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Abstract: This article unveils an innovative approach to improving the entropy mea-
sure analysis of Decision Making Units(DMUs) in the context of linear Diophantine
multi-fuzzy soft sets. Though multi-fuzzy soft sets combine multi-dimensional values
and parameters to create a hybrid model with considerable versatility, linear diophantine
fuzzy sets, a noteworthy extension of conventional fuzzy sets, are also utilized to ease
prior constraints. Entropy is a fundamental concept in fuzzy set theory and a useful tool
for quantifying the level of fuzziness seen in fuzzy sets. We employ entropy measurements
to quantify the weights of input and output components in data envelopment analysis,
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a non-parametric method frequently used in multi-criteria decision-making. The nov-
elty of this study is integrating the weight determination in Data Envelopment Analysis
(DEA) by introducing novel entropy measures with linear Diophantine multi-fuzzy soft
sets. The significance of DEA is found in its strong analytical capabilities, which facil-
itate improved decision-making, boost operational effectiveness, and encourage ongoing
development in a variety of industries. To illustrate the significance of our suggested
approach, we offer a numerical example of building energy efficiency using a DEA model.
This work contributes to fuzzy set theory and DEA techniques, offering a helpful tool for
evaluating and enhancing complex decision systems.

Keywords: Linear diophantine multi-fuzzy soft set, entropy measure, DEA, energy

efficiency.

MSC: 06D72,03E72, 08A72, 15B15.

1. INTRODUCTION

Data envelopment analysis (DEA) is an empirical approach that ranks, classi-
fies, and benchmarks a group of homogeneous decision-making units (DMUs) by
the desired inputs and outputs. It is based on mathematical programming and
multi-criteria decision-making (MCDM). The Charnes Cooper and Rhodes (CCR)
DEA model, which establishes the DMUs’ performance efficiencies, was proposed
by Charnes et al. [1] in 1978. The following are the main benefits of the DEA
approach: it can use numerous outputs and inputs concurrently, without requiring
knowledge of the production function or its constraints [2]. It can also use different
inputs and outputs with different measurement scales, compare inefficient DMUs
with reference sets directly, rank decision-making units, and create objectives for
inefficient DMUs [3]. The following succinctly describes the primary drawbacks
of the DEA approach: Due to its high computational value, it is challenging to
solve complex tasks and measures relative efficiency rather than absolute efficiency
[4, 5, 6]. It has several variances in results as a result of measurement error and
the outcomes of performance evaluations may change as a result of changes in the
kind and quantity of inputs and outputs. The ratio of a DMU’s performance effi-
ciency to the highest performance efficiency is known as its relative performance
efficiency. A DMU’s relative performance efficiency falls between 0 and 1. Studies
on crisp DEA have been conducted in several fields [7, 8].

Real-world applications might not always have access to the clear input and
output data needed for conventional DEA. The significance of DEA is found in
its strong analytical capabilities, which facilitate improved decision-making, boost
operational effectiveness, and encourage ongoing development in a variety of indus-
tries. However, inputs and outputs are frequently imprecise in real-world problems.
The input/output data imprecision might be displayed as fuzzy numbers or ordi-
nal relations. The concept of fuzziness has been established in DEA to deal with
fuzzy data by Sengupta [9]. An important method for managing fluctuations and
uncertainties in real-world problems is fuzzy set theory [10]. Several studies have
examined fuzzy DEA (FDEA) in various fields [11, 12, 13, 14, 15]. According to
fuzzy set theory, the rejection value is equal to one less than the acceptance value
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when the sum of an element’s degree of non-membership (rejection) and degree of
membership (acceptance) is equal to one [16]. However, the total of an element’s
acceptance and rejection values can be less than one in real-world situations. As
a result, there is still some hesitation. Without a doubt, intuitionistic fuzzy set
(IFS) theory is more appropriate than fuzzy set theory. An extension of fuzzy
sets, intuitionistic fuzzy sets (IFS) [17] have been proven to be very helpful in
handling vagueness. When evaluating an element, IFS takes into account its levels
of acceptance and rejection, ensuring that the total of these values is less than or
equal to 1.

Additionally, language data can be utilized directly in the DEA models because
of fuzzy set theory. Fuzzy linear programming models are the shape that fuzzy
DEA models take. This paper’s primary goal is to investigate how to rank DMUs
using fuzzy entropy and the fuzzy CCR model to find common sets of weights. The
fuzzy set’s degree of fuzziness is described by entropy. Numerous academics have
examined it from various angles. Puri et al. [18] apply the DEA methodology
to the banking industry, where two inputs labor and operating expenses have
intuitionistic fuzzy essences at the branch level and are represented as TIFNs. The
fuzzy CCR model and the fuzzy entropy of the DMUs were used by Tavakkoli-
Moghaddam [19] to calculate the efficiency scores of DMUs. In an IF context, A.
Arya et al. [20] provide a method to determine IF input-output targets that help
convert inefficient DMUs into efficient DMUs. Some recent studies on DEA with
fuzzy integration are discussed in the Table 1.

Table 1: Literature Review on Fuzzy DEA approaches

Article MCDM Approach Application

A. Mahmoodirad et al.
[21]

Intuitionistic Fuzzy DEA Evaluating health center

M. A. Sahil et al. [22] Intuitionistic Fuzzy DEA Efficiency Analysis of
Public sector bank

M. A. Pereira et al. [23] Fuzzy DEA Healthcare Access and
Quality Index

M. A. Sahil et al. [24] Sin Shaped Pythagorean
Fuzzy DEA

Efficiency Analysis of
Public sector bank

L.Hhang & L. Chen [25] Fuzzy DEA Efficiency Evaluation of
DMUs

J. Zhu et al. [26] Entropy based Cross effi-
ciency DEA

Efficiency analysis of En-
terprise integration

K. K. Raj et al. [27] Fuzzy DEA Cost efficiency Analysis
of insurers

K.K.Mahanta & D.S.
Sharanappa [28]

Spherical Fuzzy DEA Efficiency Analysis

R.K. Ghalehno et al. [29] Fuzzy DEA Ranking of bank branch
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1.1. Literature Review

The presence of various forms of uncertainties in the data, which might result
from human error or ignorance, makes it challenging for people to select the best
option in numerous circumstances. To evaluate these risks and evaluate the pro-
cess, a wide range of theories are employed, including the fuzzy set theory and
its extensions, such as the intuitionistic fuzzy set (IFS) [17], Pythagorean fuzzy
set (PFS) [30], and q-rung orthopair fuzzy set (q-ROFS) [31]. Each of these the-
ories states that an object’s two membership degrees are used to evaluate it by
professionals to ensure that its sum, square sum, and qth power of sum are all
equal to one. The linear diophantine fuzzy set (LDFS) [32], which is the precursor
of a novel and unique fuzzy concept, dispenses all these restrictions due to the
existence of reference parameters. In light of the LDF environment, Jeevitha [33]
promoted and applied the DEMATEL strategy in the context of climate change.
The development of the linear diophantine multi-fuzzy aggregation operators and
their use in digital transformation has been attributed to Jeevitha et al. [34]. To
choose the right Agri-Drone, Vimala [35] built the intricate complex LDF soft set.

Aiyared Iampam [36] discussed LDFS for MCDM problems using multiple Ein-
stein aggregation techniques. These operators are capable of deriving ranking in-
formation and identifying the optimal choice. Subsequently, Saya Ayub [37] linked
algebraic aspects with LDF relations by using decision-making. Riaz [38] extended
LDFS by introducing the idea of soft rough sets for application in material han-
dling equipment. By presenting soft rough sets and their possible application in
material handling equipment, Riaz[38] expanded the scope of the LDFS. In order
to choose third-party logistic service providers, Riaz [39] developed aggregation
operators (AOs) that used linear Diophantine fuzzy numbers (LDFNs) in priority
order. Einstein’s prioritized linear Diophantine fuzzy AOs with applications were
proposed by Farid [40]. Riaz [41] recently created Frank AOs for linear Diophan-
tine fuzzy numbers with interval values. Vimala et al. [42] not only explained the
characteristics of LDFS and its uses, but they also created the MARCOS technique
for LDFS. Jeevitha et al. [43] described the LDFS clustering approach using the
LDF correlation coefficient. Petchimuthu [44] aimed to use its AOs to solve the
supplier selection problem using IVLDF data. Jeevitha et al. [34] proposed the
novel integration of LDF-CODAS and investigated the logistic provider selection.

Even though academics use the existing theories a lot, they have limits since
they don’t work well with parameterization tools, which keeps the decision-maker(s)
from coming to the right conclusion. To avoid these problems, Molodtsov [45]
developed the soft set (SS) theory, in which ratings are given based on specific
variables. The ideas of fuzzy soft set (FSS) and intuitionistic fuzzy soft set (IFSS)
were developed by Maji et al. [46, 47] by fusing this theory with the pre-existing
FS and IFS theoretical methods. The hybrid model of the q-ROF multi-fuzzy soft
set was derived by Mahalakshmi [48, 49]. Vimala [50, 51] developed and used the
notion of soft sets to extend fuzzy sets. Jeevitha [52] implemented the multi-fuzzy
soft set in LDFS and discussed its application in the tender selection process. Also,
the LDMFS similarity measure was introduced and used to find the suitable al-
ternative for the petrol [53]. Soft sets are extended into the field of hesitant fuzzy
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sets [54].
A crucial subject in fuzzy set theory is entropy[55]. The entropy of fuzzy sets

serves to describe both their degree and fuzziness. Luca and Termini presented
the axiom formulation of fuzzy set entropy [56], who also mentioned Shannon’s
probability entropy and interpreted it as an information-gathering metric. While
Higashi and Klir [57] used the distance from a fuzzy set to its complement, Kauf-
mann [58] noted that the entropy of a fuzzy set can be obtained by measuring
the distance between the fuzzy set and its nearest non-fuzzy set. Trillas and Ri-
era proposed general expressions for this entropy [59], while Loo [60] proposed a
definition of entropy that incorporates the definitions provided by Kaufmann [58]
and Luca and Termini [56]. The well-recognized definitions of fuzzy similarity,
distance, and entropy were provided by Liu [61]. Based on the axiom definitions
of fuzzy entropy and distance measure, Fan and Ma [62] provided a general con-
clusion on fuzzy entropy caused by distance measure. Some writers have studied
the entropy of interval-valued and intuitionistic fuzzy sets. By using the axiomatic
definition of entropy of a fuzzy set presented by Luca and Termini [56] and Liu
[61], Zhang et al. [63] suggested a novel definition of entropy for interval-valued
fuzzy sets based on distance.

Some researchers have studied the entropy of interval-valued and intuitionis-
tic fuzzy sets. An intuitionistic fuzzy set’s degree of fuzziness can be determined
thanks to the idea of entropy of intuitionistic fuzzy sets, which was established by
Burillo and Bustince [64]. An entropy measure of a non-probabilistic form with a
geometric interpretation of intuitionistic fuzzy sets was proposed by Szmidt and
Kacprzyk [65]. Using the concept of interval-valued fuzzy sets, Zeng and Li [66]
articulated the axioms of Szmidt and Kacprzyk [65] and explored the connection
between the entropy and similarity measures. To define the fuzzy entropy of intu-
itionistic fuzzy sets, Hung and Yang [67] took advantage of the idea of probability.
They also developed the definition of the axiom and its properties, as well as two
families of entropy measures for intuitionistic fuzzy sets. A unified paradigm for
interval-valued fuzzy set’s entropy and cardinality was introduced by Vlachos et
al. [68].

However, the entropy metrics for the soft sets were introduced in [69]. The
proposed entropy measures for IFSSs were made by Jiang et al. [70]. The similarity
and entropy measurements for FSS were defined by Liu et al. [71]. The generalized
IFSS’s entropy and distance measurements were defined by Selvachandran et al.
[72]. To calculate the degree of fuzziness of the set, Athira et al. [73] introduce
some new entropy measures for PFSS. A. AydoÄdu [74] examines the features of
newly proposed information measures for linear Diophantine fuzzy sets.

Several fuzzy number extensions have reportedly been combined with the en-
tropy approach under uncertainty, according to the literature. The focus of this
work is on the linear Diophantine multi-fuzzy soft extension of the entropy ap-
proach, which has not yet been investigated in the literature. This work therefore
establishes the foundation for the energy efficiency calculation in the DEA model
using LDMFSS entropy measurements.
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1.2. Key Insights and Essence of the research

1. This study presents an unconventional approach to enhance the analysis of
entropy measures in the context of linear Diophantine multi-fuzzy soft sets
(LDMFSS).

2. This study suggests two different entropy measures for LDMFSS that can
be used to quickly figure out the weights of input and output components in
DEA.

3. Using information from the UCI machine learning repository, a case study
on building energy efficiency is used to illustrate the practical implications
of the findings.

4. It demonstrates the robustness of the suggested entropy measure through
a comparative analysis, proving its dependability and efficiency in intricate
decision-making systems.

5. The Multi-fuzzy soft sets and linear Diophantine fuzzy sets are used to over-
come previous limitations in fuzzy set theory and DEA approaches.

6. Our proposed theory improves the assessment and optimization of complex
decision systems by offering a more reliable and flexible model for decision-
making situations.

7. This theory supplies professionals and academics with an effective tool for a
range of applications, advancing DEA methods and linear diophantine fuzzy
set theory.

1.3. Research Gap

There is no existing research that integrates the extension of fuzzy sets with
entropy measures within the DEA model framework, highlighting a significant
gap in the literature. Additionally, despite the widespread use of fuzzy entropy
in various algorithms, only a few studies have incorporated fuzzy entropy for the
specific purpose of evaluating energy efficiency. This underscores a notable area
of opportunity for further exploration. To address these gaps, we introduce novel
entropy measures specifically designed for linear Diophantine multi-fuzzy soft sets
(LDMFSS). Our research demonstrates how these new entropy measures can be
effectively applied to enhance the DEA model, thereby providing a more robust
and nuanced approach to decision-making and efficiency evaluation.

This article has been split into four components. The fundamental definitions
required for our proposed theory are covered in the first section. Two new def-
initions of the entropy measure for LDMFSS and its attributes are presented in
the second section. The final section addresses the numerical example and the
new, innovative entropy implementation approach for the DEA model. The final
section of the conclusion contains an overview of this research.

2. PRELIMINARIES

The symbols and their description are given in Table 2. Throughout the paper,
these symbols are used as per the description.



Jeevitha et al. / Entropy-based Analysis using LDMFSS 7

Table 2: Nomenclature
Symbol Description
Λ Universal Set
d A element in Universal Set
µ Membership Score(MS)
ν Non-Membership Score(NMS)
α, β Reference Parameters respect to MS and NMS
Ξ, ϕ Parameter Set
ϵi Elements in Parameter Set
LDMFS(Λ) The set of all LDMFS over Λ
LDMFSS(Λ) The set of all LDMFSS over Λ

Definition 1. [10] The FS F on Λ is specified as

F = {(d, µ(d)) : d ∈ Λ}

where µ(d) characterize the MS of d and µ is a mapping from Λ to [0,1].

Definition 2. [32] The LDFS L on Λ is specified as

L = {(d, ⟨µL(d), νL(d)⟩, ⟨αL(d), βL(d)⟩, ) : ∀d ∈ Λ}

where µL(d), νL(d), αL(d), βL(d) characterized the MS, NMS and its respective ref-
erence parameters respectively. Additionally, it restricted to the conditions that
0 ≤ µL(d)αL(d) + νL(d)βL(d) ≤ 1 with 0 ≤ αL(d) + βL(d) ≤ 1.

Definition 3. [34] Let K be the set of indices. The LDMFS M on Λ is specified
as

M = {(d, ⟨µj
M(d), νjM(d)⟩, ⟨αj

M(d), βj
M(d)⟩) : ∀d ∈ Λ}

such that 0 ≤ µj
M(d)αj

M(d) + νjM(d)βj
M(d) ≤ 1 with 0 ≤ αj

M(d) + βj
M(d) ≤ 1

Definition 4. [14] The pair (J,Ξ) is specified as

(J,Ξ) = {(ϵi, J(ϵi)) : ∀ϵi ∈ Ξ}

where J is a mapping from Ξ to LDMFS(Λ) and J(ϵi) is a LDMFSS.

Example 5. Let {d1, d2} be two alternatives in Λ and {ϵ1, ϵ2} ∈ Ξ. Then the
LDMFSS(Λ) is characterized as

(J,Ξ) =


J(ϵ1) =

{
{(d1, ⟨(0.7, 0.8), (0.5, 0.6)⟩, ⟨(0.6, 0.9), (0.3, 0.1)⟩)
(d2, ⟨(0.4, 0.7), (0.7, 0.6)⟩, ⟨(0, 7, 0.8), (0.3, 0, 1)⟩)}

}

J(ϵ2) =

{
{(d1, ⟨(0.5, 0.4), (0.6, 0.7)⟩, ⟨(0.7, 0.6), (0.2, 0.3)⟩)
(d2, ⟨(0.9, 0.7), (0.2, 0.5)⟩, ⟨(0.7, 0.6), (0.2, 0.3)⟩)

}




8 Jeevitha et al. / Entropy-based Analysis using LDMFSS

3. ENTROPY MEASURES OF LDMFSS

Definition 6. Let E be a real valued function from LDMFSS(Λ) to [0,1]. Then
the function E is stated as an entropy of LDMFSS, if it satisfies the following
axioms:

✓ (C1) Minimality: E(J,Ξ) = 0 ⇔ µj
J(ϵi)

(d) = 1, νjJ(ϵi)(d) = 0, αj
J(ϵi)

(d) =

1, βj
J(ϵi)

(d) = 0, or µj
J(ϵi)

(d) = 0, νjJ(ϵi)(d) = 1, αj
J(ϵi)

(d) = 0, βj
J(ϵi)

(d) =

1,∀ϵi ∈ Ξ

✓ (C2) Maximality: E(J,Ξ) = 1, ⇔ µj
J(ϵi)

(d) = νjJ(ϵi)(d), αj
J(ϵi)

(d) =

βj
J(ϵi)

(d), ∀ϵi ∈ Ξ

✓ (C3) Resolution: E(J,Ξ) = E((J,Ξ)c)

✓ (C4) Symmetry: E(J,Ξ) ≤ E(J,Φ) if J(Ξ) ≤ J(Φ) for µj
J(ϵi)

(d) ≤ νjJ(ϵi)(d),

αj
J(ϵi)

(d) ≤ βj
J(ϵi)

(d) and if J(Ξ) ≥ J(Φ) for µj
J(ϵi)

(d) ≥ νjJ(ϵi)(d), α
j
J(ϵi)

(d) ≥
βj
J(ϵi)

(d)

Theorem 7. Let Λ = {d1, d2, d3, ..., dp} be the universal set and Ξ = {ϵ1, ϵ2, ϵ3,
..., ϵn}. Let (J,Ξ) = {J(ϵi) = ⟨µj

J(ϵi)
(d), νjJ(ϵi)(d)⟩, ⟨α

j
J(ϵi)

(d), βj
J(ϵi)

(d)⟩ : ∀ϵi ∈
Ξ}j∈K be the family of LDMFSS(Λ). Define an E1(J,Ξ) as follows:

E1(J,Ξ) =
1

n

n∑
i=1

[ 1

pk

p∑
r=1

k∑
j=1

1− |αj
J(ϵi)

(d)µj
J(ϵi)

(d)− βj
J(ϵi)

(d)νjJ(ϵi)(d)|

1 + |αj
J(ϵi)

(d)µj
J(ϵi)

(d)− βj
J(ϵi)

(d)νjJ(ϵi)(d)|
]
(1)

Proof. (C1) Minimality: E1(J,Ξ) = 0 ⇔ µj
J(ϵi)

(d) = 1, νjJ(ϵi)(d) = 0, αj
J(ϵi)

(d) =

1, βj
J(ϵi)

(d) = 0, ∀ϵi ∈ Ξ

If it is a crisp set, µj
J(ϵi)

(d) = 1, νjJ(ϵi)(d) = 0, αj
J(ϵi)

(d) = 1, βj
J(ϵi)

(d) = 0

E1(J,Ξ) as follows:

E1(J,Ξ) =
1

n

n∑
i=1

[ 1

pk

p∑
r=1

k∑
j=1

1− |αj
J(ϵi)

(d)µj
J(ϵi)

(d)− βj
J(ϵi)

(d)νjJ(ϵi)(d)|

1 + |αj
J(ϵi)

(d)µj
J(ϵi)

(d)− βj
J(ϵi)

(d)νjJ(ϵi)(d)|
]

=
1

n

n∑
i=1

[ 1

pk

p∑
r=1

k∑
j=1

1− |1− 0|
1 + |1− 0|

]
=
1

n

n∑
i=1

[ 1

pk

p∑
r=1

k∑
j=1

1− 1

1 + 1

]
=0
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If E1(J,Ξ) = 0

1

n

n∑
i=1

[ 1

pk

p∑
r=1

k∑
j=1

1− |αj
J(ϵi)

(d)µj
J(ϵi)

(d)− βj
J(ϵi)

(d)νjJ(ϵi)(d)|

1 + |αj
J(ϵi)

(d)µj
J(ϵi)

(d)− βj
J(ϵi)

(d)νjJ(ϵi)(d)|
]
=0

[ 1

pk

p∑
r=1

k∑
j=1

1− |αj
J(ϵi)

(d)µj
J(ϵi)

(d)− βj
J(ϵi)

(d)νjJ(ϵi)(d)|

1 + |αj
J(ϵi)

(d)µj
J(ϵi)

(d)− βj
J(ϵi)

(d)νjJ(ϵi)(d)|
]
=0

1− |αj
J(ϵi)

(d)µj
J(ϵi)

(d)− βj
J(ϵi)

(d)νjJ(ϵi)(d)|

1 + |αj
J(ϵi)

(d)µj
J(ϵi)

(d)− βj
J(ϵi)

(d)νjJ(ϵi)(d)|
=0

αj
J(ϵi)

(d)µj
J(ϵi)

(d)− βj
J(ϵi)

(d)νjJ(ϵi)(d) = 1

Also by the definition of LDFS 0 ≤ αj
J(ϵi)

(d)µj
J(ϵi)

(d)− βj
J(ϵi)

(d)νjJ(ϵi)(d) ≤ 1

⇒ µj
J(ϵi)

(d) = 1, νjJ(ϵi)(d) = 0, αj
J(ϵi)

(d) = 1, βj
J(ϵi)

(d) = 0

The proof is similar for the other condition.
(C2) Maximality: Let µj

J(ϵi)
(d) = νjJ(ϵi)(d) and αj

J(ϵi)
(d) = βj

J(ϵi)
(d), then

E1(J,Ξ) =
1

n

n∑
i=1

[ 1

pk

p∑
r=1

k∑
j=1

1− |αj
J(ϵi)

(d)µj
J(ϵi)

(d)− βj
J(ϵi)

(d)νjJ(ϵi)(d)|

1 + |αj
J(ϵi)

(d)µj
J(ϵi)

(d)− βj
J(ϵi)

(d)νjJ(ϵi)(d)|
]

=
1

n

n∑
i=1

[ 1

pk

p∑
r=1

k∑
j=1

1− |αj
J(ϵi)

(d)µj
J(ϵi)

(d)− αj
J(ϵi)

(d)µj
J(ϵi)

(d)|

1 + |αj
J(ϵi)

(d)µj
J(ϵi)

(d)− αj
J(ϵi)

(d)µj
J(ϵi)

(d)|
]

=
1

n

n∑
i=1

1

pk

p∑
r=1

k∑
j=1

1

=
1

n

n∑
i=1

1

pk
(pk)

=1

(C3) Resolution:

E1((J,Ξ)
c) =

1

n

n∑
i=1

[ 1

pk

p∑
r=1

k∑
j=1

1− |βj
J(ϵi)

(d)νjJ(ϵi)(d)− αj
J(ϵi)

(d)µj
J(ϵi)

(d)|

1 + |βj
J(ϵi)

(d)νjJ(ϵi)(d)− αj
J(ϵi)

(d)µj
J(ϵi)

(d)|
]

=
1

n

n∑
i=1

[ 1

pk

p∑
r=1

k∑
j=1

1− |αj
J(ϵi)

(d)µj
J(ϵi)

(d)− βj
J(ϵi)

(d)νjJ(ϵi)(d)|

1 + |αj
J(ϵi)

(d)µj
J(ϵi)

(d)− βj
J(ϵi)

(d)νjJ(ϵi)(d)|
]

=E(J,Ξ)

(C4) Symmetry: If J(Ξ) ≤ J(Φ) for µj
J(ϵi)

(d) ≤ νjJ(ϵi)(d), α
j
J(ϵi)

(d) ≤ βj
J(ϵi)

(d)

we get, µj
J(λi)

(d) ≤ µj
J(ϵi)

(d) ≤ µj
J(ϵi)

(d) ≤ νjJ(λi)
(d) and

αj
J(λi)

(d) ≤ αj
J(ϵi)

(d) ≤ βj
J(ϵi)

(d) ≤ βj
J(λi)

(d)
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If J(Ξ) ≥ J(Φ) for µj
J(ϵi)

(d) ≥ νjJ(ϵi)(d), α
j
J(ϵi)

(d) ≥ βj
J(ϵi)

(d)

we get, µj
J(λi)

(d) ≥ µj
J(ϵi)

(d) ≥ µj
J(ϵi)

(d) ≥ νjJ(λi)
(d) and

αj
J(λi)

(d) ≥ αj
J(ϵi)

(d) ≥ βj
J(ϵi)

(d) ≥ βj
J(λi)

(d)

In both cases, we have E1(J,Ξ) ≤ E1(J,Φ)

Theorem 8. Let Λ = {d1, d2, d3, ..., dp} be the universal set and Ξ = {ϵ1, ϵ2, ϵ3,
..., ϵn}. Let (J,Ξ) = {J(ϵi) = ⟨µj

J(ϵi)
(d), νjJ(ϵi)(d)⟩, ⟨α

j
J(ϵi)

(d), βj
J(ϵi)

(d)⟩ : ∀ϵi ∈
Ξ}j∈K be the family of LDMFSS(Λ). Define an E2(J,Ξ) as follows:

E2(J,Ξ) =
1

n

n∑
i=1

[
1− 1

2p

p∑
r=1

max
j∈K

|µj
J(ϵi)

(d)−νjJ(ϵi)(d)|+max
j∈K

|αj
J(ϵi)

(d)−βj
J(ϵi)

(d)|
]

(2)

Proof. (C1)Minimality: E(J,Ξ) = 0 ⇔ µj
J(ϵi)

(d) = 1, νjJ(ϵi)(d) = 0, αj
J(ϵi)

(d) =

1, βj
J(ϵi)

(d) = 0, ∀ϵi ∈ Ξ

If it is a crisp set, µj
J(ϵi)

(d) = 1, νjJ(ϵi)(d) = 0, αj
J(ϵi)

(d) = 1, βj
J(ϵi)

(d) = 0

E(J,Ξ) as follows:

E2(J,Ξ) =
1

n

n∑
i=1

[
1− 1

2p

p∑
r=1


max
j∈K

|µj
J(ϵi)

(d)− νjJ(ϵi)(d)|

+max
j∈K

|αj
J(ϵi)

(d)− βj
J(ϵi)

(d)|


]

=
1

n

n∑
i=1

[
1− 1

2p

p∑
r=1

[1 + 1]
]
=

1

n

n∑
i=1

[
1− 1

2p
(2p)

]
= 0

If E2(J,Ξ) = 0

1

n

n∑
i=1

[
1− 1

2p

p∑
r=1


max
j∈K

|µj
J(ϵi)

(d)− νjJ(ϵi)(d)|

+max
j∈K

|αj
J(ϵi)

(d)− βj
J(ϵi)

(d)|


]
=0

[
1− 1

2p

p∑
r=1


max
j∈K

|µj
J(ϵi)

(d)− νjJ(ϵi)(d)|

+max
j∈K

|αj
J(ϵi)

(d)− βj
J(ϵi)

(d)|


]
=0

1

2p

p∑
r=1


max
j∈K

|µj
J(ϵi)

(d)− νjJ(ϵi)(d)|

+max
j∈K

|αj
J(ϵi)

(d)− βj
J(ϵi)

(d)|

 =1

max
j∈K

|µj
J(ϵi)

(d)− νjJ(ϵi)(d)|+max
j∈K

|αj
J(ϵi)

(d)− βj
J(ϵi)

(d)| =2p

Also we know that, 0 ≤ αj
J(ϵi)

(d)µj
J(ϵi)

(d)− βj
J(ϵi)

(d)νjJ(ϵi)(d) ≤ 1 ⇒ µj
J(ϵi)

(d) = 1,

νjJ(ϵi)(d) = 0, αj
J(ϵi)

(d) = 1, βj
J(ϵi)

(d) = 0
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(C2)Maximality: Let µj
J(ϵi)

(d) = νjJ(ϵi)(d) and αj
J(ϵi)

(d) = βj
J(ϵi)

(d), then

E2(J,Ξ) =
1

n

n∑
i=1

[
1− 1

2p

p∑
r=1


max
j∈K

|µj
J(ϵi)

(d)− νjJ(ϵi)(d)|

+max
j∈K

|αj
J(ϵi)

(d)− βj
J(ϵi)

(d)|


]

=
1

n

n∑
i=1

[
1− 1

2p

p∑
r=1


max
j∈K

|µj
J(ϵi)

(d)− µj
J(ϵi)

(d)|

+max
j∈K

|αj
J(ϵi)

(d)− αj
J(ϵi)

(d)|


]

=
1

n

n∑
i=1

(1)

=1

(C3)Resolution :

E2((J,Ξ)
c) =

1

n

n∑
i=1

[
1− 1

2p

p∑
r=1


max
j∈K

|νjJ(ϵi)(d)− µj
J(ϵi)

(d)|

+max
j∈K

|βj
J(ϵi)

(d)− αj
J(ϵi)

(d)|


]

=
1

n

n∑
i=1

[
1− 1

2p

p∑
r=1


max
j∈K

|µj
J(ϵi)

(d)− νjJ(ϵi)(d)|

+max
j∈K

|αj
J(ϵi)

(d)− βj
J(ϵi)

(d)|


]

=E(J,Ξ)

(C4)Symmetry: If J(Ξ) ≤ J(Φ) for µj
J(ϵi)

(d) ≤ νjJ(ϵi)(d), α
j
J(ϵi)

(d) ≤ βj
J(ϵi)

(d)
we get,

µj
J(λi)

(d) ≤ µj
J(ϵi)

(d) ≤ µj
J(ϵi)

(d) ≤ νjJ(λi)
(d)

and

αj
J(λi)

(d) ≤ αj
J(ϵi)

(d) ≤ βj
J(ϵi)

(d) ≤ βj
J(λi)

(d)

If J(Ξ) ≥ J(Φ) for µj
J(ϵi)

(d) ≥ νjJ(ϵi)(d), α
j
J(ϵi)

(d) ≥ βj
J(ϵi)

(d)
we get,

µj
J(λi)

(d) ≥ µj
J(ϵi)

(d) ≥ µj
J(ϵi)

(d) ≥ νjJ(λi)
(d)

and

αj
J(λi)

(d) ≥ αj
J(ϵi)

(d) ≥ βj
J(ϵi)

(d) ≥ βj
J(λi)

(d)

In both cases, we have E2(J,Ξ) ≤ E2(J,Φ)
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Example 9. Let

(J,Ξ) =


J(ϵ1) =

{
{(d1, ⟨(0.7, 0.8), (0.5, 0.6)⟩, ⟨(0.6, 0.9), (0.3, 0.1)⟩)
(d2, ⟨(0.4, 0.7), (0.7, 0.6)⟩, ⟨(0, 7, 0.8), (0.3, 0, 1)⟩)}

}

J(ϵ2) =

{
{(d1, ⟨(0.5, 0.4), (0.6, 0.7)⟩, ⟨(0.7, 0.6), (0.2, 0.3)⟩)
(d2, ⟨(0.9, 0.7), (0.2, 0.5)⟩, ⟨(0.7, 0.6), (0.2, 0.3)⟩)

}


Then

E1(J,Ξ) =
1

2

2∑
1=1

[
1

2.2

2∑
r=1


1− |(0.7)(0.6)− (0.5)(0.3)

1 + |(0.7)(0.6)− (0.5)(0.3)
+

1− |(0.8)(0.9)− (0.6)(0.1)

1 + |(0.8)(0.9)− (0.6)(0.1)


]

=
1

2

2∑
1=1

[
1

2.2


1− |0.42− 0.15|
1 + |0.42− 0.15|

+
1− |0.72− 0.06|
1 + |0.72− 0.06|

+

1− |0.28− 0.21|
1 + |0.28− 0.21|

+
1− |0.42− 0.08|
1 + |0.42− 0.08|


]

=
1

2

2∑
1=1

[ 1

2.2
[
0.73

1.27
+

0.14

1.86
+

0.93

1.07
+

0.64

1.36
]
]

=
1

2

2∑
1=1

[
1

4
(1.99)]

=
1

2
[
1

4
(1.99) +

1

4
(3.025)]

=
1

2
(0.4975 + 0.75625)

=0.626875

Also,

E2(J,Ξ) =
1

2
[1− 2

4
] + [1− 2

4
] =

1

2
[0.5 + 0.5] = 0.5

4. EFFICIENCY EVALUATION WITH ENTROPY-WEIGHTED
LDMFSS IN DEA

4.1. LDMFS Entropy implementation strategy for DEA model

Consider m DMUs (D1,D2, ...,Dm) and p inputs and q outputs for each DMUs.
Let V = {v1, v2, ..., vn} be the parameter set.
Step 1: Construct the decision matrix for each input and output such that the
rows represent DMUs and the columns represent parameters.
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Step 2: Calculate the entropy ϵj for each decision matrix.
Step 3: Calculate the diversity index dj for each alternative, where

dj = 1− ϵj (3)

Step 4: Determine the weight of each LDMFSS using a specific formula.

wj =
dj∑
dj

(4)

Step 5: Compute the energy efficiency(ζi) of each DMU by utilizing the obtained
weights.

ζi =

∑n
r=1

∑q
j=p+1 wjyrj∑n

r=1

∑p
j=1 wjyrj

(5)

The pictorial representation of the workflow is demonstrated in Figure 1.

Figure 1: Diagrammatic representation of algorithmic workflow

4.2. Case Study

We gather the data for the case study from the UCI Machine Learning Repos-
itory [75]. Twelve buildings underwent an energy analysis with six inputs (Xi(i =
1,2,3,4,5,6)) and two outputs(Yi(i=1,2)). The heating load and cooling load are
the outputs, and the six inputs are relative compactness, surface area, wall area,
roof area, overall height, and glazing area. We build sixteen distinct DMUs based
on the different distributions of glazing areas.

4.2.1. Description of Parameters

✓ The term ”Relative Compactness” describes how compact the shape of
the building is. In comparison to a less compact building (such as a long,
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thin building), a more compact building (such as a cube) has less surface
area relative to its volume. This is an important measure because a compact
design can limit heat gain or loss by minimizing the surface area exposed to
the outside environment.

✓ Surface Area, expressed in square meters, is the building’s entire external
surface area. It consists of the foundation, the roof, and every wall. The
area available for heat exchange with the environment increases with surface
area, which affects both heating and cooling loads.

✓ Wall Area is the total area of the building’s external walls. It is important
for thermal performance since, depending on the insulation, materials, and
solar exposure, walls can either gain or lose heat.

✓ Roof Area is the overall area of the building’s roof. Because of its exposure
to sunlight, rain, and wind, the roof plays a crucial role in the building’s
thermal envelope, influencing both the building’s heating and cooling loads.

✓ The building’s overall height is measured from the ground to the peak of
the roof. Because of things like air stratification and wind exposure, taller
buildings could have different heating and cooling dynamics.

✓ The term ”orientation” describes the direction that a building faces, such
as North, South, East, or West. This influences the building’s exposure to
sunlight at different times of the day and year, which in turn impacts the
amount of heating and cooling that is needed.

✓ The distribution of the glazing area among the building’s various orien-
tations is referred to as glazing area distribution. For instance, adding extra
glazing to the southern (northern hemisphere) side of a building can boost
solar gain in the winter but also raise the cooling load in the summer.

✓ The amount of energy required during cold weather to keep a comfortable
temperature inside is known as the ”heating load.” Usually, it is expressed
in kilowatts (kW). The building’s overall thermal envelope, window perfor-
mance, and insulation all have an impact on this load.

✓ The amount of energy needed to maintain a pleasant indoor temperature in
hot weather is known as the cooling load, and it is expressed in kilowatts
(kW). The building’s exposure to sunshine, internal heat gains, ventilation,
and cooling system efficiency are some of the factors that affect this load.

4.2.2. Decision-Making process

Owing to the substantial volume of data, all gathered and calculated data are
included in the supplemental files. The collected crisp data is fuzzified for phase
1, and the crisp data is used exactly as it is for phase 2.
Phase I: Computing the weight of inputs and outputs
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1. For each set of inputs and outputs, the LDMFSS decision matrix is con-
structed(Given in the supplementary file). As a parameter set, the twelve
distinct structures are considered, and the multi-dimensional value is classi-
fied according to various orientations.

2. We estimate and display the entropy for every LDMFSS decision matrix in
Table 3.

3. The weights of each input and output, as well as the divergence measure,
are calculated and presented in Table 3.

Phase II: Generating Energy Efficiency

1. We compute each DMU’s energy efficiency using the weights specified in
phase I (Refer 4).

2. We rank the DMUs according to their energy efficiency as follows.

Table 3: Weight of each input and output

Alternatives Entropy measure Divergence measure Weight
X1 0.465722684 0.534277316 0.113789795
X2 0.447277108 0.552722892 0.117718313
X3 0.573687975 0.426312025 0.090795466
X4 0.260313689 0.739686311 0.157537576
X5 0.207547417 0.792452583 0.168775679
X6 0.474654848 0.525345152 0.111887432
Y1 0.431822003 0.568177997 0.121009924
Y2 0.443673453 0.556326547 0.118485816

Table 4: Energy Efficiency of DMUs

DMUs Energy Efficiency Rank DMUs Energy Efficiency Rank
D1 0.029708579 16 D9 0.041284824 10
D2 0.037895249 14 D10 0.041732179 8
D3 0.037811269 15 D11 0.04129712 9
D4 0.037830987 13 D12 0.046318645 1
D5 0.037867782 12 D13 0.046174687 2
D6 0.037961643 11 D14 0.045135838 4
D7 0.042303342 6 D15 0.04612022 3
D8 0.041813536 7 D16 0.045135766 5

Result and Discussion:
As can be seen from the observations, the D12 has the maximum energy efficiency.
The results are represented diagrammatically in the figure 2.
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Figure 2: Ranking of DMUs

4.3. Comparative Analysis

Based on these studies and the comparative analysis, we conclude the present
research that the results derived using the suggested technique are compatible with
the existing research, making it conservative. The main advantage of the proposed
technique over the current methods for decision-making, however, is the fact that it
has a lot more data to interpret the ambiguities in the data. Since it conveys object
information more accurately and objectively under LDMFSS, it is a useful tool for
dealing with ambiguous and imprecise information throughout the decision-making
process. Compared to the existing methods, the LDMFSS implementation in the
DEA methodology with the designated entropy measures has the advantage of not
relying just on unfavorable aspects when making decisions.

Table 5: Comparative Analysis

Method Ranking
Fuzzy entropy D12 < D13 < D15 < D14 < D16 < D7 < D8 < D10 <

D11 < D9 < D6 < D5 < D4 < D2 < D3 < D1

Fuzzy soft entropy D12 < D13 < D15 < D14 < D16 < D7 < D8 < D10 <
D11 < D9 < D6 < D5 < D4 < D2 < D3 < D1

IF entropy D12 < D13 < D15 < D14 < D16 < D7 < D8 < D10 <
D11 < D9 < D6 < D5 < D4 < D2 < D3 < D1

IF soft entropy[71] D12 < D13 < D15 < D14 < D16 < D7 < D8 < D10 <
D11 < D9 < D6 < D5 < D4 < D2 < D3 < D1

PF entropy D12 < D13 < D15 < D14 < D16 < D7 < D8 < D10 <
D11 < D9 < D6 < D5 < D4 < D2 < D3 < D1

PF soft Entropy[73] D12 < D13 < D15 < D14 < D16 < D7 < D8 < D10 <
D11 < D9 < D6 < D5 < D4 < D2 < D3 < D1

LDF entropy[74] D12 < D13 < D15 < D14 < D16 < D7 < D8 < D10 <
D11 < D9 < D6 < D5 < D4 < D2 < D3 < D1
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5. LIMITATION OF PROPOSED METHOD

Although our suggested approach removes some of the earlier restrictions, there
are still some limits, which are listed below.

1. Our suggested theory cannot handle the case where the sum of reference
parameter values is more than 1. Example: 0.7 + 0.5 ≥ 1. Thus, the theory
breaks down when the total of the two reference parameters is more than 1.

2. In the event of a lot of data, the suggested model’s computation may take a
while.

6. CONCLUSION

This study introduces a novel approach to enhance entropy measure analysis
within the framework of LDMFSS. Our proposed algorithm contributes to both
fuzzy set theory and DEA techniques. By leveraging the versatility of multi-fuzzy
soft sets and the flexibility offered by linear Diophantine fuzzy sets, our proposed
methodology overcomes prior constraints, offering a more robust and adaptable
model for decision-making contexts. In this study, we proposed two different
entropy measures for LDMFSS.

This enables us to effectively quantify the weights of input and output compo-
nents in DEA. The importance of DEA stems from its strong analytical powers,
which facilitate improved decision-making, boost operational effectiveness, and
encourage ongoing development in a number of industries. Through a case study
focusing on building energy efficiency, we demonstrate the practical significance
of our approach, highlighting its applicability in real-world scenarios. The data
for the case study are utilized from the UCI machine learning repository. Further,
we conduct a comparative analysis that showcases the robustness of our proposed
entropy measure. This validation underscores the reliability and effectiveness of
our methodology in addressing complex decision systems.

Our future research endeavors will extend this work to further explore the con-
text of LDMFSS relations, providing additional insights and refinements. More-
over, we aim to broaden the applicability of our proposed model by exploring its
integration with other decision-making methodologies such as TOPSIS, VIKOR,
and AHP, as well as investigating its potential applications in information aggre-
gation, correlation analysis, and distance and similarity measures.

Thus, this research provides a valuable contribution to the LDFS theory and
DEA techniques, offering researchers and practitioners a powerful tool for evalu-
ating and enhancing complex decision systems across various domains.

Funding: The article has been written with the joint financial support of RUSA-
Phase 2.0 grant sanctioned vide letter No.F 24-51/2014-U, Policy (TN Multi-Gen),
Dept. of Edn. Govt. of India, Dt. 09.10.2018, DST-PURSE 2nd Phase programme
vide letter No. SR/PURSE Phase 2/38 (G) Dt. 21.02.2017 and DST (FIST - level
I) 657876570 vide letter No.SR/FIST/MS-I/2018/17 Dt. 20.12.2018.
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