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Abstract: In recent years, the diagnosis of diseases using artificial intelligence and 

machine learning algorithms has gained significant importance. Using data from relevant 

medical studies enables the extraction of valuable insights that can reduce the occurrence 

of numerous fatalities. One of the rapidly growing chronic diseases is diabetes, which has 

shown a growing prevalence due to urbanization and reduced physical activity. Hence, 

early detection of diabetes in individuals has immense significance. This paper utilizes a 

dataset comprising information from individuals who underwent diabetes diagnostic tests 

and employs classification techniques to determine whether their test results were positive 

or negative for diabetes. The novelty of this work lies in the comparative analysis of 

Bayesian classifiers and boosting methods, which have not been extensively explored in 

the literature. The utilized classification methods include Bayesian classifiers such as 

Bayesian Support Vector Machine, Bayesian k-nearest neighbor, Bayesian decision tree 

and boosting methods like Catboost, Adaboost, and XGboost. Performance evaluation 

metrics, including accuracy, precision, recall, F1-score, and ROC curve analysis, are 

employed to compare the efficacy of these methods in analyzing the data. The findings of 

this study will contribute to the advancement of accurate and efficient diabetes diagnosis 
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using machine learning techniques, potentially helping in early intervention and 

management of the disease. 

Keywords: Bayesian support vector machine, Bayesian k-nearest neighbor, Bayesian 

decision tree, boosting classification, diagnosis of diabetes. 

MSC: 62H30, 62F15, 68T05, 62P10. 

1. INTRODUCTION 

The main goal of data science is to develop theoretical foundations and concepts for 

extracting valuable information and useful insights from given data and finally apply them 

to solve real-world problems. One of these important real-world problems is to classify 

people based on their diabetes test results into positive and negative categories. Early and 

accurate diagnosis of diabetes is critical because it allows for timely intervention, 

management, and treatment, which can significantly reduce the risk of severe 

complications such as heart disease, kidney failure, stroke, and blindness. This highlights 

the importance of developing and comparing various machine learning algorithms to 

identify the most effective method for diabetes diagnosis. 

In this paper, we address a notable gap in the existing literature: the comparative 

analysis of Bayesian and boosting classification methods specifically for diabetes 

diagnosis. Despite extensive research on machine learning applications in healthcare, there 

is a lack of studies directly comparing the efficacy of Bayesian classifiers against boosting 

methods in the context of diabetes, which is critical given the complexity and variability 

of the disease's clinical manifestations. Our objective is to rigorously compare these 

methods to identify the most effective approach for early and accurate diabetes diagnosis, 

potentially contributing to better patient management and treatment outcomes. 

Recent advancements in artificial intelligence (AI) have opened new avenues for 

managing chronic diseases, including diabetes. AI-powered applications have shown the 

potential to improve patient outcomes by providing continuous monitoring and 

personalized treatment plans, as discussed in the work by Arefin [1] on chronic disease 

management. These AI tools actively engage patients in their healthcare, which is crucial 

for managing chronic conditions effectively. Furthermore, AI's role in enhancing disease 

diagnosis is demonstrated by Abdollahi and Safa [2], who explored its applications in 

Parkinson’s disease diagnosis, showing how machine-learning techniques can lead to early 

and accurate detection. This highlights the potential for similar AI-driven methods to be 

applied to diabetes diagnosis. 

The potential of AI in healthcare extends beyond direct diagnosis and management. 

Khalifa and Albadawy [3] emphasized AI's transformative role in diabetes care, including 

prevention, diagnosis, and effective management through predictive modeling and 

personalized care. Mackenzie et al. [4] further explore AI's broader applications in 

diabetes, beyond commonly discussed closed-loop systems, highlighting its role in patient 

education, self-management, and clinical decision support systems.  

A lot of research has been carried out in the diagnosis of diabetes in the past, using 

machine learning algorithms such as logistic regression, Naive Bayes, and K-Nearest 

Neighbor (KNN) to diagnose diabetes, concluding that logistic regression has high 

accuracy for classifying people [5]. Choudhury and Gupta [6] predict diabetes during the 

design of medical diagnosis software. They used machine learning algorithms such as 
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neural network, decision tree (DT), Naive Bayes, random forest (RF), KNN, support vector 

machine (SVM), and logistic regression. 

Khanam and Foo [7] have used six machine learning algorithms, such as support vector 

machine, KNN, gradient boosting, decision tree, random forest, and logistic regression, to 

detect patterns and risk factors in India’s Pima diabetes dataset. Sonar and JayaMalini [8] 

used classification methods such as Naive Bayes, SVM, artificial neural network (ANN), 

and decision trees to predict the diabetes risk level of patients. They concluded that the 

accuracy of the decision tree is higher than the rest of the algorithms. After preprocessing 

the data and selecting the critical features, Sivaranjani and coworkers [9] used principal 

component analysis (PCA) as a method to reduce the dimension and finally used random 

forest algorithms and support vector machine to diagnose diabetes and concluded that the 

accuracy of the random forest algorithm is more than the support vector machine. 

Algorithms such as KNN, random forest, logistic regression, decision tree, and the 

Ensemble approach to classifying type 2 diabetes datasets are used by Roobini and 

Mohandoss [10]. 

Rajput and Alashetty [11] analyzed PIMA diabetes data, using several classification 

algorithms such as SVM, logistic regression, decision tree, and random forest, and 

concluded that SVM and random forest have high accuracy. Patel and Briskilal [12] used 

machine learning techniques such as KNN, logistic regression, decision tree, SVM, Light 

Gradient Boosting Machine (LightGBM), and random forest for early diagnosis of 

diabetes. They concluded that random forest is more accurate than other algorithms. 

Louk et al. [13] focused on PE Malware Analysis, using various tree-based ensemble 

learning methods such as random forest, Extreme Gradient Boosting (XGBoost), 

Categorical Boosting (Cat Boost), Gradient Boosting Machine (GBM), and LightGBM. 

Wee et al. [14] provided a comprehensive review of diabetes detection using machine 

learning and deep learning approaches. Their study emphasized the potential of non-

invasive and anthropometric measurements in creating cost-effective and high-

performance diabetes detection systems. They also discussed the impacts of oversampling 

techniques and data dimensionality reduction through feature selection approaches, 

pointing out the future direction for improving accuracy and reliability in diabetes 

identification. 

The comparison of different machine learning methods for predicting diabetes has 

shown varying results. For instance, the study by Yulia Resti et al. [15] found that 

Multinomial Naive Bayes outperformed other methods like Fisher Discriminant Analysis 

and Logistic Regression, achieving performance measures exceeding 93%. Additionally, 

G. Parthiban et al. [16] demonstrated the use of the Naive Bayes classifier in predicting 

heart disease in diabetic patients, showcasing the effectiveness of Bayesian methods in 

medical diagnostics. 

Moreover, Chou et al. [17] explored predicting the onset of diabetes using machine 

learning methods. Their study, based on outpatient examination data from a Taipei 

Municipal Medical Center, highlighted the efficacy of neural networks and boosted 

decision trees in predicting diabetes. Their study comparing various BERT models from 

Hugging Face with traditional machine learning techniques demonstrated the superiority 

of these models in predicting mental health disorders, reinforcing the broader applicability 

of machine learning in healthcare diagnostics. 
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In another study, Ebrahimzadeh and Safa [18] discussed the transformative potential of 

the Metaverse in healthcare, emphasizing how machine learning can use data generated 

within this virtual environment to improve medical services. Finally, a study by 

Pourkeyvan and colleagues [19] highlights the application of machine learning techniques 

for predicting mental health disorders using social media data. This approach underscores 

the potential of using diverse data sources and advanced machine learning models to 

enhance early detection and intervention in healthcare, drawing a parallel to this work in 

diabetes diagnosis. 

By reviewing past research, we find that different algorithms have been compared in 

the diagnosis of diabetes, and it can be argued that boosting algorithms have been 

compared with most classification methods in machine learning. However, the vital point 

in this article is the comparison between boosting classification algorithms and Bayesian 

classification methods, which has not been done so far, highlighting the uniqueness of this 

study. By identifying the most effective classification method for diabetes diagnosis, this 

study aims to contribute to the development of more accurate and reliable diagnostic tools, 

which can ultimately enhance clinical decision-making and patient outcomes.  

The rest of the article is organized as follows, Section 2 explains the algorithms and 

methods used. Section 3 defines model evaluation metrics such as confusion matrix, ROC 

curve, accuracy, precision, recall, and F-measure. Section 4 deals with implementing the 

methods mentioned in Section 2 on the data. Section 5 deals with the conclusion and 

summary. 

2. MATERIALS AND ALGORITHMS 

This section will be dedicated to the detailed examination and discussion of several 

algorithms, namely, CatBoost, AdaBoost, XGBoost, Bayesian support vector machine 

(BSVM), Bayesian K-nearest neighbor (BKNN), and Bayesian decision tree (BDT). 

2.1 Categorical Boosting (CatBoost) 

Before defining and examining the CatBoost algorithm, we will give a general 

explanation of ensemble classification methods. As the name suggests, these methods 

utilize a collection of learners, such as different classification algorithms and techniques, 

in a repetitive manner. This leads to the creating models and classifications that are 

significantly more accurate and have fewer weaknesses. In general, ensemble algorithms 

can be divided into two categories: Bagging algorithms and Boosting algorithms. The 

CatBoost algorithm is a subset of Boosting algorithms. CatBoost was introduced by 

Yandex company in 2017 [20]. This algorithm has successfully managed to handle 

categorical inputs without directly performing encoding operations in the preprocessing 

stage. It also handles numerical and textual features. The existence of appropriate encoding 

within the algorithm has led to its recognition and has provided more advantages compared 

to other classification algorithms. Furthermore, during the training process of this 

algorithm, a set of symmetric decision trees (symmetric tree: a tree in which each parent 

node has either zero or two child nodes) is sequentially built with reduced cost compared 

to the previous tree. This algorithm uses a novel scheme for computing leaf values when 

selecting the tree structure, which helps reduce overfitting. Thus, the combination of new 

encoding features for categorical variables (using ordered target statistics) and overfitting 
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reduction contributes to the superiority and power of this algorithm compared to others. 

Figure 1 illustrates an example of the CatBoost classifier structure. 

 

Figure 1: An example of the CatBoost classifier structure. 

Imagine that we observe data with samples 𝐷 = {(𝑋𝑖  , 𝑦𝑖  )}𝑖=1…𝑛where 𝑋𝑖 =
(𝑥𝑖

1, 𝑥𝑖
2, … , 𝑥𝑖

𝑚) is a random vector composed of m features, and 𝑦𝑖 ∈ 𝑅 represents the 

target variable, which can take the form of either a binary value (i.e., positive and negative) 

or a numerical value (0,1). The samples (𝑋𝑖 , 𝑦𝑖) are distributed independently and 

identically according to an unknown probability distribution 𝑃(·,·). The objective of the 

learning task is to train a function 𝐻: 𝑅𝑚 → 𝑅 that minimizes the expected loss as specified 

in Equation 1. 

ℒ(𝑀): = 𝐸𝐿(𝑦, 𝑀(𝑋) (1) 

In this context, 𝐿(. , . )represents a loss function with smooth properties, while (𝑋, 𝑦 

denotes testing data sampled from the training dataset 𝐷. 

The process of gradient boosting [20] builds a sequence of successive approximations, 

denoted as 𝑀𝑡: 𝑅𝑛 → 𝑅 , 𝑡 = 0,1, … with 𝑡 ranging from 0 to infinity, in a step-by-step and 

greedy manner. Derived from the preceding approximation 𝑀𝑡−1, 𝑀𝑡
 is obtained using an 

additive mechanism such that 𝑀𝑡 = 𝑀𝑡−1 + 𝛼ℎ𝑡 , using a step size 𝛼 and function ht  :Rm→
𝑅, which is a base predictor, selected from a set of functions 𝐻 to reduce or minimize the 

expected loss defined in Equation 2. 

ℎ𝑡 = 𝑎𝑟𝑔𝑚𝑖𝑛ℎ∈𝐻ℒ(𝑀𝑡−1 + ℎ)  = 𝑎𝑟𝑔𝑚𝑖𝑛ℎ∈𝐻𝐸𝐿(𝑦, 𝑀𝑡−1(𝑋) + ℎ(𝑋))                   (2) 

To solve this minimization problem, gradient boosting typically employs techniques 

like gradient descent. Here, ℎ𝑡 is approximated by taking a step in the direction of the 

negative gradient of the loss function evaluated at 𝑀𝑡−1 This process is repeated for a 

predefined number of steps or until the improvements become negligible [21,22]. 

Additional information about the CatBoost algorithm can be found in [23]. 

As we mentioned, the CatBoost algorithm uses the ordered target statistics method to 

code the data. The formula for the collected target statistic is stated in Equation 3: 

𝑡𝑎𝑟𝑔𝑒𝑡 𝑠𝑡𝑎𝑡𝑖𝑠𝑡𝑖𝑐 =
𝑐𝑢𝑟𝑟𝑒𝑛𝑡_𝑐𝑜𝑢𝑛𝑡+(𝑎×𝑝)

𝑚𝑎𝑥𝑖𝑚𝑢𝑚_𝑐𝑜𝑢𝑛𝑡+𝑎
                                                                              (3) 

In the above equation: 

 𝑎 and prior (𝑝) are the constant parameters, by default, equal to 1 and 0.5. 
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 current_count is the sum of all the output class values of the same category that the 

current row in the dataset belongs to. 

 maximum_count is the sum of the same category items above the current row. 

For a better understanding, we will give an example. 

Example 1: Assume that we want to encode the simulated dataset using ordered target 

statistics in Table 1.  

Table 1: Simulated example 

colour length type 

red 5 1 

red 5 2 

red 4 1 

green 5 0 

green 7 0 

blue 2 1 

 

Let’s consider the situation where we are converting the item in the third row that is 

explicitly written in blue color. maximum_count=2, current_count=1+2=3, a=1, p=0.5.  

The numeric value is: 

(1 + 2) + (1 × 0.5)

2 + 1
= 1.166 

The algorithm utilizes a consistent approach to label encoding for all categorical data in 

the dataset. It applies the same formula to handle categorical variables across the entire 

dataset. 

Table 1 becomes Table 2. 

Table 2: Simulated example 

colour length type 

red 5 1 

red 5 2 

1.166 4 1 

green 5 0 

green 7 0 

blue 2 1 

 

2.2 Adaptive Boosting (AdaBoost) 

The Adaptive Boosting (AdaBoost) algorithm is a machine learning technique used to 

enhance the accuracy of other boosting algorithms. It operates by training weaker rules to 

create a boosted algorithm. In AdaBoost, the input consists of a training set 

(𝑥1, 𝑦1), … , (𝑥𝑚, 𝑦𝑚) where each 𝑥𝑖 belongs to an instance space, and each corresponding 

label 𝑦𝑖  belongs to a label set 𝑌 (in this case, assuming 𝑌 =  {−1, +1}). The algorithm 

iteratively applies a given weak or base learning algorithm in a series of rounds denoted as 

 𝑡 =  1, . . . , 𝑇. One crucial aspect of the algorithm is the maintenance of a distribution or 
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set of weights over the training set. The weight assigned to training sample 𝑖 at round 𝑡 is 

represented as 𝐷𝑡(𝑖). Initially, all weights are set equally, but in each round, the weights of 

misclassified samples are increased to emphasize difficult samples in the training set. The 

objective of the weak learner is to find a weak hypothesis ℎ𝑡: 𝑋 →  {−1, +1} that is 

suitable for the distribution. The error of a weak hypothesis is used as a metric to assess its 

quality. The algorithm’s procedure is outlined in Algorithm 1. More explanation can be 

obtained in [24]. 

Algorithm 1: The Adaboost algorithm 

Given: (𝑥1, 𝑦1), . . . , (𝑥𝑛 , 𝑦𝑛) where 𝑥𝑖 ∈ 𝑋, 𝑦𝑖 ∈ 𝑌 = {1, −1} 

Set 𝐷1(𝑖) =
1

𝑛
 (initial equal weight for all samples) 

For 𝑡 = 1, . . . 𝑇: 

 Train weak learner with distribution Dt. 

 Get weak hypothesis ℎ𝑡 ∶ 𝑋 → {−1,1} with error 𝜀𝑡 = 𝑃𝑟𝑖∼𝐷𝑡[ℎ𝑡(𝑥𝑖) ≠ 𝑦𝑖] 

 Choose 𝛼𝑡 = 0.5𝑙𝑛 (
1−𝜀𝑡

𝜀𝑡
) 

 Update  

𝐷𝑡+1(𝑖) =
𝐷𝑡(𝑖)

𝑍𝑡
× {

exp(−𝛼𝑡)   𝑖𝑓 ℎ𝑡(𝑥𝑖) = 𝑦𝑖

𝑒𝑥𝑝(𝛼𝑡)    𝑖𝑓  ℎ𝑡(𝑥𝑖) ≠ 𝑦𝑖  
 (4) 

 =
𝐷𝑡(𝑖)exp (−𝛼𝑡𝑦𝑖ℎ𝑡(𝑥𝑖))

𝑍𝑡
  

Here, 𝐷𝑡+1(𝑖) is the updated weight for sample 𝑖, where 𝑍𝑡 is a normalization factor to 

ensure the weights sum to 1. The exponential factor increases the weight of misclassified 

samples (when 𝑦𝑖 ≠ ℎ𝑡(𝑥)), ensuring the next weak learner focuses more on these difficult 

samples. Output: 

𝐻(𝑥) = 𝑠𝑖𝑔𝑛(∑ 𝛼𝑡ℎ𝑡(𝑥)𝑇
𝑡=1 )  (5) 

The final strong classifier 𝐻(𝑥) is a weighted majority vote of the 𝑇 weak classifiers, where 

each 𝛼𝑡 determines the weight of the corresponding ℎ𝑡(𝑥). 

2.3 Extreme Gradient Boosting (XGBoost) 

XGBoost is a distributed gradient boosting library specifically designed to efficiently 

and effectively train machine learning models. It employs an ensemble learning approach 

by combining the predictions of multiple weak models to generate a more robust 

prediction. XGBoost has gained significant popularity in machine learning due to its ability 

to handle large datasets and achieve state-of-the-art performance in various tasks such as 

classification and regression. To learn how this algorithm works, we have: Given data with 

m-samples and n-features, 𝐷 = {(𝑋𝑗 , 𝑦𝑗)}(|𝐷|  =  𝑚, 𝑋𝑗 ∈ 𝑅𝑛 , 𝑦𝑗 ∈ 𝑅), a tree ensemble 

model employs a combination of L additive functions to make predictions for the output, 

as outlined in (6): 

�̂�𝑗 = 𝜙(𝑋𝑗) = ∑ ℎ𝑙(𝑋𝑗),      ℎ𝑙 ∈ 𝐻𝐿
𝑙=1  .                                                                                       (6) 
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Here, 𝜙(𝑋𝑗) is the prediction for sample 𝑗, represented as the sum of 𝐿 functions ℎ𝑙(𝑋𝑗) 

from the space of regression trees 𝐻. Each ℎ𝑙 corresponds to one tree in the ensemble. 

Where 𝐻 =  {ℎ(𝑋)  =  𝑤𝑞(𝑋)}(𝑞 ∶  𝑅𝑛  →  𝑈, 𝑤 ∈  𝑅𝑛 ), the space of regression trees 

represents the set of all possible trees used for regression. In this context, 𝑞 represents the 

structure of each tree, which maps a sample to its corresponding leaf index. The variable 

𝑈 represents the total number of leaves in the tree. Each ℎ𝑙 refers to the independent 

structure of tree 𝑞 and the leaf weights 𝑤. 

ℒ(𝜙) = ∑ 𝑙(𝑗 �̂�𝑗, 𝑦𝑗) + ∑ Ω(ℎ𝑙)𝑙 Ω(ℎ𝑙) =  𝛾𝑈 +
1

2
 𝜆||𝑤||2 , (7) 

where 𝑙 is a differentiable convex loss function that measures the difference between the 

𝑦𝑗  ,  �̂�𝑗. 

The loss function 𝐿(𝜙) measures the difference between the predicted values 𝑦�̂�. and the 

actual values 𝑦𝑗 using a differentiable convex loss function l. The regularization term Ω(ℎ𝑙) 

penalizes the complexity of the model to prevent overfitting, where 𝛾 and 𝜆 are 

regularization parameters. 

To find the best tree structure, XGBoost minimizes the following objective function during 

training: 

ℒ̃ (𝑢)(𝑞) =
−1

2
∑

(∑ 𝑓𝑖𝑖∈𝐼𝑗
)2

∑ 𝑔𝑖+𝜆𝑖∈𝐼𝑗

𝑈
𝑗=1 + 𝛾𝑈 ,  (8) 

where 𝑓𝑖 = 𝜕�̂�(𝑢−1)𝑙(𝑦𝑗 , �̂�(𝑢−1)) and 𝑔𝑖 = 𝜕2
�̂�(𝑢−1)𝑙(𝑦𝑗 , �̂�(𝑢−1)). In these equations, 𝑓𝑖 and 

𝑔𝑖 are the first and second-order gradient statistics, respectively, which help in optimizing 

the loss function. The gradients (𝑓𝑖) and (𝑔𝑖) provide the necessary information to update 

the model parameters and improve prediction accuracy [25]. 

2.4 Bayesian Support Vector Machine (BSVM) 

Bayesian Support Vector Machine (BSVM) extends the traditional SVM algorithm by 

incorporating Bayesian inference principles. It combines the strengths of SVM, known for 

its ability to handle high-dimensional data and nonlinear relationships, with the 

probabilistic framework of Bayesian methods. 

In Bayesian SVM, instead of finding a single optimal hyperplane that maximally 

separates the data into classes, it seeks to estimate the posterior probability distribution 

over the hyperplane parameters. This allows for a more robust and flexible classification 

approach, especially in situations with limited training data or noisy training data. 

The Bayesian framework introduces prior distributions over the hyperplane parameters, 

representing prior knowledge or assumptions about the problem. By incorporating prior 

information, Bayesian SVM can effectively regularize the model and handle overfitting. 

During the learning process, the algorithm updates the prior distribution to obtain the 

posterior distribution using Bayes’ rule, which combines the prior knowledge with the 

observed data. 

To make predictions, Bayesian SVM considers the entire posterior distribution of the 

hyperplane parameters instead of relying solely on a single solution. This enables the 

estimation of class probabilities and provides a measure of uncertainty in the predictions. 
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In addition, Bayesian SVM can naturally handle model selection by comparing different 

models through their posterior probabilities. 

One common approach to implementing Bayesian SVM is using Markov chain Monte 

Carlo (MCMC) sampling techniques, such as Gibbs sampling or the Metropolis-Hastings 

algorithm, to approximate the posterior distribution. These sampling methods iteratively 

draw samples from the posterior, allowing for inference and prediction. 

The advantage of Bayesian SVM is its ability to incorporate prior knowledge, handle 

uncertainty, and provide probabilistic predictions. However, it comes at the cost of 

increased computational complexity compared to traditional SVM, which involves 

sampling from the posterior distribution. 

In Support Vector Machines (SVM), the objective is to minimize a cost function as 

follows: 

𝑑𝛼(𝛽, 𝑣) = ∑ max(1 − 𝑦𝑖𝑥𝑖
𝑇𝛽, 0) + 𝑣−𝛼 ∑ |

𝛽𝑗

𝜎𝑗
|2𝑘

𝑗=1
𝑛
𝑖=1   ,    (9) 

where 𝑥 represents the feature vector, 𝑦 represents the target, 𝛽 represents the coefficients, 

𝜎𝑗 is the standard deviation of the 𝑗-th element of 𝑥, and 𝑣 is a tuning parameter. The second 

part of this formula is the regularization term, which can take various forms. However, the 

objective of this article is to estimate the parameters of Support Vector Machines in a 

Bayesian framework, meaning that the estimation of parameter 𝛽 will be conducted using 

Bayesian inference. Minimizing the cost function 9 corresponds to finding the mode of the 

pseudo-posterior distribution 𝑝(𝛽|𝑣, 𝛼, 𝑦)defined by: 

𝑝(𝛽|𝑣, 𝛼, 𝑦) ∝ exp(−𝑑𝛼(𝛽, 𝑣))  ∝ 𝐶𝛼(𝑣)𝐿(𝑦|𝛽)𝑝(𝛽|𝑣, 𝛼). (10) 

The factor of 𝐶𝛼(𝑣)is a pseudo-posterior normalization constant that is absent in the 

classical analysis. The data-dependent factor 𝐿(𝑦 ∣ 𝛽) is a pseudo-likelihood: 

𝐿( 𝑦 ∣∣ 𝛽 ) = ∏ 𝐿𝑖𝑖 (𝑦𝑖 ∣ 𝛽) = 𝑒𝑥𝑝{−2 ∑ 𝑚𝑎𝑥 (1 −𝑛
𝑖=1 𝑦𝑖𝑥𝑖

𝑇𝛽, 0)}. (11) 

This equation is established because it demonstrates that the likelihood function of the 

first kind follows a mixture of normal distributions. Therefore, we will have: 

L(y|𝛽) = exp (−2 ∑ max(1 − 𝑦𝑖𝑥𝑖
𝑇𝛽, 0))  = ∫

1

√2𝜋𝜆

∞

0
exp (−

1

2

(1+𝜆𝑖−𝑦𝑖𝑥𝑖
𝑇𝛽)

2

𝜆𝑖
) 𝑑𝜆                   𝑛

𝑖=1  

             = ∫
1

√2𝜋𝜆

∞

0

exp(−𝑢) exp (−
1

2
(𝜆 + 𝑢2𝜆−1)𝑑 = ∫

1

√2𝜋𝜆
exp (−𝑢 −

𝜆

2
−

𝑢2𝜆−1

2
𝑑𝜆

∞

0

 

        = ∫
1

√2𝜋𝜆
 exp (

−(𝑢+𝜆)2

2𝜆

∞

0
𝑑𝜆 = 𝑒𝑥𝑝(−2 𝑚𝑎𝑥(𝑢, 0)), (12) 

where 𝜆 is a latent variable. Based on the results obtained from 12, the pseudo-posterior 

distribution can be expressed as Equation 13: 

𝑝(𝛽, 𝜆, 𝑤|𝑦, 𝑣, 𝛼) 

∝ ∏ 𝜆
𝑖

−1

2 exp (
−1

2
∑

(1+𝜆𝑖−𝑦𝑖𝑥𝑖
𝑇𝛽)

2

𝜆𝑖
) ∏ 𝑤

𝑗

−1

2𝑘
𝑗=1

𝑛
𝑖=1

𝑛
𝑖=1 × 𝑒𝑥𝑝 (

−1

2𝑣2
∑

𝛽𝑗
2

𝜎𝑗
2𝑤𝑗

𝑘
𝑗=1 ) 𝑝(𝑤𝑗|𝛼), (13) 
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where 𝑝(𝑤𝑗 ∣ 𝛼) ∝ 𝑤
𝑗

−3

2 𝑆𝑡𝛼

2

+(𝑤𝑗
−1), which, as a result, using Markov Chain Monte Carlo 

(MCMC), we will obtain the value of 𝛽 for parameter estimation. Further details can be 

found in [26]. 

Figure 2 illustrates the concept of Bayesian SVM by showing a hyperplane with 

confidence bands. The black line represents the optimal separating hyperplane determined 

by the Bayesian SVM, which maximizes the margin between the classes. The shaded 

region around the hyperplane indicates the confidence bands, reflecting the uncertainty in 

the classification boundary. These confidence bands represent the range within which the 

hyperplane could reasonably be positioned, based on the variability of the data. 

The figure demonstrates that Bayesian SVM does not rigidly rely on a single 

hyperplane for classification but instead considers multiple potential hyperplanes. This 

probabilistic approach allows for more flexible decision-making, where the model can 

account for overlapping data and provide a measure of confidence in its predictions. This 

capability to represent uncertainty makes BSVMs valuable in applications requiring 

reliable risk assessments and decision-making under uncertainty. 

 

 
Figure 2: Bayesian SVM Hyperplane with Confidence Bands 

2.5 Bayesian Decision Tree (BDT) 

Bayesian Decision Tree is a specific variation of a decision tree that integrates 

Bayesian principles and probabilistic reasoning into its construction and interpretation. In 

contrast to conventional decision trees, which primarily aim to maximize accuracy, 

Bayesian Decision Trees consider the inherent uncertainty linked to each decision and 

assign probabilities to various potential outcomes. Constructing Bayesian Decision Trees 

involves considering prior knowledge or beliefs about the data and updating them based 

on observed evidence. This is done using Bayesian inference, which allows for more 

flexible and nuanced modeling of the relationships between variables. By incorporating 

prior knowledge and updating it with new information, Bayesian Decision Trees can 

provide more accurate predictions and account for uncertainties in the data. Bayesian 

Decision Trees can handle both regression and classification problems. The algorithm for 

constructing these trees does not rely on computationally intensive methods like Markov 

Chain Monte Carlo, making it more efficient and scalable. We establish 𝐷 as a dataset 

consisting of 𝑛 independent observations, denoted as {(𝑥𝑖 , 𝑦𝑖) for 𝑖 ranging from 1 to 𝑛. 
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The points 𝑥 = (𝑥1, … , 𝑥𝑑) in 𝑅𝑑 represent the features of each observation, where the 

outcome y is randomly selected from 𝑌𝑥. 

The nature of the problem we are addressing is determined by the distribution of 𝑌𝑥. If 

𝑌𝑥  follows a discrete probability distribution, it corresponds to a classification problem. 

On the other hand, if 𝑌𝑥 follows a continuous probability distribution, it corresponds to a 

regression problem. The beta function will play a significant role in calculating the 

likelihood of the classification examples. 

𝛽(𝑧1, … , 𝑧𝐶) =
∏ 𝜏(𝑧𝑐)𝐶

𝑐=1

𝜏(∑ 𝑧𝑐𝐶
𝑐=1 )

  ,  (14) 

𝐶 is different classes, and 𝜏 is the gamma function. The dataset D is obtained by sampling 

from a data generation process. We can separate this process into two distinct steps:  

First, a point 𝑥 is randomly selected from the 𝑑-dimensional space 𝑅𝑑; second, the 

outcome 𝑌𝑥 is sampled given 𝑥. No prior knowledge regarding the generation of locations 

x is taken into consideration. As a result, our primary focus lies in examining the 

distribution of 𝑌𝑥. The conditional distribution is presumed to be represented within a tree 

structure, constructed using a set of straightforward recursive rules based on {𝑥𝑖}  for 𝑖 
ranging from 1 to 𝑛. This tree-generation process determines the organization of the tree. 

From the root of the tree, we decide whether to expand the current node by creating two 

new leaves based on a predetermined probability. This probability may vary depending on 

the current depth of the tree. If expansion is not chosen, the process ends for that particular 

node. However, if expansion is selected, we determine which dimension within 𝑑 should 

be utilized for the split. Once the dimension for the split is determined, we assume that the 

exact position of the split within the available range is distributed uniformly among all 

distinct points within that range. After establishing the specific location of the split, the 

process continues iteratively by determining whether each new leaf should be further split. 

This iteration repeats until there are no more nodes that require splitting or when each leaf 

contains only a single distinct set of observations. At this point, the tree construction 

process is considered complete. Considering the aforementioned generating process, it 

becomes evident that the fundamental element of Bayesian Decision Trees involves 

examining partitions of 𝑅𝑑 that provide a more adequate explanation of the outcomes using 

a probabilistic approach. Within a partition Π, all points found in the same set exhibit an 

equivalent outcome distribution. This implies that the outcome variable 𝑌 is independent 

of the predictor variable 𝑥. By assuming a prior distribution for the parameters of the 

outcome distribution 𝑌, it becomes possible to derive the likelihood of each set within a 

partition. As all observations are assumed to be independent, the overall partition 

likelihood 𝐿(𝐷|𝛱) is calculated by multiplying the likelihoods of each set within the 

partition. 

Now we explain the partition space, which is the building block for the Bayesian 

Decision Trees. Let 𝐷 = (𝑥𝑖 , 𝑦𝑖), 𝑖 = 1, … , 𝑛 be a dataset consisting of n independent 

observations in 𝑀 × 𝑅, 𝑀 ⊆ 𝑅𝑑. A partition 𝛱 = {𝑀1, 𝑀2, … , 𝑀𝑘} of 𝑀 divides 𝑀 into 

disjoint subsets 𝑀1, 𝑀2, … , 𝑀𝑘 such that =∪ 𝑀𝑤 . As a result, the dataset 𝐷 will be split into 

𝐷𝑀1
, … . , 𝐷𝑀𝑘

, where the observation (𝑥𝑖 , 𝑦𝑖) belongs to 𝐷𝑀𝑤
 if and only if 𝑥𝑖 ∈ 𝑀𝑤. All 

𝑌𝑀𝑤
 sampled within region 𝑀𝑤 follows the same distribution with probability measure 𝜌𝑞 
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and parameters 𝑞 in 𝑅𝑠. We assume a prior distribution 𝛾𝑀𝑤 for parameters 𝑞. Then, the 

likelihood of our data given the prior is: 

𝐿(𝐷𝑀𝑤
) = {

∫(∏ 𝜌𝑞(𝑦𝑖𝑦𝑖∈𝐷𝑀𝑤
))𝛾𝑀𝑤(𝑞) 𝑑𝑞       𝐷𝑀𝑤

≠ ∅ 

1                                                           𝐷𝑀𝑤
= ∅    

    . (15) 

The likelihood of our data given the partition is: 

L(D| 𝛱) = ∏ 𝐿(𝐷𝑀𝑤
)𝑘

𝑤=1 . (16) 

Considering 𝑝(𝛱) over 𝛺𝛱, the posterior distribution of our data is: 

𝑝(𝛱|𝐷) =
𝐿(𝐷| 𝛱)×𝑝(𝛱)

𝑝(𝐷)
=

𝐿(𝐷| 𝛱)×𝑝(𝛱)

∫ 𝐿(𝐷| 𝛱)×𝑝(𝛱)
 (17) 

Finally, the posterior distribution of q in each region 𝑀𝑤is: 

𝜇(𝑞) =
𝐿(𝑦𝑖∈𝐷𝑀𝑤|𝑞)𝛾𝑀𝑤(𝑞)

∫ 𝐿(𝑦𝑖 ∈ 𝐷𝑀𝑤
|𝑞)𝛾𝑀𝑤(𝑞)𝑑𝑞

.  (18) 

Step-by-step explanation for Bayesian Decision Tree construction: 

1. Data Collection and Initial Setup: Gather the dataset 𝐷 consisting of 𝑛 

independent observations (𝑥𝑖 , 𝑦𝑖). 

2. Partitioning the Feature Space: Divide the feature space 𝑀 ⊆ 𝑅𝑑  into disjoint 

subsets {𝑀1, 𝑀2, … , 𝑀𝑘}. 

3. Prior Distribution Assumption: Assume a prior distribution 𝛾𝑀𝑤  for the 

parameters 𝑞 of the outcome distribution 𝑌. 

4. Likelihood Calculation for Each Partition: For each partition 𝑀𝑤, calculate the 

likelihood 𝐿(𝐷𝑀𝑤
) using the (16) formula.  

5. Overall Likelihood Calculation: Combine the likelihoods of each partition to 

get the overall likelihood equation (17). 

6. Posterior Distribution Calculation: Calculate the posterior distribution of the 

partitions using equation (18). 

7. Parameter Estimation: Finally, estimate the parameters 𝑞 for each region 𝑀𝑤,   

using the posterior distribution equation (18).  

Further details can be found in [27]. 

2.6 Bayesian K-Nearest Neighbor (BKNN)  

Bayesian k-nearest neighbor (BKNN) is an enhanced version of the conventional k-

nearest neighbor (KNN) algorithm, integrating Bayesian inference to improve prediction 

capabilities. KNN is a non-parametric classification algorithm that assigns a class label to 

an unseen data point by considering the majority class labels of its k nearest neighbors in 

the training dataset. In BKNN, Bayesian inference is employed to estimate the posterior 

probability of each class label, going beyond the simple majority vote of the k nearest 

neighbors. This is achieved by taking into account the prior probabilities of the classes and 

evaluating the likelihood of observing the class labels in the training data based on the 

neighbors’ features. The steps involved in BKNN are as follows: 

1. Data Collection: Gather the dataset 𝐷 in blocks, each containing pairs of features 𝑋 

and labels Y. 
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2. Nearest Neighbor Identification: Identify the k nearest neighbors of the test data 

point by utilizing a distance metric (e.g., Euclidean distance) in the feature space. 

These neighbors correspond to the training instances with the closest feature values to 

the test instance. 

3. Likelihood Calculation: Calculate the likelihood of observing each class label in the 

training data, given the features of the neighbors. This involves counting the 

occurrences of each class label among the neighbors. 

4. Bayes’ Theorem Application: Utilize Bayes’ theorem to compute the posterior 

probability of each class label, incorporating the prior probabilities and the calculated 

likelihoods. The posterior probability indicates the probability of a class label 

considering the observed features of the neighbors. 

5. Prediction: Finally, assign the class label with the highest posterior probability as the 

predicted class label for the test data point. 

The Bayesian approach in BKNN enables the integration of prior knowledge and 

facilitates handling uncertainty by accounting for the probabilistic nature of the problem. 

It offers a more robust and flexible prediction method compared to the traditional KNN 

algorithm, particularly in scenarios involving imbalanced class distributions or limited 

training data. 

It’s important to note that the performance of BKNN relies on the selection of prior 

probabilities, distance metrics, and the value of k. These choices should be made 

thoughtfully, taking into consideration the characteristics of the dataset and the specific 

problem being addressed. 

Let’s get a little more familiar with the formula: Imagine that we are sequentially 

receiving data  𝐷 in blocks, with 𝐷 = {(𝑌1, 𝑋1), (𝑌2, 𝑋2), … , (𝑌𝑘 , 𝑋𝑘)},where 𝑌ℎ =

{𝑦1
(ℎ)

, … , 𝑦𝑛ℎ

(ℎ)
} and 𝑋ℎ = {𝑥1

(ℎ)
, … , 𝑥𝑛ℎ

(ℎ)
}. One common scenario could arise when the value 

of k=2 and we have a training set (𝑌1, 𝑋1) of 𝑛1 points and a separate evaluation set (𝑋2) 

consisting of 𝑛2 data points with unknown corresponding 𝑌2 values. Another usual scenario 

involves the sequential arrival of single observations over time, 𝐷 =

{(𝑦1
(1)

, 𝑥1
(1)

), (𝑦1
(2)

, 𝑥1
(2)

), … , (𝑦1
(𝑘)

, 𝑥1
(𝑘)

)}, with 𝑛ℎ = 1 for all ℎ. Let 𝑌 =

(𝑌1, … , 𝑌𝑘)=(𝑦1, … , 𝑦𝑛) represent the collection of combined responses and 𝑋 =
(𝑋1, … , 𝑋𝑘) = (𝑥1, 𝑥2, … , 𝑥𝑛),  represent the set of combined predictors, where 𝑛 =
∑ 𝑛ℎ

𝑘
ℎ=1 , and let 𝑇 = (𝑡1, … , 𝑡𝑛) be a set of indicator variables, where 𝑡𝑖 = 𝑗 indicates that 

the 𝑖-th data point in 𝑌 originated from the 𝑗-th block, 𝑗 ∈ {1, … , 𝑘}. 
Now, we establish the joint prior distribution on 𝑌 given 𝑋, 𝛽, and 𝑟 to be: 

𝑝(𝑌 ∣ 𝑋, 𝛽, 𝑟) = ∏
exp[𝛽(

1

𝑟
) ∑ 𝛿𝑦𝑖𝑦𝑗𝑗~

𝑟
𝑖

]

∑ exp𝐹
𝑓=1 [𝛽(

1

𝑟
) ∑ 𝛿𝑓𝑦𝑗𝑗~

𝑟
𝑖

]

𝑛

𝑖=1

, (19) 

where δab is the Dirac function (δab = 1 if a = b, and 0 otherwise). 𝛽 is an interaction 

parameter that controls the magnitude of the relationship between the neighboring 𝑦𝑖ℎ and 

∑ .𝑗 𝑟
~ 𝑖

denotes that the summation is over the r nearest neighbors of 𝑥𝑖 in the set 

{𝑋1, … , 𝑋𝑡𝑖}\𝑥𝑖 is given the distance metric 𝜌(. , . ), as previously described, 𝑡𝑖 represents 

the index of the block containing 𝑥𝑖. The expression (1
𝑟⁄ ) ∑ 𝛿𝑓𝑦𝑗

}𝑗 𝑟
~ 𝑖

 indicates the 
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proportion of points belonging to class f in the r nearest neighbors of 𝑥𝑖. Using this 

approach, the probability of 𝑦𝑖 is conditioned solely on the points in blocks up to and 

including the 𝑡𝑖th block. 

The predictive distribution for a new observation is: 

𝑝(𝑦𝑛+1 ∣ 𝑥𝑛+1, 𝑌, 𝑋, 𝛽, 𝑟) =
exp[𝛽(

1

𝑟
) ∑ 𝛿𝑦𝑛+1𝑦𝑗𝑗~

𝑟 𝑖
]

∑ exp𝐹
𝑓=1 [𝛽(

1

𝑟
) ∑ 𝛿𝑓𝑦𝑗𝑗~𝑖

𝑟
]

, (20) 

Therefore, the most probable class for 𝑦𝑛+1 is determined by the most frequent class 

observed among its 𝑟 nearest neighbors. By employing sequential conditioning in the 

neighborhood, the requirement for an additional term in distribution 20 concerning the 

points in the original dataset 𝑥𝑖, for which 𝑥𝑛+1 becomes one of their 𝑟 nearest neighbors, 

is eliminated. The joint distribution 19 resembles the priors commonly encountered in 

Markov random field models employed in spatial statistics. The reason behind using 

equation 19 is that it represents a normalized distribution, and it’s normalizing constant 

remains independent of both 𝛽 and 𝑟. This normalization significantly facilitates the 

analysis when we treat 𝛽 and 𝑟 as random variables. To assume that 𝛽 and 𝑟 are known 

and fixed a priori is unrealistic and disregards a crucial factor of uncertainty in the model. 

To accommodate this, we assign prior distributions to 𝛽 and 𝑟, leaving the marginal 

predictive distribution as: 

(𝑦𝑛+1|𝑥𝑛+1, 𝑌, 𝑋, 𝛽, 𝑟) = ∑ ∫ 𝑝(𝑦𝑛+1|𝑥𝑛+1, 𝑌, 𝑋, 𝛽, 𝑟)𝑝(𝛽, 𝑘|𝑌, 𝑋)𝑑𝛽,𝑟  (21) 

 

where 𝑝(𝛽, 𝑘|𝑌, 𝑋) ∝ 𝑃(𝑌|𝑋, 𝛽, 𝑟)𝑝(𝛽, 𝑟)[28]. 
 

Figure 3 shows the Bayesian KNN classification process with probability contours. In 

the figure, data points from two different classes are plotted in a two-dimensional feature 

space, represented by different markers. The black contour line represents the decision 

boundary, indicating the threshold where the probability of belonging to one class equals 

the probability of belonging to the other class. 

The probability contours illustrate how the posterior probability of class membership 

changes across the feature space. Areas close to the class centers have higher confidence, 

whereas regions near the decision boundary reflect uncertainty. By visualizing these 

contours, we can see how BKNN dynamically adjusts its decision boundaries based on the 

distribution and proximity of the neighboring data points. This capability enables BKNN 

to provide not only class predictions but also the likelihood of those predictions, making it 

a powerful tool in applications where understanding uncertainty is crucial. 
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Figure 3: Bayesian KNN Classification with Probability Contours 

 

3. MODEL EVALUATION METRICS 

In this section, we will explain model evaluation metrics such as the confusion matrix, 

ROC curve, accuracy, precision, recall, and F-measure. 

3.1 Confusion Matrix 

The confusion matrix illustrates the performance of a binary classifier (Figure 4). The 

true (1) and false (0) actual values are compared to the positive (1) and negative (0) 

predictions. The confusion matrix contains the values TP, TN, FP, and FN, representing 

the true positive, true negative, false positive, and false negative, respectively. These values 

are used to estimate the classification model’s capabilities. 

 

Class designation Actual class 

True(1) False(0) 

Predicted class 
Positive(1) TP FP 

Negative(0) FN TN 

Figure 4: Confusion matrix for the binary classification problem [30] 

We explain each of the components of Figure 4: 

 TP (True Positive): In the context of the confusion matrix, a data point is 

considered a True Positive (TP) when it is predicted as a positive outcome, and the 

actual outcome confirms the prediction. 

 FP (False Positive): When a positive outcome is predicted in the confusion matrix, 

but the actual outcome is negative, the data point is considered a false positive. This 

scenario is known as a Type 1 Error, and it can be seen as an instance of good 

intentions leading to incorrect predictions. 

 FN (False Negative): When a negative outcome is predicted in the confusion 

matrix, but the actual outcome is positive, the data point is classified as a false 

negative. This situation is commonly referred to as a Type 2 Error, which is 

considered as equally perilous as a Type 1 Error. 
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 TN (True Negative): The data point in the confusion matrix is categorized as True 

Negative (TN) when a negative outcome is predicted and aligns with the actual 

outcome. 

 
Figure 5: The elliptical form of classification result [29] 

3.2 Accuracy 

Accuracy is determined by adding the number of correct predictions (TP + TN) and 

dividing it by the total number of data points (P + N). 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
  . (22) 

 
Figure 6: Two ellipses visually demonstrate the process of calculating accuracy [29] 

3.3 Sensitivity or Recall 

To calculate the True Positive Rate (also called Sensitivity or Recall), the number of 

correctly predicted positive instances (TP) is divided by the total number of positive cases 

(P) and also called Sensitivity or Recall (REC). 

𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 𝑜𝑟 𝑟𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
  .  (23) 
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Figure 7: Two ellipses visually represent calculating Recall (True Positive Rate) [29] 

3.4 Precision 

Precision is computed by dividing the number of correct positive predictions (TP) by 

the total number of positive predictions (TP + FP). 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
 .  (24) 

 

 
Figure 8: Two ellipses show how precision is calculated [29] 

3.5 F-Measure 

The F-score is an accuracy measure for a test, calculated using precision and recall. It 

is determined by a specific formula that considers both precision and recall. 

𝐹 − 𝑚𝑒𝑎𝑠𝑢𝑟𝑒 =
2 × 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛×𝑟𝑒𝑐𝑎𝑙𝑙

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛×𝑟𝑒𝑐𝑎𝑙𝑙
 .  (25) 

3.6 ROC Area 

Another important tool for data evaluation is the ROC (Receiver Operating 

Characteristic) curve. The ROC curve shows the trade-off between the true positive rate 

(TPR) and the false positive rate (FPR) across different threshold levels. True Positive Rate 

(TPR) is calculated as: 

𝑇𝑃𝑅 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
 . (26) 

This metric indicates the proportion of actual positives correctly identified by the model. 

False Positive Rate (FPR) is calculated as: 
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𝐹𝑃𝑅 =
𝐹𝑃

𝐹𝑃+𝑇𝑁
 .    (27) 

The ROC curve plots TPR on the vertical axis and FPR on the horizontal axis. The area 

under the ROC curve (AUC) quantifies the overall ability of the model to discriminate 

between positive and negative classes. An AUC closer to 1 indicates a better-performing 

model. 

These evaluation metrics and visual representations help in understanding and 

interpreting the performance of classification models, enabling better decision-making 

based on the specific requirements of the task at hand. By providing a detailed step-by-step 

explanation of these metrics, readers can better comprehend how each metric contributes 

to evaluating and improving model performance. 

 

 
Figure 9: ROC curve [30] 

 

3.7 Nemenyi post-hoc test 

The Nemenyi post-hoc test is a statistical test used to perform pairwise comparisons 

following a Friedman test when there are significant differences between multiple groups. 

This test helps to determine which specific groups (or algorithms, in the context of machine 

learning performance comparison) differ from each other. The Nemenyi test is designed to 

control the family-wise error rate when making multiple comparisons. It ensures that the 

likelihood of making one or more type I errors (false positives) is kept within a specified 

limit. 

Methodology: 

 Ranking of Data: Each group (e.g., algorithm) is ranked according to its performance 

across multiple datasets. In cases of tied ranks, average ranks are assigned. 

 Calculation of Average Ranks: For each group, compute the average rank across all 

datasets. The average rank 𝑅𝑗 for the 𝑗-th group is calculated as: 

𝑅𝑗 =
1

𝑁
∑ 𝑅𝑖𝑗 ,𝑁

𝑖=1  (28) 
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where 𝑁 represents the number of datasets, and  𝑅𝑖𝑗  denotes the rank of the 𝑗-th group on 

the 𝑖-th dataset. 

 Friedman Test Statistic: The Friedman test statistic 𝑄 is calculated using the 

following formula: 

𝑄 =
12𝑁

𝑘(𝑘+1)
(∑ 𝑅𝑗

2 −
𝑘(𝑘+1)2

4

𝑘
𝑗=1 ) ,  (29) 

where  𝑘 is the number of groups. 

 Critical Difference (CD): To determine whether the differences between pairs of 

groups are significant, compute the critical difference. The formula for the critical 

difference 𝐶𝐷 is: 

𝐶𝐷 = 𝑞𝛼√
𝑘(𝑘+1)

6𝑁
,   (30) 

where 𝑞𝛼 is the critical value from the Studentized range distribution for the chosen 

significance level 𝛼. 

Pairwise Comparisons:  

For each pair of groups, calculate the absolute difference in their average ranks. If this 

difference exceeds the critical difference 𝐶𝐷, the performance differences between the two 

groups are considered statistically significant: 

|𝑅𝑗 − 𝑅𝑚| > 𝐶𝐷,  (31) 

where 𝑅𝑗 and 𝑅𝑚  are the average ranks of the 𝑗-th and 𝑚-th groups, respectively. 

4. RESULTS AND DISCUSSION 

In this section, we have used the diabetes dataset taken from the UCI dataset website 

to analyze and evaluate. The dataset consists of 520 patient samples, each characterized by 

17 distinct features, which are pivotal for diagnosing diabetes: 

 Age: (16 years to 90 years) 

 Gender: Male / Female 

 Polyuria: Yes / No 

 Polydipsia: Yes / No 

 Sudden weight loss: Yes / No 

 Weakness: Yes / No 

 Polyphagia: Yes / No 

 Genital thrush: Yes / No 

 Visual blurring: Yes / No 

 Itching: Yes / No 

 Irritability: Yes / No 

 Delayed healing: Yes / No 

 Partial paresis: Yes / No 

 Muscle stiffness: Yes / No 



Z. Ahmadian, et al.  / Diagnosis of Diabetes Using Bayesian and Boosting Classifier 20 

 Alopecia: Yes / No 

 Obesity: Yes / No 

 Class (target variable): Positive / Negative 

Figure 10 is a horizontal stacked bar chart that visually represents the distribution of 

key features in the dataset, comparing the prevalence of each feature among individuals 

with positive and negative diabetes diagnoses. The chart highlights the proportion of "Yes" 

and "No" responses for binary features and the gender distribution. 

This chart effectively emphasizes the variation in symptom occurrence between 

individuals with positive and negative diabetes diagnoses, providing insights into the 

dataset’s structure and the relevance of each feature for model training. 

 
Figure 10: horizontal stacked bar chart comparing the distribution of key features 

The goal is to predict the result of a person’s test using the mentioned features by 

applying the algorithms described in Section 2 and choosing a model with the highest 

accuracy. 

The first step of starting to examine and analyze data is data preprocessing, which is a 

part of data preparation and is considered a crucial preliminary step for the data mining 

process. Recently, data preprocessing techniques for training machine learning models and 

artificial intelligence models have significantly advanced. 

Data preprocessing is essential for improving data quality and consistency, making it 

suitable for machine learning analysis. Our preprocessing steps included: 

 Checking for Missing Values: We thoroughly checked the dataset and found no 

missing values, ensuring complete data entries for each feature. 
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 Label Encoding: Categorical features such as 'Gender' and binary symptoms (e.g., 

'Polyuria', 'Polydipsia') were converted into a numerical format using Label Encoding. 

This step was necessary for algorithms that require numerical input. 

  Feature Selection: The Chi-Square test was conducted to evaluate the significance 

of each feature to the target variable (diabetes diagnosis). Features with high p-values 

(e.g., Itching, Delayed healing, Obesity) were excluded to streamline the model 

training process. 

 Data Standardization: While categorical data were encoded, continuous features 

(e.g., Age) were standardized using Z-score normalization to minimize the impact of 

differing scales. 

 Data Balancing: Since the dataset showed class imbalance (as illustrated in Figure 

9), we employed the Synthetic Minority Over-sampling Technique (SMOTE) to 

ensure a balanced distribution of classes, which helps prevent biased model training. 

For the preprocessing of the diabetes dataset, we have checked the missing data, 

extracted important features, and standardized, and except for the age variable, the rest of 

the variables did not need to be standardized. We also used the Label Encoding method to 

code the categorical data. The Label Encoding is converting categorical labels or variables 

into numerical representations. It is commonly used when working with machine learning 

algorithms that require numeric inputs. However, it should be noted that during the 

CatBoost algorithm training, we used the data before coding because this algorithm uses 

special coding (ordered target statistics). 

By checking the data, we found that it does not contain any missing values. For feature 

selection, we also used the Chi-Square Test. The Chi-Square test measures the 

independence between categorical variables and the target variable. It assesses whether 

there is a significant association between the feature and the target. Features with high chi-

square statistics and p-values below a certain threshold can be considered essential and 

selected for further analysis. 

Because the chi-square method uses classification variables, we removed the age 

variable and selected the characteristics with the rest of the variables. It should be noted 

that the age variable is considered during the analysis process. Figure 11 shows the 

characteristics selected by the Chi-square test. As we can see, the variables itching, delayed 

healing, and obesity should be removed because their p-value is more than 0.05. To check 

whether the response variable is balanced or not, we draw its graph (Figure 12). 

According to Figure 12, we can see that the data is unbalanced, so it is necessary to 

balance it because unbalanced data can lead to biased model performance. Since the 

majority class dominates the dataset, a model trained on unbalanced data tends to be biased 

toward predicting the majority class. As a result, the model’s accuracy may appear high 

due to correctly predicting the majority class, while its performance on minority classes 

may be poor. There are different methods to balance the data, and we used SMOTE in this 

paper. 
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Figure 11: p-value for each feature in the Chi-square test 

 

Figure 12: Response variable 

SMOTE (Synthetic Minority Over-sampling Technique) is a popular algorithm that 

balances imbalanced datasets by generating synthetic samples for the minority class. It 

addresses the issue where the minority class is underrepresented compared to the majority 

class. Pay attention to Figure 13. 

 
Figure 13: Response variable after balancing 

We want to visualize the variables and get to know the features a little more. 
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Figure 14: Gender versus class 

As we can see, women have diabetes more than men. 

 
Figure 15: Polyuria versus class 

 

Figure 16: Sudden weight loss versus class 

From Figure 16, we can see that people who have suddenly lost weight get sick more often. 
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Figure 17: Weakness versus class 

After preprocessing and visualizing the data, we now want to implement the mentioned 

models on the data and compare their accuracy with each other. 

Table 3: Performance Comparison of the Algorithms 

 
 

 

 
Figure 18: ROC Curves for the Algorithms [31] 

According to Table 3 and the analysis shown in the ROC curve of the algorithms 

(Figure 18), it can be concluded that Bayesian classification methods exhibit higher 

accuracy than boosting classification methods. This superior performance implies that 

 

Algorithm Accuracy Precision Recall F1-score 

CatBoost 0.93 0.94 0.93 0.93 

AdaBoost 0.90 0.90 0.90 0.90 

XGBoost 0.89 0.91 0.88 0.89 

BSVM 0.97 0.97 0.97 0.97 

BKNN 0.95 0.95 0.95 0.95 

BDT 0.96 0.96 0.96 0.96 
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Bayesian algorithms are particularly reliable for predictive tasks, such as forecasting the 

results of new individuals' tests. 

Positive Aspects: 

1. High Accuracy: Bayesian classification methods' higher accuracy means they can 

make more reliable predictions, reducing the likelihood of errors in test results. This 

high accuracy is especially beneficial in fields where precision is critical, such as in 

medical diagnostics or financial forecasting. 

2. Robust Performance: The robustness of these algorithms leads to better 

generalization to new data, making them valuable in real-world applications where 

new data points frequently appear. This robustness ensures that the algorithms 

maintain performance even when encountering previously unseen data. 

3. Decision Support: These methods can support decision-making processes in various 

fields. In medical diagnostics, for example, accurate predictions can lead to better 

patient outcomes by enabling earlier and more precise interventions. 

4. Data Utilization: Bayesian methods effectively incorporate prior knowledge and 

update predictions as new data becomes available, enhancing their adaptability. This 

continuous learning process allows these algorithms to remain relevant and accurate 

over time. 

5. Consistency: Consistent and precise predictions can build trust in automated systems 

among users and stakeholders. This trust is crucial for the broader acceptance and 

integration of these algorithms into critical decision-making processes. 

6. Improved Predictive Accuracy: The higher accuracy of Bayesian methods can lead 

to more reliable predictions in practical applications, such as predicting patient 

outcomes or financial trends. 

7. Increased Trust: The consistent performance of Bayesian methods can increase user 

confidence in automated systems, leading to greater adoption of these technologies. 

These positive aspects highlight why Bayesian classification methods are particularly 

advantageous and why they can be confidently used to predict the test results of new 

individuals. After concluding that Bayesian classification methods are more accurate than 

boosting classification methods, the question arises whether there is a statistically 

significant performance difference between the algorithms. To address this, we applied the 

Nemenyi Post Hoc statistical test, yielding the following results: 

Based on the results of the Nemenyi test, it can be seen that BSVM, BKNN, and BDT 

show significant differences compared to the other algorithms. 

Table 5 shows the accuracy of each algorithm and the algorithms with which it has 

statistically significant differences in performance, based on the Nemenyi post-hoc test. 

Table 5: Nemenyi Post-Hoc test and accuracy 

 

Algorithm Accuracy 

(%) 

Significant differences (p<0.05) 

Catboost 93 Adaboost, XGboost, BSVM, BKNN, BDT 

Adaboost 90 Catboost, XGboost, BSVM, BKNN, BDT 

XGboost 89 Catboost, Adaboost, BSVM, BKNN, BDT 

BSVM 97 Catboost, Adaboost, XGboost, BKNN, BDT 

BKNN 95 Catboost, Adaboost, XGboost, BSVM, BDT 

BDT 96 Catboost, Adaboost, XGboost, BSVM, BKNN 
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Figure 19 illustrates the heatmap of p-values from the Nemenyi post-hoc test, 

comparing the performance of various machine learning algorithms, including CatBoost, 

AdaBoost, XGBoost, BSVM, BKNN, and BDT. The color intensity represents the 

significance level of the differences between each pair of algorithms, with darker colors 

indicating lower p-values and thus more statistically significant differences. In this 

heatmap, we observe the following: 

CatBoost exhibits statistically significant differences when compared with BSVM, 

BKNN, BDT, XGBoost, and AdaBoost, as indicated by p-values ranging from 0.019 to 

0.038. 

AdaBoost also shows significant differences in performance with other models, 

particularly with XGBoost, where the p-value is the highest at 0.047, indicating a 

marginally significant difference. 

XGBoost and BSVM display the most differences from other algorithms, with p-values 

ranging from 0.024 to 0.043, reinforcing the observation that these algorithms differ in 

terms of accuracy and other performance metrics. 

This visualization effectively highlights the pairwise statistical differences between the 

algorithms, demonstrating which models have significantly different performance 

outcomes according to the Nemenyi test. 

 
Figure 19: The pairwise statistical significance of differences between CatBoost, AdaBoost, 

XGBoost, BSVM, BKNN, and BDT based on the Nemenyi Post-Hoc test 

5. CONCLUSION 

Since early diagnosis of diabetes and its treatment save people’s lives, it is vital to use 

accurate methods with low error to classify people. Different methods and algorithms in 

the field of classical machine learning deal with classification, and the primary goal of all 

researchers is to use the methods that have the most accuracy, in line with this, different 

types of classification methods have been implemented. However in this article, Bayesian 

approaches are used to obtain higher accuracy for classification, and these methods are 



 Z. Ahmadian, et al.  / Diagnosis of Diabetes Using Bayesian and Boosting Classifier 27 

compared with boosting classification methods. So far, many types of research have shown 

that boosting methods have higher accuracy than classification methods. However, 

comparing boosting methods with Bayesian classification methods has not been made. In 

this study, by comparing boosting classification methods and Bayesian classification 

methods, we have shown that Bayesian classification methods have higher accuracy for 

classifying people because they take uncertainty into account when classifying. The future 

scope of this work includes expanding the dataset to include a more diverse population and 

exploring the integration of other advanced machine learning techniques, such as deep 

learning models, to further enhance diagnostic accuracy. Additionally, real-time 

implementation in clinical settings and the development of personalized treatment plans 

based on predictive models can be considered. 
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