
 

Yugoslav Journal of Operations Research 

# (20##), Number #, #-# 

DOI: https://doi.org/10.2298/YJOR240515052R 

ANALYSIS OF A DEMAND-DRIVEN PRODUCTION 

INVENTORY MODEL IN A TRAPEZOIDAL 

NEUTROSOPHIC NUMBER-RULED DECISION 

ENVIRONMENT  

Mostafijur RAHAMAN 

Department of Mathematics, School of Liberal Arts and Sciences, Mohan Babu 

University, Tirupati, Andhra Pradesh 517102, India 

mostafijur.rs2019@math.iiests.ac.in 

Rakibul HAQUE 

Department of Applied Mathematics, Maulana Abul Kalam Azad University of 

Technology, West Bengal, Haringhata, Nadia, West Bengal 741249, India 

rakibul.haque@makautwb.ac.in 

Soheil SALAHSHOUR 

Faculty of Engineering and Natural Sciences, Istanbul Okan University, Istanbul, Turkey 

Faculty of Engineering and Natural Sciences, Bahcesehir University, Istanbul, Turkey 

soheil.salahshour@okan.edu.tr 

Shariful ALAM 

Department of Mathematics, Indian Institute of Engineering Science and Technology, 

Shibpur, Howrah-711103, India 

salam@math.iiests.ac.in  

Sankar PRASAD MONDAL
*
 

Department of Applied Mathematics, Maulana Abul Kalam Azad University of 

Technology, West Bengal, Haringhata, Nadia, West Bengal 741249, India 

sankarprasad.mondal@makautwb.ac.in 

Received: May 2024 / Accepted: October 2024 
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manufacturing process. Also, existence of deterioration of produced items during 
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warehousing is considered. Preservation technology is installed for lowering the 

deterioration rate as much as possible. The manufacturing-warehousing process includes 

ambiguities in several pockets of decision-making phenomena. Trapezoidal neutrosophic 

number describes the imprecise environment for decision phenomena in this paper. 

Numerical results reveal that the cost reduction goal is impacted negatively for large size 

of production potential and for much reliance of the production process on demand 

pattern. On contrary, incorporations of preservation measure and neutrosophic decision 

phenomena favor the cost minimization objective. 

Keywords: Production inventory, EPQ model, deterioration, differential equation, 

neutrosophic derivative, preservation technology, optimization. 

MSC: 90B05. 

1. INTRODUCTION 

1.1. Background of research 

Inventory management is nothing but strategy for maintaining buffer stocks aiming at 

the uninterrupted supply subject to consumption of items by customers. Therefore, 

inventory management becomes an integral component of decision process both for retail 

or manufacturing bodies. Among several distinguished approaches in inventory 

management policies, lot size based mathematical modelling are celebrated and 

significant for its simplicity and ability to address the economic transaction from supplier 

to consumers through intermediate stock holders. Economic order and production 

quantity models are two primary modelling approaches connected to the retail and 

manufacturing oriented study, respectively.  

1.2. Motivation  

In this paper, we focused on a manufacturing and supply based inventory phenomena 

for which demand and production came as two impacting parameters on the managerial 

decision. Time a very crucial independent variable impacting on the demand pattern. It is 

to be noted that the demand grows as time forwards in a newly established manufacturing 

hub. In this regard, the demand rate can be treated as function of time in an economic 

production model. The production rate is controlled in a manufacturing phenomenon 

after complete or partial prediction on demand. Thus, production rate should be demand 

driven. These two are the fundamental issues regarding formulation of the EPQ model in 

this paper. The produced items may loss its utility due to deterioration. Therefore, we 

also addressed the constant rate of deterioration during complete decision cycle. The 

primary model in this paper was built in a deterministic phenomenon. However, a real-

world business phenomenon includes lots of vagueness and imperfection with decision 

making. During demand prediction, production optimization and smart warehousing, the 

whole process goes through an uncertain environment. There are numerous approaches to 

deal uncertainty with mathematical tools. Probabilistic uncertainty is connected with the 

randomness of occurrence of the events. Interval number represents the vulnerability of 

imprecise data between bounds. Fuzzy sets and numbers are associated with the 

uncertainty of a given data in terms of degree of belongingness. The degree of both 

belongingness and non-belongingness are addressed by intuitionistic fuzzy set. In this 

regard, Neutrosophic sets and numbers provide the best structured mathematical tools 

regarding uncertainty having degree of acceptance, hesitance and rejection 
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simultaneously. Therefore, we discussed the proposed EPQ model in Trapezoidal 

neutrosophic numbers ruled uncertain phenomena. 

1.3. Novelties  

The current article contributes to some novel perspectives on theoretical 

advancement. They are: 

 In this paper, we constructed a demand driven production function. Also, the demand 

is taken as a function of time. Thus, both the demand and production are time 

controlled. The proposed model is novel in construction in the production rate 

related point of view. 

 To tackle the uncertainty, we used neutrosophic environments and neutrosophic 

valued calculus for the proposed model. The neutrosophic valued differential 

equation approach is very rare in the existing literature.   

 We considered the Trapezoidal neutrosophic numbers for uncertain parameters 

controlling the demand, production and deterioration rates. The incorporation of 

Trapezoidal neutrosophic numbers and de-neutrosophication formula for ultimate 

outcomes of the numerical encounters are also afresh advancements in this paper. 

1.4. Structure of the paper 

The remaining text in this paper is structured in pockets as follows: Section 2 

summarizes the literature survey and gaps in the existing literature. Section 3 provides 

the mathematical preliminaries, which help the reader understand the mathematical 

foundation of this paper. Section 4 describes the notations and symbols in the paper and 

their meanings. Also, the same section discusses the assumptions for the mathematical 

formulation of the proposed model. Section 5 details the proposed model in a crisp 

environment. Subsequently, Section 6 reconsiders the proposed model under 

neutrosophic uncertainty. The crispification of the neutrosophic model is described in 

Section 7. Section 8 is about the numerical results of the proposed model in different 

environments and approaches. Section 9 lists significant findings and managerial 

interpretations. The concluding remarks on the investigation and findings of the paper are 

given in Section 10. 

2. LITERATURE REVIEW 

The literature review is made on keywords like recent literature on “production 

inventory model”, “recent advancement under different types of uncertainty”, “Inventory 

models under different types of uncertainty” and “Inventory model under neutrosophic 

uncertainty”. The subsections related to each of the identified keywords are then 

followed by additional subsections that address the research gaps, the underlying 

motivations for the study, and the specific contributions made by the paper.  

2.1. Production inventory model 

A manufacturing inventory model that incorporates projected backorders was 

proposed by Cárdenas-Barrón [1]. This method generates item of imperfect quality, all of 

which are reworked throughout the same production cycle.  A production inventory 

system was developed by Taleizadeh et al. [2] that considers shortages, repair failures, 

random defective goods, and the existence of a single machine, all of which result in 

limited production capacity. An EPQ model that takes partial backlog shortages and 
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imperfect manufacturing batches into account has been presented by Cunha et al. [3]. 

They show that it is better to sell defective things as soon as possible because doing so 

lowers holding expenses, which in turn lowers overall costs. Jawla and Singh [4] 

designed a multi-item production planning system considering the effects of preservation 

technology investment. Namakshenas and Mazdeh [5] introduced a production inventory 

planning problem for radiopharmaceuticals that are sensitive to time. The proposed 

framework aims to optimize both production processes and inventory control, ensuring 

that the radiopharmaceuticals, which have a limited shelf life, are efficiently managed to 

meet the demands of the imaging center. An EPQ model taking sustainability into 

account and three distinct shortage scenarios—partial backordered shortage, lost sale, and 

full backorder shortage—was presented by Taleizadeh et al. [6]. They discovered that the 

most accurate and practical model is a partially backlogged shortage case. Taleizadeh et 

al. [7] presented a remanufacturing based production model featuring price-dependent 

demand with price, producing quantity, and back-ordered quantity as decision variables. 

In their study, Farahbakhsh and Kheirkhah et al. [8] introduced a complex multi-period 

inventory routing problem, which involves optimizing both inventory management and 

transportation logistics over multiple time periods. To tackle this challenging problem, 

they developed and applied an innovative genetic algorithm.  Nobil et al. [9] conducted a 

detailed investigation into an EPQ model, focusing on a production system that includes 

defective items with strict inspection policy. Their study specifically addressed a scenario 

in which remanufacturing processes are applied to the defective products, and the system 

also experiences shortages. An imperfect production-based production inventory problem 

is developed by Rahaman et al. [10] with promotional frequency, the environmental 

friendliness of the product, and its selling price dependent demand. Haque et al. [11] 

proposed a sustainable production planning model with remanufacturing rates dependent 

on demand, demonstrating that manufacturers may opt for remanufacturing over 

traditional manufacturing due to its lower cost and environmental benefits. Recently, 

various studies [12-14] have enhanced the understanding of inventory planning problems. 

This research focuses on analyzing a deteriorating EPQ model, where manufacturing rate 

is influenced by demand pattern, and demand is influenced by time with preservation 

technology investment to mitigate deterioration.  

2.2. Recent advancement under different types of uncertainty 

In many domains, including decision-making and mathematical modelling, 

uncertainty is essential because it captures the natural variety and unpredictability of real-

world systems. By recognising and controlling uncertainty, one can solve the problems of 

accurate measurements or insufficient knowledge and produce more reliable forecasts 

and solutions. In the existing literature, a variety of tools and frameworks such as fuzzy 

[15], type-2 fuzzy [16], interval valued [17], interval valued fuzzy [18], intuitionistic 

fuzzy [19], neutrosophic [20] etc. have been developed to manage and address 

uncertainty in complex systems. Regarding Hukuhara and generalised Hukuhara 

differences of fuzzy numbers, Singh et al. [21] addressed the existence and uniqueness 

criteria for solving the systems of linear equations under fuzzy governed uncertainty. 

Alamin et al. [22] presented a strategy for solving first order linear fuzzy difference 

equation using fuzzy geometric approach. Biswas et al. [23] introduced the highway 

restaurant site selection problem and addressed it through two fuzzy Multi-Criteria 

Decision Making (MCDM) methodologies: the Analytic Hierarchy Process (AHP) and 
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the Technique for Order Preference by Similarity to Ideal Solution (TOPSIS), utilising 

trapezoidal fuzzy numbers as instruments to manage uncertainty. Using the pentagonal 

fuzzy decision-making trial and evaluation laboratory (DEMATEL) Methodology, Gazi 

et al. [24] suggested a method for determining the most significant criterion in women's 

empowerment for sports. In an interval-valued intuitionistic fuzzy (IVIF) environment, 

Imran et al. [25] suggested a hybrid structure of the Aczel-Alsina (AA) and Bonferroni 

mean (BM) operators for robot selection. Ghrissi et al. [26] conducted an in-depth study 

focusing on the existence, uniqueness, and different forms of stability, particularly Ulam-

Hyers stability, for the solution of a nonlinear fuzzy fractional differential equation 

(FFDE). This equation was defined using the Caputo generalized Hukuhara 

differentiability, which played a key role in their analysis. Later, Mukherjee [27] carried 

out a numerical investigation of a fuzzy fractional differential equation (FFDE) by 

employing the Homotopy Analysis Transform Method (HATM) with the Caputo 

fractional derivative. Zubair [28] introduced a single-valued neutrosophic uncertain 

linguistic set and applied this concept on Multiple Attribute Decision-Making (MADM) 

problem. To address and solve multi-objective probabilistic linear programming 

problems Edalatpanah et al. [29] employed a neutrosophic fuzzy goal programming 

approach. Naseem et al. [30] presented Aczel-Alsina aggregation operators which are 

based on complex single-valued neutrosophic set. Edalatpanah and Smarandache [31] 

performed an input-oriented data envelopment analysis using simplified neutrosophic set. 

Bodur et al. [32] analysed ten questions measuring distributive justice by using 

neutrosophic Likert scales. Rasinojehdehi and Valami [33] conducted an evaluation of 

airline performance using the Slack-Based Measure (SBM) framework. This framework 

is designed to assess the efficiency of interconnected decision-making units within a 

networked structure.  

2.3. Inventory models under different types of uncertainty 

Park [34] was the first to integrate fuzzy ideas into an Economic Order Quantity 

(EOQ) model following the introduction of fuzzy set theory in the literature. After that 

several researchers used fuzzy set theoretic concept in inventory planning problem such 

as Bag et al. [35], De and Sana [36], and Mahata et al. [37]. Jain er al. [38] studied an 

inventory transportation problem using trapezoidal fuzzy number.  Barman et al. [39] 

analysed a production inventory planning system considering preservation technology 

investment in fuzzy environment. In a type-2 fuzzy uncertain environment, where the 

demand pattern is reliant on inventory level and selling price and the production rate is 

based on the demand rate, Debnath et al. [40] studied a sustainable EPQ model. Garai et 

al. [41] applied intuitionistic fuzzy numbers as a mathematical approach to quantify the 

uncertainty in an inventory system where the demand for stock varies based on the level 

of inventory. Momena et al. [42] explored an EOQ model where the demand for a 

product depends on its price, and the holding cost varies over time under all unit price 

discount policies in a densely fuzzy environment. Karmakar et al. [43] have created a 

sustainable production and rework model in a dense-lock fuzzy environment. Maiti [44] 

investigated an EPQ model with imperfect production and production rates dependent on 

demand in an uncertain environment. The study used the price of the produced item as a 

fuzzy cloud number and applied Particle Swarm Optimization (PSO) to solve the 

problem. Rahaman et al. [45] designed a production inventory model of deteriorating 

items in lock fuzzy environment. To control the deterioration, they used preservation 
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technology and found that the lock fuzzy strategy is an intelligent methodin comparison 

to the conventional crisp and fuzzy approaches. Das [46] developed deteriorating multi 

objective inventory system with demand dependent setup cost, deterioration cost and 

production cost in fuzzy environment. An EPQ model that was worsening in the cloud 

fuzzy phenomenon was examined by Barman et al. [47] with a time-dependent demand 

and a partially backlogged shortage. Rahaman et al. [48] explored a production inventory 

model that focuses on items that deteriorate over time. In this model, the production rate 

is influenced by the current level of stock, while the demand rate depends on both the 

unit selling price and the available stock. The study employs the generalized Hukuhara 

derivative approach to analyze and solve the model, providing insights into how these 

factors interact within the inventory system. A production inventory model with green-

level-dependent demand was examined by Manna et al. [49], taking into account carbon 

emissions during production in an unpredictable setting. Maity et al. [50] presented a 

comprehensive study on a green lot-sizing model that incorporates various factors such as 

green level, selling price, and stock-dependent demand. Their research considers the 

impact of carbon emissions and investments in emission reduction technologies, all 

within a complex framework characterized by a pentagonal intuitionistic dense fuzzy 

uncertain environment. Rahaman et al. [51] analyzed an EOQ model where the demand 

depends on both price and stock levels, set within a type-2 interval uncertainty 

framework.  

2.4. Inventory model under neutrosophic uncertainty 

The emergence of neutrosophic philosophy has sparked a great deal of interest and 

excitement within the global research community. As a result, researchers around the 

world are increasingly drawn to studying and incorporating neutrosophic ideas into their 

work. Neutrosophic numbers have been classified into several categories, such as 

triangular [52,53], trapezoidal [54], pentagonal [55,56] etc. Edalatpanah [57] introduced 

the notion of neutrosophic structured element in the neutrosophic philosophy.  The notion 

of the neutrosophic derivative was first proposed by Smarandache [58] as an extension of 

the fuzzy derivative inside the neutrosophic domain. A neutrosophic differential equation 

is discussed through the parametric representation of the neutrosophic number by 

Sumathi and Priya [59] and Sumathi and Sweety [60]. Moi et al. [61] proposed the 

concept of a novel type of neutrosophic derivative, which they referred to as a 

generalized neutrosophic derivative. A number of researchers have applied neutrosophic 

logic within the field of inventory planning problem. Mullai and Surya [62, 63] utilized 

triangular neutrosophic numbers in their lot-sizing model. Mondal et al. [64] investigated 

a lot-sizing model for deteriorating periodic goods, incorporating partial backlogging and 

time-influenced demand into their analysis. Momena et al. [65] established existence and 

uniqueness condition for solving NDE used this to discuss a lot-sizing model in 

neutrosophic uncertain environment considering stock level, price, and warranty time 

dependent demand. Haque et al. [66] proposed neutrosophic Laplace transform method 

and applied this method to discuss neutrosophic inventory problem with price and 

deterioration dependent demand in neutrosophic arena. In this article, the Neutrosophic 

Differential Equation (NDE) method is employed to address a production quantity model 

where the demand varies over time, and the production rate is influenced by the level of 

demand. Preservation technology is also used to protect item from deterioration. 

Furthermore, parameters related to demand and the deterioration rates are considered in 
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the context of neutrosophic numbers, which represent uncertainty and vagueness in the 

data. The model incorporates these neutrosophic elements to handle the complexities of 

time-dependent demand and its effect on production processes.  

2.5. Research gaps and contributions 

The comparison between the proposed work and the published work is displayed in 

Table 1 below: 

Table 1: Comparing the contributions made by various authors that are relevant to this article 

Author(s) 
Types of 

the model 

Produc-

tion rate 
Demand rate 

Deter

iorati

on 

Preserva-

tion 

technology  

Type of 

uncertainty 

Haque et al. [11] EPQ CN PD, GLD   Crisp  

Jawla & Singh [4] EPQ CN PD √ √ Crisp 

Barman et al. [39] EPQ DD PD, GLD √ √ Fuzzy 

Rahaman et al. [48] EPQ SD PD, SD √  Fuzzy 

Debnath et al. [40] EPQ DD PD, SD   Type-2 fuzzy 

Rahaman et al. [51] EOQ - PD, SD √  Type -2 interval 

Rahaman et al. [45] EPQ SD PD, SD √ √ Lock fuzzy 

Maiti [44] EPQ DD CN   Cloudy fuzzy 

Barman et al. [47] EPQ CN TD √  Cloudy fuzzy 

Mondal et al. [63]  EOQ - TD √  Neutrosophic 

Momena et al. [64] EOQ - 
PD, SD, 

WTD 
  Neutrosophic 

Haque et al. [62] EOQ - PD, DTD √  Neutrosophic 

This article EPQ DD TD √ √ Neutrosophic  

CN: Constant; PD: Price Dependent; GLD: Green Level Dependent; DD: Demand Dependent; SD: Stock 

Dependent; TD: Time Dependent: WTD: Warranty time dependent; DTD: Deterioration dependent 

From the detailed research survey on the above-mentioned keywords, we have found 

the following research gaps which are targeted to be overcome in the present article: 

 Demand with time dependency was discussed in many existing models. 

However, the demand-dependent production rate is rarely considered in the 

existing literature. In this paper, the production rate is hypothesized to be demand 

driven. 

 Numerous mathematical models with uncertain scenario used fuzzy or 

neutrosophic ruled uncertain data in the existing literature. However, the 

uncertain rule arithmetic and calculus were neglected by those models where the 

crisp data were after de-imprecision of the uncertain data in crisp ruled 

dynamical systems. Only a few literatures were evident with the application 

uncertain differential equation on lot size model. In this scenario, the 

neutrosophic differential equation approach in used in this uncertain model.    

 The neutrosophic environments ensure the most structured mathematical tool 

dealing with uncertainty having sense of acceptance, hesitant and rejection. In the 

existing literature, we find only few papers with neutrosophic ruled uncertainty. 

However, in those model, triangular neutrosophic numbers were taken. In this 

chapter, Trapezoidal neutrosophic number ruled environment is considered. 
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3. MATHEMATICAL PRELIMINARIES 

Definition 1. [54] A neutrosophic set is represented by the ordered triplet 

(   ( )  ( )  ( )), where   is an element in the universal set  ,  ( ),  ( ) and  ( ) 

respectively signify the degrees of truthiness, indeterminacy, and falsity of   in  . Each 

of  ( ),  ( ) and  ( ) lies in the range [0, 1], fulfilling the condition 

   ( )   ( )   ( )   . 

Remark 1. There are different types of neutrosophic number in the literature to deal with 

uncertainty involved in real life problems. In this study, various parameters related to the 

real-life inventory problem are considered as a trapezoidal neutrosophic number. Next, 

trapezoidal neutrosophic number are defined. 

Definition 2. [54] A Single-Valued Trapezoidal Neutrosophic (SVTpN) number, denoted 

as  ̃    〈(       )   ̃    ̃    ̃〉 is a specific type of neutrosophic set on the real 

numbers  . It is characterized by its truth, indeterminacy, and falsity membership 

functions, which are defined as follows: 

  ̃   
( )  

{
 
 

 
 

(   )  ̃

   
                 

  ̃                          
(   )  ̃

   
                  

                                  

  

  ̃   
( )  
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      ̃(   )

   
                 

  ̃                               
      ̃(   ) 

   
                  

                                 

  

  ̃   
( )  
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      ̃(   )

   
                 

  ̃                               
      ̃(   ) 

   
                  

                                 

  

with     ̃   
( )    ̃   

( )    ̃   
( )   . 

Definition 3. [54] A Single-Valued Trapezoidal Neutrosophic (SVTpN) number of Type 

1, denoted as  ̃    (                                   ) is a specific type of 

neutrosophic set on the real numbers  . It is characterized by its truth, indeterminacy, 

and falsity membership functions, which are defined as follows:  

  ̃   
( )  
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  ̃   
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with     ̃   
( )    ̃   

( )    ̃   
( )   . 

Remark 2. Suppose,           ;           ;           ,       
     and taking the extreme value of the membership grades for truthiness, 

indeterminacy, and falseness as the generalized values   ̃,   ̃ and   ̃ instead of using 1. 

Then the definition 3.3 is obtained from definition 3.4. 

Definition 4. [54] The (     )-cut of a neutrosophic set 

 ̃    (    ̃   
( )      ̃   

( )   ̃   
( )) over   is indicated by [ ̃   ]

(     )
 and is 

defined by [ ̃   ]
(     )

 {〈    ̃   
( )   ̃   

( )   ̃   
( )〉    ̃   

( )      ̃   
( )  

    ̃   
( )   }. It is also known as a parametric representation or parametric form of 

the neutrosophic set. 

Remark 3. The parametric representation of an SVTpN number 

 ̃    (                                   ) includes six components. These six 

components are written as 〈   ( )   ( )     
 ( )   

 ( )     
  ( )   

  ( ) 〉, where 

  ( )      (     ),   ( )      (     ),   
 ( )      (     ),   

 ( )  
    (     ),   

  ( )      (     ) and   
  ( )      (     ). 

De-neutrosophication is a key method used to interpret the results derived from 

neutrosophic systems and to make meaningful comparisons between different outcomes 

expressed in neutrosophic numbers. This technique emphasizes the need to translate 

neutrosophic numbers into specific, definitive values. By assigning a clear and precise 

value to these numbers, de-neutrosophication helps to simplify and make sense of the 

neutrosophic outcomes, ensuring that the results can be effectively analyzed and 

compared in a meaningful way. 

Definition 5. [66] Suppose  ̃ be a neutrosophic number whose parametric form is 
〈   ( )   ( )     

 ( )   
 ( )     

  ( )   
  ( ) 〉. Then, the de-neutrosophication 

value of  ̃ is represented by  ( ̃), and it is defined as 

  ( ̃)  
   ( ) (   )  ( )    

 ( ) (   )  
 ( )    

  ( ) (   )  
  ( )

 
  

where          . 

Definition 6. [61] Let  ̃     be a neutrosophic-valued function given in the para-

metric representation by  ̃( )  〈   (   )   (   )     
 (   )   

 (   )     
  (   )   

  (   ) 〉, 
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    . The generalized neutrosophic derivative of  ̃( ) at       is written as 

 ̃̇( )  〈 ̇ ( )  ̇ ( )  ̇ ( )〉 in which  ̇ ( ),  ̇ ( ) and  ̇ ( ) are defined as the following 

1.  ̇ ( )      { ̇ (   )  ̇ (   )}    { ̇ (   )  ̇ (   )}  

2.  ̇ ( )      { ̇ 
 (   )  ̇ 

 (   )}    { ̇ 
 (   )  ̇ 

 (   )}  

3.  ̇ ( )      { ̇ 
  (   )  ̇ 

  (   )}    { ̇ 
  (   )  ̇ 

  (   )}  

provided  ̇ (   ),  ̇ (   ),  ̇ 
 (   ),  ̇ 

 (   ),  ̇ 
  (   ) and   

 (    ) are all exists. 

 ̃̇( ) is said to be a type-1 derivative if the parametric representation of  ̃̇( ) is given by. 

 ̃̇( )  〈  ̇ (   )  ̇ (   )    ̇ 
 (   )  ̇ 

 (   )    ̇ 
  (   )  ̇ 

  (   ) 〉  

and type-2 derivative if the parametric representation of   ̃̇( ) is given by 

 ̃̇( )  〈  ̇ (   )  ̇ (   )    ̇ 
 (   )  ̇ 

 (   )    ̇ 
  (   )  ̇ 

  (   ) 〉. 

 

4. NOTATIONS AND ASSUMPTIONS OF THE PROPOSED MODEL 

In order to explain the proposed model, the following symbols and assumptions are 

utilized throughout the explanation. These elements are essential for understanding the 

structure and application of the model. 

4.1. Notations 

Table 2 represents the notations and their explanation which are used in the proposed 

model. 

Table 2: Notations and their explanation 

Notations Explanation Unit 

  The component of the demand pattern that remains unchanged 

over time 

Constant 

  The multiplier that represents the influence of time on the demand 

pattern 

Constant 

   The portion of the production rate that remains unchanged or 

consistent throughout the process. 

Constant 

   The coefficient that represents the pattern of demand in the 

production rate, which quantifies how the production rate is 

influenced by fluctuations in demand 

Constant 

  Rate of deterioration Constant 

  Rate of preservation Constant 

   The per unit cost associated with storing or keeping an item per 

unit time 

$/Unit time 

   Per unit cost of preservation per unit time $/Unit time 

   Production cost per unit item $/Unit item 

   Ordering cost $/Cycle 

   Length of the production phase (decision variable) Unit time 

  Length of the inventory cycle (decision variable) Unit time 

  Total average cost (objective function) $ 
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4.2. Assumptions 

The proposed model is built upon the following assumptions: 

a) The rate at which the produced item is demanded is influenced by the passage of 

time. In other words, as time progresses, the demand for the item does not remain 

constant but instead increases steadily. This increase follows a linear pattern, 

meaning that the rate of demand grows proportionally with time. Thus, as each unit 

of time passes, the demand rate continues to rise in a consistent and predictable 

manner. Consequently, the demand pattern is taken as  ( )      , where   and   

are positive constants. 

b) The production rate of the item is directly influenced by the rate of demand. This 

means that the amount of the item being produced is adjusted in response to how 

much demand there is at any given time. When the demand rate increases, the 

production rate is adjusted upward to meet this higher demand, ensuring that supply 

aligns with market needs. Conversely, if the demand rate decreases, the production 

rate may also be reduced accordingly. Essentially, the production rate is not fixed 

but varies in response to changes in the demand rate, ensuring that the supply of the 

item matches the current level of demand. So, the production rate is taken as 

        ( )             , where    and    are positive constants.  

c) The items in stock have deterioration at a constant rate   (     ) throughout the 

whole lot-sizing cycle.  

d) To protect the item from deterioration, producer imposes a technology which is 

popularly known as preservation technology. The rate of preservation is taken as  .  

e) There is no lead time involved, meaning the time delay between ordering, and 

receiving the item is nonexistent.  

f) The replenishment of items can occur instantly or at an unlimited rate, allowing for 

immediate restocking. However, the size of each replenishment batch or lot remains 

limited and cannot be infinite, indicating that items are added in specific quantities 

rather than endlessly. 

g) Throughout the entire lot-sizing cycle, shortages are not factored in, implying that at 

no point is there a lack of available items. 

h) The planning or operational period is limited to a specific duration. This time frame 

is not infinite; it has a clearly defined start and end, within which all activities, such 

as production and replenishment, are planned and executed. 

5. FORMULATION OF THE PROPOSED CRISP EPQ MODEL 

The production process begins at time     with production rates that depend on the 

demand. During the production phase, the stock level decreases due to the time-

dependent demand pattern,  ( ). Additionally, the stock level is reduced by a constant 

deterioration rate  . However, this deterioration rate is mitigated by investing in 

preservation technology at a rate  , which effectively reduces the overall deterioration 

rate to    . The production phase concludes at time   , resulting in the maximum stock 

level     . In this phase, the governing differential equation is 

  ( )

  
 {           }  {    }  (   ) ( ) (1) 

with  ( )     (  )      . 
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The non-production phase begins at time     . During this phase, no production 

activities take place. The stock level continues to decrease due to the time-dependent 

demand  ( ) and the net deterioration rate of    , which accounts for both natural 

decay and the effect of preservation technology. The entire lot-sizing cycle concludes at 

time    . The differential equation that governs this phase is as follows: 

  ( )

  
  {    }  (   ) ( ) (2) 

with  ( )   . 

Solving the equation (1) with using the initial conditions, the stock level in production 

phase is calculated as 

 ( )  
(   ){    (    )}  (    )

(   ) 
{    (   ) }  

 (    )

   
  (3) 

Solving the equation (2) with using the initial conditions, the stock level in non-

production phase is calculated as 

 ( )  
  (   )(    )

(   ) 
 

  (   )(    )

(   ) 
 (   )(   ) (4) 

The highest inventory level at the end of the production phase is attained as 

     
(   ){    (    )}  (    )

(   ) 
{    (   )  }  

 (    )  

   
  (5) 

From equations (3) and (4), the following constraint is attained by applying the 

continuity condition of the inventory level functions in productive phase and non-

productive phase as 

  (   )(     )

(   ) 
 

  (   )(    )

(   ) 
 (   )(    )  

(   ){    (    )}  (    )

(   ) 
{  

  (   )  }  
 (    )  

   
 (6) 

The model incorporates several key costs that are important for its formulation. These 

costs are detailed and calculated in the following manner. 

Holding Cost (HC): The total cost of holding is attained as 

     [∫  ( )   ∫  ( )  
 

  

  

 
]  

     [
(   ){    (    )}  (    )

(   ) 
{  (   )   (   )    }  

 (    )  
 

 (   )
 

  (   ) 

(   ) 
(  

  )  
 

 (   )
(     

 )  
  (   )(    )

(   ) 
{   (   )(    )}]   

Production Cost (PC): The total cost of production is attained by 

     [∫ {           }  
  

 
]    [(      )   

     
 

 
]  

Preservation Cost (PRC): Preservation cost is defined as the cost of preserving the 

produced items from natural deterioration. The total cost for preservation is obtained as 

       [∫ { ( )   ( )}   ∫ { ( )   ( )}  
 

  

  

 
]  
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    [
(   ){    (    )}  (    )

(   ) 
{  (   )   (   )    }  

 (    )  
 

 (   )
 

  (   ) 

(   ) 
(  

  )  
 

 (   )
(     

 )  
  (   )(    )

(   ) 
{   (   )(    )}     

 

 
  ]  

Setup Cost (SC): The setup cost, denoted as   , is assumed to remain constant and 

unchanged throughout the entire duration of the inventory cycle.  

The total average cost (TAC) provides a comprehensive measure of the production 

system’s cost efficiency throughout the entire cycle. TAC of the proposed production 

inventory system is calculated by averaging these costs over the duration of the cycle, 

which is obtained as 

 (    )  
            

 
   

 (    )  
 

 
[     [(      )   

     
 

 
]  (      ) {[

(   ){    (    )}  (    )

(   ) 
{  (   )   

(   )    }  
 (    )  

 

 (   )
 

  (   ) 

(   ) 
(    )  

 

 (   )
(     

 )  
  (   )(    )

(   ) 
{  

 (   )(    )}]}     (   
 

 
  )]  

Consequently, the cost-minimization problem can be expressed in the following 

ways: 

{
 
 

 
         (    )  

            

 

                  
(   ){    (    )}  (    )

(   ) 
{    (   )  }  

 (    )  

   

         ( )
      

 (7) 

The objective in this context is to conduct a thorough examination of the convexity 

properties of the average cost function, denoted as  (    ), with respect to the decision 

variables    and  . This involves analyzing how the function behaves and whether it 

maintains a convex shape when varying these specific variables,    and  , which are 

critical to the decision-making process.  

Theorem 1. The average cost function  (    ) is characterized as strictly pseudo-

convex with respect to both    and   hence  (    ) exhibits the minimum value at some 

point, provided 

(      )((   ){    (    )}  (    ))

   
  (   )         

(      ) 

   
{ (   )(    )    } (8) 

Proof: To simplify our analysis, let’s consider the average cost function  (    ) as  

 (    )  
  (    )

  (    )
, where 

  (    )  

     [(      )   
     

 

 
]  (      ) {[

(   ){    (    )}  (    )

(   ) 
{  (   )   

(   )    }  
 (    )  

 

 (   )
 

  (   ) 

(   ) 
(    )  

 

 (   )
(     

 )  

  (   )(    )

(   ) 
{   (   )(    )}]}     (   

 

 
  )   
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and   (    )   . Now,   (    ) can be written as  

  (    )     
  

(   ) 
(  (   )   (   )    )             

  
 

 
   

  
 

 
 

  
  

 
 

(      )

(   ) 
{  (   )(    )}{   (   )(    )}  

where    (      ) (   ){    (    )}   (    ) ,      (      )  

(      )
   (   )

(   ) 
,    (      )

  (   ) 

(   ) 
     ,          (      )

 

(   )
, 

   (      )
 (    )

(   )
 and    (      )

 

(   )
     . 

To build the Hessian matrix for   (    ), it is necessary to compute all the first-order 

and second-order partial derivatives of   (    ) with respect to both    and  . This 

includes evaluating the partial derivatives of the function in relation to each variable 

individually, as well as their mixed partial derivatives. 

   (    )

   
 

  

(   ) 
(    (   )  )               

(      )

(   ) 
{  (   )(  

  )} (   )(    )    

   (    )

  
        

(      )

(   ) 
{  (   )(    ) (   )(    )}   

    (    )

   
  

  

   
  (   )         

(      )

   
{  (   )(    )} (   )(    )   

    (    )

     
  (      )(    ) (   )(    )  

    (    )

     
   

    (    )

   
     

 (      )

   
 (   )(    )  (      )(    ) (   )(    )   

The Hessian matrix associated with   (    ) can therefore be represented in the 

following manner: 

[

    (    )

   
 

    (    )

     

    (    )

     

    (    )

   

]  

The first principal minor is defined as |   |  
    (    )

   
  

  

(   ) 
(    (   )  )  

             
(      )

(   ) 
{  (   )(    )} (   )(    ). 

|   |  (      )(    ) (   )(    )  
  

   
  (   )         

(      ) 

   
 (   )(    )   

Clearly,       and (      )   . As      ,  (   )   . Once more, the 

constant component of the production rate exceeds the constant component of the market 

demand, therefore, (    )       , and hence   ,    and    are all positive. Hence 
|   |    if  

  

   
  (   )         

(      ) 

   
 (   )(    )  

The second principal minor is defined as 



 M. Rahaman et al. / Analysis of a Demand Driven Production 15 

|   |  
    (    )

   
 

    (    )

   
 (

   (    )

     
)

 

 [(      )(    ) (   )(    )  

  

   
  (   )         

(      ) 

   
 (   )(    )] [

 (      )

   
 (   )(    )    ]  

(      )(    ) (   )(    ) [
  

   
  (   )         

(      ) 

   
 (   )(    )]    

It is evident that the absolute value of |   | is positive as long as condition (8) is 

maintained. As a result, the function   (    ) is both positive definite and convex with 

respect to the variables    and  . Additionally,   (    ) is non-negative and it is 

differentiable with respect to both t_1 and T, allowing for smooth changes in the 

function. On the other hand, the function   (    ) is positive and affine. As a result of 

these properties, the average cost function  (    ) is strictly pseudo-convex with respect 

to    and  , meaning it has a unique minimum value. ∎  

To identify the points that satisfy the conditions required to achieve the minimum 

value of the total cost function  (    ), set the first-order partial derivatives of  (    ) 

with respect to both t_1 and T equal to zero. 

  (    )

   
 

 

 
[
(      )((   ){    (    )}  (    ))

(   ) 
(    (   )  )    (      )  

(      )
  (   ) 

(   ) 
 (      (      )

 

(   )
)    (      )

 (    )

   
   

(      )

(   ) 
{  (   )(    )} (   )(    )]      

i.e., 

(      )((   ){    (    )}  (    ))

(   ) 
(    (   )  )    (      )  (      )

  (   ) 

(   ) 
 

(      (      )
 

(   )
)    (      )

 (    )

   
   

(      )

(   ) 
{  (   )(  

  )} (   )(    )    (9) 

and  
  (    )

  
  

  (    )

   
 

 
 
   (    )

  
      

i.e., 

   
(      )((   ){    (    )}  (    ))

(   ) 
(  (   )   (   )    )  (  (      )  

(      )
  (   ) 

(   ) 
)    (      (      )

 

   
)

  
 

 
 

(      )  

   

  
 

 
 ((   

   )
 

   
     )

  

 
 

(      )

(   ) 
{  (   )(    )}{   (   )(    )}  

(      ) 

(   ) 
{  

(   )(    ) (   )(    )}   . (10) 

 

6. PROPOSED EPQ MODEL IN A NEUTROSOPHIC ENVIRONMENT 

In this section, we aim to reconstruct the production-supply inventory system within 

the context of the neutrosophic framework. To do this, we introduce three parameters, 

denoted as  ̃,  ̃ and  ̃, which are treated as neutrosophic numbers. By incorporating these 

neutrosophic numbers, we can develop a neutrosophic version of the existing equations. 
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(1) and (2). The resulting neutrosophic counterparts of equation (1) for the production 

phase (      ) is presented as follows: 

{

  ̃( )

  
    (    ) ̃  (    ) ̃  ( ̃   ) ̃( )

       ̃( )     ̃(  )   ̃
 (11) 

The resulting neutrosophic counterparts of equation (2) for the non-production phase 

(      ) is presented as follows: 

{

  ̃( )

  
  { ̃   ̃ }  ( ̃   ) ̃( ) 

       ̃( )   
 (12) 

The notion of generalized neutrosophic differentiability is now utilized to provide an 

explanation for the neutrosophic differential equations, specifically equations (11) and 

(12). To proceed, let’s consider that the (     )-cut of the neutrosophic-valued function 

 ̃( ) is   ̃( ) (     )  〈   (   )   (   )     
 (   )   

 (   )     
  (   )   

  (   ) 〉. In addition, 

consider the parametric representations, specifically the (     )-cut, of the neutrosophic 

numbers denoted as  ̃,  ̃ and  ̃ as  
  ̃ (     )  〈   ( )   ( )     

 ( )   
 ( )     

  ( )   
  ( ) 〉,  

  ̃ (     )  〈   ( )   ( )     
 ( )   

 ( )     
  ( )   

  ( ) 〉 and  

  ̃ (     )  〈   ( )   ( )     
 ( )   

 ( )     
  ( )   

  ( ) 〉.  

The analysis considers two distinct cases based on the two types of generalized 

neutrosophic derivatives that are applicable to the neutrosophic valued function denoted 

as  ̃( ). Each case is examined in relation to one of the specific forms of these 

generalized derivatives, allowing for a comprehensive exploration of the function.  

Case 1: When  ̃( ) is type-1 neutrosophic differentiable 

In this case, the equation (11), which characterizes the productive phase occurring 

within the time interval from           , is subsequently transformed into its 

corresponding parametric form as follows: 

⟨[  ̇(   )   ̇(   )] [  
 (   )   ̇

 (   )][  ̇
  (   )   

  (   )]⟩     (    )⟨   ( )   ( )  

   
 ( )   

 ( )     
  ( )   

  ( ) ⟩  (    )⟨   ( )   ( )     
 ( )   

 ( )     
  ( )   

  ( ) ⟩ 

 {〈   ( )   ( )     
 ( )   

 ( )     
  ( )   

  ( ) 〉   }⟨   (   )   (   )     
 (   ) 

  
 (   )     

  (   )   
  (   ) ⟩

 

The expression presented above can be expanded into a system of crisp differential 

equations, structured as follows: 

  ̇(   )     (    )  ( )  (    )  ( )  {  ( )   }  (   )  

  ̇(   )     (    )  ( )  (    )  ( )  {  ( )   }  (   )  

  ̇
 (   )     (    )  

 ( )  (    )  
 ( )  {  

 ( )   }  
 (   )  

  ̇
 (   )     (    )  

 ( )  (    )  
 ( )  {  

 ( )   }  
 (   )  

  ̇
  (   )     (    )  

  ( )  (    )  
  ( )  {  

  ( )   }  
  (   )  

  ̇
  (   )     (    )  

  ( )  (    )  
  ( )  {  

  ( )   }  
  (   )  
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with the initial condition   (   )    (   )    
 (   )    

 (   )    
  (   )    

  (   )  
 . Solving the above equations by using the initial conditions we get 

  (   )     
√(  ( )  )(  ( )  )     

 √(  ( )  )(  ( )  )  
 

(  ( )  )(  ( )  )
 (  ( )  

 ){   (    )  ( )  (    )  ( ) }  (    )  ( ) ,  

  (   )   √
  ( )  

  ( )  
   

√(  ( )  )(  ( )  )  √
  ( )  

  ( )  
   

 √(  ( )  )(  ( )  )  

 

(  ( )  )(  ( )  )
 (  ( )   ){   (    )  ( )  (    )  ( ) }  (    )  ( ) ,   

  
 (   )  

    
√(  

 ( )  )(  
 ( )  ) 

    
 √(  

 ( )  )(  
 ( )  ) 

 
 

(  
 ( )  )(  

 ( )  )
 (  

 ( )   ){   

(    )  
 ( )  (    )  

 ( ) }  (    )  
 ( )    

  
 (   )    √

  
 ( )  

  
 ( )  

   
√(  

 ( )  )(  
 ( )  ) 

 √
  
 ( )  

  
 ( )  

   
 √(  

 ( )  )(  
 ( )  ) 

 

 

(  
 ( )  )(  

 ( )  )
 (  

 ( )   ){   (    )  
 ( )  (    )  

 ( ) }  (    )  
 ( )    

  
  (   )  

    
√(  

  ( )  )(  
  ( )  ) 

    
 √(  

  ( )  )(  
  ( )  ) 

 
 

(  
  ( )  )(  

  ( )  )
 (  

  ( )  

 ){   (    )  
  ( )  (    )  

  ( ) }  (    )  
  ( )     

  
  (   )     √

  
  ( )  

  
  ( )  

   
√(  

  ( )  )(  
  ( )  ) 

 √
  
  ( )  

  
  ( )  

   
 √(  

  ( )  )(  
  ( )  ) 

 

 

(  
  ( )  )(  

  ( )  )
 (  

  ( )   ){   (    )  
  ( )  (    )  

  ( ) }  (    )  
  ( )    

where  

    
 

 √  ( )  (  ( )  )(  ( )  )
[√  ( )   ((  ( )   ){   (    )  ( )}  (  

  )  ( ))  √  ( )   ((  ( )   ){   (    )  ( )}  (    )  ( ))]   

    
 

 √  ( )  (  ( )  )(  ( )  )
[√  ( )   ((  ( )   ){   (    )  ( )}  (  

  )  ( ))  √  ( )   ((  ( )   ){   (    )  ( )}  (    )  ( ))]    

    
 

 √  
 ( )  (  

 ( )  )(  
 ( )  )

[√  
 ( )   ((  

 ( )   ){   (    )  
 ( )}  

(    )  
 ( ))  √  

 ( )   ((  
 ( )   ){   (    )  

 ( )}  (    )  
 ( ))]   

    
 

 √  
 ( )  (  

 ( )  )(  
 ( )  )

[√  
 ( )   ((  

 ( )   ){   (    )  
 ( )}  

(    )  
 ( ))  √  

 ( )   ((  
 ( )   ){   (    )  

 ( )}  (    )  
 ( ))]    

    
 

 √  
  ( )  (  

  ( )  )(  
  ( )  )

[√  
  ( )   ((  

  ( )   ){   (    )  
  ( )}  

(    )  
  ( ))  √  

  ( )   ((  
  ( )   ){   (    )  

  ( )}  (    )  
  ( ))]    
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 √  
  ( )  (  

  ( )  )(  
  ( )  )

[√  
  ( )   ((  

  ( )   ){   (    )  
  ( )}  

(    )  
  ( ))  √  

  ( )   ((  
  ( )   ){   (    )  

  ( )}  (    )  
  ( ))]  

Again, the equation (12), which characterizes the non-productive phase occurring 

within the time interval       , is subsequently transformed into its corresponding 

parametric form as follows: 

⟨[  ̇(   )   ̇(   )] [  ̇
 (   )   ̇

 (   )][  ̇
  (   )   ̇

  (   )]⟩   ⟨   ( )   ( )     
 ( )   

 ( )  

   
  ( )   

  ( ) ⟩  〈   ( )   ( )     
 ( )   

 ( )     
  ( )   

  ( ) 〉  {   ( )   ( )  

   
 ( )   

 ( )     
  ( )   

  ( ) ⟩   }⟨   (   )   (   )     
 (   )   

 (   )     
  (   )   

  (   ) ⟩

 

The expression presented above can be expanded into a system of crisp differential 

equations, structured as follows: 

  ̇(   )      ( )    ( )  {  ( )   }   (   )   

  ̇(   )      ( )    ( )  {  ( )   }   (   )  

  ̇
 (   )      

 ( )    
 ( )  {  

 ( )   }  
 (   )  

  ̇
 (   )      

 ( )    
 ( )  {  

 ( )   }  
 (   )  

  ̇
  (   )      

  ( )    
  ( )  {  

  ( )   }  
  (   )  

  ̇
  (   )      

  ( )    
  ( )  {  

  ( )   }  
  (   )  

with   (   )    (   )    
 (   )    

 (   )    
  (   )    

  (   )   . Solving the 

above equations by using the initial conditions we get 

  (   )     
√(  ( )  )(  ( )  )     

 √(  ( )  )(  ( )  )  
  ( ) (  ( )  )(  ( )    ( ))

(  ( )  )(  ( )  )
  

  (   )   √
  ( )  

  ( )  
   

√(  ( )  )(  ( )  )  √
  ( )  

  ( )  
   

 √(  ( )  )(  ( )  )  

  ( ) (  ( )  )(  ( )    ( ))

(  ( )  )(  ( )  )
   

  
 (   )     

√(  
 ( )  )(  

 ( )  ) 
     

 √(  
 ( )  )(  

 ( )  ) 
 

  
 ( ) (  

 ( )  )(  
 ( )    

 ( ))

(  
 ( )  )(  

 ( )  )
    

  
 (   )   √

  
 ( )  

  
 ( )  

   
√(  

 ( )  )(  
 ( )  ) 

 √
  
 ( )  

  
 ( )  

    
 √(  

 ( )  )(  
 ( )  ) 

 

  
 ( ) (  

 ( )  )(  
 ( )    

 ( ))

(  
 ( )  )(  

 ( )  )
    

  
  (   )  

    
√(  

  ( )  )(  
  ( )  ) 

     
 √(  

  ( )  )(  
  ( )  ) 

 
  
  ( ) (  

  ( )  )(  
  ( )    

  ( ))

(  
  ( )  )(  

  ( )  )
     

  
  (   )   √

  
  ( )  

  
  ( )  

    
√(  

  ( )  )(  
  ( )  ) 

 √
  
  ( )  

  
  ( )  

    
 √(  

  ( )  )(  
  ( )  ) 

 

  
  ( ) (  

  ( )  )(  
  ( )    

  ( ))

(  
  ( )  )(  

  ( )  )
   

where 
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  √(  ( )  )(  ( )  ) 

 √  ( )  (  ( )  )(  ( )  )
[√  ( )   {  ( )  (  ( )   )(  ( )    ( ))}  

√  ( )   {  ( )  (  ( )   )(  ( )    ( ))}]   

    
 √(  ( )  )(  ( )  ) 

 √  ( )  (  ( )  )(  ( )  )
[√  ( )   {  ( )  (  ( )   )(  ( )    ( ))}  

√  ( )   {  ( )  (  ( )   )(  ( )    ( ))}]   

    
 

 √(  
 ( )  )(  

 ( )  ) 

 √  
 ( )  (  

 ( )  )(  
 ( )  )

[√  
 ( )   {  

 ( )  (  
 ( )   )(  

 ( )    
 ( ))}  

√  
 ( )   {  

 ( )  (  
 ( )   )(  

 ( )    
 ( ))}]  

     
 

√(  
 ( )  )(  

 ( )  ) 

 √  
 ( )  (  

 ( )  )(  
 ( )  )

[√  
 ( )   {  

 ( )  (  
 ( )   )(  

 ( )  

  
 ( ))}  √  

 ( )   {  
 ( )  (  

 ( )   )(  
 ( )    

 ( ))}]    

     
 

 √(  
  ( )  )(  

  ( )  ) 

 √  
  ( )  (  

  ( )  )(  
  ( )  )

[√  
  ( )   {  

  ( )  (  
  ( )   )(  

  ( )  

  
  ( ))}  √  

  ( )   {  
  ( )  (  

  ( )   )(  
  ( )    

  ( ))}]     

     
 

√(  
  ( )  )(  

  ( )  ) 

 √  
  ( )  (  

  ( )  )(  
  ( )  )

[√  
  ( )   {  

  ( )  (  
  ( )   )(  

  ( )  

  
  ( ))}  √  

  ( )   {  
  ( )  (  

  ( )   )(  
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  ( ))}]   

 

Some relevant costs: 

Therefore, the holding cost, 

  ̃  〈    ( )    ( )      
 ( )    

 ( )      
  ( )    

  ( ) 〉 given by 

   ( )     [∫   (   )
  

 
   ∫   (   )

 

  
  ]    [∫ {   

√(  ( )  )(  ( )  )  
  

 

   
 √(  ( )  )(  ( )  )  

(  ( )  ){   (    )  ( ) (    )  ( ) } (    )  ( )

(  ( )  )(  ( )  )
}    

∫ {   
√(  ( )  )(  ( )  )     

 √(  ( )  )(  ( )  )  
  ( ) (  ( )  )(  ( )    ( ))

(  ( )  )(  ( )  )
}   

 

  
]  

  [{
  

√(  ( )  )(  ( )  )
( √(  ( )  )(  ( )  )    )  

  

√(  ( )  )(  ( )  )
(  √(  ( )  )(  ( )  )    )  

 ((  ( )  ){   (    )  ( )} (    )  ( ))   (  ( )  )(    )  ( )  
 

 (  ( )  )(  ( )  )
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√(  ( )  )(  ( )  )
(  √(  ( )  )(  ( )  )    √(  ( )  )(  ( )  )  )  

(  ( )  )  ( )(     
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Therefore, the production cost   ̃  〈    ( )    ( )      
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  ( ) 〉 during the entire circle is given by 
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Total cost for preservation is    ̃  〈     ( )     ( )       
 ( )     

 ( )  
     

  ( )     
  ( ) 〉 obtained as 

    ( )     [∫ {  (   )   ̃( )}   ∫ {  (   )   ̃( )}  
 

  

  

 
]  

   [∫ {   
√(  ( )  )(  ( )  )     

 √(  ( )  )(  ( )  )  
  

 
(  ( )  ){   (    )  ( ) (    )  ( ) } (    )  ( )

(  ( )  )(  ( )  )
   ( )    ( ) }    

∫ {   
√(  ( )  )(  ( )  )     

 √(  ( )  )(  ( )  )  
  ( ) (  ( )  )(  ( )    ( ))

(  ( )  )(  ( )  )
 

 

  

  ( )    ( ) }   ]     [ {
  

√(  ( )  )(  ( )  )
( √(  ( )  )(  ( )  )    )  



 M. Rahaman et al. / Analysis of a Demand Driven Production 22 

  

√(  ( )  )(  ( )  )
(  √(  ( )  )(  ( )  )    )  

 ((  ( )  ){   (    )  ( )} (    )  ( ))   (  ( )  )(    )  ( )  
 

 (  ( )  )(  ( )  )
}   

 {
  

√(  ( )  )(  ( )  )
( √(  ( )  )(  ( )  )   √(  ( )  )(  ( )  )  )  

  

√(  ( )  )(  ( )  )
(  √(  ( )  )(  ( )  )    √(  ( )  )(  ( )  )  )  

(  ( )  )  ( )(     
 )  ((  ( )  )  ( )   ( ))(    )

 (  ( )  )(  ( )  )
}    ( )  

  ( )

 
  ]   

Similarly,  

    ( )  

   [{
  

  ( )  
(   √(  ( )  )(  ( )  )  )  

  

  ( )  
(    √(  ( )  )(  ( )  )  )  

 ((  ( )  ){   (    )  ( )} (    )  ( ))   (  ( )  )(    )  ( )  
 

 (  ( )  )(  ( )  )
}   

 {
  

  ( )  
( √(  ( )  )(  ( )  )    √(  ( )  )(  ( )  ) )  

  

  ( )  
(  √(  ( )  )(  ( )  )   

  √(  ( )  )(  ( )  ) )  
(  ( )  )  ( )(     

 )  ((  ( )  )  ( )   ( ))(    )

 (  ( )  )(  ( )  )
}    ( )  

  ( )

 
  ]    

    
 ( )  

   [{
  

√(  
 ( )  )(  

 ( )  )
( 

√(  
 ( )  )(  

 ( )  )  
  )  

  

√(  
 ( )  )(  

 ( )  )
( 

 √(  
 ( )  )(  

 ( )  )  
  )  

 ((  
 ( )  ){   (    )  

 ( )} (    )  
 ( ))   (  

 ( )  )(    )  
 ( )  

 

 (  
 ( )  )(  

 ( )  )
}   

 {
  

√(  
 ( )  )(  

 ( )  )
( 

√(  
 ( )  )(  

 ( )  ) 
  

√(  
 ( )  )(  

 ( )  )  
)  

   

√(  
 ( )  )(  

 ( )  )
( 

 √(  
 ( )  )(  

 ( )  ) 
  

 √(  
 ( )  )(  

 ( )  )  
)  

(  
 ( )  )  

 ( )(     
 )  ((  

 ( )  )  
 ( )   

 ( ))(    )

 (  
 ( )  )(  

 ( )  )
}    

 ( )  
  
 ( )

 
  ]    

    
 ( )  

   [{
  

  
 ( )  

(   
√(  

 ( )  )(  
 ( )  )  

)  
  

  
 ( )  

(   
 √(  

 ( )  )(  
 ( )  )  

)  

 ((  
 ( )  ){   (    )  

 ( )} (    )  
 ( ))   (  

 ( )  )(    )  
 ( )  

 

 (  
 ( )  )(  

 ( )  )
}  

 {
  

  
 ( )  

( 
√(  

 ( )  )(  
 ( )  )  

  
√(  

 ( )  )(  
 ( )  ) 

)  



 M. Rahaman et al. / Analysis of a Demand Driven Production 23 

   

  
 ( )  

( 
 √(  

 ( )  )(  
 ( )  )  

  
 √(  

 ( )  )(  
 ( )  ) 

)  

(  
 ( )  )  

 ( ) (     
 )  ((  

 ( )  )  
 ( )   

 ( ) )(    )

 (  
 ( )  )(  

 ( )  )
}    

 ( )  
  
 ( )

 
  ]       

    
  ( )  

   [{
  

√(  
  ( )  )(  

  ( )  )
( 

√(  
  ( )  )(  

  ( )  )  
  )  

  

√(  
  ( )  )(  

  ( )  )
( 

 √(  
  ( )  )(  

  ( )  ) 
  )  

 ((  
  ( )  ){   (    )  

  ( )} (    )  
  ( ))   (  

  ( )  )(    )  
  ( )  

 

 (  
  ( )  )(  

  ( )  )
}   

 {
   

√(  
  ( )  )(  

  ( )  )
( 

√(  
  ( )  )(  

  ( )  ) 
  

√(  
  ( )  )(  

  ( )  )  
)  

   

√(  
  ( )  )(  

  ( )  )
( 

 √(  
  ( )  )(  

  ( )  ) 
  

 √(  
  ( )  )(  

  ( )  )  
)  

(  
  ( )  )  

  ( )(     
 )  ((  

  ( )  )  
  ( )   

  ( ))(    )

 (  
  ( )  )(  

  ( )  )
}    

  ( )  
  
  ( )

 
  ]      

    
  ( )  

   [{
  

  
  ( )  

(   
√(  

  ( )  )(  
  ( )  )  

)  
  

  
  ( )  

(   
 √(  

  ( )  )(  
  ( )  )  

)  

 ((  
  ( )  ){   (    )  

  ( )} (    )  
  ( ))   (  

  ( )  )(    )  
  ( )  

 

 (  
  ( )  )(  

  ( )  )
}   

 {
   

  
  ( )  

( 
√(  

  ( )  )(  
  ( )  )  

  
√(  

  ( )  )(  
  ( )  ) 

)  

   

  
  ( )  

( 
 √(  

  ( )  )(  
  ( )  )  

  
 √(  

  ( )  )(  
  ( )  ) 

)  

(  
  ( )  )  

  ( )(     
 )  ((  

  ( )  )  
  ( )   

  ( ))(    )

 (  
  ( )  )(  

  ( )  )
}    

  ( )  
  
  ( )

 
  ]   

Thus, the parametric form of the inventory system’s overall average cost over the 

whole inventory cycle may be found as 

[ ̃]
(     )
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 ( )     
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and   
  ( )  

      
  ( )    

  ( )     
  ( )

 
. 

Hence, from a mathematical standpoint, the problem of minimizing the inventory 

system, when considering the case of type-1 neutrosophic differentiability of the 

inventory level function, can be formulated and expressed as follows: 
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 (13) 

De-neutrosophication: The de-neutrosophied single objective minimization problem 

in the of type-1 neutrosophic differentiability is given as  

{
      ( ̃)

                 
                      

 (14) 

where   ( ̃)  
   ( ) (   )  ( )    

 ( ) (   )  
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  ( ) (   )  
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. 

Case 2: When  ̃( ) is type-2 neutrosophic differentiable 

In this case, the equation (11), which characterizes the productive phase occurring 

within the time interval from           , is subsequently transformed into its 

corresponding parametric form as follows:  
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The expression presented above can be expanded into a system of crisp differential 

equations, structured as follows: 
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Again, the equation (12), which characterizes the non-productive phase occurring 

within the time interval       , is subsequently transformed into its corresponding 

parametric form as follows: 
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The expression presented above can be expanded into a system of crisp differential 

equations, structured as follows: 
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The model incorporates a variety of relevant costs, which are outlined and defined in 

the following sections. These costs play a crucial role in the overall structure and 

function of the proposed model.  

The holding cost   ̃  〈    ( )    ( )      
 ( )    

 ( )      
  ( )    

  ( ) 〉 is 

derived as  
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Thus, the parametric form of the inventory system’s overall average cost over the 

whole inventory cycle may be found as 
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Hence, from a mathematical standpoint, the problem of minimizing the inventory 

system, when considering the case of type-2 neutrosophic differentiability of the 

inventory level function, can be formulated and expressed as follows: 
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De-neutrosophication: The de-neutrosophied single objective minimization problem 

in the of tape-2 neutrosophic differentiability is given as  
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7. NUMERICAL SIMULATION 

7.1. Algorithm of the Numerical Solution 

Step 1: Enter the respective value of the crisp parameters   ,   ,  ,  ,  ,  ,   ,   ,    

and   . 

Step 2: Address the minimization problem described in equation (7) and note the 

optimum value of the decision variables and objective function. 

Step 3: Consider the model in the neutrosophic environment by taking the parameters 

 ,   and   as the trapezoidal neutrosophic number. Go to step 4 and step 6. 

Step 4: Determine the de-neutrosophication value of  ,   and   using area removal 

method. 

Step 5: Solve the minimization problem (7) using the de-neutrosophication values of 

 ,   and   and other crisp parameter (Old method). 

Step 6: Consider two types of generalised neutrosophic derivability of the 

neutrosophic valued function and solve the minimisation problem (14) and (16), which 

are referred to as Case 1 and Case 2, respectively.  

Step 7: Determine the optimal average cost by comparing the outcomes of Case 1, 

Case 2, and the old method with the crisp method. 

Step 9: End 
 

The algorithm described above can be represented visually through a flowchart, 

which is illustrated in Figure 1. This flowchart provides a clear and systematic 

representation of the steps involved in the algorithm, making it easier to understand the 

overall process. 

 

7.2. Numerical results and graphical representation 

In this part of the paper, we analyzed the numerical outcomes for three cases 

concerned to the proposed model. Model 1 represents the crisp valued that is 

deterministic decision environment. Model 2 explains the numerical outcomes of the 

proposed model with Trapezoidal neutrosophic ruled imprecision under neutrosophic 

differentiability of second type. Also, we considered another imprecise model with 

traditional consideration of de-neutrosophication approach. For numerical simulation, the 

following inputs are considered:  

(1) For the crisp model, we take       ,       ,     ,      ,      , 

     ,     ,      ,     ,       . 

(2) For the neutrosophic model, the neutrosophic number  ̃,  ̃ and  ̃ are taken as a 

single-valued trapezoidal neutrosophic number of Type 1 as 

 ̃  (                                   ), 

 ̃  (                                                           ) and 

 ̃  (                                                           )  

and the value of other parameters is taken as the same as in the crisp model. 

The optimum value of the average cost (    ) and the decision variables, namely, 

the total time cycle ( ) and production time (  ) is represented by Table 2. A graphical 

counterpart of the obtained results is also displayed through the bar diagram given in 

Figure 2. 
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Figure 1: Flowchart of solution algorithm for numerical exploration of the proposed model 

 

Table 2: Optimum results for three different methods for solving the proposed EPQ model in crisp 

and neutrosophic arena 

Model   
          

Crisp Model 1.535865 3.968183 476.41 

Neutrosophic Model (Case 2) 1.359449 3.946628 463.14 

Neutrosophic Model (Old Method) 1.604673 3.981577 479.79 
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Figure 2: Total average costs in crisp method, neutrosophic analytic approach and 

neutrosophic old method 

From Table 2 and Figure 2, it is perceived that the cost minimization objective is 

better fulfilled while considering the neutrosophic phenomena with neutrosophic 

calculus-oriented discussion and proposed de-neutrosophication technique. The optimum 

values of the objective function of cost reduction $463.14 corresponds to the optimal 

values of two decision variables, the production cycle size of 1.359449 months and 

decision cycle size 3.946628 months.  The old method with the removal of the area de-

neutrosophication technique before going for the crisp calculus-oriented approach seems 

to give the most likely outcome of the crisp model. In old method of de-

neutrosophication technique, the optimal result for cost minimization objective is 

obtained as $479.79, for the optimal production cycle 1.604673 months and optimal 

decision cycle 3.981577. On the other hand, the crisp model corresponds the numerical 

outcomes with lowest average cost of $ 476.41 at production cycle length 1.535865 

months and decision cycle length 3.968183 months. Therefore, the proposed approach to 

dealing with the dynamic of the inventory is established through numerical outcomes.  

Figure 3 shows the graph of the TAC concerning the lot-sizing cycle length. The 

initial trend of the graph of the TAC is decreasing against the total time cycle, and 

reaching the lowest value of $ 476.41 at time 3.968183 months, the graph again 

increases. 

Figure 4 shows the three-dimensional inter-dependence among the average cost, total 

time cycle, and production cycle. The locally convex nature of the graph around 

(1.535865, 3.968183, 476.41) is spotted clearly in the figure.  
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Figure 3: Graphical representation of the crisp cost function  

with respect to the inventory time horizon   

 

 

Figure 4: Three-dimensional interdependence of the cost function,  

productive phase time   , and time horizon 

 

7.3. Sensitivity Analysis 

The effect of the neutrosophic environment on the proposed economic production 

quantity model and the optimal results are depicted in the above discussion. In this 

section, a sensitivity analysis is performed for both cases on the crisp parameter by 

changing a parameter on a range of -20% to +20% while other parameters kept their 

original values. The sensitivity of the optimal results against the crisp parameters is given 

in Table 3. A graphical counterpart of the tabular display is presented in Figures 5, 6 and 

7. 
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Table 3: Sensitivity of the optimum results concerning the crisp input 

Crisp 

parameters 

Change in 

% 

New 

Value 
  

          

 

 

       

+30 156 0.6711159 3.404597 492.22 

+20 144 0.8483154 3.545230 484.90 

+10 132 1.070627 3.719955 475.43 

-10 108 1.769044 4.320030 447.06 

-20 96 2.472972 5.071292 426.46 

-30 84 3.531889 6.258762 400.32 

 

 

      
 

+30 0.26 1.247909 3.937183 455.26 

+20 0.24 1.284284 3.937972 458.05 

+10 0.22 1.321397 3.941101 460.67 

-10 0.18 1.398630 3.954611 465.47 

-20 0.16 1.439128 3.965119 467.69 

-30 0.14 1.481145 3.978237 469.79 

 

 

       

+30 0.39 1.203856 3.827319 469.67 

+20 0.36 1.253011 3.864940 467.59 

+10 0.33 1.304797 3.904640 465.42 

-10 0.27 1.417236 3.991139 460.74 

-20 0.24 1.478458 4.038439 458.23 

-30 0.21 1.543455 4.088831 455.60 

 

 

     

+30 2.6 0.9135915 3.627145 488.28 

+20 2.4 1.063842 3.739431 480.77 

+10 2.2 1.212397 3.845744 472.37 

-10 1.8 1.505093 4.042459 453.09 

-20 1.6 1.649345 4.133463 442.28 

-30 1.4 1.792152 4.219739 430.73 

 

 

     

+30 2.6 1.374870 3.877278 510.52 

+20 2.4 1.365106 3.868859 494.79 

+10 2.2 1.355599 3.860616 479.06 

-10 1.8 1.364030 4.086572 446.37 

-20 1.6 1.362137 4.238661 428.55 

-30 1.4 1.351407 4.400231 409.55 

     

+30 1.3 1.356218 3.908763 463.38 

+20 1.2 1.357341 3.921273 463.31 

+10 1.1 1.358419 3.933894 463.22 

-10 0.9 1.360429 3.959476 463.04 

-20 0.8 1.361357 3.972439 462.93 

-30 0.7 1.362229 3.985520 462.82 

       

+30 1040 1.803593 4.630437 519.12 

+20 960 1.659824 4.412041 501.43 

+10 880 1.512060 4.184643 482.81 

-10 720 1.202304 3.721255 442.22 

-20 640 1.027513 3.547593 420.22 

-30 560 0.8168831 3.316784 396.94 
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Figure 5: Sensitivity of crisp inputs on cost function 

 
Figure 6: Sensitivity of crisp on the length of the productive phase 

 
Figure 7: Sensitivity of crisp inputs on the length of the inventory time horizon 

 

From Table 3 and Figures 5, 6 and 7, the following points can be summarized:  

 In the mathematical formulation of the proposed model,    is representing the primary 

part of the production part. It can be regarded as demand independent production 
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potential of the manufacturing system. In Table 3, we analyzed the stability of the 

optimal results with respect to the variance of the production potential on a range of -

20% to +20%. From the top of Table 3, it is perceived that lower value of    

corresponds the lower values of the average cost. This can be interpreted as the boosts 

in the production potential includes additional costs, which results in the increment of 

the average cost. Impacts of the variance of the production potential on the production 

and decision cycles are just opposite to that of average cost.       

 Another significantly impacting parameter is    representing the dependency of the 

production rate on the rate of consumption. In the hypothesis of model formulation, 

the linear dependence of between the production rate and demand was considered. In 

that relation,    is the variational constant. In Table 3, we analyzed the stability of the 

optimal results with respect to the variance of     on a range of -20% to +20%. From 

numerical results, it is obtained that cost minimization objective can be refined by 

making the variational constant    lowered. This parameter also shows opposite 

impacts on the production and decision cycle to that of the average cost.  

 Deterioration is natural occurrence related to the stocking of items. So, the 

deterioration of the produced items was considered in the hypothesis of the model 

formulation. Preservation technology is also considered for diminishing the 

deterioration of the items in warehouse. The deterioration was uncertain, because it is 

natural occurrence. The preservation technology is a part of the managerial policy. 

So, we considered the rate of preservation   to be deterministic. In Table 3, we 

analyzed the stability of the optimal results with respect to the variance of 

preservation measure    on a range of -20% to +20%. The incorporation of the 

preservation measure must add some additional cost. However, it preserves the utility 

of the produced items. Therefore, the overall impact is noted that the cost can be 

minimized by integrating preservation technology in managerial policies. 

 The sensitivity of optimal solution against the other cost controlling parameters shows 

the expected out comes concerned to the proposed model.  

8. MAJOR RESEARCH FINDINGS AND MANAGERIAL INTUITIONS 

The overall research findings related to the proposed model and its association with 

Trapezoidal neutrosophic decision environment can be summarized as follows:  

(i) In Table 3, it is noted that the average cost increases with the production 

potential. The average cost can be minimized with lowering the dependency of 

the production rate on the consumption pattern. The incorporation preservation 

major favour the cost minimization goal.   

(ii) From Table 2, it is noted that incorporation of Trapezoidal neutrosophic number 

ruled uncertain environment seems to be beneficial over the deterministic 

environment for achieving the cost minimization goal.  

(iii) Neutrosophic valued calculus may describe the EPQ model in a more 

comprehensive approach compared to the approach of utilization of de-

neutrosophication technique for deterministic model. The numerical results also 

perceive advancement of the neutrosophic differential equation approach. 

The results and perceptions carry the following managerial intuitions:  

(i) Numerical outcomes include one of the significant issues is that average cost 

increases with the production potential. This observation can be decoded that more 
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production efficiency results additional cost. Since, the model was based on the cost 

minimization goal only, we did not address whether this phenomena favour profit 

maximization goal or not. The relationship between average cost minimization and 

average profit maximization is not straightforward in this context. It may happen 

that revised and incremented production potential add handsome revenue so the 

average profit maximization goal would be achieved suppressing its negative 

impacts on cost minimization gaol. In paper, we only talked about the negative 

influence of the production potential in the context of cost minimization. The 

managerial decision should be taken on the overall profit maximization objective.           

(ii) The influence of the consumption rate and enthusiasms towards produced items on 

the production rate was incorporated in the model formulation. Numerical result 

suggested the minimized cost can be achieved when the dependence of the 

production on demand be belittled. This observation can be interpreted the 

managerial policy should ensure the advancement demand prediction so that 

production process can be free from the volatility about demand pattern. 

(iii) Preservation technology minimizes the natural decay or deterioration of the 

produced items in inventory. Additional costs are required for installing and 

maintaining the preservation environment for the product in warehouse. It is noticed 

in the numerical outcomes that incorporation of preservation measures favours the 

cost minimization objective suppressing the additional cost required for 

preservation maintenances. The result signifies that preservation measure has a 

robustly impacting role to diminish deterioration during warehousing.             

(iv) Real-world economic transactions and communications cannot be free from 

impreciseness. In conventional mathematical models, the impreciseness is 

overlooked and a deterministic counterpart of the actual phenomena is discussed. 

However, this paper shows that incorporation of neutrosophic logic-based 

vagueness and analysis of the proposed model using neutrosophic calculus favour 

the cost minimization goal.   

9. CONCLUSIONS 

In this paper, a demand driven production inventory model has been formulated and 

analyzed in neutrosophic environment. In the proposed EPQ model, demand has been 

taken time-influenced and production rate is demand-controlled. Deterioration of the 

produced items during storing has been considered and preservation measure has been 

taken to minimize the menace due to deterioration. Ambiguities regarding demand 

prediction, production efficiency optimization and deterioration has been tackled using 

the mathematical frames of Trapezoidal neutrosophic numbers and associated uncertain 

differential equations. Key findings in this paper can be decoded as follows:  

 The higher production potential results negatively the cost minimization objective. 

 More reliance of the production on demand rate also causes additional costs. 

 Preservation technology favours cost reduction goal. 

 Imprecise environment given by Trapezoidal neutrosophic number, neutrosophic 

differential equation and de-neutrosophication approach produces superior results 

compared to deterministic and traditional approaches of imprecise environment.   

The concluding remarks regarding future scopes of research in this direction is listed 

as follows: 
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 The neutrosophic logic has been used in numerous decision-making problems of 

diverging contexts in contemporary time. Lot sizing approach is a celebrated 

managerial decision phenomenon in Operation Research which has not been 

addressed much with the philosophy of neutrosophy. There are open scopes for 

conducting research works on impacting EOQ and EPQ models, supply chain 

network with alignment of mentioned notion.  

 Neutrosophic valued calculus, integral equation and differential equation have not 

been advanced yet. However, the study of dynamical systems in neutrosophic 

environment necessitates the introduction of the mentioned theories in deep rooted 

manner. So, analytical advancements of the imprecise calculus and fractional 

calculus with neutrosophy may be matter of enthusiasms for researchers in 

upcoming days. 
 

Funding. This research received no external funding. 
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