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Abstract: The notion of Single-valued neutrosophic sets (SVNSs) being a generalization
of fuzzy sets, intuitionistic fuzzy sets and picture fuzzy sets enhances implications of
these methods in various interdisciplinary problems. Aggregation operator is a prevalent
tool for unifying the data from various sources and applied to solve the problems of
decision-making. In this article, the Yager's operations and power averaging operator are
utilized to formulate and investigate some single-valued neutrosophic Yager power
operators, i.e., single-valued neutrosophic Yager power weighted averaging
(SVNYPWA) operators, single-valued neutrosophic Yager power order weighted
averaging (SVNYPOWA) operator, single-valued neutrosophic Yager power weighted
geometric averaging (SVNYPWGA) operator, and single-valued neutrosophic Yager
power ordered weighted geometric averaging (SVNYPOWGA). Some important
properties of the suggested operators are discussed. Furthermore, SVNYPWA and
SVNYPWGA operators in the SVN environment are applied to solve the multi-criteria
decision-making (MCDM) problem for selecting a suitable road construction company.
Also, the proposed method has been verified using the multi-attributive border
approximation area comparison (MABAC) method. Finally, a comparative analysis has
been done, to establish the advantage of the proposed approach over the existing
methods.
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1. INTRODUCTION

The issue of portraying inaccurate or incomplete information in real-world situations
is very crucial to finding viable solutions to the problems. Under these situations, Zadeh
[1] first initiated the concept of Fuzzy Sets (FS), as it acquired great attention due to its
ability to handle uncertainty due to vagueness. However, the Fuzzy set attains only a
membership degree to an element of a generic universe and lacks a non-membership
degree, due to which fuzzy sets were expounded by Atanassov [2] and established a new
notion called Intuitionistic Fuzzy Sets by adding the degree of non-membership.
However, in some cases, FS and IFS are not sufficient to deal with indeterminate and
inconsistent information in real-life situations. To overcome this problem, Smarandache
[3] introduced Neutrosophic Sets as an extension of FSs and IFSs. To deal with real
applications with specific descriptions, a subclass of neutrosophic sets termed Single-
valued neutrosophic sets (SVNSs) was introduced by Wang et al. [4]. The power-average
(PA) operator and a power-ordered weighted average (POWA) operator, introduced by
Yager [5] in which the weighting vectors depend on the input data and allow values to be
fused to support and reinforce each other. Xu [6] and Zhou [7] introduced the power
geometric and generalized power arithmetic operators. In the existing literature, various
researchers provided aggregation operators such as weighted averaging operator in
different environments prominent among them are [8], [9] and [10] and applied in
solving MCDM (multi-criteria decision-making) problems. The MCDM method is
extensively used to rank alternatives under different attributes in real decision-making
problems. Recently, aggregation operators emerged as an important tool to deal with
MCDM problems and consist of a wide range of research results in the literature
[11, 12,13, 14, 15, 16]. Later, the OWA operator was introduced in intuitionistic fuzzy
and interval-valued intuitionistic fuzzy environments. Some of the prominent studies
related to aggregation operators based on FS, Bipolar fuzzy set, Picture FS, Interval-
valued picture fuzzy set, Pythagorean FS, and IFS are due to [17, 18,19,
20,21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35].

Under a neutrosophic linguistic environment, Fan et al. [36] suggested a normalized
weighted Bonferroni mean operator and normalized weighted geometric Bonferroni
mean and applied in MAGDM problems. Liu et al. [37] introduced Neutrosophic
Bonferroni weighted geometric mean operator based on multi-valued functions in a
neutrosophic environment. Yager [38] suggested a new aggregation operator namely the
"Yager operator" with more flexibility of implications due to the underlying parameter.
Akram and Shahzadi [39] introduced the q-rung ortho-pair FS-based Yager aggregation
operators to deal with decision-making problems. In complex Pythagorean FS, Akram et
al. [40] introduced Yager norm-based aggregation operations. Garg et al. [41]
investigated the decision-making problem in testing the COVID -facility using Fermatean
FS and Yager norm operator. Khan et al. [42] obtained a novel operational law based on
the Yager t-norm and t-conorm under NS environment. The Aczel-Alsina operator under
consideration of the interval-valued single-valued neutrosophic value by using t-norm
and t-conorm proposed by Liaqat et al. [43]. Zhao et al. [44] combined the Heronian and
Power aggregation operator in SVN environment and introduced a novel MADGDM
method using the proposed operators. Afterward, Jana and Pal [45] introduced Dombi
power aggregation operator and applied it to the MCDM process in the SVNSs
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framework. To consider the advantages of power and Yager aggregation to determine
uncertain data that arises in a real-world situation, SVNSs have immense capacity, and
hence various MADM methods were established by using SVN Yager operations and
power averaging functions that made a significant interest in developing our suggested
study.

To the best of our knowledge, there is no work in the literature based on aggregation
operations that utilized the Yager operator and Power aggregation operation in the SVNS
framework. This motivated us to develop the novel aggregation operations based on
Yager operations imbibing the Power averaging, and geometric operators.

The main contribution of the paper is as follows.

1. We formulate a single-valued neutrosophic Yager power arithmetic aggregation
(SVNYPA) operator, single-valued neutrosophic Yager power geometric averaging
(SVNYPGA) operator, and weighted form of this operator namely SVNYPWA and
SVNYPWGA.

2. We Propose an MCDM method based on SVNYPWA and SVNYPWGA operators
in the SVN environment.

3. The sensitivity and verification of the proposed aggregating operators have also been
studied.

4. A comparative study to check the advantage and effectiveness of the proposed
methods is also done.

Subsequent content of this paper is organized as follows: In section 2, a background
of relevant notions is set to define Yager type aggregation operations in the SVNS
framework, and novel single-valued neutrosophic Yager power arithmetic and geometric
averaging operators proposed along with some of their properties. Section 3 includes the
application of the proposed aggregation operators in the MADM problem. In section 4,
the sensitivity analysis of the proposed method has been presented. Section 5,
investigates the consistency of the proposed approach with MABAC method. Section 6
contrasts the proposed aggregation operators with some existing aggregating operators.
Finally, conclusion is presented in Section 7.

2. PRELIMINARIES

In this section, first we set the appropriate background to define the new aggregation
operators.

2.1. Background

Definition 1. [4] Let X be a universe of discourse. A single-valued neutrosophic set A in
a universal set X is described by a triplet that constitutes with truth membership value,
indeterminacy-membership value, and the falsity-membership value s.t as: X —
[0,1],84: X » [0,1] and y4: X — [0, 1] with condition

0 < ag(x) + Balx;) +valxy) < 3. (1
Here, a,(x;), Ba(x;), and y,(x;) denote the membership value, indeterminacy value,
and non-membership value.
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Definition 2. [8] Let A = (ay, Ba,Ya) be a single-valued neutrosophic number of x; € X. Then a
score function SF(A) is defined as follows

SF (4) = 22— Pam¥a 5p (4) € [0,1]. @)

and, accuracy function can be defined as:
AF (A) = a5~ ya AF(A) € [-1,1]. 3)

For any two SVNSs 4, and 4,, Deli and Subas [12] following essential requirements:
(1) IfSF (A1) < SF (4,), imply A; < A,.
(ii) IfSF (A1) > SF (4,), imply A; > A,.
(iii) If SF (A1) = SF (4,), then
a. IfAF (A,) < AF (4,), imply 4; < A,.
b. If AF (A;) > AF (4,), imply A; > A,.
c. IfAF (A,) = AF (4,), imply 4; ~ A,.

Definition 3. [38] Let us suppose that A and B are two real numbers. Then Yager TN (t-
norm) and Yager TCN (t-conorm) can be defined as follows:

Yager™(4,B) = 1 — min. (1, (-4 + (1- B)P)%) )
and
Yager™VN (A, B) = min. (1, (4P — BP)E) )

where p = 1 and (A,B) € [0,1] x [0,1].

Operations based on Yager TN and Yager TCN [42]:

Using Yager TN and Yager TCN defined in Eq. (4) and Eq. (5), Khan et al. [42]
defined the follow sum and product operations.

Let A; and A, be two SVNSs and p > 0, then Yager sum and Yager product
operations A; = (a4, B1,v1) and A, = (ay, B2, ¥2) are defined as below:

YO1.A, ® A, =
(min. (1, (a, — azp)%) ;min. (1, (a, — azp)%) ;1 — min. (1, ((A—y)P +(1 - yz)p)%»;
Y02. A, ® A, =
(1 — min. (1, ((Q—ap)P+Q0- az)p)%) ; min. (1, B’ - ﬁzp)%> ; min. (1, - yzp)%»;
Y03. 14, =
(min. (1, (/10(1”)%> ;1 —min. (1, aa - /;’1)9)%>; 1—min. (1, aa - yl)p)%>>;
Y04. A} =
(1 — min. (1, - al)p)%) ; min, (1, (/;1”)%) ;min. (1, (yf)%)).
Definition 4. [45] The Power averaging (PA) operator is defined as follows

Z;n=1(1+T(aZ))aZ

PA (aq,ay, ..., Q) = Z:;l(l+T(az))

(6)
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Where T(a,) = Y71 yzz Supp. (a,, ay), and Supp.(a,b) is the support of b for a,
follows some properties:

(i) Supp.(a,b) € [0,1].

(ii) Supp.(a,b) = Supp. (b, a).

(iii) Supp. (a,b) = Supp. (r,s) if la —b| < |r —s|.

Where Supp. defines the similarity index when two values are more similar, then two
values are closer and then support between them is stronger.

Definition 5. [45] The Power geometric (PG) operator is defined as follows

"51+T(az))
PG (ay, 0y, ..., am) = 71 (a ) z=104702D) (7

With the fusion of Yager and power operation on SVNSs, a single-valued
neutrosophic Yager power weighted arithmetic (SVNYPWA) operator, and single-valued
neutrosophic Yager power ordered weighted arithmetic (SVNYPOWA) operator, Yager
power weighted geometric (SVNYPWG) operator, and single-valued neutrosophic Yager
power ordered weighted geometric (SVNYPOWG) operator are proposed in the
following.

2.2. Single-valued neutrosophic Yager power arithmetic aggregation operator

Let A, = (a;B,7,) be SVNSs for z=1,2,..,m. Then, the single-valued
neutrosophic Yager power arithmetic (SVNYPA) operator is a function defined as
follows:

SVNYPA (A, Ay, ..., A,) = Szt UHTU2)4,

Y1 (14T (A2)) ®)
Where T(A,) = X751 yz, Supp. (AZ,Ay), and Supp.(A, A,) defines the support of
A, and A, holds some important properties:

(i) Supp.(4.,4,)€[01].
(i) Supp. (AZ, Ay) = Supp. (Ay, AZ).
(iii) Supp. (4., A,) = Supp. (4, Ay) if d (A, A,) < d(A,, As) where d denotes the
distance measure.

The aggregating operator in Eq. (8) has been obtained by using Yager’s PA operator
and Yager sum operation YOI. By applying Yager operations on SVNSs, we get the
following theorem.

Theorem 1. Let A, = (@, B, Y,) be SVNSs for z=1,2,..,m. Then by applying
SVNYPA on SVNSs, the aggregated value obtained is also an SVNS. Therefore,
_ @7 (14T (4)A,
SVNYPA (A4, Ay, ..., Ap) = STy
(1+7(42) . 2.
z=1 31 (14T (42)) min. (1, a,);

=|1-3ym w min. (1,(1—Bz)p)} s ©)

Z=1ym (14T(45))

_ym (1+T(47)) . NP
1 z=1 Z;’Ll(HT(AZ)) min. (1' (1 yz) )

where T(A;) = YLy 2, Supp. (A, Ay). (10)
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In the SVNYPA and SVNYPGA operators, we only take into account the power
weight vector and interrelationship among SVNNs but not the weight of every SVNN.
However, in many realistic decision-making, the weights of attributes are also an
important parameter. Thus, we propose the single-valued neutrosophic numbers Yager
power weighted arithmetic (SVNYPWA) and geometric (SVNYPWGA) operator as
given below.

Theorem 2. Let A, = (a, B, V,) be SVNSs for z=(1,2,..,m). Then by applying
SVNYPWA on SVNSs, the aggregated value obtained is also a SVNSs, ¢ =
(@01, 2, o) @) Tis the weight vector of A, where @, € [0,1]Ts.t Y0 @, = 1.
Therefore, SVNYPW A: Y™ — Y accepts the following

B7L1 92(14T(42))A,

SVNYPA,(Ay, Az, .., Ap) = ST 0, (LT (Ay)

| =

92(14T(4z)) . o). p
Yre1 Y, 0,(14T(47) min. (1' (@ ))'

= _ym 9z(1+T(47)) ; _ py. 11
1 TS o () min. (1, (1 — B,)"); (11)

_ym 9z(1+T(42)) . _ p
L= 2o, pateraagy M (LA =17

where T(A;) = X0y 2z 9.Supp. (4, Ay). (12)

By mathematical induction, we can prove theorem 2 as follows:

Proof. Let m = 2, by Yager operations on SVNSs and by power aggregation operator,
we obtain the results A; @ A, = (a4, B1,v1) D (a3, B2, v2) and from the right side of
(9), we have

SVNYPA, (A, A;) =

1
% min. (1, (alp)) + % min. (1, a,? ); ?
- % min. (1, (1- B,)") + % min. (1,(1 - B,)");
- Foatera M (10 -0 + FEEEES min (1,0 )
1
o s min. (1,@) '
= | 122 ) nin, (1, (1 = £)°) (13)
1-y2_, S20TE)) oy 1, (1 =y)P)

2=152_ 0,(1+T(4,))

Thus, Eq. (11) true for m = 2. Suppose Eq. (11) holds for m = g where q € N, then
based on the Eq. (11), we have

_ m ‘Pz(1+T(Az))
SVNYPWA,(Ay, Ay, ..., Ag) = ®F, ST o e T A A,
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1

q _e(147AD)) . MY . >
72=131  0,(1+T(47)) min. (1' (a, )),

_ N4 02(14T(47)) ; _ Py .
=1 =157 o (147 (a0) min. (1, (1 = ,)");

4 ©z(1+4T (A7) , _ o
\ 1 z=1 Zg=1 <Pz(1+T(Az)) min. (1' (1 yZ) )

Now form = q + 1, then

0,(1+T(4,)) 4 ((Pq+1(1+T(Aq+1))Az+1)

—ma
SYNYPW Ay (Ay, Az, o, A Aqis) =5y I (@ (14T(40) (Pqe1(1+7(4g41))) vt

q 0z(1+T(42) . .
=T o riray) M (1, (@,”);

_ya o) o
1= 2057 pyvragy M (WA= B3 | @

_\a 0z(1+T(A7)) , NP
\ 1 z=1 Zg=1¢z(1+T(Az)) min. (1' (1 )/Z) )

oI

fﬂq+1(1+T(Aq+1)) ,
7@,“(1#(&1“)) min. (1, (aqﬂp))

pan(+70g)
1 - m min. (1, ((1 — ﬁq+1)P))

0q+1(14T(4g41))
1 - m min. (1, (1 — (1 — yq+1)P))

|~

ZQHM min. (1, (a,”));

Z=1 39 0,41 (14T(4,))

_ g+l 9z+1(1+4T(47)) . _ ) .
=|1 Zz:l Z?ii Pz+1(1+T(47)) . (1’ (@ =5 )) '

g+ ©z+1(1+T(42)) . _ p
1 Zz:l Zgzll le+1(1+T(Az)) min. (1' (1 ]/z) )

Thus Eq. (11) is true for m = g + 1. Hence, it shows that Eq. (11) holds for all m € N.

2.3. Single-valued neutrosophic Yager power ordered weighted averaging operator

Let A, = (a,, B, 7,) be SVNSs for z=1,2,...,m. Then SUNOWA operator of
dimension m is a function SVNYPOWA:Q™ — Q with weight vector w =
(w1, Wy, «.., Wy,)T such that w, € [0,1], and Y%, w, = 1. Thus,

O wz(1+T(Ax ) JArz)
SVNYPOWApr(Ap Az; ---'Am) = Z;=1£z(1+T(A/1(z))))
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1

m a)z(1+T(AA(z))) ) . o
z=1 'gl=1a)z(1+T(A/1(z))) i (1' aA(Z)p) '
_ym M i _ p).
= | 1 G gy ™ (LA Baw)) (14)

m 04T (4a))
2=lygm 0 (14T(430))
Where (4(1),A(2), ..., A(m)) are the permutations of A(z) for which A;,_1) = A;(, and
T(AA(Z)) denotes the support of the largest SVNSs A, from the other SVNSs.
Therefore, T(AA(Z)) = Y7e1yzz SUPD. (AA(Z), A,l(y)).
In the next subsection, we introduced a single-valued neutrosophic Yager power

geometric operator, and a single-valued neutrosophic Yager power ordered weighted
geometric aggregation operator (SVNYPOWGA) for SVNSs.

min. (1, (1- y)l(z))p )

2.4. Single-valued neutrosophic Yager power geometric operator

Let A, = (a;B,7,) be SVNSs for z=1,2,..,m. Then, the single-valued
neutrosophic Yager power geometric (SVNYPG) operator is a function defined as
follows:

(1+T(Az))

SVNYPG (A1, Ay, ..., Ay) = @y ASTE10+T(AZ) (15)
Where T(A,) = X7L1yz, Supp. (AZ,Ay), and Supp.(A, A,) defines the support of
A, and 4, satisfying the following properties:

(i) Supp.(4,4,)€[01].

(i) Supp. (AZ,Ay) = Supp.(Ay,Az).

(iii) Supp. (A, 4,) = Supp. (4, A;) ifd (A, Ay) < d(A,, As) d (A, Ay) < d(4,, A)
where d denotes the distance measure.

The aggregating operator in Eq. (15) has been obtained by using Yager’s PA operator
and Yager product operation YO2. By applying Yager operations on SVNSs, we get the
following theorem.

Theorem 3. Let A, = (a,, B, v,) be SVNSs for z=1,2,..,m. Then by applying
SVNYPG on SVNSs, the aggregated value obtained is also an SVNS. Therefore,
(14T (42))
SVNYPG (A1, Ay, ..., Ap) =@M, A,Lz=11+T(42)

[

(1+T(42) , b
i ——— min.(1, (1 — a,)”);
1-27% ZZ=1(1+T((1A+Z;)(A )
- T, D) nin (1, 8,9); (16)

Z=lym (1+T(A5))
m (147(4p)
z=1ym (14T(4))

where T(A;) = YLy yey Supp. (A, Ay). (17)

min. (1,v,”)
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Theorem 4. Let A, = (a,,B,,v,) be SVNSs for z=1,2,..,m. Then by applying
SVNYPWGA on SVNSs, the aggregated value obtained is also a SVNSs, ¢ =
(@01, P2y e @) Tis the weight vector of A, where @, € [0,1]7s.t Y™, @, = 1.
Therefore, SUNYPWG: Y™ — p accepts the following
_ (1+T(42))
SVNYPG,(Aq, Az, s A) =®71q (Az)m.
1
92(14T(45)) , —2.)-\?
e T(a) min. (1, (1 — a,)?);
_ 1—-X75 m 0z(1+T(42)) in. (1 p). 18
- =T ey rrag) T (LA (18)
m (Pz(1+T(Az))
Z=L L 02(14T(4)

Where T(A;) = Y04y yzr 9-Supp. (4, Ay). (19)

min. (1,y,”)

The proof of the given theorem is similar to theorem 2.

2.5. Single-valued neutrosophic Yager power ordered the weighted geometric
operator

Let A, = (a, B, v,) be SVNSs for z = 1,2, ...,m. Then SVNYPOGA operator is a
function SYNYPOWGA: Q™ — Q with weight vector = (W, Wy, ..., Wp)T st w, €
[0,1], and Y 7-, w, = 1. Thus,

(1+7(A20))

SUNYPOWGA, (A1, Agy o, Ar) = @y Ay Zei(147(410)

1

om wo(14T(43()) . _ oY,
L= I G o vty ™ (A~ @0)°);

= m o) ”),
Z=122r1:10)z(1+T(AMZ))) mm.(l, '8/1(2) )' (20)

Zm'_l wz(1+T(AA(z)))

_ @\ @) p
Z;n=1wz(1+T(AA(Z))) mln'(l' Vi@ )

where (1(1),A(2), ..., A(m)) are the permutations of A(z) for which A;,_1)>4,(,) and
T(AA(Z)) denotes the support of the zth the largest SVNSs A, ;) from the other SVNSs.
Hence, T(Ax(z) = X7t yr Subp- (Arzy Arey))-

In the next section, we develop the application of proposed aggregation operators in
the MADM problem.

3. APPLICATION OF AGGREGATION OPERATORS IN MADM
PROBLEM

In this section, we propose a MADM method using SVNYP aggregation operators
under SVN environment. Here MADM problem is studied to investigate the advantage of
evaluating the emerging software systems selection under the SVN environment. Let
M = {M,,M,, ..., M,,} be a finite set of alternatives, and L = {L,L,, ..., L,} be a set of
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attributes having weight vector ¢ = {¢, @,, ..., ¢;} such that ¢, € [0,1], ¥7%, ¢, = 1.
Consider 4, = (ayz,ﬁyz, yyz)lxm is the SVN decision matrix, where a,, denotes the
degree of truth membership function, f,, denotes the indeterminacy membership
function, and y,, denotes the falsity membership function such that 0 < a,, + B, +
Vyz < 3.

To interpret and solve the MADM problem, we follow an algorithm using
SVNYPWA and SVNYPWGA operators as shown in the flowchart (Figure 1).

Construct the SWIN
decision matrix D=(A. Y+,

J

MNormalize the SVN decision matrix
D™ =( Ay zii=m

!

Compute the
supports Supp A . AL 0 by using the
Hausdorif distance measure.

!

Compute the weight associated
with A

i

Evaluate the
weighted support

i

To obtain the overall preference value, we utilize the
decision information given in matrix I and the
suggested SWVINYPA operator

i

‘ Compute the score value |

l

Based on the score
value, rank all the alternatives to choose the best
alternative.

Figure 1: The flowchart of the proposed MADM algorithm.

Algorithm:

Step 1. Select the alternatives and attributes as given in set M and L, respectively. We
obtain the single-valued neutrosophic decision matrix D = (Ay,)ixm;y = 1,2,..,1; z =
1,2,..,m.

Step 2. Compute the normalized SVN decision matrix D = (Ayz)zxm , where

A = {(aij,ﬁij,yij) for benefit criteria

yz

2]

(yi]-, Bij, aij) for cost criteria
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Step 3. Compute support by using the Hausdorff distance measure given by [46] and is
given as below:

Supp (Ay2, Ayy) = 1—d (Ay,, Ayy) (22)
Where d (A4, Ayy) = %max. (layz = aywl: [Byz = Bywl: [1yz = vywl)-

Step 4. Apply the weight of the attribute ¢, to obtain the weighted support T (Ayz)
between 4,,, and A,,, SVNSs such that

T (Ayz ) = Z$=1,W¢Z P Supp (Ayz'Ayw) (23)
and compute the weight A, associated with 4,,; y =1,2,..[;z=1,2,..,m

— 9z (1+T(Ayz))
yz Y19z (1+T(Ayz))

Where Ay, > 0,and Y71 A, = 1.

A (24)

Step 5. Using the information in the decision matrix and by SVNYPWA operator.

7z (9z(14T(A2))A7) _

ny = SYNYPW Ay (A1, Ay, .., Ap) = S5ot 2o

m (14T (4,))
z=lym  0,(1+T(42))

_ m 0z(14T(42) , _ oY, =
1 TR o () min. (1, (1 - B,)"); P (25)

_\m 92z(1+T(42)) . _ p
L= 2emgm gy M (1) A= 72)

min. (1, a,”);

(1+T(Az))
We can also utilize, iy, = SUNYPG, (A, Ay, ..., Am) = @Iy A27=10+T(42)

Cgm el
! z=1ym | 0,(147(4) min. (1, (1 — a,));

2(1+T(Az) . -

m @z(14T(4z) ; p
L= gy M- (1 (67)

For obtaining the preference values n,; y = 1, 2, ..., [ of the alternative M,,.

Step 6. Compute the score value T (n,,) using the definition of the score function to
determine the ranking of the alternatives M,,, to select the most suitable choice M,,. We
proceed to accuracy value o (n,) and o (n,) if 7, and 7, are the same.

Step 7. Rank the alternative M, according to the score value to choose the best
alternative. To implement this algorithm, we adapt an example [Ye] that illustrates the
effectiveness of the proposed aggregation operators in the field of MADM problems.

Example 1. Consider an investment company, which wants to invest a sum amount of
money in the best company. There are four possible alternatives to invest the money: (1)
M, is a car company; (2) M, is a food company; (3) M; is a computer company; (4) M, is
an arms company. The investment company must take under consideration the following
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three criteria while selecting the best option: (1) L, is the risk; (2) L, is the growth; (3) L
is the environmental impact with weight vector of the criteria W = (0.35, 0.25, 0.4). The
evaluation done by domain an expert for the given criteria is shown in Table 1.

Table 1: Evaluation of expertise for four alternatives under three attributes

M, M, M; M,
L (0.4,0.2,0.3) (0.6,0.1,0.2) (0.3,0.2,0.3) (0.7,0,0.1)
L, (0.4,0.2,0.3) (0.6,0.1,0.2) (0.5,0.2,0.3) (0.6,0.1,0.2)
Ls (0.2,0.2,0.5) (0.5,0.2,0.2) (0.5,0.3,0.2) (0.4,0.3,0.2)

For a selection of the most suitable and effective alternative, we use the SVNYPWA
and SVNYPWGA operators and follow the algorithm given above:

Step 1. By using the equation from (20) to (22) in the data presented in Table 1, we
compute the values of A, ;¥ = 1,2,...,1;z = 1, 2, ..., m which is shown below.

0.3371 0.1685 0.4942
0.3352 0.1676 0.4971
0.3307 0.1673 0.5019
0.3346 0.1692 0.4961

Step 2. With the values of A and data provided by decision-makers in Table 1, we
compute the aggregated SVN information, by using SVNYPWAS and SVNYPWGA
operator to calculate the overall SVNNG for the alternative M,, as shown in Table 2.

Table 2: Aggregated values of the alternatives using SVNYPWA and SVNYPWGA

Alternative SVNYPWA SVNYPWGA
M; (0.3010 0.2001, 0.3989) (0.3012, 0.1999, 0.3987)
M, (0.5502, 0.1498, 0.2000) (0.5503, 0.1497, 0.1999)
M; (0.4338, 0.2502, 0.2498) (0.4339, 0.2501, 0.2497)
M, (0.5341, 0.1658, 0.1666) (0.5342,0.1657, 0.1665)

Step 3. Obtain the score value corresponding to each alternative which is given in Table
3 by using aggregated values.

Table 3: Score values of the alternatives

Alternative SVNYPWA SVNYPWGA
M, 0.5673 0.5675
M, 0.7334 0.7335
M 0.6445 0.6446
M, 0.7339 0.7340

Step 4. Rank the alternatives according to the score values shown in Table 4.

Table 4: Ranking of the alternatives

Aggregation operator Ranking
SVNYPWA My > M, >M;>M,;
SVNYPWGA My > M, > Mz > M;

From Table 4, we conclude that alternative M, is the best company for the investment.
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4. SENSITIVITY ANALYSIS

The different values of the parameter p in SVNYPA operator may give different
results in a decision-making problem. In this section, we analyze the sensitivity of the
parameter p. We give variation in the values of parameters p. The score value and the
corresponding ranking order of the alternatives for different parameters (range from 0 <
p < 10) based on SVNYPWA and SVNYPWGA operators are shown in Table 5 and
Table 6.

Table 5: Influence of parameter by SVNYPWA operator in ranking of alternatives

p T (1) T (ny) 7 (n3) 7 () 7 (ns) Ranking

1 0.1523 0.1628 0.1565 0.0967 0.1026 My > My, > Mz > M,

2 0.1541 0.1636 0.1267 0.0986 0.1028 My > My > Mz > M,

3 0.1541 0.1637 0.1191 0.0986 0.1028 My > M, > M; > M,

4 0.1541 0.1636 0.1163 0.0986 0.1028 My > M, > M; > M,

5 0.1541 0.1636 0.1151 0.0986 0.1028 My > M, > M; > M,

6 0.1536 0.1638 0.1147 0.0989 0.1031 My > My, > Mz > M,

7 0.1544 0.1639 0.1145 0.0990 0.1032 My > My, > Mz > M,

8 0.1541 0.1636 0.1141 0.0984 0.1028 My > My, > Mz > M,

9 0.1541 0.1637 0.1141 0.0986 0.1028 My > M, > M; > M,
10 0.1541 0.1636 0.1140 0.0986 0.1028 My > M, > M; > M,

Table 6: Influence of parameter by SVNYPWGA operator in ranking of alternatives

p T (1) T (ny) T (n3) 7 (n4) T (ns5) Ranking

1 0.9249 0.9415 0.9148 0.8731 0.8749 M, >M, > M; > M,
2 0.9249 0.9414 0.9371 0.8731 0.8749 My > Mz >M; > M,
3 0.9241 0.9407 0.9406 0.8724 0.8742 My > Mz >M; > M,
4 0.9249 0.9414 0.9423 0.8731 0.8749 My > Mz > M, > M,
5 0.9249 0.9414 0.9426 0.8731 0.8749 M, > M3 > M, > M,
6 0.9246 0.9411 0.9425 0.8728 0.8746 M, > M3z > M, > M,
7 0.9244 0.9410 0.9424 0.8727 0.8745 My > Mz >M; > M,
8 0.9249 0.9414 0.9428 0.8731 0.8749 My > Mz >M; > M,
9 0.9248 0.9414 0.9427 0.8730 0.8748 My > Mz > M, > M,
10 0.9249 0.9414 0.9428 0.8731 0.8749 M, > M3z >M; > M,

From Table 5, it is evident that by using the SVNYPWA operator, the ranking orders
for p =1and p > 3 are identical i.e., My > M, > M; > M;. But when p = 2,3 the
ranking order is M, > M, > M3 > M; and M, is selected as the best alternative. On the
other hand, from Table 6, the ranking order for p = 1 is My, > M, > M3 > M;; for 2 <
p < 8; p = 10, the ranking order is similar i.e., M, > M; > M; > M, and for p = 9, the
ranking order is M, > M; > M, > M;. Hence, from both, we conclude that the
corresponding ranking order of the alternatives for the SVNYPWA operator can be
changed with different values of the parameter. Thus, the algorithm is sensible towards
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the parameters p. The suitable choice of the parameter p as per the conditions of a system
is expected to make the decision result more reliable.

5. CONSISTENCY OF PROPOSED METHOD

We utilize the MABAC method on the information given in Table 1. For this, the
systematic procedure is as follows:

Step 1. Normalize the decision matrix (Table 1). As all the attributes are of the same
type, so there is no need to normalize them.

Step 2. Calculate the weighted normalized decision matrix as shown below in Table 7 by
using Eq. (23).

Step 3. By using the normalized matrix n,, = (@, Byz Vy,) and attribute’s support
weight ¢, we compute the normalized fuzzy weighting matrix @F,, =
(a’yz,ﬁ'yz,y'yz);y =1,2,..,,z=1,2,..,m by applying the following formula,
PNy, = @ G}nyz; y=12,..,l;z=12,..,m

- (1 -(1- ayz)Az' (:Byz)Az' (Vyz)Az) Q27

9z (14T (Ayz))

where A, = o—— .
Y2 SR 0z (14T (Ayz)
Table 7: Normalized neutrosophic decision-matrix
M, M, M M,
Ly (0.1581,0.5812, 0.6664) (0.2644, 0.4621, 0.5830) (0.1112, 0.5872, 0.6937) (0.3315, 0, 0.4628)

L, (0.0824, 0.7624, 0.8163) (0.1423, 0.6798, 0.7635) (0.1094, 0.7639, 0.8175) (0.1436, 0.6773, 0.7616)
Ly (0.1044, 0.4514, 0.7099) (0.2914, 0.4493, 0.4493) (0.2938, 0.5464, 0.4458) (0.2238, 0.5503, 0.4500)

M, (ayZl ﬁyZl Vyz) (ayZ! ﬁyz’ yyz) e (ayz’ ﬁyz’ yyz)
M, (@yz Byz Vyz)  (@yz By Vyz) -+« (@yz Byz Vyz)
(prz = [nyz]lxm = M; . ' o ' (28)
M, . . .o .
Mq . . .o .
(ayZl ﬁyZl Vyz) (ayZ! ﬁyz’ yyz) e (ayz’ ﬁyz’ yyz)

Step 4. Compute the border approximation areas (BBA) values and for BBA matrix T =
[g2]ixm can be evaluated as

1

T

92 = ey )' = {(Ter )01 = (et )01 = (o)} ©9)

where [ is the no. of alternatives.

The BBA matrix is calculated using Eq. (29) as follows: g; = (0.1982,0.4478,0.6110),
g> = (0.1165,0.7241,0.7915), g; = (0.2115,0.5017,0.5302).

Step 5. Evaluate the distance between each alternative and BBA matrix by the following
equation:
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d (pnyz9.)  ifony, > g,
dy, = 0 ifpn,, =g, (30)

—d ((pnyz,gz) ifpn,, < g,

Where d (¢n,,, g,) denotes the distance measure from ¢n,,, to g, and we calculate the
distance measure by using Hamming distance [45] between each alternative and BBA
matrix given in Table 8.

Table 8: Distance between alternatives and BBA matrix

Ly Ly Ls
M, -0.0762 -0.0324 -0.1123
M, 0.0266 0.0326 0.0711
M3 -0.1030 -0.0243 0.0704
M, 0.2431 0.0345 0.0470

Step 6. Calculate the sum of the distance S, = Z§;=1 S, for each alternative by using
Table 8 and the result is as follows: S; = —0.2209, S, = 0.1303,S5; = —0.0569, S, =
0.3246. By verifying the result by the MABAC method for choosing the best alternative.
We obtain the following ranking order M, > M, > M5 > M; and hence, it shows that M,
is the best alternative. Thus, by using SVNYP operators and the SVN- MABAC method,
we obtained M, as the most suitable and desirable road construction company although
there is a slight change in ranking order. Thus, the proposed operators are consistent with
MABAC method.

6. COMPARATIVE ANALYSIS

To justify the advantage of the proposed methods, we consider the same decision-
making problem given in section 5. The comparative analysis between the proposed
method SVNYPWA and SVNYPWGA with some existing methods such as SVNPWA
[10], WAA and WGA operators for simplified neutrosophic sets offered in Ye [34],
SVNDPA and SVNDPGA operators established in Jana and Pal [45], and SVNPHA and
SVNGPHA operators suggested by Zhao et al. [44] to get the aggregated SVN values,
score value and ranking of the alternatives.The aggregated SVN values, score value and
ranking of the alternatives are presented in Table 9, 10, and 11, respectively.

Table 9: Aggregate values of the existing and proposed methods

SVNPWA

WAA

WGA SVNDPWA SVNDPWGA

(0.3464, 0.2000, 0.3492)
(0.5707, 0.1246, 0.2000)
(0.4423, 0.2281, 0.2630)
(0.5872, 0.0000, 0.1599)

(0.3268, 0.2000, 0.3881)
(0.5627, 0.1414, 0.2000)
(0.4375, 0.2416, 0.2616)
(0.5476, 0.1555, 0.1663)

(0.3031, 0.2000, 0.3680)  (0.3335, 0.2782, 0.4422) (0.2861, 0.1395, 0.3133)
(0.5578, 0.1320, 0.2000)  (0.5654, 0.1460, 0.2057)  (0.5559, 0.0672, 0.1927)
(0.4181, 0.2352, 0.2551) (0.4444,0.2775, 0.2695) (0.4051, 0.1398, 0.2141)
(0.5385, 0.0000, 0.1569) (0.5936, ND, ND) (ND, 0.0673, 0.1487)

Table 9: (Continued)

SVNPHA

SVNGPHA

Prop. (SVNYPWA) Prop. (SVNYPWGA)

(0.2885, 0.1565, 0.3200)
(0.5675, 0.0576, 0.2015)
(0.4670, 0.2341, 0.5786)
(0.5534, 0.1236, 0.2390)

(0.3032,0.1011, 0.3867)
(0.5567, 0.1256, 0.1985)
(0.4327, 0.6798, 0.2236)
(0.6754, 0.2145, 0.8897)

(0.3186, 0.5419, 0.3813) (0.3187,0.1145, 0.3812)
(0.5597, 0.5796, 0.6232) (0.5598, 0.0505, 0.0941)
(0.4295, 0.6239, 0.6644) (0.4296, 0.0983, 0.1388)
(0.5534, 0.5487, 0.5888) (0.5536, 0.0188, 0.0589)
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Table 10: Score values of the existing and proposed methods

Alternatives SVNPWA WAA WGA SVNDPWA  SVNDPWGA
M; 0.6524 0.5922 0.5863 0.5377 0.6110
M, 0.9243 0.9169 0.9188 0.7378 0.7652
M; 0.7858 0.7756 0.7696 0.6323 0.6837
M, 0.9649 0.9297 0.9601 ND ND

Table 10: (Continued)

SVNPHA  SVNGPHA  Prop. (SVNYPWA)  Prop. (SVNYPWGA)

M, 0.5678 0.6237 0.4651 0.6076
M, 0.7376 0.7865 0.4522 0.8050
M; 0.6541 0.6654 0.3803 0.7308
M, 0.9867 0.9843 0.4719 0.8253

Table 11: Ranking order of the alternatives

Operators Ranking
SVNPWA My, > M, > M3 > M,
WAA My >M; > M3 > M,
WGA My>M, > Mz > M,
SVNDPWA ND
SVNDPWGA ND
SVNPHA My > M, > M3 > M,
SVNGPHA My > My > My > M;
SVNYPWA My > My > My > M;
SVNYPWGA My > M, > M3z > My

ND: Divisible by zero problem.

From the numerical example, it is evident that M, is the most suitable and desirable
company. Although the ranking orders of the five methods (SVNPWA, WAA, WGA,
SVNPHA, SVNGPHA) and the proposed methods are slightly different, but still, appears
that the alternative M, is a desirable and suitable company.

Example 2. [45] Consider the problem of selecting the best road construction company
among the five road construction companies (M,) Jaihind Road Builders private (Pvt.)
limited (Ltd.), (M;)J.K. Construction, (M3) Tata Infrastructure Ltd, (M,) Birla Pvt. Ltd.,
and (Ms) Relcon Infra projects Ltd which are alternatives among the five possible
alternatives M,.(r = 1, 2, ...,5) under four criteria: L,: Contractor background experience,
L,: Technical Capability, L3: Tender price, and L,: Completion time.

From the comparative analysis between the proposed method SVNYPWA and
SVNYPWGA with SVNDPA and SVNDPGA operator as well as SVNPHA and
SVNGPHA established by Jana and Pal [45] and Zhao et al. [44] respectively to get the
aggregated SVN values, score value and ranking of the alternatives are given in Tables
12, 13 and 14.

From Table 14, we observed that the ranking produced by [44-45] and the proposed
method are slightly different, but still, it provides that similar best alternative i.e., Ms.
This justifies that the proposed methods proposed by us are more advanced and effective.
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Likewise, to determine the advantages of the proposed operator, we compare the existing
operator proposed by [44] and [45] with the suggested operator. To justify the
advantages, we reconsider a numerical Example of Jana and Pal [45].

Table 12: Aggregated values of the existing and proposed operators

Proposed Proposed
SVNDPWA  SVNDPWGA SVNPHA SVNGPHA
(SVNYPWA) (SVNYPWGA)

M (0.5810, 0.4377, (0.5636, 0.5934, (0.5871, 0.4382, (0.5567, 0.5876, (0.5777, 0.5353, (0.5778, 0.5352,
1 0.2214) 0.2856) 0.2132) 0.2376) 0.2558) 0.2557)

M (0.6000, 0.3916, (0.4934, 0.5444, (0.6234, 0.4352, (0.5055, 0.5555, (0.5431, 0.4775, (0.6245, 0.4773,
2 0.2220) 0.1524) 0.3456) 0.1524) 0.1550) 0.1548)

M (0.7159, 0.4005, (0.7217, 0.4853, (0.7349, 0.4238, (0.7100, 0.4865, (0.7004, 0.4542, (0.7006, 0.4540,
3 0.1820) 0.2105) 0.2210) 0.2564) 0.2119) 0.2117)

M (0.6673, 0.4241, (0.6443, 0.5375. (0.6578, 0.4376, (0.6534, 0.5467, (0.6559, 0.5011, (0.6561, 0.5009,
4 0.2302) 0.2425) 0.2576) 0.2569) 0.2330) 0.2328)

M (0.7002, 0.5315, (0.6089, 0.5763, (0.8543, 0.6548, (0.7120, 0.6200, (0.6225, 0.5507, (0.6227, 0.5548,
5 0.1333) 0.1528) 0.1234) 0.1527) 0.1555) 0.1553)

Table 13: Score values of the existing and proposed methods

Alternatives ~ SVNDPWA ~ SVNDPWGA ~ SVNPHA  SVNGPHA (Sf,rN"%‘;f;‘}A) (S\f;]‘?}‘,’\s;‘é )
M, 0.6406 0.5615 0.6210 0.5534 0.5955 0.5956
M, 0.6621 0.5989 0.6532 0.6210 0.6368 0.6641
M, 0.7111 0.6753 0.7233 0.6845 0.6780 0.6782
M, 0.6710 0.6214 0.6875 0.6332 0.6405 0.6407
M; 0.6785 0.6266 0.6834 0.6256 0.6373 0.6375

Table 14: Ranking order of the alternatives

Proposed Proposed

SVNDPWA  SVNDPWGA SVNPHA SVNGPHA (SVNYPWA) (SVNYPWGA)

My > Mg > M, M, > Mg > M, M, > M > M, My > Mg > M, My > M, > M,

>M,> M, >M,> M, >M,> M, >M,> M, >M,> M, M; > M, > M,

>M;> M,

Ranking

Example 3. In this example, we only change a little data from the example. We can find
that there are slight changes in the truth-membership value of L,, L,, and L, attributes for
alternative M5. The old value is (0.7,0.3,0.4), (0.7,0.5,0.2),(0.6,0.7,0.1),and (0.8,0.3,0.2)
and now the new value is (0.6,0.3,0.4),(0.6,0.5,0.2),(0.6,0.7,0.1),(0.6,0.3,0.2),
then we find the changes in the ranking results for the method proposed by Jana and Pal
[45], and Zhao et al. [44] and the suggested method with SVNYPWA operator. The
ranking results are given in Table 15.

From Table 15, we observe that the ranking results of the proposed method with the
SVNYPWA operator and the existing method are different. The ranking result by the
proposed method with the SVNYPWA operator remains the same while it is changed by
existing method. For existing method, the best alternative in both examples given in
section 6 are different, but on the other hand for similar examples given in section 6, M
is the best alternative by our suggested method. This justifies the advantages of the
proposed method, which can relieve the influence of too big or too small data. This
concludes that the result of the proposed method is more reasonable than the existing
method [44] and [45].
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Table 15: Ranking order of the alternatives

Score function with WAA

Method Ranking
operator
SF (M) =0.6406,
The method proposed SF (M,) = 0.662,
by Jana and Pal [45] SF (M3) = 0.6724, Mg > Mz > M, > M, > M,

SF (M,) = 0.6710,
SF (Ms) = 0.6785

SF (M;) =0.6400,

SF (M,) = 0.656,

SF (M) = 0.6432, Ms>M, > M, >M; > M,
SF (M,) = 0.6700,

SF (Ms) = 0.6785,

SF (M) = 0.5955,

The method proposed
by Zhao et al. [44]

The proposed method SF (M,) = 0.6368,
with the SVNYPWA SF (M3) = 0.6445, Mg > M, > Ms > M, > M,
operator SF (M,) = 0.6405,

SF (Ms) = 0.6373

7. CONCLUSION

In this article, the fusion of Yager operators and power operators resulted in the
development of the SVNYPWA operator, SVNYPOWA operator, SVNYPGA operator,
and SVNYPOGA operator. However, the newly developed aggregation operators were
found suitable for handling SVN information in MCDM problems in certain situations.
The proposed operators have also shown sensitivity towards the hyperparameter p. From
the analysis, it is shown that the corresponding ranking order of the alternatives for the
SVNYPWA operator can be changed with different values of the parameter and thus, the
algorithm is sensible towards the parameters p. The MABAC method was applied for the
verification to show the consistency of the proposed SVNYPWA aggregation operator.
Theoretically, our study guides the fusion of information using aggregation operators in
different situations. Practically, it has implications in the decision making, where we
need to aggregate the different information from the sources. The application discussed
in this article utilized artificial data. However, to investigate the proposed method's real-
time implications, we need to create SVN data in a real-time situation, as it is not
available in any repository. So, in the future, we will try to create SVN data to investigate
the proposed work's real-time implications. We shall also expand our models to single-
valued neutrosophic soft set environment.
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