leaf values when

selecting the tree structure, which helps reduce overfitting. Thus, the combination of new

encoding features for categorical variables (using ordered target statistics) and overfitting

 Z. Ahmadian, et al. / Diagnosis of Diabetes Using Bayesian and Boosting Classifier 5

reduction contributes to the superiority and power of this algorithm compared to others.

Figure 1 illustrates an example of the CatBoost classifier structure.

Figure 1: An example of the CatBoost classifier structure.

Imagine that we observe data with samples 𝐷 = {(𝑋𝑖 , 𝑦𝑖)}𝑖=1…𝑛where 𝑋𝑖 =
(𝑥𝑖

1, 𝑥𝑖
2, … , 𝑥𝑖

𝑚) is a random vector composed of m features, and 𝑦𝑖 ∈ 𝑅 represents the

target variable, which can take the form of either a binary value (i.e., positive and negative)

or a numerical value (0,1). The samples (𝑋𝑖 , 𝑦𝑖) are distributed independently and

identically according to an unknown probability distribution 𝑃(·,·). The objective of the

learning task is to train a function 𝐻: 𝑅𝑚 → 𝑅 that minimizes the expected loss as specified

in Equation 1.

ℒ(𝑀): = 𝐸𝐿(𝑦, 𝑀(𝑋) (1)

In this context, 𝐿(. , .)represents a loss function with smooth properties, while (𝑋, 𝑦

denotes testing data sampled from the training dataset 𝐷.

The process of gradient boosting [20] builds a sequence of successive approximations,

denoted as 𝑀𝑡: 𝑅𝑛 → 𝑅 , 𝑡 = 0,1, … with 𝑡 ranging from 0 to infinity, in a step-by-step and

greedy manner. Derived from the preceding approximation 𝑀𝑡−1, 𝑀𝑡
 is obtained using an

additive mechanism such that 𝑀𝑡 = 𝑀𝑡−1 + 𝛼ℎ𝑡 , using a step size 𝛼 and function ht :Rm→
𝑅, which is a base predictor, selected from a set of functions 𝐻 to reduce or minimize the

expected loss defined in Equation 2.

ℎ𝑡 = 𝑎𝑟𝑔𝑚𝑖𝑛ℎ∈𝐻ℒ(𝑀𝑡−1 + ℎ) = 𝑎𝑟𝑔𝑚𝑖𝑛ℎ∈𝐻𝐸𝐿(𝑦, 𝑀𝑡−1(𝑋) + ℎ(𝑋)) (2)

To solve this minimization problem, gradient boosting typically employs techniques

like gradient descent. Here, ℎ𝑡 is approximated by taking a step in the direction of the

negative gradient of the loss function evaluated at 𝑀𝑡−1 This process is repeated for a

predefined number of steps or until the improvements become negligible [21,22].

Additional information about the CatBoost algorithm can be found in [23].

As we mentioned, the CatBoost algorithm uses the ordered target statistics method to

code the data. The formula for the collected target statistic is stated in Equation 3:

𝑡𝑎𝑟𝑔𝑒𝑡 𝑠𝑡𝑎𝑡𝑖𝑠𝑡𝑖𝑐 =
𝑐𝑢𝑟𝑟𝑒𝑛𝑡_𝑐𝑜𝑢𝑛𝑡+(𝑎×𝑝)

𝑚𝑎𝑥𝑖𝑚𝑢𝑚_𝑐𝑜𝑢𝑛𝑡+𝑎
 (3)

In the above equation:

 𝑎 and prior (𝑝) are the constant parameters, by default, equal to 1 and 0.5.

 Z. Ahmadian, et al. / Diagnosis of Diabetes Using Bayesian and Boosting Classifier 6

 current_count is the sum of all the output class values of the same category that the

current row in the dataset belongs to.

 maximum_count is the sum of the same category items above the current row.

For a better understanding, we will give an example.

Example 1: Assume that we want to encode the simulated dataset using ordered target

statistics in Table 1.

Table 1: Simulated example

colour length type

red 5 1

red 5 2

red 4 1

green 5 0

green 7 0

blue 2 1

Let’s consider the situation where we are converting the item in the third row that is

explicitly written in blue color. maximum_count=2, current_count=1+2=3, a=1, p=0.5.

The numeric value is:

(1 + 2) + (1 × 0.5)

2 + 1
= 1.166

The algorithm utilizes a consistent approach to label encoding for all categorical data in

the dataset. It applies the same formula to handle categorical variables across the entire

dataset.

Table 1 becomes Table 2.

Table 2: Simulated example

colour length type

red 5 1

red 5 2

1.166 4 1

green 5 0

green 7 0

blue 2 1

2.2 Adaptive Boosting (AdaBoost)

The Adaptive Boosting (AdaBoost) algorithm is a machine learning technique used to

enhance the accuracy of other boosting algorithms. It operates by training weaker rules to

create a boosted algorithm. In AdaBoost, the input consists of a training set

(𝑥1, 𝑦1), … , (𝑥𝑚, 𝑦𝑚) where each 𝑥𝑖 belongs to an instance space, and each corresponding

label 𝑦𝑖 belongs to a label set 𝑌 (in this case, assuming 𝑌 = {−1, +1}). The algorithm

iteratively applies a given weak or base learning algorithm in a series of rounds denoted as

 𝑡 = 1, . . . , 𝑇. One crucial aspect of the algorithm is the maintenance of a distribution or

 Z. Ahmadian, et al. / Diagnosis of Diabetes Using Bayesian and Boosting Classifier 7

set of weights over the training set. The weight assigned to training sample 𝑖 at round 𝑡 is

represented as 𝐷𝑡(𝑖). Initially, all weights are set equally, but in each round, the weights of

misclassified samples are increased to emphasize difficult samples in the training set. The

objective of the weak learner is to find a weak hypothesis ℎ𝑡: 𝑋 → {−1, +1} that is

suitable for the distribution. The error of a weak hypothesis is used as a metric to assess its

quality. The algorithm’s procedure is outlined in Algorithm 1. More explanation can be

obtained in [24].

Algorithm 1: The Adaboost algorithm

Given: (𝑥1, 𝑦1), . . . , (𝑥𝑛 , 𝑦𝑛) where 𝑥𝑖 ∈ 𝑋, 𝑦𝑖 ∈ 𝑌 = {1, −1}

Set 𝐷1(𝑖) =
1

𝑛
 (initial equal weight for all samples)

For 𝑡 = 1, . . . 𝑇:

 Train weak learner with distribution Dt.

 Get weak hypothesis ℎ𝑡 ∶ 𝑋 → {−1,1} with error 𝜀𝑡 = 𝑃𝑟𝑖∼𝐷𝑡[ℎ𝑡(𝑥𝑖) ≠ 𝑦𝑖]

 Choose 𝛼𝑡 = 0.5𝑙𝑛 (
1−𝜀𝑡

𝜀𝑡
)

 Update

𝐷𝑡+1(𝑖) =
𝐷𝑡(𝑖)

𝑍𝑡
× {

exp(−𝛼𝑡) 𝑖𝑓 ℎ𝑡(𝑥𝑖) = 𝑦𝑖

𝑒𝑥𝑝(𝛼𝑡) 𝑖𝑓 ℎ𝑡(𝑥𝑖) ≠ 𝑦𝑖
 (4)

 =
𝐷𝑡(𝑖)exp (−𝛼𝑡𝑦𝑖ℎ𝑡(𝑥𝑖))

𝑍𝑡

Here, 𝐷𝑡+1(𝑖) is the updated weight for sample 𝑖, where 𝑍𝑡 is a normalization factor to

ensure the weights sum to 1. The exponential factor increases the weight of misclassified

samples (when 𝑦𝑖 ≠ ℎ𝑡(𝑥)), ensuring the next weak learner focuses more on these difficult

samples. Output:

𝐻(𝑥) = 𝑠𝑖𝑔𝑛(∑ 𝛼𝑡ℎ𝑡(𝑥)𝑇
𝑡=1) (5)

The final strong classifier 𝐻(𝑥) is a weighted majority vote of the 𝑇 weak classifiers, where

each 𝛼𝑡 determines the weight of the corresponding ℎ𝑡(𝑥).

2.3 Extreme Gradient Boosting (XGBoost)

XGBoost is a distributed gradient boosting library specifically designed to efficiently

and effectively train machine learning models. It employs an ensemble learning approach

by combining the predictions of multiple weak models to generate a more robust

prediction. XGBoost has gained significant popularity in machine learning due to its ability

to handle large datasets and achieve state-of-the-art performance in various tasks such as

classification and regression. To learn how this algorithm works, we have: Given data with

m-samples and n-features, 𝐷 = {(𝑋𝑗 , 𝑦𝑗)}(|𝐷| = 𝑚, 𝑋𝑗 ∈ 𝑅𝑛 , 𝑦𝑗 ∈ 𝑅), a tree ensemble

model employs a combination of L additive functions to make predictions for the output,

as outlined in (6):

�̂�𝑗 = 𝜙(𝑋𝑗) = ∑ ℎ𝑙(𝑋𝑗), ℎ𝑙 ∈ 𝐻𝐿
𝑙=1 . (6)

 Z. Ahmadian, et al. / Diagnosis of Diabetes Using Bayesian and Boosting Classifier 8

Here, 𝜙(𝑋𝑗) is the prediction for sample 𝑗, represented as the sum of 𝐿 functions ℎ𝑙(𝑋𝑗)

from the space of regression trees 𝐻. Each ℎ𝑙 corresponds to one tree in the ensemble.

Where 𝐻 = {ℎ(𝑋) = 𝑤𝑞(𝑋)}(𝑞 ∶ 𝑅𝑛 → 𝑈, 𝑤 ∈ 𝑅𝑛), the space of regression trees

represents the set of all possible trees used for regression. In this context, 𝑞 represents the

structure of each tree, which maps a sample to its corresponding leaf index. The variable

𝑈 represents the total number of leaves in the tree. Each ℎ𝑙 refers to the independent

structure of tree 𝑞 and the leaf weights 𝑤.

ℒ(𝜙) = ∑ 𝑙(𝑗 �̂�𝑗, 𝑦𝑗) + ∑ Ω(ℎ𝑙)𝑙 Ω(ℎ𝑙) = 𝛾𝑈 +
1

2
 𝜆||𝑤||2 , (7)

where 𝑙 is a differentiable convex loss function that measures the difference between the

𝑦𝑗 , �̂�𝑗.

The loss function 𝐿(𝜙) measures the difference between the predicted values 𝑦�̂�. and the

actual values 𝑦𝑗 using a differentiable convex loss function l. The regularization term Ω(ℎ𝑙)

penalizes the complexity of the model to prevent overfitting, where 𝛾 and 𝜆 are

regularization parameters.

To find the best tree structure, XGBoost minimizes the following objective function during

training:

ℒ̃ (𝑢)(𝑞) =
−1

2
∑

(∑ 𝑓𝑖𝑖∈𝐼𝑗
)2

∑ 𝑔𝑖+𝜆𝑖∈𝐼𝑗

𝑈
𝑗=1 + 𝛾𝑈 , (8)

where 𝑓𝑖 = 𝜕�̂�(𝑢−1)𝑙(𝑦𝑗 , �̂�(𝑢−1)) and 𝑔𝑖 = 𝜕2
�̂�(𝑢−1)𝑙(𝑦𝑗 , �̂�(𝑢−1)). In these equations, 𝑓𝑖 and

𝑔𝑖 are the first and second-order gradient statistics, respectively, which help in optimizing

the loss function. The gradients (𝑓𝑖) and (𝑔𝑖) provide the necessary information to update

the model parameters and improve prediction accuracy [25].

2.4 Bayesian Support Vector Machine (BSVM)

Bayesian Support Vector Machine (BSVM) extends the traditional SVM algorithm by

incorporating Bayesian inference principles. It combines the strengths of SVM, known for

its ability to handle high-dimensional data and nonlinear relationships, with the

probabilistic framework of Bayesian methods.

In Bayesian SVM, instead of finding a single optimal hyperplane that maximally

separates the data into classes, it seeks to estimate the posterior probability distribution

over the hyperplane parameters. This allows for a more robust and flexible classification

approach, especially in situations with limited training data or noisy training data.

The Bayesian framework introduces prior distributions over the hyperplane parameters,

representing prior knowledge or assumptions about the problem. By incorporating prior

information, Bayesian SVM can effectively regularize the model and handle overfitting.

During the learning process, the algorithm updates the prior distribution to obtain the

posterior distribution using Bayes’ rule, which combines the prior knowledge with the

observed data.

To make predictions, Bayesian SVM considers the entire posterior distribution of the

hyperplane parameters instead of relying solely on a single solution. This enables the

estimation of class probabilities and provides a measure of uncertainty in the predictions.

 Z. Ahmadian, et al. / Diagnosis of Diabetes Using Bayesian and Boosting Classifier 9

In addition, Bayesian SVM can naturally handle model selection by comparing different

models through their posterior probabilities.

One common approach to implementing Bayesian SVM is using Markov chain Monte

Carlo (MCMC) sampling techniques, such as Gibbs sampling or the Metropolis-Hastings

algorithm, to approximate the posterior distribution. These sampling methods iteratively

draw samples from the posterior, allowing for inference and prediction.

The advantage of Bayesian SVM is its ability to incorporate prior knowledge, handle

uncertainty, and provide probabilistic predictions. However, it comes at the cost of

increased computational complexity compared to traditional SVM, which involves

sampling from the posterior distribution.

In Support Vector Machines (SVM), the objective is to minimize a cost function as

follows:

𝑑𝛼(𝛽, 𝑣) = ∑ max(1 − 𝑦𝑖𝑥𝑖
𝑇𝛽, 0) + 𝑣−𝛼 ∑ |

𝛽𝑗

𝜎𝑗
|2𝑘

𝑗=1
𝑛
𝑖=1 , (9)

where 𝑥 represents the feature vector, 𝑦 represents the target, 𝛽 represents the coefficients,

𝜎𝑗 is the standard deviation of the 𝑗-th element of 𝑥, and 𝑣 is a tuning parameter. The second

part of this formula is the regularization term, which can take various forms. However, the

objective of this article is to estimate the parameters of Support Vector Machines in a

Bayesian framework, meaning that the estimation of parameter 𝛽 will be conducted using

Bayesian inference. Minimizing the cost function 9 corresponds to finding the mode of the

pseudo-posterior distribution 𝑝(𝛽|𝑣, 𝛼, 𝑦)defined by:

𝑝(𝛽|𝑣, 𝛼, 𝑦) ∝ exp(−𝑑𝛼(𝛽, 𝑣)) ∝ 𝐶𝛼(𝑣)𝐿(𝑦|𝛽)𝑝(𝛽|𝑣, 𝛼). (10)

The factor of 𝐶𝛼(𝑣)is a pseudo-posterior normalization constant that is absent in the

classical analysis. The data-dependent factor 𝐿(𝑦 ∣ 𝛽) is a pseudo-likelihood:

𝐿(𝑦 ∣∣ 𝛽) = ∏ 𝐿𝑖𝑖 (𝑦𝑖 ∣ 𝛽) = 𝑒𝑥𝑝{−2 ∑ 𝑚𝑎𝑥 (1 −𝑛
𝑖=1 𝑦𝑖𝑥𝑖

𝑇𝛽, 0)}. (11)

This equation is established because it demonstrates that the likelihood function of the

first kind follows a mixture of normal distributions. Therefore, we will have:

L(y|𝛽) = exp (−2 ∑ max(1 − 𝑦𝑖𝑥𝑖
𝑇𝛽, 0)) = ∫

1

√2𝜋𝜆

∞

0
exp (−

1

2

(1+𝜆𝑖−𝑦𝑖𝑥𝑖
𝑇𝛽)

2

𝜆𝑖
) 𝑑𝜆 𝑛

𝑖=1

 = ∫
1

√2𝜋𝜆

∞

0

exp(−𝑢) exp (−
1

2
(𝜆 + 𝑢2𝜆−1)𝑑 = ∫

1

√2𝜋𝜆
exp (−𝑢 −

𝜆

2
−

𝑢2𝜆−1

2
𝑑𝜆

∞

0

 = ∫
1

√2𝜋𝜆
 exp (

−(𝑢+𝜆)2

2𝜆

∞

0
𝑑𝜆 = 𝑒𝑥𝑝(−2 𝑚𝑎𝑥(𝑢, 0)), (12)

where 𝜆 is a latent variable. Based on the results obtained from 12, the pseudo-posterior

distribution can be expressed as Equation 13:

𝑝(𝛽, 𝜆, 𝑤|𝑦, 𝑣, 𝛼)

∝ ∏ 𝜆
𝑖

−1

2 exp (
−1

2
∑

(1+𝜆𝑖−𝑦𝑖𝑥𝑖
𝑇𝛽)

2

𝜆𝑖
) ∏ 𝑤

𝑗

−1

2𝑘
𝑗=1

𝑛
𝑖=1

𝑛
𝑖=1 × 𝑒𝑥𝑝 (

−1

2𝑣2
∑

𝛽𝑗
2

𝜎𝑗
2𝑤𝑗

𝑘
𝑗=1) 𝑝(𝑤𝑗|𝛼), (13)

Z. Ahmadian, et al. / Diagnosis of Diabetes Using Bayesian and Boosting Classifier 10

where 𝑝(𝑤𝑗 ∣ 𝛼) ∝ 𝑤
𝑗

−3

2 𝑆𝑡𝛼

2

+(𝑤𝑗
−1), which, as a result, using Markov Chain Monte Carlo

(MCMC), we will obtain the value of 𝛽 for parameter estimation. Further details can be

found in [26].

Figure 2 illustrates the concept of Bayesian SVM by showing a hyperplane with

confidence bands. The black line represents the optimal separating hyperplane determined

by the Bayesian SVM, which maximizes the margin between the classes. The shaded

region around the hyperplane indicates the confidence bands, reflecting the uncertainty in

the classification boundary. These confidence bands represent the range within which the

hyperplane could reasonably be positioned, based on the variability of the data.

The figure demonstrates that Bayesian SVM does not rigidly rely on a single

hyperplane for classification but instead considers multiple potential hyperplanes. This

probabilistic approach allows for more flexible decision-making, where the model can

account for overlapping data and provide a measure of confidence in its predictions. This

capability to represent uncertainty makes BSVMs valuable in applications requiring

reliable risk assessments and decision-making under uncertainty.

Figure 2: Bayesian SVM Hyperplane with Confidence Bands

2.5 Bayesian Decision Tree (BDT)

Bayesian Decision Tree is a specific variation of a decision tree that integrates

Bayesian principles and probabilistic reasoning into its construction and interpretation. In

contrast to conventional decision trees, which primarily aim to maximize accuracy,

Bayesian Decision Trees consider the inherent uncertainty linked to each decision and

assign probabilities to various potential outcomes. Constructing Bayesian Decision Trees

involves considering prior knowledge or beliefs about the data and updating them based

on observed evidence. This is done using Bayesian inference, which allows for more

flexible and nuanced modeling of the relationships between variables. By incorporating

prior knowledge and updating it with new information, Bayesian Decision Trees can

provide more accurate predictions and account for uncertainties in the data. Bayesian

Decision Trees can handle both regression and classification problems. The algorithm for

constructing these trees does not rely on computationally intensive methods like Markov

Chain Monte Carlo, making it more efficient and scalable. We establish 𝐷 as a dataset

consisting of 𝑛 independent observations, denoted as {(𝑥𝑖 , 𝑦𝑖) for 𝑖 ranging from 1 to 𝑛.

 Z. Ahmadian, et al. / Diagnosis of Diabetes Using Bayesian and Boosting Classifier 11

The points 𝑥 = (𝑥1, … , 𝑥𝑑) in 𝑅𝑑 represent the features of each observation, where the

outcome y is randomly selected from 𝑌𝑥.

The nature of the problem we are addressing is determined by the distribution of 𝑌𝑥. If

𝑌𝑥 follows a discrete probability distribution, it corresponds to a classification problem.

On the other hand, if 𝑌𝑥 follows a continuous probability distribution, it corresponds to a

regression problem. The beta function will play a significant role in calculating the

likelihood of the classification examples.

𝛽(𝑧1, … , 𝑧𝐶) =
∏ 𝜏(𝑧𝑐)𝐶

𝑐=1

𝜏(∑ 𝑧𝑐𝐶
𝑐=1)

 , (14)

𝐶 is different classes, and 𝜏 is the gamma function. The dataset D is obtained by sampling

from a data generation process. We can separate this process into two distinct steps:

First, a point 𝑥 is randomly selected from the 𝑑-dimensional space 𝑅𝑑; second, the

outcome 𝑌𝑥 is sampled given 𝑥. No prior knowledge regarding the generation of locations

x is taken into consideration. As a result, our primary focus lies in examining the

distribution of 𝑌𝑥. The conditional distribution is presumed to be represented within a tree

structure, constructed using a set of straightforward recursive rules based on {𝑥𝑖} for 𝑖
ranging from 1 to 𝑛. This tree-generation process determines the organization of the tree.

From the root of the tree, we decide whether to expand the current node by creating two

new leaves based on a predetermined probability. This probability may vary depending on

the current depth of the tree. If expansion is not chosen, the process ends for that particular

node. However, if expansion is selected, we determine which dimension within 𝑑 should

be utilized for the split. Once the dimension for the split is determined, we assume that the

exact position of the split within the available range is distributed uniformly among all

distinct points within that range. After establishing the specific location of the split, the

process continues iteratively by determining whether each new leaf should be further split.

This iteration repeats until there are no more nodes that require splitting or when each leaf

contains only a single distinct set of observations. At this point, the tree construction

process is considered complete. Considering the aforementioned generating process, it

becomes evident that the fundamental element of Bayesian Decision Trees involves

examining partitions of 𝑅𝑑 that provide a more adequate explanation of the outcomes using

a probabilistic approach. Within a partition Π, all points found in the same set exhibit an

equivalent outcome distribution. This implies that the outcome variable 𝑌 is independent

of the predictor variable 𝑥. By assuming a prior distribution for the parameters of the

outcome distribution 𝑌, it becomes possible to derive the likelihood of each set within a

partition. As all observations are assumed to be independent, the overall partition

likelihood 𝐿(𝐷|𝛱) is calculated by multiplying the likelihoods of each set within the

partition.

Now we explain the partition space, which is the building block for the Bayesian

Decision Trees. Let 𝐷 = (𝑥𝑖 , 𝑦𝑖), 𝑖 = 1, … , 𝑛 be a dataset consisting of n independent

observations in 𝑀 × 𝑅, 𝑀 ⊆ 𝑅𝑑. A partition 𝛱 = {𝑀1, 𝑀2, … , 𝑀𝑘} of 𝑀 divides 𝑀 into

disjoint subsets 𝑀1, 𝑀2, … , 𝑀𝑘 such that =∪ 𝑀𝑤 . As a result, the dataset 𝐷 will be split into

𝐷𝑀1
, … . , 𝐷𝑀𝑘

, where the observation (𝑥𝑖 , 𝑦𝑖) belongs to 𝐷𝑀𝑤
 if and only if 𝑥𝑖 ∈ 𝑀𝑤. All

𝑌𝑀𝑤
 sampled within region 𝑀𝑤 follows the same distribution with probability measure 𝜌𝑞

Z. Ahmadian, et al. / Diagnosis of Diabetes Using Bayesian and Boosting Classifier 12

and parameters 𝑞 in 𝑅𝑠. We assume a prior distribution 𝛾𝑀𝑤 for parameters 𝑞. Then, the

likelihood of our data given the prior is:

𝐿(𝐷𝑀𝑤
) = {

∫(∏ 𝜌𝑞(𝑦𝑖𝑦𝑖∈𝐷𝑀𝑤
))𝛾𝑀𝑤(𝑞) 𝑑𝑞 𝐷𝑀𝑤

≠ ∅

1 𝐷𝑀𝑤
= ∅

 . (15)

The likelihood of our data given the partition is:

L(D| 𝛱) = ∏ 𝐿(𝐷𝑀𝑤
)𝑘

𝑤=1 . (16)

Considering 𝑝(𝛱) over 𝛺𝛱, the posterior distribution of our data is:

𝑝(𝛱|𝐷) =
𝐿(𝐷| 𝛱)×𝑝(𝛱)

𝑝(𝐷)
=

𝐿(𝐷| 𝛱)×𝑝(𝛱)

∫ 𝐿(𝐷| 𝛱)×𝑝(𝛱)
 (17)

Finally, the posterior distribution of q in each region 𝑀𝑤is:

𝜇(𝑞) =
𝐿(𝑦𝑖∈𝐷𝑀𝑤|𝑞)𝛾𝑀𝑤(𝑞)

∫ 𝐿(𝑦𝑖 ∈ 𝐷𝑀𝑤
|𝑞)𝛾𝑀𝑤(𝑞)𝑑𝑞

. (18)

Step-by-step explanation for Bayesian Decision Tree construction:

1. Data Collection and Initial Setup: Gather the dataset 𝐷 consisting of 𝑛

independent observations (𝑥𝑖 , 𝑦𝑖).

2. Partitioning the Feature Space: Divide the feature space 𝑀 ⊆ 𝑅𝑑 into disjoint

subsets {𝑀1, 𝑀2, … , 𝑀𝑘}.

3. Prior Distribution Assumption: Assume a prior distribution 𝛾𝑀𝑤 for the

parameters 𝑞 of the outcome distribution 𝑌.

4. Likelihood Calculation for Each Partition: For each partition 𝑀𝑤, calculate the

likelihood 𝐿(𝐷𝑀𝑤
) using the (16) formula.

5. Overall Likelihood Calculation: Combine the likelihoods of each partition to

get the overall likelihood equation (17).

6. Posterior Distribution Calculation: Calculate the posterior distribution of the

partitions using equation (18).

7. Parameter Estimation: Finally, estimate the parameters 𝑞 for each region 𝑀𝑤,

using the posterior distribution equation (18).

Further details can be found in [27].

2.6 Bayesian K-Nearest Neighbor (BKNN)

Bayesian k-nearest neighbor (BKNN) is an enhanced version of the conventional k-

nearest neighbor (KNN) algorithm, integrating Bayesian inference to improve prediction

capabilities. KNN is a non-parametric classification algorithm that assigns a class label to

an unseen data point by considering the majority class labels of its k nearest neighbors in

the training dataset. In BKNN, Bayesian inference is employed to estimate the posterior

probability of each class label, going beyond the simple majority vote of the k nearest

neighbors. This is achieved by taking into account the prior probabilities of the classes and

evaluating the likelihood of observing the class labels in the training data based on the

neighbors’ features. The steps involved in BKNN are as follows:

1. Data Collection: Gather the dataset 𝐷 in blocks, each containing pairs of features 𝑋

and labels Y.

 Z. Ahmadian, et al. / Diagnosis of Diabetes Using Bayesian and Boosting Classifier 13

2. Nearest Neighbor Identification: Identify the k nearest neighbors of the test data

point by utilizing a distance metric (e.g., Euclidean distance) in the feature space.

These neighbors correspond to the training instances with the closest feature values to

the test instance.

3. Likelihood Calculation: Calculate the likelihood of observing each class label in the

training data, given the features of the neighbors. This involves counting the

occurrences of each class label among the neighbors.

4. Bayes’ Theorem Application: Utilize Bayes’ theorem to compute the posterior

probability of each class label, incorporating the prior probabilities and the calculated

likelihoods. The posterior probability indicates the probability of a class label

considering the observed features of the neighbors.

5. Prediction: Finally, assign the class label with the highest posterior probability as the

predicted class label for the test data point.

The Bayesian approach in BKNN enables the integration of prior knowledge and

facilitates handling uncertainty by accounting for the probabilistic nature of the problem.

It offers a more robust and flexible prediction method compared to the traditional KNN

algorithm, particularly in scenarios involving imbalanced class distributions or limited

training data.

It’s important to note that the performance of BKNN relies on the selection of prior

probabilities, distance metrics, and the value of k. These choices should be made

thoughtfully, taking into consideration the characteristics of the dataset and the specific

problem being addressed.

Let’s get a little more familiar with the formula: Imagine that we are sequentially

receiving data 𝐷 in blocks, with 𝐷 = {(𝑌1, 𝑋1), (𝑌2, 𝑋2), … , (𝑌𝑘 , 𝑋𝑘)},where 𝑌ℎ =

{𝑦1
(ℎ)

, … , 𝑦𝑛ℎ

(ℎ)
} and 𝑋ℎ = {𝑥1

(ℎ)
, … , 𝑥𝑛ℎ

(ℎ)
}. One common scenario could arise when the value

of k=2 and we have a training set (𝑌1, 𝑋1) of 𝑛1 points and a separate evaluation set (𝑋2)

consisting of 𝑛2 data points with unknown corresponding 𝑌2 values. Another usual scenario

involves the sequential arrival of single observations over time, 𝐷 =

{(𝑦1
(1)

, 𝑥1
(1)

), (𝑦1
(2)

, 𝑥1
(2)

), … , (𝑦1
(𝑘)

, 𝑥1
(𝑘)

)}, with 𝑛ℎ = 1 for all ℎ. Let 𝑌 =

(𝑌1, … , 𝑌𝑘)=(𝑦1, … , 𝑦𝑛) represent the collection of combined responses and 𝑋 =
(𝑋1, … , 𝑋𝑘) = (𝑥1, 𝑥2, … , 𝑥𝑛), represent the set of combined predictors, where 𝑛 =
∑ 𝑛ℎ

𝑘
ℎ=1 , and let 𝑇 = (𝑡1, … , 𝑡𝑛) be a set of indicator variables, where 𝑡𝑖 = 𝑗 indicates that

the 𝑖-th data point in 𝑌 originated from the 𝑗-th block, 𝑗 ∈ {1, … , 𝑘}.
Now, we establish the joint prior distribution on 𝑌 given 𝑋, 𝛽, and 𝑟 to be:

𝑝(𝑌 ∣ 𝑋, 𝛽, 𝑟) = ∏
exp[𝛽(

1

𝑟
) ∑ 𝛿𝑦𝑖𝑦𝑗𝑗~

𝑟
𝑖

]

∑ exp𝐹
𝑓=1 [𝛽(

1

𝑟
) ∑ 𝛿𝑓𝑦𝑗𝑗~

𝑟
𝑖

]

𝑛

𝑖=1

, (19)

where δab is the Dirac function (δab = 1 if a = b, and 0 otherwise). 𝛽 is an interaction

parameter that controls the magnitude of the relationship between the neighboring 𝑦𝑖ℎ and

∑ .𝑗 𝑟
~ 𝑖

denotes that the summation is over the r nearest neighbors of 𝑥𝑖 in the set

{𝑋1, … , 𝑋𝑡𝑖}\𝑥𝑖 is given the distance metric 𝜌(. , .), as previously described, 𝑡𝑖 represents

the index of the block containing 𝑥𝑖. The expression (1
𝑟⁄) ∑ 𝛿𝑓𝑦𝑗

}𝑗 𝑟
~ 𝑖

 indicates the

Z. Ahmadian, et al. / Diagnosis of Diabetes Using Bayesian and Boosting Classifier 14

proportion of points belonging to class f in the r nearest neighbors of 𝑥𝑖. Using this

approach, the probability of 𝑦𝑖 is conditioned solely on the points in blocks up to and

including the 𝑡𝑖th block.

The predictive distribution for a new observation is:

𝑝(𝑦𝑛+1 ∣ 𝑥𝑛+1, 𝑌, 𝑋, 𝛽, 𝑟) =
exp[𝛽(

1

𝑟
) ∑ 𝛿𝑦𝑛+1𝑦𝑗𝑗~

𝑟 𝑖
]

∑ exp𝐹
𝑓=1 [𝛽(

1

𝑟
) ∑ 𝛿𝑓𝑦𝑗𝑗~𝑖

𝑟
]

, (20)

Therefore, the most probable class for 𝑦𝑛+1 is determined by the most frequent class

observed among its 𝑟 nearest neighbors. By employing sequential conditioning in the

neighborhood, the requirement for an additional term in distribution 20 concerning the

points in the original dataset 𝑥𝑖, for which 𝑥𝑛+1 becomes one of their 𝑟 nearest neighbors,

is eliminated. The joint distribution 19 resembles the priors commonly encountered in

Markov random field models employed in spatial statistics. The reason behind using

equation 19 is that it represents a normalized distribution, and it’s normalizing constant

remains independent of both 𝛽 and 𝑟. This normalization significantly facilitates the

analysis when we treat 𝛽 and 𝑟 as random variables. To assume that 𝛽 and 𝑟 are known

and fixed a priori is unrealistic and disregards a crucial factor of uncertainty in the model.

To accommodate this, we assign prior distributions to 𝛽 and 𝑟, leaving the marginal

predictive distribution as:

(𝑦𝑛+1|𝑥𝑛+1, 𝑌, 𝑋, 𝛽, 𝑟) = ∑ ∫ 𝑝(𝑦𝑛+1|𝑥𝑛+1, 𝑌, 𝑋, 𝛽, 𝑟)𝑝(𝛽, 𝑘|𝑌, 𝑋)𝑑𝛽,𝑟 (21)

where 𝑝(𝛽, 𝑘|𝑌, 𝑋) ∝ 𝑃(𝑌|𝑋, 𝛽, 𝑟)𝑝(𝛽, 𝑟)[28].

Figure 3 shows the Bayesian KNN classification process with probability contours. In

the figure, data points from two different classes are plotted in a two-dimensional feature

space, represented by different markers. The black contour line represents the decision

boundary, indicating the threshold where the probability of belonging to one class equals

the probability of belonging to the other class.

The probability contours illustrate how the posterior probability of class membership

changes across the feature space. Areas close to the class centers have higher confidence,

whereas regions near the decision boundary reflect uncertainty. By visualizing these

contours, we can see how BKNN dynamically adjusts its decision boundaries based on the

distribution and proximity of the neighboring data points. This capability enables BKNN

to provide not only class predictions but also the likelihood of those predictions, making it

a powerful tool in applications where understanding uncertainty is crucial.

 Z. Ahmadian, et al. / Diagnosis of Diabetes Using Bayesian and Boosting Classifier 15

Figure 3: Bayesian KNN Classification with Probability Contours

3. MODEL EVALUATION METRICS

In this section, we will explain model evaluation metrics such as the confusion matrix,

ROC curve, accuracy, precision, recall, and F-measure.

3.1 Confusion Matrix

The confusion matrix illustrates the performance of a binary classifier (Figure 4). The

true (1) and false (0) actual values are compared to the positive (1) and negative (0)

predictions. The confusion matrix contains the values TP, TN, FP, and FN, representing

the true positive, true negative, false positive, and false negative, respectively. These values

are used to estimate the classification model’s capabilities.

Class designation Actual class

True(1) False(0)

Predicted class
Positive(1) TP FP

Negative(0) FN TN

Figure 4: Confusion matrix for the binary classification problem [30]

We explain each of the components of Figure 4:

 TP (True Positive): In the context of the confusion matrix, a data point is

considered a True Positive (TP) when it is predicted as a positive outcome, and the

actual outcome confirms the prediction.

 FP (False Positive): When a positive outcome is predicted in the confusion matrix,

but the actual outcome is negative, the data point is considered a false positive. This

scenario is known as a Type 1 Error, and it can be seen as an instance of good

intentions leading to incorrect predictions.

 FN (False Negative): When a negative outcome is predicted in the confusion

matrix, but the actual outcome is positive, the data point is classified as a false

negative. This situation is commonly referred to as a Type 2 Error, which is

considered as equally perilous as a Type 1 Error.

Z. Ahmadian, et al. / Diagnosis of Diabetes Using Bayesian and Boosting Classifier 16

 TN (True Negative): The data point in the confusion matrix is categorized as True

Negative (TN) when a negative outcome is predicted and aligns with the actual

outcome.

Figure 5: The elliptical form of classification result [29]

3.2 Accuracy

Accuracy is determined by adding the number of correct predictions (TP + TN) and

dividing it by the total number of data points (P + N).

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
 . (22)

Figure 6: Two ellipses visually demonstrate the process of calculating accuracy [29]

3.3 Sensitivity or Recall

To calculate the True Positive Rate (also called Sensitivity or Recall), the number of

correctly predicted positive instances (TP) is divided by the total number of positive cases

(P) and also called Sensitivity or Recall (REC).

𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 𝑜𝑟 𝑟𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
 . (23)

 Z. Ahmadian, et al. / Diagnosis of Diabetes Using Bayesian and Boosting Classifier 17

Figure 7: Two ellipses visually represent calculating Recall (True Positive Rate) [29]

3.4 Precision

Precision is computed by dividing the number of correct positive predictions (TP) by

the total number of positive predictions (TP + FP).

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
 . (24)

Figure 8: Two ellipses show how precision is calculated [29]

3.5 F-Measure

The F-score is an accuracy measure for a test, calculated using precision and recall. It

is determined by a specific formula that considers both precision and recall.

𝐹 − 𝑚𝑒𝑎𝑠𝑢𝑟𝑒 =
2 × 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛×𝑟𝑒𝑐𝑎𝑙𝑙

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛×𝑟𝑒𝑐𝑎𝑙𝑙
 . (25)

3.6 ROC Area

Another important tool for data evaluation is the ROC (Receiver Operating

Characteristic) curve. The ROC curve shows the trade-off between the true positive rate

(TPR) and the false positive rate (FPR) across different threshold levels. True Positive Rate

(TPR) is calculated as:

𝑇𝑃𝑅 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
 . (26)

This metric indicates the proportion of actual positives correctly identified by the model.

False Positive Rate (FPR) is calculated as:

Z. Ahmadian, et al. / Diagnosis of Diabetes Using Bayesian and Boosting Classifier 18

𝐹𝑃𝑅 =
𝐹𝑃

𝐹𝑃+𝑇𝑁
 . (27)

The ROC curve plots TPR on the vertical axis and FPR on the horizontal axis. The area

under the ROC curve (AUC) quantifies the overall ability of the model to discriminate

between positive and negative classes. An AUC closer to 1 indicates a better-performing

model.

These evaluation metrics and visual representations help in understanding and

interpreting the performance of classification models, enabling better decision-making

based on the specific requirements of the task at hand. By providing a detailed step-by-step

explanation of these metrics, readers can better comprehend how each metric contributes

to evaluating and improving model performance.

Figure 9: ROC curve [30]

3.7 Nemenyi post-hoc test

The Nemenyi post-hoc test is a statistical test used to perform pairwise comparisons

following a Friedman test when there are significant differences between multiple groups.

This test helps to determine which specific groups (or algorithms, in the context of machine

learning performance comparison) differ from each other. The Nemenyi test is designed to

control the family-wise error rate when making multiple comparisons. It ensures that the

likelihood of making one or more type I errors (false positives) is kept within a specified

limit.

Methodology:

 Ranking of Data: Each group (e.g., algorithm) is ranked according to its performance

across multiple datasets. In cases of tied ranks, average ranks are assigned.

 Calculation of Average Ranks: For each group, compute the average rank across all

datasets. The average rank 𝑅𝑗 for the 𝑗-th group is calculated as:

𝑅𝑗 =
1

𝑁
∑ 𝑅𝑖𝑗 ,𝑁

𝑖=1 (28)

 Z. Ahmadian, et al. / Diagnosis of Diabetes Using Bayesian and Boosting Classifier 19

where 𝑁 represents the number of datasets, and 𝑅𝑖𝑗 denotes the rank of the 𝑗-th group on

the 𝑖-th dataset.

 Friedman Test Statistic: The Friedman test statistic 𝑄 is calculated using the

following formula:

𝑄 =
12𝑁

𝑘(𝑘+1)
(∑ 𝑅𝑗

2 −
𝑘(𝑘+1)2

4

𝑘
𝑗=1) , (29)

where 𝑘 is the number of groups.

 Critical Difference (CD): To determine whether the differences between pairs of

groups are significant, compute the critical difference. The formula for the critical

difference 𝐶𝐷 is:

𝐶𝐷 = 𝑞𝛼√
𝑘(𝑘+1)

6𝑁
, (30)

where 𝑞𝛼 is the critical value from the Studentized range distribution for the chosen

significance level 𝛼.

Pairwise Comparisons:

For each pair of groups, calculate the absolute difference in their average ranks. If this

difference exceeds the critical difference 𝐶𝐷, the performance differences between the two

groups are considered statistically significant:

|𝑅𝑗 − 𝑅𝑚| > 𝐶𝐷, (31)

where 𝑅𝑗 and 𝑅𝑚 are the average ranks of the 𝑗-th and 𝑚-th groups, respectively.

4. RESULTS AND DISCUSSION

In this section, we have used the diabetes dataset taken from the UCI dataset website

to analyze and evaluate. The dataset consists of 520 patient samples, each characterized by

17 distinct features, which are pivotal for diagnosing diabetes:

 Age: (16 years to 90 years)

 Gender: Male / Female

 Polyuria: Yes / No

 Polydipsia: Yes / No

 Sudden weight loss: Yes / No

 Weakness: Yes / No

 Polyphagia: Yes / No

 Genital thrush: Yes / No

 Visual blurring: Yes / No

 Itching: Yes / No

 Irritability: Yes / No

 Delayed healing: Yes / No

 Partial paresis: Yes / No

 Muscle stiffness: Yes / No

Z. Ahmadian, et al. / Diagnosis of Diabetes Using Bayesian and Boosting Classifier 20

 Alopecia: Yes / No

 Obesity: Yes / No

 Class (target variable): Positive / Negative

Figure 10 is a horizontal stacked bar chart that visually represents the distribution of

key features in the dataset, comparing the prevalence of each feature among individuals

with positive and negative diabetes diagnoses. The chart highlights the proportion of "Yes"

and "No" responses for binary features and the gender distribution.

This chart effectively emphasizes the variation in symptom occurrence between

individuals with positive and negative diabetes diagnoses, providing insights into the

dataset’s structure and the relevance of each feature for model training.

Figure 10: horizontal stacked bar chart comparing the distribution of key features

The goal is to predict the result of a person’s test using the mentioned features by

applying the algorithms described in Section 2 and choosing a model with the highest

accuracy.

The first step of starting to examine and analyze data is data preprocessing, which is a

part of data preparation and is considered a crucial preliminary step for the data mining

process. Recently, data preprocessing techniques for training machine learning models and

artificial intelligence models have significantly advanced.

Data preprocessing is essential for improving data quality and consistency, making it

suitable for machine learning analysis. Our preprocessing steps included:

 Checking for Missing Values: We thoroughly checked the dataset and found no

missing values, ensuring complete data entries for each feature.

Female

No
No

No
No

No
No

No

No

No
No

No
No

No
No

Negative

Male

Yes
Yes

Yes
Yes

Yes
Yes

Yes

Yes

Yes
Yes

Yes
Yes

Yes

Yes

Positive

0% 20% 40% 60% 80%100%

Gender
Polyuria

Polydipsia

Sudden Weight loss

Weakness
Polyphagia

Genital thrush

visual blurring
Itching

Irritability

Delayed Healing

Partial Paresis
Muscle Stiffness

Alopecia
Obesity

Class

F
ea

tu
re

s

 Z. Ahmadian, et al. / Diagnosis of Diabetes Using Bayesian and Boosting Classifier 21

 Label Encoding: Categorical features such as 'Gender' and binary symptoms (e.g.,

'Polyuria', 'Polydipsia') were converted into a numerical format using Label Encoding.

This step was necessary for algorithms that require numerical input.

 Feature Selection: The Chi-Square test was conducted to evaluate the significance

of each feature to the target variable (diabetes diagnosis). Features with high p-values

(e.g., Itching, Delayed healing, Obesity) were excluded to streamline the model

training process.

 Data Standardization: While categorical data were encoded, continuous features

(e.g., Age) were standardized using Z-score normalization to minimize the impact of

differing scales.

 Data Balancing: Since the dataset showed class imbalance (as illustrated in Figure

9), we employed the Synthetic Minority Over-sampling Technique (SMOTE) to

ensure a balanced distribution of classes, which helps prevent biased model training.

For the preprocessing of the diabetes dataset, we have checked the missing data,

extracted important features, and standardized, and except for the age variable, the rest of

the variables did not need to be standardized. We also used the Label Encoding method to

code the categorical data. The Label Encoding is converting categorical labels or variables

into numerical representations. It is commonly used when working with machine learning

algorithms that require numeric inputs. However, it should be noted that during the

CatBoost algorithm training, we used the data before coding because this algorithm uses

special coding (ordered target statistics).

By checking the data, we found that it does not contain any missing values. For feature

selection, we also used the Chi-Square Test. The Chi-Square test measures the

independence between categorical variables and the target variable. It assesses whether

there is a significant association between the feature and the target. Features with high chi-

square statistics and p-values below a certain threshold can be considered essential and

selected for further analysis.

Because the chi-square method uses classification variables, we removed the age

variable and selected the characteristics with the rest of the variables. It should be noted

that the age variable is considered during the analysis process. Figure 11 shows the

characteristics selected by the Chi-square test. As we can see, the variables itching, delayed

healing, and obesity should be removed because their p-value is more than 0.05. To check

whether the response variable is balanced or not, we draw its graph (Figure 12).

According to Figure 12, we can see that the data is unbalanced, so it is necessary to

balance it because unbalanced data can lead to biased model performance. Since the

majority class dominates the dataset, a model trained on unbalanced data tends to be biased

toward predicting the majority class. As a result, the model’s accuracy may appear high

due to correctly predicting the majority class, while its performance on minority classes

may be poor. There are different methods to balance the data, and we used SMOTE in this

paper.

Z. Ahmadian, et al. / Diagnosis of Diabetes Using Bayesian and Boosting Classifier 22

Figure 11: p-value for each feature in the Chi-square test

Figure 12: Response variable

SMOTE (Synthetic Minority Over-sampling Technique) is a popular algorithm that

balances imbalanced datasets by generating synthetic samples for the minority class. It

addresses the issue where the minority class is underrepresented compared to the majority

class. Pay attention to Figure 13.

Figure 13: Response variable after balancing

We want to visualize the variables and get to know the features a little more.

 Z. Ahmadian, et al. / Diagnosis of Diabetes Using Bayesian and Boosting Classifier 23

Figure 14: Gender versus class

As we can see, women have diabetes more than men.

Figure 15: Polyuria versus class

Figure 16: Sudden weight loss versus class

From Figure 16, we can see that people who have suddenly lost weight get sick more often.

Z. Ahmadian, et al. / Diagnosis of Diabetes Using Bayesian and Boosting Classifier 24

Figure 17: Weakness versus class

After preprocessing and visualizing the data, we now want to implement the mentioned

models on the data and compare their accuracy with each other.

Table 3: Performance Comparison of the Algorithms

Figure 18: ROC Curves for the Algorithms [31]

According to Table 3 and the analysis shown in the ROC curve of the algorithms

(Figure 18), it can be concluded that Bayesian classification methods exhibit higher

accuracy than boosting classification methods. This superior performance implies that

Algorithm Accuracy Precision Recall F1-score

CatBoost 0.93 0.94 0.93 0.93

AdaBoost 0.90 0.90 0.90 0.90

XGBoost 0.89 0.91 0.88 0.89

BSVM 0.97 0.97 0.97 0.97

BKNN 0.95 0.95 0.95 0.95

BDT 0.96 0.96 0.96 0.96

 Z. Ahmadian, et al. / Diagnosis of Diabetes Using Bayesian and Boosting Classifier 25

Bayesian algorithms are particularly reliable for predictive tasks, such as forecasting the

results of new individuals' tests.

Positive Aspects:

1. High Accuracy: Bayesian classification methods' higher accuracy means they can

make more reliable predictions, reducing the likelihood of errors in test results. This

high accuracy is especially beneficial in fields where precision is critical, such as in

medical diagnostics or financial forecasting.

2. Robust Performance: The robustness of these algorithms leads to better

generalization to new data, making them valuable in real-world applications where

new data points frequently appear. This robustness ensures that the algorithms

maintain performance even when encountering previously unseen data.

3. Decision Support: These methods can support decision-making processes in various

fields. In medical diagnostics, for example, accurate predictions can lead to better

patient outcomes by enabling earlier and more precise interventions.

4. Data Utilization: Bayesian methods effectively incorporate prior knowledge and

update predictions as new data becomes available, enhancing their adaptability. This

continuous learning process allows these algorithms to remain relevant and accurate

over time.

5. Consistency: Consistent and precise predictions can build trust in automated systems

among users and stakeholders. This trust is crucial for the broader acceptance and

integration of these algorithms into critical decision-making processes.

6. Improved Predictive Accuracy: The higher accuracy of Bayesian methods can lead

to more reliable predictions in practical applications, such as predicting patient

outcomes or financial trends.

7. Increased Trust: The consistent performance of Bayesian methods can increase user

confidence in automated systems, leading to greater adoption of these technologies.

These positive aspects highlight why Bayesian classification methods are particularly

advantageous and why they can be confidently used to predict the test results of new

individuals. After concluding that Bayesian classification methods are more accurate than

boosting classification methods, the question arises whether there is a statistically

significant performance difference between the algorithms. To address this, we applied the

Nemenyi Post Hoc statistical test, yielding the following results:

Based on the results of the Nemenyi test, it can be seen that BSVM, BKNN, and BDT

show significant differences compared to the other algorithms.

Table 5 shows the accuracy of each algorithm and the algorithms with which it has

statistically significant differences in performance, based on the Nemenyi post-hoc test.

Table 5: Nemenyi Post-Hoc test and accuracy

Algorithm Accuracy

(%)

Significant differences (p<0.05)

Catboost 93 Adaboost, XGboost, BSVM, BKNN, BDT

Adaboost 90 Catboost, XGboost, BSVM, BKNN, BDT

XGboost 89 Catboost, Adaboost, BSVM, BKNN, BDT

BSVM 97 Catboost, Adaboost, XGboost, BKNN, BDT

BKNN 95 Catboost, Adaboost, XGboost, BSVM, BDT

BDT 96 Catboost, Adaboost, XGboost, BSVM, BKNN

Z. Ahmadian, et al. / Diagnosis of Diabetes Using Bayesian and Boosting Classifier 26

Figure 19 illustrates the heatmap of p-values from the Nemenyi post-hoc test,

comparing the performance of various machine learning algorithms, including CatBoost,

AdaBoost, XGBoost, BSVM, BKNN, and BDT. The color intensity represents the

significance level of the differences between each pair of algorithms, with darker colors

indicating lower p-values and thus more statistically significant differences. In this

heatmap, we observe the following:

CatBoost exhibits statistically significant differences when compared with BSVM,

BKNN, BDT, XGBoost, and AdaBoost, as indicated by p-values ranging from 0.019 to

0.038.

AdaBoost also shows significant differences in performance with other models,

particularly with XGBoost, where the p-value is the highest at 0.047, indicating a

marginally significant difference.

XGBoost and BSVM display the most differences from other algorithms, with p-values

ranging from 0.024 to 0.043, reinforcing the observation that these algorithms differ in

terms of accuracy and other performance metrics.

This visualization effectively highlights the pairwise statistical differences between the

algorithms, demonstrating which models have significantly different performance

outcomes according to the Nemenyi test.

Figure 19: The pairwise statistical significance of differences between CatBoost, AdaBoost,

XGBoost, BSVM, BKNN, and BDT based on the Nemenyi Post-Hoc test

5. CONCLUSION

Since early diagnosis of diabetes and its treatment save people’s lives, it is vital to use

accurate methods with low error to classify people. Different methods and algorithms in

the field of classical machine learning deal with classification, and the primary goal of all

researchers is to use the methods that have the most accuracy, in line with this, different

types of classification methods have been implemented. However in this article, Bayesian

approaches are used to obtain higher accuracy for classification, and these methods are

 Z. Ahmadian, et al. / Diagnosis of Diabetes Using Bayesian and Boosting Classifier 27

compared with boosting classification methods. So far, many types of research have shown

that boosting methods have higher accuracy than classification methods. However,

comparing boosting methods with Bayesian classification methods has not been made. In

this study, by comparing boosting classification methods and Bayesian classification

methods, we have shown that Bayesian classification methods have higher accuracy for

classifying people because they take uncertainty into account when classifying. The future

scope of this work includes expanding the dataset to include a more diverse population and

exploring the integration of other advanced machine learning techniques, such as deep

learning models, to further enhance diagnostic accuracy. Additionally, real-time

implementation in clinical settings and the development of personalized treatment plans

based on predictive models can be considered.

REFERENCES

[1] S. Arefin, “Chronic Disease Management through an AI-Powered Application,”Journal of

Service Science and Management, vol. 17, no. 4, pp. 305-320, 2024.

[2] S. Abdollahi and R. Safa, “Machine learning and AI for advancing Parkinson's disease

diagnosis: exploring promising applications,” Big Data and Computing Visions, vol. 4, no. 1,

pp. 12-21, 2024.

[3] M. Khalifa and M. Albadawy, “Artificial intelligence for diabetes: Enhancing

prevention,diagnosis, and effective management,” Computer Methods and Programs in

Biomedicine Update, 100141, 2024.

[4] S.C. Mackenzie, C.A.R. Sainsbury, D.J. Wake, “Diabetes and artificial intelligence beyond the

closed loop: a review of the landscape, promise and challenges,” Diabetologia, vol. 67, no. 2,

pp. 223-235, 2024.

[5] Khaleel, F.A., Al-Bakry, A.M.: “Diagnosis of diabetes using machine learning algorithms,”

Materials Today: Proceedings 80, 3200–3203 (2023).

[6] A. Choudhury and D. Gupta, “A survey on medical diagnosis of diabetes using machine

learning techniques,” In: Recent Developments in Machine Learning and Data Analytics, IC3,

pp. 67–78, 2019.

[7] J.J. Khanam and S.Y. Foo, “A comparison of machine learning algorithms for diabetes

prediction,” Ict Express, vol. 7, pp. 432–439, 2021.

[8] P. Sonar and K. JayaMalini, “Diabetes prediction using different machine learning

approaches,” In: 2019 3rd International Conference on Computing Methodologies and

Communication, (ICCMC), pp. 367–371, 2019.

[9] S. Sivaranjani, S. Ananya, J. Aravinth and R. Karthika, “Diabetes prediction using machine

learning algorithms with feature selection and dimensionality reduction,” In: 2021 7th

International Conference on Advanced Computing and Communication Systems (ICACCS),1,

pp. 141–146, 2021.

[10] M. Roobini, M. Lakshmi, R. Rajalakshmi, L. Sujihelen and K. Babu, “Type 2 diabetes mellitus

classification using predictive supervised learning model,” Soft Computing, pp. 1–15, 2023.

[11] G. Rajput, G and A. Alashetty, “Diabetes classification using ml algorithms,” In: Inven tive

Systems and Control: Proceedings of ICISC 2023, pp. 867–877, Springer, 2023.

[12] H. Patel, H and J. Briskilal, “Prediction of Diabetes using Machine Learning Algorithm,”

[13] M.H.L. Louk and B.A. Tama, “Tree-based classifier ensembles for pe malware analysis: A

performance revisit,” Algorithms, vol. 15, no. 9, p.332, 2022.

Z. Ahmadian, et al. / Diagnosis of Diabetes Using Bayesian and Boosting Classifier 28

[14] B.F. Wee, S. Sivakumar, K.H. Lim, W.K. Wong and F.H. Juwono, “Diabetes detection based

on machine learning and deep learning approaches,” Multimedia Tools and Applications, vol.

83, no. 8, pp. 24153-24185, 2024.

[15] Y. Resti, E.S. Kresnawati, N.R. Dewi and N. Eliyati, “ Diagnosis of diabetes mellitus in women

of reproductive age using the prediction methods of naive bayes, discriminant analysis, and

logistic regression,” Science and Technology Indonesia, vol. 6. No. 2, pp. 96–104, 2021.

[16] G. Parthiban, A. Rajesh and S.K. Srivatsa, “ Diagnosis of heart disease for diabetic patients

using naive bayes method,” International Journal of Computer Applications, vol. 24, no. 3, pp.

7–11, 2011.

[17] C.Y. Chou, D.Y. Hsu and C.H. Chou, “Predicting the onset of diabetes with machine learning

methods,” Journal of Personalized Medicine, vol. 13, no. 3, p. 406, 2023.

[18] F. Ebrahimzadeh, and R. Safa, “Unlocking the Potential of the Metaverse for Innovative and

Immersive Digital Care,” arXiv preprint arXiv:2406.07114, 2024.

[19] A. Pourkeyvan, R. Safa, and A. Sorourkhah, “Harnessing the power of hugging face

transformers for predicting mental health disorders in social networks,” IEEE Access, vol. 12,

pp. 28025–28035, 2024.

[20] J.H. Friedman, “Greedy function approximation: a gradient boosting machine,” Annals of

statistics, vol. 29, no. 5, pp. 1189–1232, 2001.

[21] J. Friedman, T. Hastie and R. Tibshirani, “Additive logistic regression: a statistical view of

boosting (with discussion and a rejoinder by the authors),” The annals of statistics, vol. 28, no.

2, pp. 337–407, 2000.

[22] L. Mason, J. Baxter, P. Bartlett and M. Frean, “Boosting algorithms as gradient descent,”

Advances in neural information processing systems, vol. 12, 1999.

[23] L. Prokhorenkova, G. Gusev, A. Vorobev, A.V. Dorogush and A. Gulin, “CatBoost: unbiased

boosting with categorical features,” Advances I n neural information processing systems, vol.

31, 2018.

[24] Y. Freund, R. Schapire and N. Abe, “A short introduction to boosting,” Journal Japanese

Society For Artificial Intelligence, vol. 14, no. 5, pp. 771-780, 1999.

[25] T. Chen and C. Guestrin, “Xgboost: Reliable large-scale tree boosting system,” In:

Proceedings of the 22nd SIGKDD Conference on Knowledge Discovery and Data Mining, San

Francisco, CA, USA, pp.13–17, 2015.

[26] N.G.Polson and S.L. Scott, “Data augmentation for support vector machines,” Bayesian

Analysis, vol. 6, no. 1, pp.1–24, 2011.

[27] G. Nuti, L.A.J. Rugama and A.I. Cross, “A Bayesian decision tree algorithm,” arXiv preprint

arXiv:1901.03214, 2019.

[28] C. Holmes and N. Adams, “A probabilistic nearest neighbor method for statistical pattern

recognition,” Journal of the Royal Statistical Society Series B: Statistical Methodology, vol.

64, no. 2, pp.295–306, 2002.

[29] Ž. Vujović, et al., “Classification model evaluation metrics,” International Journal of

Advanced Computer Science and Applications, vol. 12, no. 6, pp. 599–606, 2021.

[30] T. Fawcett, “Roc graphs: Notes and practical considerations for researchers,” Machine

learning, vol. 31, no. 1, pp. 1–38, 2004.

