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Abstract: In this article, we investigate a novel construction scheme for A-Bernstein
Bézier surfaces and illustrate it with biquadratic and bicubic cases to demonstrate their
geometric characteristics and their applications. The primary objective is to investigate
how the shape parameter \ improves control over surface smoothness and facilitates an
optimal solution in surface design. We examine the geometric properties of these sur-
faces, including mean and Gaussian curvature, shape operator coefficients, and Gauss-
Weingarten coefficients. We also analyze the extremal conditions for A\-Bernstein Bézier
surfaces derived from the vanishing condition for the gradient of the quasi-harmonic func-
tional. Integral formulations based on Bernstein polynomials enable precise computation
of the vanishing gradient condition, allowing us to determine the constraints on interior
control points in terms of known boundary control points. Graphical illustrations val-
idate the approach by providing a better understanding of the geometric properties of
these surfaces, including improved surface smoothness and design flexibility. They effec-
tively showcase the behavior of A-Bernstein polynomials and their corresponding surfaces.
Computational results demonstrate the effectiveness of this method for applications in
computer graphics, computational geometry, computer science, and engineering, offer-

*Corresponding author



2 M.E. Buttar and D. Ahmad / Analysis of A\-Bernstein Bézier Surfaces

ing a robust framework for analyzing and generating optimal surfaces, contributing to
advancements across various scientific disciplines.

Keywords: Optimization, minimal surfaces, mean curvature, variational minimization,
computer graphics, computational geometry, engineering, A\-Bernstein Bézier surface.
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1. INTRODUCTION

Minimal surfaces [1, 2], originating from Lagrange’s work in the 18th cen-
tury, have profoundly influenced diverse scientific fields. Characterized by their
minimal area property [3], they find their applications in various fields [4, 5, 6],
including approximation theory, computer graphics, engineering and numerical
analysis. Minimal surfaces lie at the intersection of differential geometry [7, 8],
complex analysis, and topology, and have spurred the development of new areas
such as geometric measure theory and conformal geometry. These fascinating ob-
jects have had a significant impact on various fields, including robotics [9, 10, 11]
and physics. Ai et al. [12] investigated the time-like minimal surface equation in
Minkowski space, addressing conjectures on low regularity solutions for nonlinear
wave equations. The study of the minimal surfaces has introduced new mathe-
matical tools for better understanding of the surfaces with fixed or free boundary
curves. These surfaces can be obtained as the variational improvement to the
surfaces by utilizing variational techniques [13, 14, 15, 16, 17, 18, 19] for quasi-
minimal and quasi-harmonic surfaces, obtained as the extremal of some suitable
energy functional. These surfaces are used to construct and model surfaces in
computer-aided geometric design (CAGD) [20, 21, 22|, which can be used for var-
ious representations such as the movement of objects, the behavior of fluids and
solids, and the interaction of light with surfaces.

In optimization theory, one seeks optimal conditions [23] for a curve or a sur-
face to represent extremals of a curve or surface within a domain D, by maxi-
mizing or minimizing the values of an objective function, a function to be opti-
mized. These extreme values, known as critical points of a surface, can be derived
through variational improvements in surfaces for the corresponding quasi-minimal
surfaces [14, 16, 19, 18]. These objective functionals can represent various useful
geometric properties of the objects under consideration. In differential geometry,
this may represent the area functional, Dirichlet functional, or quasi-harmonic
functional. In general relativity, for instance, extremals of the Einstein-Hilbert
action under different conditions result in EFEs within modified gravity theories,
reflecting the symmetries of spacetime [24]. These symmetries involve solving
equations related to the Lie derivative of specific tensors in spherically symmet-
ric space-times [25, 26, 27]. The solutions to these nonlinear partial differential
equations have garnered attention across various fields, providing insights applica-
ble beyond their original domain [28, 29, 30]. One significant focus in differential
geometry is the construction and analysis of minimal surfaces, which are surfaces
that minimize their area subject to specific constraints. Instead of minimizing the
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area functional to obtain these minimal surfaces, one can consider the Dirichlet
functional or other energy functionals like the quasi-harmonic or bending energy
functional with a given boundary of control points, in the context of Bézier sur-
faces [1, 2, 13, 15, 17]. These surfaces can be obtained as the extremals of various
energy functionals [31, 32, 13, 33, 14, 15, 34, 16, 19, 17, 18, 35, 36, 37, 38, 39, 40,
35, 38].

Bézier surfaces model the surfaces depending on the basis functions and the
control points, however, more control can be achieved by introducing a parame-
ter(s) in its basis functions, usually referred to as the shape parameter(s). The
Bézier surfaces can model the new shapes by generalizing the Bernstein poly-
nomials [41]. The modifications in the Bernstein polynomials include shifted-
knots Bernstein polynomials [42, 35], g-Bernstein polynomials [43, 44, 45, 46,
47, 48, 49, 46], their extension typically represented as (p, q)-Bernstein polyno-
mials [50, 51, 47, 49] and other modifications like introducing a parameter(s) in
the Bernstein functions. Cai et al. [52] studied a class of A-Bernstein operators,
establishing a Korovkin-type theorem and a Voronovskaja-type asymptotic for-
mula that demonstrate improved convergence. Mursaleen et al. [53] investigated
modified A-Bernstein polynomials using shifted knots for Bézier basis functions, es-
tablishing Korovkin’s theorem, a convergence theorem for Lipschitz functions, and
an asymptotic Voronovskaja-type formula. Delgado [54] analyzed the geometric
properties and algorithms of ¢g-Bézier curves and surfaces. Zhou and Cai [55] in-
vestigated a class of bivariate A-Bernstein operators, Ba!**2(f;x, %), on triangular
domains, developing a Korovkin-type approximation theorem and a Voronovskaja-
type asymptotic formula. Turhan et al. [56] investigated Kantorovich-Stancu type
(a, A\, s)-Bernstein operators based on adapted Bézier bases, focusing on conver-
gence properties with shape parameters A € [—1,1], a € [0,1], and a positive
parameter s. Lin et al. [57] developed modified A-Bernstein-Stancu operators with
improved symmetrical properties and studied both a Korovkin-type approxima-
tion theorem and the Voronovskaja-type theorem. Yan and Liang [58] introduced
basis functions to generate Bézier-like curves and surfaces that allow shape adjust-
ments through a shape parameter A without changing control points, retaining the
classical Bézier properties when the shape parameter X is set equal to zero. By
introducing a parameter(s) into the basis functions one can find more control over
the shape of these surfaces, as has been done by numerous mathematicians in the
field. Hu et al. [59] introduce a shape-adjustable generalized Bézier curve with
multiple shape parameters, demonstrating its applications in engineering surface
modeling, including the construction of various complex surfaces and the deriva-
tion of necessary conditions for continuity.

Minimal surfaces and surfaces resulting from the extremals of the quasi-harmonic
functional are interconnected. A minimal surface is defined by having zero mean
curvature across all its parameterizations. Classical examples include the plane,
catenoid, and helicoid, with other notable surfaces like the Enneper surface, Hen-
neberg’s surface, and Catalan’s surface. A minimal surface is obtained by mini-
mizing its area functional,
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where D C R? represents a domain over which the surface (u,v) is defined as a
mapping, with the boundary condition (0D) =T for 0 <u <l and 0 <wv < 1.
Here, @, (u,v) and @,(u,v) denote the partial derivatives of x(u,v) with respect
to u and v, respectively. The integrand of the area functional (1) involves a
square root, making it solvable in only some straightforward cases. To address
this, the area functional can be replaced by some other suitable energy functional,
such as the Dirichlet functional or the quasi-harmonic functional. The minimal
surfaces and the harmonic surfaces are interconnected. In this article, we utilize the
quasi-harmonic functional to find the extremal constraints for A-Bézier surfaces,
following the construction scheme outlined by Yan and Liang [58]. These surfaces
have been further explored for their geometric characteristics, particularly for the
biquadratic and bicubic cases.

This paper presents the following key contributions:

e We investigate a construction scheme for A-Bernstein Bézier surfaces, illus-
trated by the biquadratic and bicubic cases.

e We provide graphical illustrations to explore the geometric characteristics
of these surfaces, including mean and Gaussian curvature, shape operator
coeflicients, and Gauss-Weingarten coefficients.

e We present integral formulations based on Bernstein polynomials, enabling
the computation of interior control points from known boundary points.

o We investigate A\-Bernstein Bézier surfaces as extremals of the quasi-harmonic
functional, offering enhanced control over surface smoothness through the
shape parameter .

e We validate our approach through computational results that demonstrate
its potential applications in computer graphics, computational geometry, and
engineering.

In this paper, we have presented the construction scheme for A-Bernstein
Bézier surfaces and the corresponding quasi-harmonic surfaces that depend on
A-Bernstein polynomials. We have provided graphical illustrations of these poly-
nomials and the corresponding surfaces, along with the geometric characteristics of
these surfaces, including mean and Gaussian curvature, shape operator coefficients,
and Gauss-Weingarten coefficients. To visually explore the geometric aspects of
these surfaces, we have incorporated examples of both biquadratic and bicubic
cases, each characterized by the shape parameter A\. Furthermore, we present the
constraint integrals in terms of Bernstein polynomials, which can be solved for
the known control points and Bernstein polynomials. This allows us to obtain the
vanishing gradient condition for the quasi-harmonic functional, thereby solving for
the unknown interior control points and obtaining the surface as the extremal of
the quasi-harmonic functional.

The rest of the article is organized as follows. In section 2, we discuss \-
Bernstein Bézier surfaces, their derivatives, and integrals, which are useful for
the subsequent sections. In section 3, we present the geometric characteristics of
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A-Bernstein Bézier surfaces, specifically for biquadratic and bicubic A-Bernstein
Bézier surfaces with graphical representation of geometric quantities. In section 4,
we present a result for the A\-Bernstein Bézier surfaces as extremals of the quasi-
harmonic functional. Finally, in Section 5, the concluding remarks and future
prospects of the study are presented.

2. PRELIMINARIES

In this section, we introduce A-Bernstein polynomials. These polynomials
are shown graphically for various degrees and they serve as the basis for \-
Bernstein Bézier curves and surfaces. We also present the construction scheme
for A-Bernstein Bézier surfaces (biquadratic and bicubic). Partial derivatives of
these polynomials and surfaces are provided, as they will be used in the forth-
coming section when computing the gradient of the quasi-harmonic functional.
These curves and surfaces play an important role in constructing the corresponding
Bézier curves and surfaces, which are significant in geometric modeling and com-
puter graphics. The A-Bernstein polynomials and surfaces (Yan and Liang [58])
are the A-extension of Bernstein polynomials and the corresponding A\-Bernstein
polynomial-based Bézier surfaces with shape-adjustable features. These basis func-
tions of any order m are derived from a set of second-order initial basis functions
by utilizing a recursive technique for m > 2, using A as a shape parameter. They
are Bernstein-like functions. For the same set of control points, the shape param-
eter \ can control the shape of such curves and surfaces. The A-Bernstein basis
functions of order m > 2, with u as an independent parameter, can be expressed
as,

b7 (w) = B (w)AY" (u), (2)
where

AT (u) =1+ (3057—12 +g}i”1 = Cm A — 2%;;—1 A+ Au?], (3)
with B! (u) as the classical Bernstein polynomials

Bi" (u) = Chpu'(1— )", (4)

Ae[-1,1,u € [0,1],i=0,1,2,3,....,m, m > 2 and C! , the binomial coeffi-
cients defined as C7" = Z.!(;?ii)!. The A-Bernstein polynomials [58], b7, (u), exhibit
properties analogous to classical Bernstein polynomials Bf*(u). These polynomials
are linearly independent and can be expressed as a linear combination of classical

Bernstein basis functions B (u) of degree n and n + 2,

3C, 4+ Ci 6C,
b () =(1 = A B () + A2z Inst gty 4 Zon
- _ 2 _ Chlia (5)
= e )}

n+2



6 M.E. Buttar and D. Ahmad / Analysis of A\-Bernstein Bézier Surfaces

For A € [-1,1], b (u) >0 (i = 0,1,...,n; n>2), and S7_, by (u) = 1. These
polynomials satisfy symmetry properties: bZ”\(l —u) = ij\k (u) for k=0,1,...,n
and v € [0,1]. At the end points, for k = 0,1,...,n, for n > 2, bZ’)‘(O) =1if
k=0, and b}"*(0) = 0 if k # 0. Similarly, b"*(1) = 1 if k = n, and b}"*(1) = 0
if k # n, whereas the their derivatives at the end points are: b;c"’A(O) is equal
to —n+2\if k=0, n+ 2\ if kK = 1, and 0 otherwise, (for k = 0,1,...,n and
n > 2). Similarly, b;ﬁn’A(l) isequal to —n+2Xif k=n—-1,n+2\if k=n,and 0
otherwise. Note that the product of two Bernstein polynomials of degrees m and
n depending on the same variable v can be written as,

((,35)) B (). (6)

i+j

Bi'(u)Bj"(u) =

Similarly the product of two A-Bernstein polynomials of the degrees m and n
depending on the same variable u can be expressed as,

((izii)) B (w) A} (w) AT (w). (7)
i+

b ()b (u) =

The Bernstein-like functions b;w‘(u), as defined in eq. (5), for degreesm = 1,2,3,4,5, 6,
are shown in Fig. 1. In particular, FIG.1(a) illustrates the A-Bernstein polyno-
mials of degree m = 1, obtained from eq. (5), namely by (1) and b} (u) defined
by,

b () = (1 — w)(1 43X — 2ud 4+ u?X), b1 (u) = u(l — A+ u?N). (8)

— bW
bita)

)
i)
b3 )

T

(a) A-Bernstein basis func- (b) A-Bernstein basis func- (c) A-Bernstein basis func-
tion of degree n = 1 tion of degree n = 2 tion of degree n = 3

— bi*w) )
birw) [ — s

b3*(u)

SA o
\ — bitu) / eI
— bMw) : P —< — b
— B3*a) Vs . S Bw)
L =< \ b (a)

3 0z 0s 06 08 1.0 v

(d) A-Bernstein basis func- (e¢) A-Bernstein basis function of (f) A-Bernstein basis func-
tion of degree n = 4 degree n =5 tion of degree n = 6

Figure 1: A-Bernstein basis function of different degrees n =1,2,3,4,5,6

Figure 1(b) represents the A-Bernstein polynomials of degree m = 2 defined
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by eq. (5). These polynomials include by" (u), b7 (u), and b3" (u), where,

bo (u) = (1 —u)*(1 — 2uX + u?)),
b () = 2(1 — w)u(l 4+ A — ud + uX), (9)
ba (u) = u?(1 — A+ u?)).

Figure 1(c) represents the respective A-Bernstein polynomials b3 (u), b3 (u),
b‘g’)‘ (u), and bg’)‘ (u), of degree m = 3 can be obtained from eq. (5), given by,

by (u) = (1 —u)® (1 — 2u +u?N),

2\ Au)
b2 (u) = 3(1 — u)’u (1 TR Al u2/\) ,

3 3

A 2u) (10)
b3 (u) = 3(1 — u)u? <1 + 3”3 + u2)\) ,

byt (u) = u® (1 — A+ u?)).

The A-Bernstein polynomials by (u), bi™ (u), b3 (), by (u), and b3 (u), of de-
gree m = 4, (obtained from the eq. (5)), are displayed in Figure 1(d). These
polynomials are given by,

by (u) = (1 —u)* (1 — 2uX +u?N),

A A
b (u) = 4(1 — u)’u (1 +5 - 3% + uz/\) ,

A
b3 (u) = 6(1 — u)’u? <1+ o) —u)\+u2/\), (11)
A
bé’)‘(u) =4(1 —u)u? (1 - % + u2)\) ,
bi’)‘(u) =t (1—X+u?N).
The corresponding A-Bernstein polynomials of degree m = 5 are bg’)‘ (u), bi’)‘ (u),

b3 (u), bg’)‘ (), b2 (u), and bg’)‘ (u) obtained from eq. (5) are shown in Figure
1(e) and they are as follows,

by (1) = (1 — )’ (1 — 2u +u?\),
(12)
4
b?f}\(u) =10(1 — u)2u3 1+ 3A  dud Fu2\),
10 5

b2 (u) = uP(1 — A+ u?N).
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The A-Bernstein polynomials of degree m = 6 (obtained from eq. (5)) are shown
in Figure 1(f), denoted by b (u), b3 (u), b5 (u), 037 (u) , 0™ (), b5 (u),
and b3 (u) , where,

bg’)‘(u) =(1- U)6 (1 — 2u\ + uQ,\) ,
20 =00 - (145 - 22 )
4

by (u) = 15(1 — u)'u? (1 + A Aud Fu2 ),

15 3

2
b5 () = 20(1 — u)’u? (1 + % —ul+ u2A> . (13)
b (w) = 15(1 — u)u (1 422 2uA HLQ/\) 7

5 3
B2 () = 6(1 — wpu? <1 o MQA) |

g (u) = u® (1 — A+ u?)).

It is well know that the integral of Bernstein polynomial function B} (u) is given

/B;L(u)du: 1 , (14)

whereas in this case, the integral of A-Bernstein polynomial functions is as follows

1 1 . . . .
305 +C , —Ch 20
/@“wmu:/Bﬂmu+( ne2 Tt Oy - T aPdu
ch s,
0 0 (15)

! (65> — 6jn +n* —n)
T+l Tn—Dnh+1)n+3)"

It is to be noted that the integral of the Bernstein polynomial function BY (u)
is independent of the index j and depends only on the degree n of the poly-
nomial. However, the integral of A-Bernstein polynomial functions depends on
the index j, degree n of the polynomial, and the shape parameter A. For in-
stance, for the indices j = 0,1, 2,3, the integrals of the A-Bernstein polynomials
biA (), b (w), b3 (u) and b3 (u) are given by (n? 4 4n + 3)"'(n — 2\ + 3),
(n3 + 4n? + 3n)71(12/\ +n? — 2 + 3n), (n*+3n3 —n? — 3n)71(—48)\ +nd -
2Xn2 + 2n2 + 26An — 3n) and (n? + 3n3 — n2 — 3n) " (108X + n3 — 22n2 + 2n2 +
38An —3n), respectively. The A-Bernstein Bézier curve of degree n, parameterized
by A € [—1,1], is defined as

x (u) =Y b (u) P, (16)
=0
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where b"*(u) are the A\-Bernstein basis functions as defined in the eq. (2). Here,

€ [0,1] and ¢ = 0,1,2,...,m. The control points are denoted by P;. The A-
Bernstein Bézier surface is a surface based on A-Bernstein polynomials of degree
m and n (as defined in eq. (2)) and it is the generalization of A-Bernstein Bézier
curves defined by the eq. (16). Let "™ (u) and b;”\ (v) be the m and n degree \-
Bernstein basis functions, respectively, then we can define the A-Bernstein Bézier
surface of degree m x n as follows

ZZb’“ )b (0) Py, (17)

=0 j=0

over the rectangular domain with the control points P;;, (0 <i<m,0<j <n)
and (u,v) € [0,1] x [0,1] such that m,n > 2. Utilizing eq. (2), for the A\-Bernstein

basis functions, b?’)‘ (u) and bn”\ (v), of degree m and n, the A-Bernstein Bézier
m,n

surface x(u,v) = Z B (w)A]" (u) B} (v)A”} (v) Pij can alternatively be written
4,j=0

as in the following form,

3C L, +CL_ —C, 207
ZBm B (0)[1+ (F SN = = At ]
o 31 L+ CI_ ~ O c;n h (18)
+ 5 2
1+ (—2= 2 C]" ! I\ — e L + A’ Py

The corresponding curves and surfaces of A-Bernstein basis functions share
many features with the Bézier curves and surfaces depending on the classical Bern-
stein basis functions, respectively. These basis functions degenerate to standard
Bernstein basis functions when the shape parameter A = 0. With the ability to
be easily modified by adjusting the shape parameter with the same control points,
these curves and surfaces offer significant improvement in the shape. By adjusting
the shape parameter, one can move these curves and surfaces closer (or further

away) from the control polygon. Consider the control points Pjj, = (j, k, (—1)j+k) .

The biquadratic A-Bernstein Bézier surface can be represented in parametric form
using the surface parameters v and v, along with the shape parameter A, as follows,

x(u,v) =(2u(X + 2 u® — 3Au + 1), 20(A + 2X0* — 3 v + 1),
(4xut — 8 \u® + 8 u? 4 4u? — 4 u — 4u + 1)x (19)
(A0t — 8 v + 8X\v? + 40? — 4w — v + 1)),

and it can be adjusted by varying the shape parameter A € [—1,1]. The Figure
2 represent the biquadratic and bicubic cases of A\-Bernstein Bézier surfaces along
with the control points for given shape parameter \.

In the following sections, we intend to investigate geometric constructs such as
biquadratic and bicubic A\-Bernstein Bézier surfaces, examining their properties.
We also explore the vanishing gradient of the quasi-harmonic functional for the
A-Bernstein Bézier surfaces x(u, v) as its extremum in another section. To achieve
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(c) (d)

Figure 2: Illustration of biquadratic and bicubic A-Bernstein Bezier surfaces with control points

this, we find the derivatives of the A-Bernstein basis functions b;-l”\(u) and those
of the A-Bernstein Bézier surfaces x(u,v) with respect to the surface parameters.
To find the derivative of the A-Bernstein basis function given in eq. (2), we denote
(bzn)‘(u))u as its first derivative with respect to u, (b?’)‘(v))v as its first derivative
with respect to v, (b:’l’\(u))uu as its second-order derivative with respect to u and
(b?”\(u))w as its second-order derivative with respect to v. It turns out that

W), = mBIT () — B @) A7 () + 2B () (u — “21), (20)

A =n(B}7 (v) — B} (0))A} () + 2AB] (v) (v — Cg;l), (21)

(67 ), =A0m(BET () — B~ () (1 — “21) 4 0B (u)

(2

m(m — 1)(BI32(u) — 272 (u) + BI"2(w)) AT (u),

(22)

(b)), =4An(B} 7 (v) = B}~ (v)) (v — ng—? )+ 2AB?(v) + n(n — 1)

(Bj=3 (v) = 2B} (v) + B} 7*(v))A] (v).

(23)

We denote the partial derivatives of a A-Bernstein Bézier surface x(u,v) (given
by eq. (17)) of degree m X n with respect to the surface parameters u and v as
X (U, V), Xy (U, V), Xy (U, v) and X, (u, v), respectively. It turns out that

xu (1,0) = 3 3 (B (w) — B () A" (u) + 2B (u)
i=0j=0 (24)
(u— gfl b} (v) Pyj,

xu(1,0) = 3 [(BI () — BI 1 (0))A7(0) + 2AB2 (0)
=0 (25)
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Xy (U, v) = AAm(B T (u) — B (u)) (u — m-1y L 2AB" (u
(u,v) ;;[ ( (u) (u)( o )+ (u)+ (26)

m(m — 1)(B"3%(u) = 2B (u) + B> (u)) A" (w)]b] " (v) Py,

Xup (U, v) = Z [mn{B"7" (u) B}~ (v) — B! (u) B}~ (v)=B" ! (u)
i,7=0
B (v) + Bl"’l(u)B?*(v)}AZ’f(u)A?(v) +2xm{B]" 7" (u)
B (v) — B ' (w) B} (v)}(v — Cg]—,l)Agn(u) +2\n

n

—1 —1 Cfn—l (27>
{B"(w)BjZ; (v) = Bi* (w)Bj ™ (v)}u — —57)
A7 (v) 4+ 4N B (u) B} (v) (u — 07—1)
Chyn
(v_ C% )]PZJ7

m,n

Xy (U, V) = Z [4)\71(3?__11(1)) — B;L_l(v))(v - Cg_,l) + 2AB} (v) + nx

(28)

i,j=0 Z
(n— 1)(B} 75 (v) = 2B} (v) + BP 2 (0) A} (0))]b" () Pyj.

In the upcoming section, we explore the geometric properties of A\-Bernstein
Bézier surfaces, focusing particularly on illustrating biquadratic and bicubic cases.

3. GEOMETRIC CHARACTERISTICS

In this section, we determine the fundamental coefficients, the unit normal,
mean curvature (H ), Gaussian curvature (K), shape operator coefficients, Christof-
fel symbols, and Gauss-Weingarten equations for the A-Bernstein Bézier surface,
x(u,v), as defined in eq. (17). The computations and graphical illustrations of
these geometric characteristics deepen our understanding, exemplified by the bi-
quadratic and bicubic cases of these surfaces. The fundamental coefficients of a
surface x(u,v) are defined by

E = (xy,Xy), F = (X4, %Xp) , G = (X4, Xy ) (29)
€= <qu»N>7f: <Xu’U7N>7g: <Xm)aN>7

with respective partial derivatives defined by

E, = 2<Xu,xuu>7 F, = <vaxuu> + <Xuvxuv>7 Gy = 2<vaxuv>a
Ev = 2<Xuaxuv>7 F’u = <vaxuv> + <XU7X’U’U>7 G
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the Gauss coefficients,

It _ GE,+FE, -2FF, rl _ ! _ GE, - FG,
11 — 2(EG_F2) ) 12 — 21_2(EG_F2)a
rlo_ 2GF, - GG, — F@G, s _2PF,-FE,—-FE, 31
27 2(EG-F?) nw= 2(EG-F?2) (31)
2 _p2 _ EG, — FE, 2 — EG,+ FG, —2FF,
1270217 9 (EG — F?)’ 2 2(EG - F2)
and the Weingarten coefficients,
,_Ff-Ge , Fe—BEf , Fg-Gf , Fj—FEy
NTEG-F T EG-F ' T EG-F2"2 T EG-F? (82)

Gauss-Weingarten equations can be expressed as the linear combinations of
Xy, Xy, and the unit normal N to the surface. The coefficients can be expressed in
terms of the first and second fundamental coefficients. These equations describe
the intrinsic geometry of a surface. The Gauss-Weingarten equations are:

Xpyu = thu + F%lxq, + eN,

Xup = DigXu + Tlpx, + [N,

Xpp = [39Xy + 2%, + gN, (33)
N, = aixu + O'%X,L”

N, = fou + o*ng7

where x,,, X,, and N are linearly independent and the coefficients F; x and O’i are
given by eqs (31) and (32), respectively. The shape operator matrix V for the
A-Bernstein-Bézier surface can be expressed as,

S11 S12 1 G —F||e f
V= - - . 34
(821 822) EG — F? [—F E ] [f g (34)
Thus, the coefficients of the shape operator matrix can be written as:

S11 — (Ge —Ff)/(EG— F2),
812 = (Gf — Fg)/(EG— F2) = 8921,
s9o = (Ef — Fe)/(EG — F?).

We start by finding the fundamental coefficients E, F, G, and e, f, g for
the A-Bernstein Bézier surface, using eq.(17) or eq.(18). This helps us calculate
the geometric properties like the Gauss curvature K, mean curvature H, and the
shape operator matrix coefficients o1, 0%, 0i, and 03. We also determine the
Christoffel symbols needed for the Gauss-Weingarten equations of the A\-Bernstein
Bézier surfaces x(u,v). The first fundamental coefficients E, F', and G, as defined
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in eq. (29) for the A-Bernstein surfaces (17),

m n

E =33 (07N ) b @) Py, (07 (W), 00 (0) Pyj),

i=0 j=0

SN T ) b7 ) Py, (07 (W), b7 (0) Py, (35)
=0

F

I
o

%

G

M-

(b (1)) b7 (0) Pij, (B (1)) b7 (v) Pyj),

~
Il
=]

=0

whereas the partial derivatives of these fundamental coefficients E, F'; and G with
respect to the surface parameters v and v can be expressed as

By =30 3 (67 ()05 (0) Pag, (07 (), () Py,

i=0 j=0

Fu= > A0 (1)), 05 (0) Py (07 (w)),,, b7 (0) Pig), (36)
i=0 j=0

Gu=Y > A0 W), b7 () Pig, (0 (1)), b7 (v) Pij),
i=0 j=0

and

i=0 j=0

Fy =303 (00 ), (50 ), Py, (67 (), (0 (v)), Py, (37)
i=0 j=0

Gy =30 S (07 ), (0 (), Py, (57 (), (52 (1), Py)
i=0 j=0

The mean curvature can be expressed as

1 Eg+ Ge—2Ff

H= = 8- (38)
and the Gaussian curvature can be written as
_ge—f?
 EG - F?’ (39)

For the geometric characteristics of the A-Bernstein Bézier surfaces provided above,
we now explore these properties in the biquadratic and bicubic cases of these sur-
faces. We illustrate these geometric constructs and provide graphical representa-
tions of relevant quantities.
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Example 1. Bi-quadratic \-Bernstein Bézier Surfaces

To illustrate the geometric properties of the A\-Bernstein-Bézier surface, let us
consider the specific case where x(u,v) (17) for m = 2 and n = 2 results in the
biquadratic A-Bernstein-Bézier surface, given by,

Zme’\ )b (0) Py (40)
1=0 j=0
To determine the shape operator and the geometric properties of the biquadratic
A-Bernstein-Bézier surface, we first parameterize eq.(40) using the known control
points for the shape parameter A,

x(u,v) =(2u(2 e — 3 u + A + 1), 20(200* — 3\v + A + 1),
(4du* — 8 u® + 8 u? + 4u? — 4 — du + 1) (41)
(4 — 8Av® + 8Av® + 40* — 4w — 4v + 1))

Next, we need to calculate the partial derivatives of the biquadratic A-Bernstein-
Bézier surface with respect to v and v to find the fundamental coefficients and
the corresponding shape operator. The surface (40), along with its partial deriva-
tives with respect to the surface parameters and the corresponding fundamental
coeflicients, are given by,

x(u,v) =(2u(2 — 3u + 2u?), 20(2 — 3v + 20v7), (1 — 8u + 12u°—

8u® + 4u*)(1 — 8v + 12v” — 8v° + 4v?)), (42)
Xy (u,0) =(4(1 — 3u + 3u?),0,8(—1 + 3u — 3u® + 2u”)(1 — Sv+
120 — 8v° + 4v?)), (43)
x, (u,v) =(0,4(1 — 3v + 3v%),8(1 — 8u + 12u? — 8u® + 4u*)(—1+
3v—3v? + 20%)), (44)
Xy (U, v) =( — 12 + 24u,0,24(1 — 2u + 2u?)(1 — 8v + 120* — 8v*+
4t)), (45)
Xy (u,v) =(0,0,64(—1 + 3u — 3u? +2u‘)( 1+ 3v — 30 + 20%)), (46)
Xy (U, v) =(0, —12 4 240, 24(1 — 8u + 12u® — 8u® + 4u*)(1 — 2v+
20%)). (47)

E(u,v) =
16(16u (4v* — 80° + 1202 — 8v + 1)° — 48u° (40 — 80 + 120% — 8v + 1)°+
3ut(448v° — 179207 + 448005 — 7168v° + 7840v* — 582403 + 246402 —
4480 + 31) — 2u3(704v® — 281607 + 70400° — 11264v° + 123200* — 9152
v® 4 387207 — 704v + 53) 4 15u>(640° — 25607 + 64005 — 102405 + 1120
vt — 83203 + 35202 — 64v + 5) — 6u(64v® — 25607 + 6400° — 1024v° + 1120
vt — 83203 + 35207 — 64v 4 5) + 640° — 25607 + 6400° — 10240° 4 1120
vt — 83203 + 35202 — 64v + 5).
F(u,v) =
64(8u” — 28u’ + 60u’ — 80u? + 70u® — 39u? + 11u — 1)(8v” — 28v° + 60v°— (49)
80v* + 700® — 39v% + 11v — 1),
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G(u,v) =
16(5 — 30v + 75v° — 106v° + 93v* — 48v° + 160° — 32u(2 + 11u — 26u® + 35 (50)
ud — 320 + 20u° — 8u® + 2u7)(—1 + 2v)2(1 — v + v2)°)

The graphs of the mean curvature and Gaussian curvature of a biquadratic
A-Bernstein Bézier surface are shown in Figures 3 and 4.

Figure 4: The Gaussian curvature of biquadratic A-Bernstein Bézier surface

The metric coefficients of the biquadratic A-Bernstein-Bézier surface at the
point (u,v) = (0,0) are,

E = 80, F = 64, G = 80, (51)
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and their partial derivatives are,

E, = —480, E,=-1024, F,=—704,

Fy=—704,, G, =—1024, Gy = —480. (52)

Therefore, the corresponding metric of the biquadratic A-Bernstein-Bézier surface
is,

ds* = F du® + 2F du dv + G dv* = 80 du?® + 64 du dv + 80 dv*. (53)

From equations (43) to (47), the first and second-order partial derivatives of
the biquadratic A-Bernstein-Bézier surface s(u, v) are,

(0,0) = (4,0, -8),%,(0,0) = (0,4, —8),
«(0,0) = (=12,0,24), x,,(0,0) = (0,0,64), (54)
Xy (0,0) = (0, —12,24).

Xu
Xu

Thus, the unit normal N to the biquadratic A\-Bernstein-Bézier surface s(u,v) at
the point (u,v) = (0,0) can be computed and it is,

B ~ x4(0,0) Ax,(0,0) (221
Nl = 00 =NOO =160 o 001 ~\353) )

The fundamental coefficients e, f, g given by eq. (29) for the biquadratic A-Bernstein-
Bézier surface are,

64
e=0, f:§7 g=0. (56)
Substituting the values of the fundamental coefficients from eq. (51) into det(w) =
EG — F? and from eq. (56) into det(b) = eg — f?, it follows that

4096

det (w) = 2304, det(b) = 9

(57)
Now, the coefficients s11, $12, S21, and S99 of the matrix V' corresponding to the

shape operator of the biquadratic A-Bernstein-Bézier surface are given by eqs (34),
(51) and (56),

5 1 )

S12 = — 54 = S21, S22 = 144

ST Ty 36

(58)
The expressions for the mean curvature (38) and the Gaussian curvature (39)
provide fundamental geometric quantities that characterize the biquadratic A-
Bernstein-Bézier surface and in this case they are,

16 256
K=-— H=_"2

81 9 (59)



M.E. Buttar and D. Ahmad / Analysis of A-Bernstein Bézier Surfaces 17

The Christoffel symbols of the second kind F;k (as given by eq. (31)) depending
on the first fundamental coefficients and their derivatives as found in eq. (51) and
eq. (52) are

32
F%l =-3= F%m F%z = F%l = _3 = F%z = F%la F%z =0= F%lv (60)

The Gauss-Weingarten coefficients, as determined by equation (32), depend on the
first and second fundamental coefficients. Specifically, for the bi-quadratic case,
they are:

16 20 20 16
1 2 1 2
= — = — — = —— = —. ]_
ST p i T Tep T Top 2 T gy (61
Example 2. Bi-cubic \-Bernstein Bézier Surfaces for different values
of \
Following the discussion of the biquadratic case, we now turn to the bicubic

A-Bernstein-Bézier surface as another illustration of its geometric characteristics.
Here, x(u,v) (17) for m = 3 and n = 3 reduces to,

Zme* )b (v) Py (62)

=0 j=0

To find the shape operator and geometric characteristics of the bi-cubic \-
Bernstein-Bézier surface, we express eq.(62) in its parameterized form with known
control points and the shape parameter .

x(u,v) =(u(2X\ + 4 u* — 6Au + 3),v(2\ + 4 v? — 6w + 3), (2u — 1)(2v — 1)
(4dut — 8 u® + 8 u? + 4u? — ddu — 4u + 1) (4 v* — 8 v® + 8 P+ (63)
4v? — 4 v — 4v + 1))

The surface (63), along with its partial derivatives with respect to the surface
parameters and the corresponding fundamental coefficients, are as follows,

x(u, v)
Xy (u, v)

=(u(4u?® — 6u + 5),v(4v? — 6v + 5), (2u — 1)(2v — 1)
(4u* — 8u? 4 12u% — Su + 1)(4v* — 8v® +120% —8u + 1)), (64)
=(12u® — 12u + 5,0,2(20u* — 40u® + 48u? — 28u + 5)

(20 — 1)(4v* — 8v* + 120% — 8v + 1)), (65)
X, (u,v) =(0, 120 — 120 + 5,2(2u — 1) (4u* — 8u® + 12u* — 8u + 1)
(200* — 400° 4 48v* — 28v + 5)), (66)
Xy (U, ) =(12(=1 4 2u),0,8(—1 4+ 2u)(7 — 10u + 10u?)(—1 + 2v)
(1 —8v + 120% — 8&v° 4 4v?)), (67)
Xuo (1, 1) =(0,0,4(5 — 28u + 48u? — 40u® + 20u*) (5 — 28v + 48v—
4003 + 2001)), (68)

X (1, v) =(0,12(20 — 1), 8(1 — 2u)(1 — 2v)(1 — 8u + 12u® — Su+
4u™)(7 — 100 + 100%)), (69)
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E(u,v) =

25(5 — 80v 4 624v? — 2496v> + 5856v* — 88320° + 921605 — 691207+
3648v° — 12800° 4 256v'%) — 40u(31 — 560v + 4368v* — 174720°+

409920* — 61824v° + 6451205 — 48384v” + 255360° — 896007 + 1792

v10) + 32u3(395 — 77200 + 602160v% — 240864v° + 565104v* — 852288

v° + 8893440 — 6670080 + 3520320° — 12352007 + 247040'%) 4+ 8u®  (70)
(665 — 126400 + 9859202 — 394368v> + 9252480 — 13954560° +

145612805 — 109209607 + 576384v° — 20224007 + 40448v*°) — 16u*

(1195 — 237200 + 18501602 — 740064v° + 1736304v" — 2618688v°+
27325440° — 204940807 + 10816320° — 3795200° + 75904v'%) — 320

WP (62 — ddu + 20u? — 5u3)(1 — 20)%(1 — 8v + 1202 — 8° + 4vh)’

F(u,v) =

4(160u° — 720u® + 1824u" — 3024uS + 3456u° — 2760u* 4 1464u>— (1)
468u? + 78u — 5)(1600° — 7200° + 1824v™ — 30240 + 34560° —

2760v" + 14640 — 46802 + 78v — 5),

G(u,v) =

16(—1 + u)u(5 — 1du + 16u? — 10u® + 4u*) (1 — du + 10u? — 6u® + 4u?) 2)

(5 — 28v + 4807 — 40v® + 200%)” + 5(25 — 2480 + 106402 — 25280+
38240 — 3968v° 4 2816v° — 128007 + 3200°).

The graphs of the mean curvature and Gaussian curvature of biquadratic \-

Bernstein Bézier surface are shown in Figures 5 and 6.

Figure 5: The mean curvature of bicubic A-Bernstein Bézier surface

The metric coefficients of the bi-cubic A-Bernstein-Bézier surface at the point

(u,v) = (0,0) are,

E = 125, F =100, G =125, (73)
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Figure 6: The Gaussian curvature of bicubic A-Bernstein Bézier surface

and their partial derivatives are

B, = —-1240, FE,=-2000, F, = —1560,

F, =-1560,, G, =-2000, G, =—1240. (74)

The corresponding metric of the bi-cubic A-Bernstein-Bézier surface is,

ds* = E du® +2F du dv+ G dv* = 125 du® + 200 du dv + 125 dv?.  (75)

Now, from the egs. (65) to (69), first and second-order partial derivatives of the
bi-cubic A-Bernstein-Bézier surface s(u,v) are

Xu (07 0) = (57 07 _10)’ Xy (07 0) = (O’ 5a _10)7 qu(07 O) = (_12a Oa 56)7 (76)
Xuv(0,0) = (0,0,100),%,,(0,0) = (0, —12, 56).

Thus, the unit normal N to the bi-cubic A-Bernstein-Bézier surface s(u,v) at the
point (u,v) = (0,0) can be computed and it is,

x,(0,0) Ax,(0,0) 221
N = N(0,0) = e D~ (250,
(40l w) = 0.0 (0.0) 1%4,(0,0) Ax4(0,0)] 3’3’3 (77

The fundamental coefficients e, f, g (29) of the bi-cubic A-Bernstein-Bézier surface
are

32

. _ 100 g2
2

Plugging the values of fundamental coefficients from eq. (73) into det(w) = EG —
F? and from eq. (78) into det(b) = eg — f?, we find that

2992
det () = 5625, det(b):—g?)—g. (79)
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The coefficients s11, S12, S21, and S92 of the matrix V', which correspond to the
shape operator of the bi-cubic A-Bernstein-Bézier surface, can be found using
equations (34), (73), and (78), as

1 4 1

B ST = Toos s (80)

S11 =
For the bi-cubic, A-Bernstein-Bézier surface s(u,v), we can now find the mean
curvature (38) and the Gaussian curvature (39)

2992 80

T 16875’ T3

The Christoffel symbols (eq. (31)) of the second kind T, depending on the first
fundamental coefficients and their derivatives as found in eq. (73) and eq. (74) are,

(81)

Fh :*7172 %2:*@:F%1 %2:*%

45"’ 9 ’ 45’ (82)
1—%1 = _% F%z = _4£ = 1—%1 ng = _Q.

45’ 9 ’ 45

Eq. (32) defines the Gauss-Weingarten coefficients, which depend on the first and
second fundamental coefficients. In the context of the bicubic case, these coeffi-
cients are given by,

L, 16, 124 124 , 16

NI Ty 2T o 2 T

In the following section, we present the results concerning the extremal conditions
for A-Bernstein Bézier surfaces under the quasi-harmonic functional.

(83)

4. QUASI-HARMONIC A-BERNSTEIN B ‘'EZIER SURFACES

In this section, we investigate A-Bernstein Bézier surfaces as extremals of
the quasi-harmonic functional, providing the constraint integrals. A A-Bernstein
Bézier surface, x(u,v) (given by the eq.(17)), of degree (m,n), defined by its
(m+1) x (n+1) set of control points {P;;};" (P = (2;) ,a = 1,2,3), serves
as an extremal of the quasi-harmonic functional with a prescribed border. This
can be achieved by finding the vanishing gradient condition for the quasi-harmonic
functional p(x),

ou (x

g;?j) Py 2, (84)
where IZ-[JI-], 11[]2_}7 Il.[;ﬂ and IZ-[AH are the integrals obtained from the gradient of the
quasi-harmonic functional p (x) for the A-Bernstein Bézier surface, x(u, v), defined
by,

p(x) = 1/((xmxm + 2(Xuu, Xou) + (Xow, Xou) ) dudv. (85)

Q
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Here, x(u, v) represents the surface parametrization over a domain 2 for 0 < u,v <
1, and x,, and x,, denote the second partial derivatives of x with respect to u
and v, respectively.

For the A-Bernstein Bézier surface, x(u,v) (eq. (17)), of degree (m,n), the
gradient of the quasi-harmonic energy functional eq. (85) for the Bézier patch
with Bernstein basis function w.r.t. the coordinates of inetrior control points, FP;; =

1,2 .3 :
(xij, a:ij,xij), can be written as

O (x) OXyuu OXyu OxXpo OxXpo

- ! (Gt xaw) Gt xon) + (s )+ (it ), (56)
where a = 1,2,3, i = 0,1,2,...,m, j = 0,1,2,...,n. The terms x,, and X,
denote the second partial derivatives of x with respect to u and v respectively.
This formulation captures the surface’s behavior in terms of its curvature and
smoothness characteristics. Eq. (86) can be expressed as the sum of four integrals,
which are defined as follows,

1) = [ (5 o du, (87)
Q Y

[2] OXou

I = <3x“ s Xyp ) dudv, (88)
Q Y 5

IZ.[;).’] =/<qu, 8);1;}>dudv, (89)
Q Y

[4] axvv

Lj = [ (G Xuo)dudv. (90)
Q i

The integrals can be computed over the domain 2. To find these integrals, we

need to determine %’;1;;: and %’:,:,J” For the first integral (87), we start by finding
%"T“g;‘. Using eq. (17), we can express it as follows,

%(xuu(u,v)) = %( Z bgl*’\(u)bg*’\(v)ap 2y = (0" (), b (w)er. (1)

oz,
p,q=0 v

Substituting eq.(22) in the above eq. (91), we obtain,

9
ng(xuu(u,’u)) = |
A (B (w) — B (u)) (1 — Cgi—l )+ 2ABT (w) + m(m — 1) (92)

m

(BI5%(w) = 2B (u) + B2 (w) (AT (u) )6 (v)e”.

By interchanging the roles of u and v, and m and n in eq. (91), we obtain the
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expression for %’;gf , which is given by,
0 n,A m,A\ a
Fpe. oo, 0)) = (6577 (v)),, b7 (w)e?, (93)
T

and thus, substituting eq. (23) in eq. (93), we find that
0

@(va(u,v)) = |
[4\n(BP = (v) — BY 1 (v)) (v — Cé;l) +2AB} (v) + n(n — 1) (94)

(BI=2(v) — 2B7=2(0) + BI—2(0)) AT (0)] 57 (e

Now we proceed to find the integrals IZ[;], 1 I-[?], Ii[?]. For the first integral IZ[;],

[ IR

given by the expression (87), we substitute (92) into it to obtain,

1= / [ (B! () — B~ () (u — ot L oABI(w) + m(m — 1)

Q " (95)
(Bi"iEQ(u) — 2Bﬁ]2(u) + Bf%z(u))AZ"(u)} b;l’)‘(v)<ea, Xy ) dudv.

Substituting eq. (26) in above eq. (95) to obtain,

m,n

1 a
Iz[j] = Z Uz'];l<e 7Pkl>a (96)
k,1=0

where Uikjl denotes the integral in the above eq. (96),

U@l(u,v) = 4

/ [4)\m(Bi”211(u) — B;"fl(u))(u - Cé?l) + 2AB™(u) +m

Q m

(m — 1)<ng2(u>k — 2B 72 (u) + B2 (w)) AT (u)][4dm( B S (w)— (97)

By ) — ) 4+ ABY () m(m — 1) (B )

m

2B} (u) + B (w) AR ()] (v) b (v) dudv.

The product of the two factors within the square brackets in eq. (97) yields the
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following simplified expression,

Uikjl(u7v) =
2. 2 m—1 m—1 m—1 m—1 C:in—l Cfn—l 2
/[16>\ m {(Bi_l (u) _Bi (u))(Bk_l (u) _Bk (u))(u_ Ci )(u_ Ck )}+8>‘ m
Q m m
Ci
(B3 () = BY' @) BY (w)(u = =)} 4 4m® (m = D{(B"7 (w) = B]" ™ () (B3 (w)
CT Cck
= 2B (w) + B2 )AF () (u = =)} + 8NP m{ B (u) (B, (w) = B (w)(u — —5=0)}
+ 4)\2{Bzm(u)B,2” (u)} + 22m(m — 1){B" (u)(BZl:Q2 (u) — 23;”:12 (u) + B?_Q(u))AL”(u)} + 4 m>
Ck
(m = D{(B"5% (w) = 2B (w) + BI' 2 )(BI5 (w) = B (w) (w — — AT ()} + 22m

(m — D{(B"5%(u) = 2B{" 7> (w) + B{" () B (AT (w)} + m®(m — 1)*{(B"5* (u) — 2B]" 7% (u)
+ B2 (w)(B 2 (u) — 2B (w) + B2 (w) AT (w) AR (w) A (0)b) (v) dudv,
(98)

which can be further simplified as follows,

Ul (u,v) =

/ [16X*m{ B ! (u) By ' (u) — BT () B~ (u) — B* ' (w) B} (u) + B~ (w) B~ (w)}

C? ck C?
(= =& = =Z) + 8NP m{ BT (w) By (u) — B () B () }(u — —Z=) + 4 (m — 1)

(B (W) B (w) — 2B (u) B2 () + B () By 2 (w) — B (w) B (u) + 2B (w)

Cl
B2 w) = B ) B ) — —S=AR () + S\ BT () B (w) = BY () B ()}

k

c
(u— gk‘l )+ AN { B (u) B (w)} + 22m(m — 1){B™ (w) By 52 (w) — 2B (w) By % (w) + B (u)

B2 (uw) YA () + 4dm? (m — 1){B]" 5% (w) By" ! (u) — B 52 (w) By (u) — 2B 72 (u) By ' (u)+

k
2B % (w) B (w) + B2 (w) By (w) — B2 (w) B (w) Hu — Cg‘k‘l VAT (u) + 2dm(m — 1)
{By(u)B" 3% (u) — 2B (w) B 1* (w) 4+ B (w) BI" 2 (w) }AT" (u) + m?(m — 1)*{ B, (w) By (v)
— 2B, (w) B2 (u) + B 5% (w) B2 (u) — 2B % (w) B )2 (u) + 4B 12 (w) B % (u) — 2x
B" 2 (w) By (u) + B2 (u) B (w) — 2B 2 (w) B2 (u) + B2 (w) B2 (w) JAT (w) AT (u)]
b;-L’A(U)bl"’A(v)dudU
(99)

We can further break down the equation (99) into the integrals Uik[l], Uikm7 cey
Uik[g], which can be expressed in terms of these integrals as follows,

UE (u,0) =16X°*m?UM + 83 2mU P 4 4m?(m — 1)U 4 8X2mu )+

AU L oam(m — DU 4 axm?(m — 1)UFT 4 (100)
2 m(m — 1)Uik[8] +m?(m — 1)2Uik[9]7
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where Uk[l] to U; M9 in the above eq. (100) represent the following integrals,

U = [ (B ) B @) - B 0B ) - B B (u)+

o ) o (101)
B w) BT ) = =5 (= =E by )b @)dud,

k[2] — m—1 w)B™(u) — m=1,\YB™(u w— 'fn 1
u. ! (B @B} () = B B () (- <5 o

b7 ()b (v) dudv
k m m m— m— m— m—
= /Bz 11 u)By” 22( )_2Bi711(u)Bk712(u)J'_Bifll(u)Bk 2(“)

B ) B2 + 2B ) B ) — B B w) (109

X (u— g;l AR ()b ()b (v) dudv

k4] m U m—1 w) — m " m—1 " u— CrliLfl
Ui = Q/ (B () B3 () = B () B ) = <) wos
b (0)b) (v) dudv
U = [ B (u) B (w)b (0)b] (v) dud 105
9/ (105)

UE = [ (BB ) — 2B ) B ) + B () BY () x
) (106)
AR ()b ()b (v) dudv
U = (B B )~ BIGR@BY () - 2B )BT )
Q
+ 2B (w) B (u) + B2 (w) B (w) — BT (w) B () (107)

ot "
(u— Ckl)A (Wb ()b (v) dudu

Ut = / (BI"52(w) B (u) — 2B (w) B (u) + B () B (u)) x
Q (108)

AT ()b ()b (v) dudw

J

UE = [ (B ) B ) — 2B ) BE ) + B w0 BY )
Q
= 2B (@) B () + 4B () B () — 2B () B2 () (109)
BB ()~ 287 () B ) + BY () By (w)
x A" (u)AZl(u)b;-l’A ()b (v) dudv
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The eqs. (101) through (109) can be written in the following simpler form by
expressing the product of two Bernstein polynomials in terms of the higher degree
Bernstein polynomials, as follows,

m—1\ (m—1 m—1) (m—1
vt = [ [(1‘(;1(’5;1)3312_24 - L) G "@31(23“ ) B -
5 itk—2 itk—1
m—1) (m—1 m—1) (m—1
B 20 pana iy L5050 gamagy)
G A T
(u— Cm.fl) u— Cm 1 b ()67 (v) dudv, (110)
Ci, Ck, 7 !
m—1\ (m m—1\ (m i
- B ) - ci
Uik[2] :/ (1(2:”)_5;) B?I;c711 (U) - ( (;m)—g)k) Bi2+/€ l(u):| (u B C’L 1)
P itk—1 itk m
b?’)‘(v)b?’A(U) dudv, (111)
m—1\ (m—2 m—1\ (m—2
Ut :/ ("‘(Q,ZLE’;;Q)BI?I;;_%(u)2("‘(221E§)‘1)B§1;€:32(u)+
S i+k—3 itk—2
() (") o (") (225 o
sy B ) — ey = B ) -
) ) 7 ()
(gt B )+ 2 b B )
itk itk—1
(u— 1 VAT (w)b™ (0)b (v) dudv (112)
Ct J l

m—1 m—1 k
Uk[4] _ [(i)(k*l)Bmel( )_ (z)( k )BQm71<u)](u_ Cmfl)

&) T () .
b?’/\(v)b;l”\(v)dudv, (113)
ksl — (T) (71?) B2m (u)bn’)‘(v)bn’/\(v)dudv (114)
) - (Qn;;) 1+k 7 1 )
o Mt
m\ (m—2 m\ (m—2 m—2
ottt = [0 pann ) o CUED s oy LUE oo
/T i) )

AR ()b (0)b) (v)dudv, (115)
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m—2) (m—1 m—2\ (m—1
Uk — / [(%—(}ég?’;)—l)Bm‘_%(u)— (‘(22};@%“ )Bfﬁ:%(u)

Q
m—2\ (m—1 m—2\ (m—1
D) "(zif’;)‘l) B + o) L) "(EZLL; e
i+k—2 i+k—1

(mZ_Q) (713:11) 2m—3 (m'_g) (mk_l) 2m—3
-— "B (u) — —5 == B; U
Ty et ey )
X (u - Cg,j) AT ()b ()b (v) dudv, (116)

m\ (m—2 m\ (m—2 m—2
s _ [ (D) s GO s ) o,
= [Vl e~y ) ey

A ()b (0)b) (v)dudv, (117)

m—2\ (m—2 m—2\ (m—2
Ut = / [( ifg,l(_’;*Q)Bf;';c:i(u) L)) ”*3,7)1(_’;*0331;;%(@&)
5 (ha) (hs)
m—2\ (m—2 m—2\ (m—2
LU oy 4y o) Git) g
Chs) =
+ad B0 panoa ) o200 pana
(:7%2) (1)
() 0
+ EzmijTBfﬂflz (u) — QEzmifiTBfﬁcﬁ(u)
i+k—2 i+k—1
m—2\ (m—2
+ WBE@—%U)} AT (W) AP ()b ()b (v) dudv.  (118)
i+k
The above integrals Uik[l],Uik[z],UZ-IC[?’],UZHLL],UZHE)],UZ-]C[G],UZ-km,Uik[s],Uik[gl can
be computed for 0 < w,v < 1 and substituted back in eq. (100) to obtain the

eq. (96). To find the integral Ii[?], substitute eq. (91) along with eq. (22) in eq. (88)
for 9%y, /0zf; along with (b;"’\(u))uu and x,,. This gives us,
(2] m—1 m—1 Cro1 m
12 = [ aam(BPT () — B @) — S220) 4 2B () + mlm — 1)
5 Ch (119)
(B{3* (u) = 2B (u) + By* 2 (w)) A" (w)]b] (v) (e, Xu) dudv.




M.E. Buttar and D. Ahmad / Analysis of A-Bernstein Bézier Surfaces 27
By using eq. (28), we can rewrite it as,

i Z /[4)\m(BZ.”_lzl(u) — B () (u — C’Z”i‘l) + 2AB[" (u) +m(m — 1)
k=0 "
(B2 () = 2B )+ B 2 )AT @] An( B (0) = B ()
@wf%f)+w3mw+Mn—nwﬁﬂw—2E:%M+BTW@>

AT ()67 ()b (u) (e, Pr)dudo.

(120)
For convenience, this can be expressed as,
I3 =" vk, Py, (121)
k,1=0
where V/;l represents the following integral,
i
Vi o) = [ am(BET @)~ BN w) - “E) + 2B @)+ m
Q m
(m = 1)(BI25% (w) = 2B127% () + B~ (u)) A" (u)][4An
cl, (122)
(BI5 (v) = Bl () (v = =57) + 2AB{' (v) + n(n — 1)
(Bl (v) = 2B (v) + Bl (v)) A (v)]
b?’k(v)bzl’)‘(u)dudv.
The multiplication of the two factors within square brackets reduces eq. (122) to,
Vi (u,0) =
2 m—1 m—1 n—1 n—1 C7in71 C’ﬁb*l 2
/[16)\ mn{(B;"7 (u) — B " (uw))(B;"5; (v) — B " (v))(u — ol )(v — el )} +8Xn
Q m n

i

c
(B2 () = B (w) B (v) (u — gil)}+4/\mn(n— D{(BT (w) = B~ (w) (B, (v)

i

n—2 n—2 n Cin—l 2 m n—1 n—1 Cn—l
=285 (0) + BT ()A () Hu = —5) 48X B (W) (BT (v) — B (0)(v - — )b
AN {BY () B] ()} + 22n(n — D{B () (B} 2 (0) = 2B7 2 (0) + BY > () AP (o)} + Ahmn(m — 1)

1

C
{(B"5%(w) = 2B]"7%(u) + B> (w))(B} 5! (v) = B ™' (v)) (v — g,l_l AT (W)} + 22m(m — 1)

{(B5%(w) = 2B (u) + B2 (w)) B} (0)AT* (w)} + mn(m — 1)(n — D{(B]"5*(u) — 2B * ()
+ B2 (w)(B]' 5 (v) — 2B (v) + B2 () AT (w)A] (0) o) ()b (v)dudo.

(123)
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This can be further simplified to,

Vi (u,v) =
/ (16X mn{ B " (w) B} ' (v) — B 7' (w) B} (v) — B]* ! (w) B} (v) + B]* ' (u) B} (v)}

Q
ci c! ci
(= —Zm5) v = =) + 8NP m{ B () BY (v) = B () B] () Hu — —5=) + 4dmn(n — 1)
{BI 1N (W) Bl (v) — 2B TN (w) B 2 (v) + BT (w) By % (v) — B (w) B 2 (v) + 2B (w) B (v)
m—1 n—2 n C’fn71 2 m n—1 m n—1 Ci,l
= B" " (u) BT (0) AT (v) (u — - )+ 8\ n{B]" (w) B} (v) — B{" (w)B]'" " (v)}(v — el )

+ 4N { B} (u) B} (v) }2An(n — 1){B?T (w) B} (v) = 2B/ (w) B} *(v) + B (w)B]' *(v)}
A (v) 4+ 4xmn(m — D{B!5?(u) B} ' (v) — B 32 (w) B! (v) — 2B *(w) B} ' (v) + 2B 7 (u)
1

C
B (v) + B2 (w) B (v) — B2 (w) B () AT (u) (v — gl‘l )+ 2xm(m — D{B" 52 (u)

BJ*(v) — 2B]" 7% (w) B} (v) + B[**(u) Bf*(0)}A}" (u) + mn(m — 1)(n — ){B}";*(u) B}’ (v)—

2B 5% (w) B2 (v) + B 5% (W) B % (v) — 2B 1% (w) B 2 (v) + 4B 1% (w) B 2 (v) — 2B 7 (w)
B} 2(v) + B""*(u) B} (v) — 2B]" " *(w) B (v) + B~ (u) B} (v) }AT" (w) A} (v)] X
b:l”\(u)b?’A(v)dudv.

(124)

For convenience, we can express the above eq. (124) as follows,

gty 2]

VE (u, ) =16 \2mn V™ + 8X2mV ' 4+ 4 mn (n — 1 VB + 8)\2nV-l[4]—|—
ij i i i i
4)\2Vil[5] +2xn(n—1) Vil[ﬁ} + 4 mn (m — 1) Vilm-i- (125)
22 m (m — 1) Vil[g] +mn(m—1)(n—1) Vil[g],

109]

where Vil[l], Vilm ... V"7 represent the following integrals,

7

VI = [ (Bt B ) - B ) B ) - B ) B ()

2 Z_ o (126)
+BI" (@) BT (0) (u = =50 — <5 (@) () dudv

VZ[Q]: m—1 w n(y) — m—1 u n (4 w— mfl
v J(BH () B (0) =B~ u) B (1) (u— =) .

bzl”\(u)b;”\(v)dudv

Vit = / (B3 (u) By (v) = 2By (u) BYSP () + By (w) B2 (0)
Q

= B () B (o) + 2B (w) B (0) = B () B (0) (129)

(u— g;l JAT (0) by ()b (v) dudv

m
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4] _ m (0 n—lv — B™(y n—lv U—%
v —Q/(& () B ) = B (0 B () (0= ) -
s () B A ()b (v)dudw
VI = [ B @B ()5 )t ) dude (130

Q

VI = [ (B2 () BEE ()~ 2B () B (0) + B () BY 2 (0)AT (0)
’ bZl’A (u)b}l’A (v)dudv

(131)

A / (BI"3? (u) BIS (v) = BI3? (u) Bp~ (v) — 2B (u) By (v)

+2B’"l (W) B @)+ B () BES (v) - B () BT (v) (182)
(0= ST @ 0

VIS = [ (B ) B ()~ 287252 () BY (0)+ BY 2 () BY (0)
! AT () b A ()b (v) dudv

(133)

VI = [ (B3R ) BEE ()~ 2B () B (0) + B () B )

K2

Q

—2B]"7* (u) B (v) +4B"7? (u) B (v) — 2B}"77 (u) By 7% (v) (134)

+ B" 7% (u) B (v) = 2B % (u) B2 (v) + B" 7% (u) Bi 2 (v))

AT () A} (0) by ()b (v) dudv

The above integrals (126) through (134) can be substituted back in V5 (u,v)

provided by eq. (125) to obtain eq. (121) and subsequently obtain the second
integral (88). To determine the integral IZ[?], substitute eq. (94) along with egs. (26)
and (28) into eq. (89) for 0x,,/0z;, (b;n”\(v))mj and X,,, we have

i = ! [4An (BjZ{ (v) = By~ (v)) (v — Cén )+ 2AB} (v) +n(n — 1) (135

(B} =3 (v) — 2B 72 (v) + B2 () A7 ()16 (u) (€%, Xy ) dudv,
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and substituting eq. (26) in above eq. (135), we find that

m,n - - C,jl_
=3 / A (B (v) — B (v)) (v — le) +2)\B(v) +n(n — 1)
k=0 g

(Bj=3 (:) = 2B777 (v) + B} 72 (v)) AT (0)][AAm (B} (u) = B (w)) (136)

(u— Og,gl )+ 2AB (u) + m(m — 1)(B) 52 (u) — 2B 2 (u)+

m

B2 (w)) AT (w)]bl M (w)b) ™ (v) (€%, Pry)dudv.

For convenience, we can write the eq. (136) in the form,

m,n
17 =3" whie, Py, (137)
k,1=0

where Wi’}l denotes the following integral,

Wi]}l (u,v) =

/ [4xn(B? ! (v) — B? 71 (v))(v — %) +2AB? (v) + n(n — 1)(B""2(v) — 2B" "2 (v)+
Jj—1 J ng J j—2 j—1

Q Ck

B;*Q(u))/\y(v)] [AAm(B M (u) — B (w)) (u — g,;l )+ 2ABY (w) + m(m — 1) x

(B2 (w) — 2B 2 (w) + BP 2 (u)) AL (w) b7 ()b (v) dudw.

(138)
Combining the factors within the square brackets in eq. (138) results in,

kl _
Wi (u,v) =
(16X mn{ B! (w) Bl (v) — By (w) B~ (v) — By~ (w)BY ) (v) + B~ (w) B}~ (v)}

C?”Cn—l Czt—l 2 m—1 n m—1 n Cfn—l
(u— ok (v — o7 )+ 8N m{ B (w) B} (v) — B"™ " (w) B} (v)}(u — ok ) 4+ 4dmn(n — 1)
m n m
{BI'5 () B} (v) = 2B (w) B2 (v) + Bi5 (w) B 72 (v) = B ™ (w) By (v) + 2B () B 7 (v)

a1y

cs,

Ck
— B (u) B 2 (0)}AT (v) (u — ’C"k’l ) + 8\ n{ By (u) B}~ (v) — By (w) B} ! (v)}(v —
+ AN { B (w) B} (v)} + 2xn(n — D{ By (u) B} 7} (v) — 2By (w) B} F (v) + By (u) B} 2 (v)}

AZ(v) + 4xmn(m — DB} (w) B} (v) — B (u) By~ (v) — 2B % (w) B} (v) + 2B ()
1 2 1 2 1 CZL—I 2
BT (v) + By T(w) BTy (v) — BN (w) BT (0) AR (u) (v — o )+ 2xm(m — D{B;," (u)

J
n

BY (v) = 2B} 2 (w) B} (v) + B{* 2 () B} () }AR () + mn(m — 1)(n — D{B' 3} (u) B} 77 (v)—
2B} 2 (w)Bf -2 (v) + By} (w) B 2 (v) — 2B 2 (w) B 75 (v) + 4B} 2 (w) Bf 22 (v) — 2B} 2 (w)
B2 (v) + By (w)BY 3 (v) — 2By (w) BE T2 (v) + B2 ()BT (0) }AR () A (v)]
b?’k(u)b?’k(v)dudv.

(139)
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For the sake of convenience, we can write the above expression as follows,

Wi’;-l (u,v) :16)\2mnt[1] + 8/\2mW,g[2] + 4 mn (n —1) Wg[?’]—i—
N2 W a2 1 2xn (n — 1) W7 aamn
(m—1) W,zm +2xm (m —1) W,z[8]—|—
mn(m—1)(n—1) W,z[g],

(140)
where W,z [ through W,g ol represent the integrals as given in following eqs. (141)
to eq. (149),

Q , (141)

Wit = [ s By ) - B B w) - BYT B )+

m—1 n—1 CﬁL—l Cgl—l m,A n,\
B (w) B (0))(u = =g =) (v = = )b ()b (v)dudv,
Wi = [ (B! ) By (0) - BY ! () By () Gt
= ' (u) BY (v) — u) B (v))(u — ——
VS ’ g g ch, (142)
b7 ()b (v) dudv,

Wi — [ (B ) B ) - 2B W BE ) + B B o)

Q
B?*(?;)B?j(v) + 2B (u) By P (v) — By H(w) By 3 (v) (143)
(u— Cg,;l AT (0)7" (w)b (v) dudw,

Jl4] _ LN n—1 v) — B™ (u n—1 v ,U_Cr];—_l ™ (u (n,Au

W} —Q/(Bk (0 B (0) = B () B~ ) 0=~ )

b7 (v)dudv,

Wil = / By (u) BY (0) 07" (w)b}* (v) dudb, (145)
Q

WE = [ (B (0) B2 (0) ~ 2B () BJE () + B (u) B} (0)
a (146)

A7 (v) b7 ()b (v) dudv,

Wi = [ (B ) By () - BEE () B () = 2B () B (o)

Q
+2B;"2 (u) B (0) + B (w) BY~ (v) = B2 (w) BT (v) (147)

VoL
v — —2=LYAT () b (w)b (v) dudv,
CJ k i l
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Wik = / (Bi*%? (uw) By (v) = 2B"7? (u) B} (v) + B'™* (u) B (v))
Q
AP () b (w)b (v) dudw,

(148)

Wi = / (B (w) B3 (v) = 2B7557 (w) B (v) + By (u) B 72 (0) -

Q

2B (u) B} =5 (v) + 4By % (u) Bf =Y (v) — 2By 2( )B’-’ 2(0)+
B2 (u) ByZ5 (v) — 2B 2 (u) BjZ (v) + By ( (v))
AR (u) AT (0) M (w)b)* (v)dudv.

?

h

(149)

By inserting the integrals (141) through (149) in the eq. (140) for W} (u,v) and
then the final expression in the eq. (137) to obtain third integral (89). To find the

integral IZ[J], substitute eq. (94) in eq. (90) for 9x,,/dz¢; along with (b;" A(v))m

and x,,, we obtain

J

J

i :Q/[4)\n(B L (v) = Br 7 (v) (v — CCJ )+ 2287 (v) +n(n—1) (150)

(B;L:Q2 (v) — 2B;’:12 (v) + B;‘72(v))A;-‘(U)}b;n’A(u)@“, Xy )dudv.
Now substitute eq. (28) in above eq. (150) to obtain,
j

i = / [4xn(B ' (v) — B}~ (v))(v — Cg )+ 2AB7 (v) + n(n — 1)

n

Q
(B?:S(lv) = 2B77F (v) + B () AT ()] [4An( B (v) = BTN (v)) (151)

(v— Cl 5) + 2AB['(v) + n(n — 1)(B 5 (v) — 2B (v)+
B2 (0) A} (0)]b7" ()b (w) (", Pu) dudv.
For the sake of convenience, the integral (151) can be expressed,
I = Z TE e, Py), (152)

k,1=0

where TZ}I represent the following integral,

T :/ [4An(B} = (v) = B} () (v - %) +2AB (v) +n(n — 1)

n
Q

(B}‘:f(lv) — 2B 2 (v) + BY 2 (0))A} (0)][4An(B ) (v) — B (v)) (153)
(v — cl LY 4 20B] (v) + n(n — 1)(BP 2 (v) — 2B 2 (v) + B 2(v))
AP (0)]b7 ()b (w) dudw.
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The product of the factors within the square brackets in eq. (153) yields the
following expression,

Tf;l(u, v) =
J 1
OB @)~ B )BT ) - B ) - 2 - )+ st
Q .
(B0~ B DB @) = 220} + 0= DB 0) = B} @) (B )~
cl_ - Cna

2B () + BY P @)AT ()0 — =)} + 8¥n { B (0) (BI0) = BY @) — 5+
"B ©B0) + inln DB @B = 2B + B OO + 1)
{(B} =3 (0) 2B} 2 () + By *)(BI5' (v) - Bl”‘l( N = EEHAT@) + 2wl - 1)

Cl

{(B]" (v) = 2B77(v) + B} 7% () B (v) A7 (v) +n*(n — 1)2}{(3? 5 (v) = 2B} (0)+
7 (0Bl (v) = 2B75 (v) + B ())A] (u ) 1 (0) b5 (W)bie  (u)dudv.
(154)
We can further break down the equation (154) into the integrals Tl[l] TZ[Q]

e le.[gl, that appear in the curly brackets in the above expression for Tilz-l(u,v),

which can be expressed in terms of these integrals as follows,

Tkl(u ) —16)\2 2Tl[1] + 820 T 1[2] + 4n? ( ) ]1[3] +8/\2nT;[4]+
1[8] 19]
ZML(n— DT +n ( 1) 7",

where T; [ to T”Q]

1 = [ (B B ) - B @B ) - B 0B o)+

in the above eq. (155) represent the following integrals,

J
Q

J l
B (0)Br () (v — ngl)(v—cgl_l)b?A(u)bmA( )dudv, (156)
Cj 1ypm m
T} = / (BI=3 () B (0) =B} (0) BY () (0 = =200 )by (),

Q
(157)

1 — [ (B ) B (o) = 28570 (0) BLE () + By () BY 2 o) -

Q
B]T.‘_1 (v) By (v) + 2B (v) B[} (v) — B;L_l (v) B} % (v))

(v — Cg]—,l AP () b (Wb (u) dud, (158)
4] _ n n—1 _ npn n—1 _Cé,l m,\ m,A
T = (B ) B ) = B (0) B 09) (0= 2 b ) dudo,
Q

(159)
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7" = [ B? 0) B ()b (u) dudw, (160)

AP () b ()b (w) dudw, (161)

un _
T =

Q
2B (v) By (v) + B} 7% (v) By (v) — By (v) By (v)
-1

(Bj=3 (v) Bl (v) = Bj=3

j—

Q
Tl = / V) BY R (v) — 2B (0) B2 (0) + B (0) B2 (0)
/ (0) By~ (0) = 2B} (0) BE (0) +

Cl m,A m,A
(v — el JAT (v) b (w)b " (u)dudv, (162)
T = / (BY=2 (v) By (v) — 2B2=2 (v) B} (v) + B2 (v) Bf (v))
X;? (0) b (Wb (w) dudw, (163)

1% = [ (B ) B (0) = 2857 () B (o) + B (0) B2 (o) -
B3 (0) B (0) + 4B (0 ) B () 281 (0) B2 () +
B2 0) B ) - 2B ) B ) 4
B (0) B2 (1) A7 (0) A7 (0) B () (i (161)

Now using the result for the product of two classical Bernstein polynomials
with same independent variable, we have

i (7;_11) (" 1) 2n—2 (?:11) (n 1) 2n—2
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By plugging these integrals in Tilz»l(u, v) provided by eq. (155) provides us the
expression for the fourth integral (90) for the integral (152). The vanishing condi-
tion (84) for the gradient of the quasi-harmonic functional (85) can now be readily
obtained by summing up the constituent integrals (96), (121), (137), and (152).
Setting the resulting expression to zero allows us to solve for the interior control
points in terms of the boundary control points for the A-Bernstein Bézier surface
representing the quasi-harmonic surface. The proposed A-Bernstein Bézier surfaces
provide enhanced control over surface smoothness and computational efficiency;
however, there are some limitations to consider. The computational complexity
increases with higher polynomial degrees and more complex surface configurations,
which may affect real-time applications [60]. Additionally, the method assumes
that boundary control points are known, which may not always be the case in
practical design scenarios, as traditional path planning methods can involve unex-
pected changes or uncertainties in the environment [61]. Future work could explore
more robust approaches that incorporate dynamic adjustments to boundary con-
ditions, enabling real-time responsiveness and enhanced performance in scenarios
with both static and moving obstacles.

5. CONCLUSION

In this paper, we have presented a framework for constructing A\-Bernstein
Bézier surfaces and the biquadratic and bicubic cases as the illustration of their
geometric characteristics. We have provided a structure of integrals that appear
in terms of Bernstein polynomials, which can be solved for given values of m and
n. Utilizing these integrals in equations (100) to obtain equation (96), in equa-
tion (125) to obtain equation (121), in equation (140) to obtain equation (137), and
in equation (155) to obtain equation (152), gives us the vanishing condition for the

gradient of the quasi-harmonic functional from equation (84) as 66’;(; ) = 0, which
ij

can then be solved for the interior control points that appear as the constraints de-

pending on the known boundary control points, giving us the A\-Bernstein Bézier

surfaces as the extremal of the quasi-harmonic functional (85). These surfaces
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may offer better smooth surfaces with additional control via the shape parame-
ter A, utilizing computational techniques for further exploration. Their potential
applications span across computer graphics, computer science, computational ge-
ometry, and engineering, facilitating surface design and computational modeling
for quasi-harmonic surfaces, contributing to advancements across various scientific
disciplines.
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