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Abstract: The World Health Report estimated that 20-40% of health sector resources are 

wasted globally. Balancing many conflicting objectives such as clinical excellence, cost 

containment, and patient satisfaction can be challenging. In fact, multiple objective 

programming is one of the best tools that can be used for logistics optimization in many 

organizations. The aim of our paper is to propose a multi-objective mixed integer linear 

program that satisfies the goals of two important actors in the healthcare system: patients 

and doctors. The problem considers a parallel machine scheduling model that integrates 

simultaneously the following most known objectives in healthcare systems: minimization 

of the makespan, the patients' total flow times, and the doctors' workloads variations. The 

current paper deals with a real case study where the number of doctors exceeds the 

number of machines. A mathematical model combined with some dispatching rules was 

developed and solved using the CPLEX software, which shows the practical importance 

of our approach. For small instances, we use a mathematical programming model and a 

heuristic method based on the “first come, first served” rule to assign patients to 
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machines and doctors. For larger instances, we use a genetic algorithm to approximately 

solve our multi-objective model. 

Keywords: Makespan, flow time, scheduling, doctors' workload variation, multi-

objective mixed integer linear programming, genetic algorithm. 

MSC: 90C29. 

1. INTRODUCTION 

The scheduling theory, which is one of the main operations research subjects, aims to 

find the best sequences that optimize a single or multiple criteria using one or parallel 

machines. Several models and approaches were proposed to solve the problems of 

scheduling, namely mathematical programming, heuristics, meta-heuristics and 

simulation optimization algorithms. Some known dispatching rules such as the First 

Come First Served (FCFS) method are frequently used and easily applied.  However, 

they do not always guarantee the optimality, except for some special cases. In the 

healthcare field, the scheduling theory has been used by many authors such as [1, 2, 3, 4, 

5, 6]. Appropriate algorithms and heuristics have been applied to solve this problem 

taking into account its complexity, the number of machines, the scheduling system and 

the static or dynamic nature of patients’ arrivals. Various optimization methods were 

applied in the healthcare field ranging from simple rules to multi-objective programming. 

[7] developed a robust possibilistic programming framework for designing an organ 

transplant supply chain under uncertainty. As to [8], they proposed an automatic 

computer system for diabetic retinopathy affected patients. In turn, [9] used mathematical 

modeling and Monte-Carlo simulation to determine screening recommendations for 

diabetic retinopathy patients. Multi-objective formulations were addressed by many 

authors in the literature. In this regard, [10] developed efficient multi-objective meta-

heuristic algorithms for energy-aware non-permutation flow-shop scheduling problem. In 

turn, [11] proposed a mixed integer-linear programming model and used a multi-criteria 

decision analysis for supplier selection purposes in the pharmaceutical industry. As to 

[12], they used Monte-Carlo simulation coupled with expected value and variance 

operators to come up with an efficient solution. Multi-objective optimization has been 

demonstrated to provide efficient solutions [13, 14].  

As mentioned above, many researchers proposed various mathematical models and 

algorithms in order to find efficient schedules where one or parallel machines are used in 

a flow shop or job shop environment. However, the mathematical models are not suitable 

to find the optimal solution for large scale problems in reasonable time due to its 

computational intractability. So, various meta-heuristic algorithms are proposed for 

solving these problems. 

Meta-heuristic methods are largely used for solving NP-hard optimization problems. 

Its algorithms are faster than exact methods and more generic than heuristic methods. 

Thus, they give solutions with good quality and in reasonable computation time. In 

general, meta-heuristic methods end up with an approximate or optimal solution in 

acceptable time. The hybridization of meta-heuristics can give better results. The well-

known and frequently used meta-heuristics in the scheduling problems are the local 

search methods, [15]; intensification and diversification procedure, [16]; tabu search 

algorithm, [17]; and genetic algorithms, [18, 19, 20, 21, 22].  
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Diabetic Retinopathy (DR) is a form of complication of diabetes that usually affects 

both eyes. This severe anomaly is generally asymptomatic in early stages of the disease, 

[23]. If someone has DR, he may not notice changes to his vision at first. Over time, DR 

can get worse and cause vision loss, [24]. Caring of patients attained by DR requires a 

multidisciplinary team with an active participation of the patient [23]. DR causes retinal 

disorders which could be managed with Laser photocoagulation treatment (light 

amplification by stimulated emission of radiation). This technique consists of the 

application of small burns on the retina to prevent the severe bleeding of the retinal blood 

vessels. It has been reported that Laser treatment is the best in term of extending the time 

to develop blindness for patients with signs of retinopathy [25, 26]. Given the critical 

situation of patients suffering from DR disease and knowing the importance of laser 

photocoagulation treatment, it is mandatory to provide these patients with good care 

services. Optimizing the scheduling of patients and improving the management of laser 

rooms are very important aspects for providing timely services for patients and 

maximizing the use of available resources. The present study deals with parallel 

machines scheduling problems. Our purpose here is to introduce three objective functions 

related to three actors. The doctors are concerned with the minimization of workloads 

variation and makespan objective functions. The patients are concerned with the 

minimization of total flow times and makespan objective functions. Then, the third 

actors, the laser machines, are concerned only with the minimization of the makespan 

objective function. One main goal of this paper is to show the importance of adding the 

makespan objective in the formulation of scheduling of patients to machines and doctors, 

as illustrated in our real case, scheduling diabetic retinopathy patients to parallel 

machines and doctors on the laser room of Habib Bourguiba Hospital in Sfax. We aim to 

determine the best schedule of patients to be performed over a day by the available 

resources, machines and doctors. To guarantee efficient and quality service in the 

ophthalmology department in Habib Bourguiba hospital the number of the working 

doctors may exceed the number of machines. This problem can be modeled by 

scheduling n jobs on m parallel machines where jobs represent patients and machines are 

replaced once by laser machines and in other times by doctors while minimizing the total 

flow time, the workload variation and the makes pan, simultaneously. 

The paper is organized as follows: section 2 describes the problem. In section 3, we 

present the mathematical formulation of our problem. Then, the proposed model is 

illustrated through a real case in section 4 with analysis and discussion of results. Section 

5 suggests a genetic type algorithm to deal with larger instances. Section 6 summarizes 

the computational experiments related to the proposed model. Finally, the last section 

provides conclusion and perspectives. 

 

2. PROBLEM DESCRIPTION 

Although there is a vast amount of literature in scheduling theory adapted in the 

domain of healthcare, to our knowledge, none of the optimization models have addressed 

simultaneously the well-known objectives of minimizing the total time to complete the 

tasks, the total patients’ waiting times for treatment, and doctors' workloads variations. 

We applied this approach on our real case study of scheduling DR patients in the 

ophthalmology department in Habib Bourguiba hospital of Sfax, Tunisia, where the 

number of doctors exceeds the number of laser machines. Both resources work in parallel 
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to serve the patients (jobs) who may have different ready dates. This problem is a 

generalization of one laser machine and one doctor scheduling problem, which minimizes 

the three objectives mentioned above. 

This paper is an extension to the model of [6], where they presented bi-objective 

mathematical models to the problem of scheduling DR patients to get laser treatment. In 

this paper, we consider three objectives in an attempt to improve patients and doctors’ 

satisfactions. Our first objective is to minimize the makes pan. The second one concerns 

the minimization of the flow time of all the patients treated with laser machines in the 

ophthalmology department, thereby reducing their overall length of stay. Our third 

objective is to provide a schedule that levels the workload between doctors in laser 

photocoagulation room during the day. To the best of our knowledge, our research work 

is the first to consider the real case where the number of doctors exceeds the number of 

machines while simultaneously considering the three well known objective functions in 

healthcare field. Both efficient and approximate solutions are provided for small and 

large instances respectively. 

The problem, of scheduling n patients on m identical parallel machines to minimize 

the makes pan is considered to be NP-hard [27]. In addition, the goal of minimizing the 

flow time in scheduling problem of n tasks on one machine and with ‘ready time’ 

different from zero is an NP Hard problem [28]. The scheduling of patients to machines 

and doctors is NP Hard [6]. Therefore, the use of exact methods cannot provide efficient 

solutions in reasonable time. For this reason, we opt for heuristics (dispatching rules) and 

meta-heuristics (genetic algorithm).  

 

3. MULTI-OBJECTIVE MODEL FORMULATION 

In the hospital, notably in the Laser room, patients are serviced following the method 

on a First Come First Served (FCFS) basis, which does not necessarily minimize the total 

patients' stay time though the social value of the FCFS rule is very high and people 

struggle to respect it. When the patients’ arrival order is ignored, the total cumulative stay 

time for all patients can increase, which may yield longer waiting time for some patients 

[25]. Thus, by incorporating a maximum limit on patients' flow time, we can avoid longer 

waiting times. 

 

3.1. Notation and formulation of the mathematical model 

Our multi-objective model of scheduling patients is an extension to the mathematical 

model of [6], but by adding a third objective function of minimizing the makespan. Our 

model assumes the following hypothesis:  

 Every machine can accommodate only one patient at a time. 

 Every patient can be assigned to only one machine. 

 Each doctor is to be assigned to at most only one machine at a time. 

 Each doctor can treat only one patient at a time. 

 The processing time of the patients remains unchangeable for all machines. 

 The processing time of the patients depends on the severity of the disease. 

 If a patient is assigned to a doctor, he will be with him until the end of the 

treatment process. 
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 The planning process is considered as dynamic (all the patients may arrive at 

any time after the start of the scheduled plan).  

 

Notations 

i: the index of patients, i (=1,..., n)  P 
j: the index of available machines, j (= 1,..., m)  M 
k: the index of available doctors, k (= 1,..., d)  D 

 

Sets and parameters 
 

 D: the set of available doctors. 

 P: the set of patients. 

 M: the set of available machines. 

 Si: the processing time of patient i. 
 Ri: ready time: the date of availability for the treatment of patient i. 
 Ak: time of availability of doctor k. 

 Bj: time of availability of machine j. 
 N: a large positive constant. 

 

Decision variables 

     {
  if patient   is assigned to machine  

  otherwise

 

  

    {
                  is assigned to doctor  

  otherwise
  

Fi: flow time of patient i. 

Wi: the waiting time of patient i. 

Ci: 'Completion time', which corresponds to the end date of treatment of patient i. 

      ∑          ∑              : the time worked by each doctor. 

 

Mathematical model 

In our models, we consider three independent objectives. The first model minimizes the 

makespan (Cmax).The second one attempts to minimize the flowtime for all patients 

(TFT), and the third focuses on equally distributing the total workload among doctors 

(WL). The analytical form of the model is shown as follows: 

Cmax= {   {        }} 

    ∑  

   

 

   ∑|∑   

   

    (
∑      

       
)|

   

 

Subject to the following constraints: 

∑                             (1) 
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∑                                  (2) 

                    (3) 

                              

                                       (4) 

            (         )    

                                        (5) 

        ∑                          (6) 

                  (7) 

                                       (8) 

             (      )                   (9) 

                (       )                     (10) 

    {    ,      {     , N: a large positive constant,               (11) 

The constraints descriptions are as follows: 

 Constraints (1) guarantee that each patient is assigned to exactly one machine. 

 Constraints (2) guarantee that each patient is assigned to exactly one doctor. 

 Constraints (3) guarantee that the completion time of patient i is more than its 

processing time. 

 Constraints (4), (5) guarantee that there is no overlapping for any two patients 

assigned to the same doctor or the same machine, respectively. 

 Constraints (6) define the completion time as the release time of the patient plus 

his/her service time plus his/her waiting time. 

 Constraints (7) guarantee that the flow time of a patient is equal to the 

completion time minus the release time of the same patient. 

 Constraints (8) guarantee that the completion time of a patient i is more than the 

availability of doctor k plus his/her service time (provided that patient i is 

assigned to doctor k)  

 Constraints (9) guarantee that the completion time of a patient i is more than the 

availability of patient i plus his/her service time (provided that patient i is 

assigned to machine j)  

 Constraints (10) guarantee that the completion time of a patient i is more than the 

availability of machine j plus his/her service time (provided that patient i is 

assigned to machine j)  

 Constraints (11) define the decision variables. 

 

Normalization of ideal solutions 

In this subsection, we propose three mathematical programs in order to determine the 

three ideal solutions for each objective of the model. We have an ideal solution for the 

maximum completion time, other for the total flow time objective, also another one for 

the doctors' workloads variations objective. 
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Program 1: 

   {   {       }} = Cmax*  

Subject to the following constraints: 
 

Constraints (1) to (11). 
 

After adding the parameter Cmax*, the solution to the above program, we obtain 

program 2 presented as follows: 

   ∑       = TFT* 

Subject to the following constraints:  

 

Constraints (1) to (11). 
 

Now solving Program 2, we obtain the best solution represented by the parameter 

TFT*. 

Since the Cmax, TFT and WL objectives are of different magnitude (uncommon 

measurability), the idea of including the normalization of the goal program is highly 

recommended. What remains at stake is how the decision maker values the different 

objectives. An initial way is to assume that he/she assigns the same value for all 

objectives. [21] have provided significant justifications in their paper on the double role 

of the weight factor in the goal programming. 

 d3 is the deviation variable from the best objective of Program 1. 

 d4 is the deviation variable from the best objective of Program 2. 

Note that we cannot obtain a value of makespan and flow time less than the ideal 

solutions obtained in programs 1 and 2, respectively. 

The constraint Cmax – d3 = Cmax* has only one variable (without counting the 

deviation) and therefore the norm of the vector is 1.  

The constraint ∑   
 
    – d4 = TFT* has n variables (without counting the deviation) 

and therefore the norm of the vector is √ . 

For each k, the constraint ∑ |∑           (
∑      

       
)|              

has n variables (without counting the deviation. Therefore, the norm of the vector is 

√  
    

       
  and the objective function in program 3 becomes:  

    ∑
 

√  
    

       
 
               

 

√ 
      .  

Let    
 

√  
    

       
 
, w2=1, w3=

 

√ 
  

Program 3 is a weighted normalized goal program presented as follows:  

    ∑                               

Subject to the following constraints: 

Constraints (1) to (11). 

And adding the constraints 

Cmax – d3= Cmax* (12) 

∑   
 
    – d4= TFT* (13) 
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∑ |∑           (
∑      

       
)|             , for each k in D  (14) 

   designates the flow time of patient i, which is      ,  i in P. 

    is the negative deviation from a balanced workload for doctor k, k in D. 

    is the positive deviation from a balanced workload for doctor k, k in D. 

In the next section, we use a mathematical programming model and a heuristic 

method based on the FCFS rule to assign the patients to machines and doctors for small 

instances. Regarding larger instances, we use a genetic algorithm to approximately solve 

our multiobjective model. 

 

4. NUMERICAL EXAMPLES OF A REAL CASE 

We assist the ophthalmology department of Habib Bourguiba hospital by working on 

a real example of patients’ treatment by laser photocoagulation machines in the laser 

room. The machines are daily used by 4 doctors (3 seniors and 1 resident doctor). Every 

day, we have n patients who must be scheduled and treated by laser photocoagulation. 

This number is selected in advance with respect to the daily machines’ capacities.  

A more general description of the problem in the ophthalmology department is to 

schedule everyday n patients (P1,…,Pn) on m identical parallel machines (M1,…,Mm) 

using k identical doctors (D1,…, Dk). In this regard, it is worth considering an example of 

scheduling fifteen patients in a typical day on three machines using four doctors so as to 

optimize the total flow time of patients, doctors' workloads variations, and the makespan, 

simultaneously. The patients’ ready times (in minutes) are uniformly randomly selected 

integers from 0 to 2 hours. Patients coming later than two hours are not accepted. The 

processing times (in minutes) are integers uniformly and randomly selected between 13 

and 16 minutes. We assume also that the presence of doctors could take values uniformly 

as much as 60 minutes. Due to machine maintenance, setup, and breakdowns, the 

availability of each machine could be delayed with time distributed uniformly from 0 to 

180 minutes. Table 1 indicates the patients, their processing times and their ready times 

in minutes. 
 

Table 1: Patients' ready times and processing times  

Patient Ready time Processing time 

P1 109 14 

P2 13 16 

P3 79 15 

P4 83 16 

P5 67 14 

P6 16 15 

P7 74 14 

P8 

P9 

P10 

P11 

P12 

P13 

P14 

P15 

7 

107 

84 

7 

102 

104 

8 

118 

16 

15 

14 

14 

14 

15 

15 

13 
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Table 2 and Table 3 present machines' and doctors' availabilities in minutes, 

respectively. 
 

Table 2: Machines' availabilities 

 

Table 3: Doctors' availabilities 

Doctor Availability 

1 29 

2 30 

3 52 

4 48 

 

Table 4 represents the order (Patient 8 is scheduled first), the ready, the processing 

and the completion times of each patient. 
 

Table 4: Patients ordered by first come first served rule 

Patient Readytime Processing time Completion time 

8 7 16 45 

11 7 14 59 

14 8 15 74 

2 13 16 90 

6 16 15 105 

5 67 14 113 

7 74 14 119 

3 

4 

10 

12 

13 

9 

1 

15 

79 

83 

84 

102 

104 

107 

109 

118 

15 

16 

14 

14 

15 

15 

14 

13 

123 

129 

133 

137 

144 

148 

151 

157 

 

Step 2: 

After optimization, we obtain the FCFS sequences. 

 Sequence of patients on machine 1: = 5 4 13 15; 

 Sequence of patients on machine 2: = 8 11 14 2 6 7 10 9; 

 Sequence of patients on machine 3: = 3 12 1; 

 Sequence of patients on doctor 1: = 8 2 4; 

 Sequence of patients on doctor 2: = 11 7 12 1; 

 Sequence of patients on doctor 3: = 14 5 10 9; 

 Sequence of patients on doctor 4: = 6 3 13 15; 

 Cmax = 157 

 sum {i in Patients} F[i] = 749 
 

The values of doctors' workloads are presented in Table 5. 
  

Machine Availability 

1 99 

2 8 

3 108 
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Table 5: The working time of each doctor 

Doctor Working time 

1 48 

2 56 

3 58 

4 58 

 

 

4.1. Scheduling with different dispatching rules 

We explore different cases where a rule, a number of patients and a number of 

doctors are fixed for each case, but the number of machines varies between 1, 2 and 3. 

The rules are FCFS, SPT, and LPT. We record the values of the makespan, the flow time 

of each patient and the doctors' workload variation. 

 
Table 6: Results with FCFS rule 

Machine Cmax Total Flow Workload variation 

1 319 2293 12 

2 177 850 11 

3 157 749 10 
 

Table 7: Results with SPT rule 

Machine Cmax Total Flow Workload variation 

1 332 2377 10 

2 214 1434 11 

3 171 1008 12 
 

Table 8: Results with LPT rule 

Machine Cmax Total Flow Workload variation 

1 319 2332 11 

2 200 1242 10 

3 171 1052 11 

 
As mentioned in Tables 6, 7 and 8, we find that for M = 3 the FCFS rule dominates 

the other two scheduling procedures, although it was interesting to see how the schedules 

of patients work with reduced resources and how the LPT and SPT could be affected by 

the ready time. We also ran the program for a varying number of machines and set the 

number of doctors to 4. 
 

Table 9: Results of the objectives under different rules for m = 1, d = 4 

Rule Cmax Total Flow Workload variation 

FCFS 319 2293 10 

SPT 332 2377 10 

LPT 319 2332 11 
 

Table 10: Results of the objectives under different rules for m = 2, d = 4 

Rule Cmax Total Flow Workload variation 

FCFS 177 850 10 

SPT 214 1434 11 

LPT 200 1242 10 
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Table 11: Results of the objectives under different rules for m = 3, d = 4 

Rule Cmax Total Flow Workload variation 

FCFS 157 749 10 

SPT 171 1008 12 

LPT 171 1052 11 

 

We run the optimization programs with m = 3, d = 1, 2, 3, 4. 
 

Table 12: Results of the objectives under different rules for m = 3, d = 1, 2, 3, 4 

Number of doctors Cmax Total Flow Workload variation 

d=1 311 2173 - 

d=2 232 1765 12 

d=3 170 831 1 

d=4 157 749 10 

 
It is possible to work with the four configurations. It is worth noting that working 

with three doctors could yield the best work balance when compared to working with 

four and two doctors. Hence, for the time being, we opt for using m=3 and d=4 with 

different new dispatching rules. 

 

4.2. Results with different variants of the FCFS rule  

From the analysis displayed in the previous section, three different more logical rules 

come to mind: The first one is “First Come First Served” (FCFS). This rule is justified by 

the fact that a patient coming earlier should not be delayed when being treated. A critic to 

this method is that this early comer may take longer time in the treatment process. The 

second rule assigns priority to the patient who has the least possible sum of both arrival 

time and processing time (R+S). The third rule assigns high priority to the patient with 

least arrival time plus twice his/her processing time (R+2S). 

We run the program with the FCFS, R+S, R+2S rules and different sets of data. Each 

set is run for the three rules to obtain Table 13. 
 

Table 13: Three rules’ results 

Rule Cmax Total Flow Workload variation 

FCFS  133 661 12 

R+S 134 661 13 

R+2S 134 661 13 

 

Table 13 confirms the good performance of the FCFS rule. 

Tables 14 and 15 present the availabilities of doctors and machines while Table 16 

gives ready times, processing times and the FCFS completion times of patients.  
 

Table 14: Doctors’ availabilities 

Doctor Availability 

1 48 

2 1 

3 50 

4 43 
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Table 15: Machines’ availabilities 

Machine Availability 

1 32 

2 96 

3 24 

 

Table 16: The FCFS results 

Patient Ready time Processing time Completion time 

7 4 15 39 

10 5 15 54 

6 29 14 57 

12 32 14 68 

1 36 15 72 

3 39 15 83 

5 41 16 88 

11 44 15 98 

14 44 14 102 

2 49 15 111 

4 67 14 112 

13 67 16 118 

8 72 15 126 

9 93 14 126 

15 104 15 133 

 

The FCFS sequences of patients scheduled on machines and doctors are as follows:  

 Sequence of patients on machine 1:= 10 12 3 11 4 9; 

 Sequence of patients on machine 2  := 2 8; 

 Sequence of patients on machine 3 := 7 6 1 5 14 13 15; 

 Sequence of patients on doctor 1 := 12 3 11 4; 

 Sequence of patients on doctor 2  := 7 10 2 9; 

 Sequence of patients on doctor 3  := 5 13 15; 

 Sequence of patients on doctor 4= 6 1 14 8; 

 Cmax = 133 

 sum{i in Patients} F[i] = 661 
 

Table 17 presents the doctors' workloads values given by the FCFS rule.  
 

Table 17: Doctors' workloads 

Doctor Working time in minutes 

1 58 

2 59 

3 47 

4 58 

 
4.3. Sensitivity analysis 
 

In this section, we consider different examples of scheduling patients on machines 

and doctors in order to optimize the total flow time of patients (TFT), doctors' workloads 

variations (WLV), and the makespan (Cmax) when using the FCFS rule. At each 

iteration, we vary the number of patients or the number of machines, and then we discuss 

the impact of each variation on the values of different objective functions (see Table 18). 
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We give the program a time limit equal to 360 seconds. It is also noteworthy that the best 

values are obtained for six out of seven cases. 

 
Table 18: Sensitivity analysis through varying the patients' and machines' numbers 

M N D WLV TFT TFT/n Cmax 

FCFS rule and 

normalized objective 

function 

3 15 4 10 749 49.93 157 Best solution 

3 20 4 0 1148 57.4 183 Best solution 

3 30 4 12 4394 146.46 292 Feasible solution 

4 30 4 13 4158 138.6 261 Best solution 

1 15 4 12 2293 152.87 319 Best solution 

2 15 4 11 850 56.67 177 Best solution 

4 15 4 12 739 49.27 150 Best solution 

 

Considering the case with the same number of machines (three) and the same number 

of doctors (four), the increase in the number of patients has a negative impact on the 

values of average flow time and Cmax. However, the objective of WLV attains its best 

value (zero) when n is equal to an intermediate value (twenty) and is deteriorated with a 

higher number of patients (thirty). When we consider the example of scheduling thirty 

patients and four doctors while increasing the number of machines from three to four, we 

note the improvement of average flow time and Cmax values, but not those of the WLV. 

The decrease in the number of machines to one and two have a negative impact on all 

considered objectives. The addition of a fourth machine to the real case study has a slight 

positive effect on the average flow time and the Cmax objectives, but it deteriorates the 

value of WLV. 

 

5. LARGE INSTANCES AND GENETIC TYPE ALGORITHM  

Since the problem of allocating jobs on parallel machines is NP hard, the more 

complex problem of scheduling patients by adding the availability of constraints on 

patients, machines, and doctors is also NP-hard and may not be solved in a reasonable 

amount of time, notably for large instances. For this reason, we use meta-heuristic 

algorithms such as GA which is an evolutionary algorithm created by John Holland in 

1960. According to [30], GA can be defined as a stochastic process based on a population 

of individuals. It is known as a problem-solving system based on the principles of 

evolution and hereditary [31]. Each system starts with an initial set of random solutions 

and uses a process similar to biological evolution to improve upon them, which 

encourages the survival of the fittest. Thus, the best overall generated gene becomes the 

candidate solution. This algorithm operates as follows: First, each individual represents a 

potential solution. Then, the program generates randomly an initial population of 

individuals. After that, the individuals are classified in the sampled population according 

to a fitness function. Next, the selection is applied relatively to the calculated 

probabilities. Then, the crossover operator produces new individuals called "off spring" 

from the selected parents in order to obtain better sequences in the scheduling problem. 

After the crossover, the obtained sequences are subject to mutation. The mutation 

operator helps the algorithm to break out from a local optimum through the process of 

diversification. Several mutation operators are possible: the inversion of two jobs 
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between two randomly chosen positions, the insertion of a randomly chosen job at a 

random position, the swap of position of two randomly chosen jobs, and the shift of the 

selected randomly job to a random position right or left of its initial position. Finally, the 

replacement consists of updating the population. Ultimately, to finish the GA process, a 

stopping condition, such as the maximum number of iterations without improvement, the 

maximum number of generations, and a fixed time should be setup.  

 

5.1. Application of genetic algorithm 

We develop a program that generates random permutations of patients ignoring the 

FCFS rule for larger instances. A permutation of patients is considered a chromosome. In 

the selection process, an initial population of 200 chromosomes is generated and two 

random chromosomes based on their fitness are selected so as to be crossed. The 

crossover process consists of generating a random chromosome of zeros and ones. 

According to [32], the chromosome takes a value of 1 when there will be a change in the 

parent position (filled from the second parent), and 0 if it will not be a change (see Figure 

1). The method was described to be successful to solve TSP, VRP, and so on. 

The two worst generated genes according to fitness are eliminated and the process is 

repeated 100 times until we obtain a “good population”.   

 

Crossover: 

       
1 0 0 1 0 1 0 1 0 1 

      

    
P1 

            
P2 

     

8 7 5 6 2 4 10 1 9 3   
  

7 6 10 3 1 8 4 2 9 5 

                       

                       

7 7 5 3 2 8 10 2 9 5 
   

8 6 10 6 1 4 4 1 9 3 

                       

    
O1 

            
O2 

     

7 5 3 2 8 10 9 6 4 1 
   

8 6 10 1 4 9 3 7 2 5 

 
Figure 1: The development of crossover chromosomes 

Later the mutation process starts with the creation of an integer random number to 

indicate from which area the transposition (swapping) of two consecutive patients is 

made to obtain the new chromosome. In fact, the new chromosome suggests another 

different schedule on machines and doctors and it gives a different Cmax (maximum time 

to complete all tasks), total flowtime of all patients and workload variation. We define 

the fitness of each chromosome as the sum of Cmax, total flowtime and variation of the 

doctors' workload. The program runs a number of iterations. At each iteration, the 

location of where the transposition is made is changed, a different chromosome is created 

and new schedule is evaluated. From all those schedules, we choose the one with the 

least fitness. This program can give a schedule of up to 100 patients in an acceptable 

amount of time (see Figure 2). 
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8 11 14 2 6 5 7 3 4 10 12 13 9 1 15 

                Cmax= 

133 

     

8 2 7 10 9 

     
TFT=246 

    

11 6 3 12 1 

     
 

     

14 5 4 13 15 

     
Workload of doctors= 

          
1  59 

    

8 5 4 9 

      
2  58 

     

11 6 10 1 

      
3  59 

     

14 7 12 15 

      
4  43 

     

2 3 13 
 

      

 

                

Mutation 

 
Mutated Chromosome 

8 11 14 2 5 6 7 3 4 10 12 13 9 1 15 

 

Cmax =133 

    

8 2 7 10 9 

TFT=248 

     

11 5 3 12 1 

 

14 6 4 13 15 

Workload of doctors 

         

1  57 

     

8 5 4 9 

 

2  60 

     

11 6 10 1 

 

3  59 

     

14 7 12 15 

 

4  43 

     

2 3 13 

   
Figure 2: The development of the mutated schedule 

6. RESULTS AND DISCUSSION 

In this section, we test small instances for n = 5, 6,7,8,9 using mixed integer linear 

programs and the normalized goal program for randomly generated instances and fixed 

FCFS sequence. The CPU time required for FCFS permutation of patients to be assigned 

to machines and doctors is shown in Table 19. 

Table 19 reveals the CPU time required to solve each of the three different 

optimization problems of the goal program. Notice that it takes 0.0504 seconds to solve a 
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problem of size 5 patients: 0.012 to find the best makespan (Program1), 0.015 seconds to 

find the best total flowtime (Program2) and 0.0234 seconds to find the compromise 

solution that tries to be as close as possible to the best makespan, to the best total 

flowtime and to the best workload variation (Program3). It is also worth noting that 

beginning from n=9, the solution to the three programs takes a long CPU time. Hence, 

there is a need for an efficient heuristic or a meta-heuristic to solve these types of 

problems. For larger instances, we allow time to obtain the results from the genetic 

algorithm method. The FCFS condition is relaxed and we try to find the best permutation 

and hence the assignment to machines and doctors. The average CPU time required to 

solve the problem for randomly generated instances is shown in Table 20. 

Table 19: Average CPU times in seconds to solve randomly generated problems using programs 1, 

2 and 3 

n 5 6 7 8 9 

Program 1 0.012 0.0574 0.0246 0.0356 0.7186 

Program 2 0.015 0.0712 0.07 0.0548 1.655 

Program 3 0.0234 0.0416 0.23 0.2506 4.843667 

Sum 0.0504 0.1702 0.3246 0.341 7.217267 

 

Table 20: Average CPU time in seconds to obtain solutions for large instances using genetic 

algorithm 

 
7. CONCLUSION AND PERSPECTIVES 

The aim of this paper is to provide a schedule of patients who require laser 

photocoagulation treatment using special machines and qualified doctors. The number of 

doctors may exceed the number of machines though they both work in parallel. For this 

purpose, we formulated mixed integer mathematical models for scheduling patients to 

machines and doctors in which we incorporated different ready times of patients and 

availabilities of both machines and doctors. Three programs are presented to give 

efficient values for the three considered objectives of minimizing the makespan, patients' 

total flow times and doctors' workloads variations. For a real case of scheduling fifteen 

patients to at most four doctors and at most three laser machines, we compare the FCFS 

rule with its variants and with other dispatching rules. The FCFS rule which is fair and 

commonly used in healthcare systems has shown good performance. This result 

encourages hospital decision makers to adapt it for small and medium instances. By 

allowing the variation in the number of machines and the dispatching rules, the good 

performance of the three-machine model using the FCFS rule is demonstrated. However, 

when we vary the number of doctors while setting the number of machines to three, we 

noticed the advantage of using four doctors in the model for the makespan and the total 

flow time values but not for the workload variation which reached its best value when the 

number of doctors is equal to the number of machines. A sensitivity analysis has revealed 

that an addition of one machine (from three to four) slightly improves the average of the 

flow time and the Cmax, but deteriorates the workload variation value. For larger 

instances, and due to the complexity of the problem, a genetic type algorithm is 

constructed to achieve approximate solutions and to be able to deal with the problem in a 

n 10 20 50 100 200 300 400 500 

Genetic algorithm 0.45 0.89 3.05 8.36 32.4 64.7 114 184.61 
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reasonable CPU time. In a forthcoming work, we can extend our algorithms to solve such 

parallel machines scheduling problem with additional objectives, particularly minimizing 

tardiness and earliness while including manager preferences and uncertainty. We propose 

to design simulation models to find the best configurations of resources that maximize 

the satisfaction functions related to different healthcare actors. We can also identify other 

real case applications where machines are used along with other variable resources. 
 

Funding: This research received no external funding. 
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