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Abstract: The notion of Single-valued neutrosophic sets (SVNSs) being a generalization 

of fuzzy sets, intuitionistic fuzzy sets and picture fuzzy sets  enhances implications of 

these methods in various interdisciplinary problems. Aggregation operator is a prevalent 

tool for unifying the data from various sources and applied to solve the problems of 

decision-making. In this article, the Yager's operations and power averaging operator are 

utilized to formulate and investigate some single-valued neutrosophic Yager power 

operators, i.e., single-valued neutrosophic Yager power weighted averaging 

(SVNYPWA) operators, single-valued neutrosophic Yager power order weighted 

averaging (SVNYPOWA) operator, single-valued neutrosophic Yager power weighted 

geometric averaging (SVNYPWGA) operator, and single-valued neutrosophic Yager 

power ordered weighted geometric averaging (SVNYPOWGA). Some important 

properties of the suggested operators are discussed. Furthermore, SVNYPWA and 

SVNYPWGA operators in the SVN environment are applied to solve the multi-criteria 

decision-making (MCDM) problem for selecting a suitable road construction company. 

Also, the proposed method has been verified using the multi-attributive border 

approximation area comparison (MABAC) method. Finally, a comparative analysis has 

been done, to establish the advantage of the proposed approach over the existing 

methods.   
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1.  INTRODUCTION 

The issue of portraying inaccurate or incomplete information in real-world situations 

is very crucial to finding viable solutions to the problems. Under these situations, Zadeh 

[1] first initiated the concept of Fuzzy Sets (FS), as it acquired great attention due to its 

ability to handle uncertainty due to vagueness. However, the Fuzzy set attains only a 

membership degree to an element of a generic universe and lacks a non-membership 

degree, due to which fuzzy sets were expounded by Atanassov [2] and established a new 

notion called Intuitionistic Fuzzy Sets by adding the degree of non-membership. 

However, in some cases, FS and IFS are not sufficient to deal with indeterminate and 

inconsistent information in real-life situations. To overcome this problem, Smarandache 

[3] introduced Neutrosophic Sets as an extension of FSs and IFSs. To deal with real 

applications with specific descriptions, a subclass of neutrosophic sets termed Single-

valued neutrosophic sets (SVNSs) was introduced by Wang et al. [4]. The power-average 

(PA) operator and a power-ordered weighted average (POWA) operator, introduced by 

Yager [5] in which the weighting vectors depend on the input data and allow values to be 

fused to support and reinforce each other.  Xu [6] and Zhou [7] introduced the power 

geometric and generalized power arithmetic operators. In the existing literature, various 

researchers provided aggregation operators such as weighted averaging operator in 

different environments prominent among them are [8], [9] and [10] and applied in 

solving MCDM (multi-criteria decision-making) problems. The MCDM method is 

extensively used to rank alternatives under different attributes in real decision-making 

problems. Recently, aggregation operators emerged as an important tool to deal with 

MCDM problems and consist of a wide range of research results in the literature 

[11, 12, 13, 14, 15, 16]. Later, the OWA operator was introduced in intuitionistic fuzzy 

and interval-valued intuitionistic fuzzy environments. Some of the prominent studies 

related to aggregation operators based on FS, Bipolar fuzzy set, Picture FS, Interval-

valued picture fuzzy set, Pythagorean FS, and IFS are due to [17, 18, 19, 

20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35].  

Under a neutrosophic linguistic environment, Fan et al. [36] suggested a normalized 

weighted Bonferroni mean operator and normalized weighted geometric Bonferroni 

mean and applied in MAGDM problems. Liu et al. [37] introduced Neutrosophic 

Bonferroni weighted geometric mean operator based on multi-valued functions in a 

neutrosophic environment.  Yager [38] suggested a new aggregation operator namely the 

"Yager operator" with more flexibility of implications due to the underlying parameter. 

Akram and Shahzadi [39] introduced the q-rung ortho-pair FS-based Yager aggregation 

operators to deal with decision-making problems. In complex Pythagorean FS, Akram et 

al. [40] introduced Yager norm-based aggregation operations. Garg et al. [41] 

investigated the decision-making problem in testing the COVID -facility using Fermatean 

FS and Yager norm operator. Khan et al. [42] obtained a novel operational law based on 

the Yager t-norm and t-conorm under NS environment. The Aczel-Alsina operator under 

consideration of the interval-valued single-valued neutrosophic value by using t-norm 

and t-conorm proposed by Liaqat et al. [43]. Zhao et al. [44] combined the Heronian and 

Power aggregation operator in SVN environment and introduced a novel MADGDM 

method using the proposed operators. Afterward, Jana and Pal [45] introduced Dombi 

power aggregation operator and applied it to the MCDM process in the SVNSs 
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framework. To consider the advantages of power and Yager aggregation to determine 

uncertain data that arises in a real-world situation, SVNSs have immense capacity, and 

hence various MADM methods were established by using SVN Yager operations and 

power averaging functions that made a significant interest in developing our suggested 

study.    

To the best of our knowledge, there is no work in the literature based on aggregation 

operations that utilized the Yager operator and Power aggregation operation in the SVNS 

framework. This motivated us to develop the novel aggregation operations based on 

Yager operations imbibing the Power averaging, and geometric operators. 

The main contribution of the paper is as follows. 

1. We formulate a single-valued neutrosophic Yager power arithmetic aggregation 

(SVNYPA) operator, single-valued neutrosophic Yager power geometric averaging 

(SVNYPGA) operator, and weighted form of this operator namely SVNYPWA and 

SVNYPWGA. 

2. We Propose an MCDM method based on SVNYPWA and SVNYPWGA operators 

in the SVN environment. 

3. The sensitivity and verification of the proposed aggregating operators have also been 

studied. 

4. A comparative study to check the advantage and effectiveness of the proposed 

methods is also done. 

Subsequent content of this paper is organized as follows: In section 2, a background 

of relevant notions is set to define Yager type aggregation operations in the SVNS 

framework, and novel single-valued neutrosophic Yager power arithmetic and geometric 

averaging operators proposed along with some of their properties. Section 3 includes the 

application of the proposed aggregation operators in the MADM problem. In section 4, 

the sensitivity analysis of the proposed method has been presented. Section 5, 

investigates the consistency of the proposed approach with MABAC method. Section 6 

contrasts the proposed aggregation operators with some existing aggregating operators. 

Finally, conclusion is presented in Section 7. 

2. PRELIMINARIES 

In this section, first we set the appropriate background to define the new aggregation 

operators. 

2.1. Background 

Definition 1. [4] Let 𝑿 be a universe of discourse. A  single-valued neutrosophic set 𝑨 in 

a universal set 𝑿 is described by a triplet that constitutes with truth membership value, 

indeterminacy-membership value, and the falsity-membership value s.t   𝜶𝑨: 𝑿 →
[𝟎, 𝟏], 𝜷𝑨: 𝑿 → [𝟎, 𝟏] 𝒂𝒏𝒅 𝜸𝑨: 𝑿 → [𝟎, 𝟏] with condition  

0 ≤ 𝛼𝐴(𝑥𝑖) + 𝛽𝐴(𝑥𝑖) + 𝛾𝐴(𝑥𝑖) ≤ 3. (1) 

Here, 𝛼𝐴(𝑥𝑖),  𝛽𝐴(𝑥𝑖), and 𝛾𝐴(𝑥𝑖) denote the membership value, indeterminacy value, 

and non-membership value.  
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Definition 2. [8] Let 𝐴 = (𝛼𝐴, 𝛽𝐴, 𝛾𝐴) be a single-valued neutrosophic number of 𝑥𝑖 ∈ 𝑋. Then a 

score function SF(A) is defined as follows 

 𝑆𝐹 (𝐴) =  
2+𝛼𝐴− 𝛽𝐴− 𝛾𝐴

3
, 𝑆𝐹 (𝐴) ∈ [0, 1]. (2) 

and, accuracy function can be defined as: 

𝐴𝐹 (𝐴) =  𝛼𝐴 − 𝛾𝐴, 𝐴𝐹(𝐴) ∈ [−1, 1]. (3) 

For any two SVNSs 𝐴1 and 𝐴2, Deli and Subas [12] following essential requirements: 

(i) If 𝑆𝐹 (𝐴1) < 𝑆𝐹 (𝐴2), imply 𝐴1 < 𝐴2. 
(ii) If 𝑆𝐹 (𝐴1) > 𝑆𝐹 (𝐴2), imply 𝐴1 > 𝐴2. 
(iii) If 𝑆𝐹 (𝐴1) = 𝑆𝐹 (𝐴2), then  

a. If 𝐴𝐹 (𝐴1) < 𝐴𝐹 (𝐴2), imply 𝐴1 < 𝐴2. 
b. If 𝐴𝐹 (𝐴1) > 𝐴𝐹 (𝐴2), imply 𝐴1 > 𝐴2. 
c. If 𝐴𝐹 (𝐴1) = 𝐴𝐹 (𝐴2), imply 𝐴1 ∼ 𝐴2. 

Definition 3. [38] Let us suppose that 𝐴 and 𝐵 are two real numbers. Then Yager TN (t-

norm) and Yager TCN (t-conorm) can be defined as follows: 

𝑌𝑎𝑔𝑒𝑟𝑇𝑁(𝐴, 𝐵) = 1 − 𝑚𝑖𝑛. (1,   ((1 − 𝐴)𝜌 + (1 − 𝐵)𝜌)
1

𝜌) (4) 

and  

𝑌𝑎𝑔𝑒𝑟𝑇𝐶𝑁(𝐴, 𝐵) = 𝑚𝑖𝑛. (1, (𝐴𝜌 − 𝐵𝜌)
1

𝜌) (5) 

where 𝜌 ≥ 1 and (𝐴, 𝐵) ∈ [0, 1] × [0, 1]. 

Operations based on Yager TN and Yager TCN [42]: 

Using Yager TN and Yager TCN defined in Eq. (4) and Eq. (5), Khan et al. [42] 

defined the follow sum and product operations. 

Let 𝐴1 and 𝐴2 be two SVNSs and 𝜌 > 0, then Yager sum and Yager product 

operations 𝐴1 = (𝛼1, 𝛽1, 𝛾1) and 𝐴2 = (𝛼2, 𝛽2, 𝛾2) are defined as below: 

𝒀𝑶𝟏. 𝐴1 ⊕ 𝐴2 =  

(𝑚𝑖𝑛. (1, (𝛼1
𝜌 − 𝛼2

𝜌)
1

𝜌) ; 𝑚𝑖𝑛. (1, (𝛼1
𝜌 − 𝛼2

𝜌)
1

𝜌) ; 1 − 𝑚𝑖𝑛. (1, ((1 − 𝛾1)
𝜌 + (1 − 𝛾2)

𝜌)
1

𝜌)) ;  

𝒀𝑶𝟐.  𝐴1 ⊗ 𝐴2 = 

(1 − 𝑚𝑖𝑛. (1, ((1 − 𝛼1)
𝜌 + (1 − 𝛼2)

𝜌)
1

𝜌) ; 𝑚𝑖𝑛. (1, (𝛽1
𝜌 − 𝛽2

𝜌)
1

𝜌) ;𝑚𝑖𝑛. (1, (𝛾1
𝜌 − 𝛾2

𝜌)
1

𝜌)) ;  

𝒀𝑶𝟑.  𝜆𝐴1 = 

(𝑚𝑖𝑛. (1, (𝜆𝛼1
𝜌)

1
𝜌) ; 1 −𝑚𝑖𝑛. (1, (𝜆(1 − 𝛽1)

𝜌)
1
𝜌) ;  1 − 𝑚𝑖𝑛. (1, (𝜆(1 − 𝛾1)

𝜌)
1
𝜌)) ; 

𝒀𝑶𝟒.  𝐴1
𝜆 =    

(1 − 𝑚𝑖𝑛. (1, ((1 − 𝛼1)
𝜌)

1

𝜌) ; 𝑚𝑖𝑛. (1, (𝛽1
𝜌)

1

𝜌) ;𝑚𝑖𝑛. (1, (𝛾1
𝜌)

1

𝜌)). 

Definition 4. [45] The Power averaging (PA) operator is defined as follows 

𝑃𝐴 (𝑎1, 𝑎2, … , 𝑎𝑚) =  
∑ (1+𝑇(𝑎𝑧))𝑎𝑧

𝑚
𝑧=1

∑ (1+𝑇(𝑎𝑧))
𝑚
𝑧=1

 (6) 
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Where 𝑇(𝑎𝑧) =  ∑ 𝑆𝑢𝑝𝑝. (𝑎𝑧 , 𝑎𝑦),𝑚
𝑧=1 𝑦≠𝑧  and 𝑆𝑢𝑝𝑝. (𝑎, 𝑏) is the support of 𝑏 for 𝑎, 

follows some properties:  

(i)   𝑆𝑢𝑝𝑝. (𝑎, 𝑏) ∈ [0,1]. 
(ii)  𝑆𝑢𝑝𝑝. (𝑎, 𝑏) = 𝑆𝑢𝑝𝑝. (𝑏, 𝑎). 
(iii) 𝑆𝑢𝑝𝑝. (𝑎, 𝑏) ≥ 𝑆𝑢𝑝𝑝. (𝑟, 𝑠) 𝑖𝑓 |𝑎 − 𝑏| < |𝑟 − 𝑠|. 

Where 𝑆𝑢𝑝𝑝. defines the similarity index when two values are more similar, then two 

values are closer and then support between them is stronger.  
 

Definition 5. [45] The Power geometric (PG) operator is defined as follows 

𝑃𝐺 (𝑎1, 𝑎2, … , 𝑎𝑚) =  ∏ (𝑎𝑧)
(1+𝑇(𝑎𝑧))

∑ (1+𝑇(𝑎𝑧))𝑚
𝑧=1𝑚

𝑧=1  . (7) 

With the fusion of Yager and power operation on SVNSs, a single-valued 

neutrosophic Yager power weighted arithmetic (SVNYPWA) operator, and single-valued 

neutrosophic Yager power ordered weighted arithmetic (SVNYPOWA) operator, Yager 

power weighted geometric (SVNYPWG) operator, and single-valued neutrosophic Yager 

power ordered weighted geometric (SVNYPOWG) operator are proposed in the 

following. 

2.2. Single-valued neutrosophic Yager power arithmetic aggregation operator 

Let 𝐴𝑧 = (𝛼𝑧 , 𝛽𝑧, 𝛾𝑧) be SVNSs for 𝑧 = 1, 2, … ,𝑚. Then, the single-valued 

neutrosophic Yager power arithmetic (SVNYPA) operator is a function defined as 

follows: 

𝑆𝑉𝑁𝑌𝑃𝐴 (𝐴1, 𝐴2, … , 𝐴𝑚) =  
⊕𝑧=1 

𝑚 (1+𝑇(𝐴𝑧))𝐴𝑧

∑ (1+𝑇(𝐴𝑧))𝑚
𝑧=1

 (8) 

Where 𝑇(𝐴𝑧) =  ∑ 𝑆𝑢𝑝𝑝. (𝐴𝑧 , 𝐴𝑦),
𝑚
𝑧=1 𝑦≠𝑧  and 𝑆𝑢𝑝𝑝. (𝐴𝑧, 𝐴𝑦) defines the support of 

𝐴𝑦 and 𝐴𝑧, holds some important properties:  

(i)   𝑆𝑢𝑝𝑝. (𝐴𝑧, 𝐴𝑦) ∈ [0,1]. 

(ii)  𝑆𝑢𝑝𝑝. (𝐴𝑧, 𝐴𝑦) = 𝑆𝑢𝑝𝑝. (𝐴𝑦, 𝐴𝑧). 

(iii) 𝑆𝑢𝑝𝑝. (𝐴𝑧 , 𝐴𝑦) ≥ 𝑆𝑢𝑝𝑝. (𝐴𝑟 , 𝐴𝑠) 𝑖𝑓 𝑑 (𝐴𝑧 , 𝐴𝑦) < 𝑑(𝐴𝑟 , 𝐴𝑠) where 𝑑 denotes the 

distance measure. 

The aggregating operator in Eq. (8) has been obtained by using Yager’s PA operator 

and Yager sum operation YO1. By applying Yager operations on SVNSs, we get the 

following theorem. 

Theorem 1. Let 𝐴𝑧 = (𝛼𝑧 , 𝛽𝑧 , 𝛾𝑧) be SVNSs for 𝑧 = 1, 2, … ,𝑚. Then by applying 

SVNYPA on SVNSs, the aggregated value obtained is also an SVNS. Therefore, 

𝑆𝑉𝑁𝑌𝑃𝐴 (𝐴1, 𝐴2, … , 𝐴𝑚) =  
⊕𝑧=1 

𝑚 (1+𝑇(𝐴𝑧))𝐴𝑧

∑ (1+𝑇(𝐴𝑧))𝑚
𝑧=1

  

=

(

 
 
 

∑
(1+𝑇(𝐴𝑧))

∑ (1+𝑇(𝐴𝑧))𝑚
𝑧=1

 𝑚𝑖𝑛. (1, 𝛼𝑧
𝜌);

 

𝑚
𝑧=1

1 − ∑
(1+𝑇(𝐴𝑧))

∑ (1+𝑇(𝐴𝑧))𝑚
𝑧=1

 𝑚𝑖𝑛. (1, (1 − 𝛽𝑧)
𝜌); 𝑚

𝑧=1

1 − ∑
(1+𝑇(𝐴𝑧))

∑ (1+𝑇(𝐴𝑧))𝑚
𝑧=1

 𝑚𝑖𝑛. (1, (1 − 𝛾𝑧)
𝜌) 𝑚

𝑧=1   
)

 
 
 

 
1

𝜌  (9) 

where  𝑇(𝐴𝑧) = ∑ 𝑆𝑢𝑝𝑝. (𝐴𝑧 , 𝐴𝑦).
𝑚
𝑧=1 𝑦≠𝑧  (10) 
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In the SVNYPA and SVNYPGA operators, we only take into account the power 

weight vector and interrelationship among SVNNs but not the weight of every SVNN. 

However, in many realistic decision-making, the weights of attributes are also an 

important parameter. Thus, we propose the single-valued neutrosophic numbers Yager 

power weighted arithmetic (SVNYPWA) and geometric (SVNYPWGA) operator as 

given below. 

Theorem 2. Let 𝐴𝑧 = (𝛼𝑧 , 𝛽𝑧 , 𝛾𝑧) be SVNSs for 𝑧 = (1, 2, … ,𝑚). Then by applying 

SVNYPWA on SVNSs, the aggregated value obtained is also a SVNSs, 𝜑 =
 (𝜑1, 𝜑2, … , 𝜑𝑚)𝑇is the weight vector of 𝐴𝑧 where 𝜑𝑧 ∈  [0, 1]𝑇s.t ∑ 𝜑𝑧

𝑚
𝑧=1 = 1. 

Therefore, 𝑆𝑉𝑁𝑌𝑃𝑊𝐴: 𝜓𝑚 → 𝜓 accepts the following 

𝑆𝑉𝑁𝑌𝑃𝐴𝜑(𝐴1, 𝐴2, … , 𝐴𝑚) =  
⊕𝑧=1 

𝑚 𝜑𝑧(1+𝑇(𝐴𝑧))𝐴𝑧

∑ 𝜑𝑧(1+𝑇(𝐴𝑧))𝑚
𝑧=1

  

=

(

 
 
 

∑
𝜑𝑧(1+𝑇(𝐴𝑧))

∑ 𝜑𝑧(1+𝑇(𝐴𝑧))𝑚
𝑧=1

 𝑚𝑖𝑛. (1, (𝛼𝑧
𝜌));

 

𝑚
𝑧=1

1 − ∑
𝜑𝑧(1+𝑇(𝐴𝑧))

∑ 𝜑𝑧(1+𝑇(𝐴𝑧))𝑚
𝑧=1

 𝑚𝑖𝑛. (1, (1 − 𝛽𝑧)
𝜌); 𝑚

𝑧=1

1 − ∑
𝜑𝑧(1+𝑇(𝐴𝑧))

∑ 𝜑𝑧(1+𝑇(𝐴𝑧))𝑚
𝑧=1

 𝑚𝑖𝑛. (1, (1 − 𝛾𝑧)
𝜌)𝑚

𝑧=1 )

 
 
 

1

𝜌

 (11) 

where  𝑇(𝐴𝑧) = ∑ 𝜑𝑧𝑆𝑢𝑝𝑝. (𝐴𝑧, 𝐴𝑦).𝑚
𝑧=1 𝑦≠𝑧  (12)                                                   

By mathematical induction, we can prove theorem 2 as follows: 

Proof.  Let 𝑚 = 2, by Yager operations on SVNSs and by power aggregation operator, 

we obtain the results 𝐴1 ⊕ 𝐴2 = (𝛼1, 𝛽1, 𝛾1) ⊕ (𝛼2, 𝛽2, 𝛾2) and from the right side of 

(9), we have  

𝑆𝑉𝑁𝑌𝑃𝐴𝜑(𝐴1, 𝐴2) =

(

 
 
 

𝜑1(1+𝑇(𝐴1))

∑ 𝜑1(1+𝑇(𝐴1))
2
𝑧=1

 𝑚𝑖𝑛. (1, (𝛼1
𝜌))  + 

𝜑2(1+𝑇(𝐴2))

∑ 𝜑2(1+𝑇(𝐴2))
2
𝑧=1

 𝑚𝑖𝑛. (1, 𝛼2
𝜌 );

 

1 −  
𝜑1(1+𝑇(𝐴1))

∑ 𝜑1(1+𝑇(𝐴1))
2
𝑧=1

 𝑚𝑖𝑛. (1, (1− 𝛽
1
)𝜌) +

𝜑2(1+𝑇(𝐴2))

∑ 𝜑2(1+𝑇(𝐴2))
2
𝑧=1

 𝑚𝑖𝑛. (1, (1 − 𝛽
2
)𝜌);

1 − 
𝜑1(1+𝑇(𝐴1))

∑ 𝜑1(1+𝑇(𝐴1))
2
𝑧=1

 𝑚𝑖𝑛. (1, (1 − 𝛾1)
𝜌) +

𝜑2
(1+𝑇(𝐴2))

∑ 𝜑2
(1+𝑇(𝐴2))

2
𝑧=1

 𝑚𝑖𝑛. (1, (1 − 𝛾2)
𝜌 ) 

)

 
 
 

1

𝜌

  

=

(

  
 

∑
𝜑𝑧(1+𝑇(𝐴𝑧))

∑ 𝜑𝑧(1+𝑇(𝐴𝑧))2
𝑧=1

 𝑚𝑖𝑛. (1, (𝛼𝑧
𝜌))2

𝑧=1 ;

1 − ∑
𝜑𝑧(1+𝑇(𝐴𝑧))

∑ 𝜑𝑧(1+𝑇(𝐴𝑧))2
𝑧=1

 𝑚𝑖𝑛. (1, (1 − 𝛽𝑧)
𝜌)2

𝑧=1 ; 

1 − ∑
𝜑𝑧(1+𝑇(𝐴𝑧))

∑ 𝜑𝑧(1+𝑇(𝐴𝑧))2
𝑧=1

 𝑚𝑖𝑛. (1, (1 − 𝛾𝑧)
𝜌)2

𝑧=1 )

  
 

1

𝜌

 (13) 

Thus, Eq. (11) true for 𝑚 = 2. Suppose Eq. (11) holds for 𝑚 = 𝑞 where 𝑞 ∈ 𝑁, then 

based on the Eq. (11), we have 

𝑆𝑉𝑁𝑌𝑃𝑊𝐴𝜑(𝐴1, 𝐴2, … , 𝐴𝑞) = ⊕𝑧=1 
𝑚 𝜑𝑧(1+𝑇(𝐴𝑧))

∑ (𝜑𝑧(1+𝑇(𝐴𝑧))𝑚
𝑧=1 )

𝐴𝑧  
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=

(

 
 
 

∑
𝜑𝑧(1+𝑇(𝐴𝑧))

∑ 𝜑𝑧(1+𝑇(𝐴𝑧))
𝑞
𝑧=1

 𝑚𝑖𝑛. (1, (𝛼𝑧
𝜌))

𝑞
𝑧=1 ;

1 − ∑
𝜑𝑧(1+𝑇(𝐴𝑧))

∑ 𝜑𝑧(1+𝑇(𝐴𝑧))
𝑞
𝑧=1

 𝑚𝑖𝑛. (1, (1 − 𝛽𝑧)
𝜌)𝑞

𝑧=1 ; 

1 − ∑
𝜑𝑧(1+𝑇(𝐴𝑧))

∑ 𝜑𝑧(1+𝑇(𝐴𝑧))
𝑞
𝑧=1

 𝑚𝑖𝑛. (1, (1 − 𝛾𝑧)
𝜌)𝑞

𝑧=1 )

 
 
 

1

𝜌

  

Now for 𝑚 = 𝑞 + 1, then  

𝑆𝑉𝑁𝑌𝑃𝑊𝐴𝜑(𝐴1, 𝐴2, … , 𝐴𝑞 , 𝐴𝑞+1) =⊕𝑧=1 
𝑞 𝜑𝑧(1+𝑇(𝐴𝑧))

∑ (𝜑𝑧(1+𝑇(𝐴𝑧))
𝑞
𝑧=1 )

𝐴𝑧 ⨁
(𝜑𝑞+1(1+𝑇(𝐴𝑞+1))𝐴𝑧+1)

(𝜑𝑞+1(1+𝑇(𝐴𝑞+1)))
 𝐴𝑧+1  

= 

(

 
 
 

∑
𝜑𝑧(1+𝑇(𝐴𝑧))

∑ 𝜑𝑧(1+𝑇(𝐴𝑧))
𝑞
𝑧=1

 𝑚𝑖𝑛. (1, (𝛼𝑧
𝜌))

𝑞
𝑧=1 ;

1 − ∑
𝜑𝑧(1+𝑇(𝐴𝑧))

∑ 𝜑𝑧(1+𝑇(𝐴𝑧))
𝑞
𝑧=1

 𝑚𝑖𝑛. (1, (1 − 𝛽𝑧)
𝜌)𝑞

𝑧=1 ; 

1 − ∑
𝜑𝑧(1+𝑇(𝐴𝑧))

∑ 𝜑𝑧(1+𝑇(𝐴𝑧))
𝑞
𝑧=1

 𝑚𝑖𝑛. (1, (1 − 𝛾𝑧)
𝜌)𝑞

𝑧=1 )

 
 
 

 ⊕  

(

 
 
 
 

𝜑𝑞+1(1+𝑇(𝐴𝑞+1))

𝜑𝑞+1(1+𝑇(𝐴𝑞+1))
𝑚𝑖𝑛. (1, (𝛼𝑞+1

𝜌))

1 −  
𝜑𝑞+1(1+𝑇(𝐴𝑞+1))

𝜑𝑞+1(1+𝑇(𝐴𝑞+1))
 𝑚𝑖𝑛. (1, ((1 − 𝛽𝑞+1)

𝜌))

1 − 
𝜑𝑞+1(1+𝑇(𝐴𝑞+1))

𝜑𝑞+1(1+𝑇(𝐴𝑞+1))
 𝑚𝑖𝑛. (1, (1 − (1 − 𝛾𝑞+1)

𝜌))
)

 
 
 
 

1

𝜌

  

=

(

 
 
 

∑
𝜑𝑧+1(1+𝑇(𝐴𝑧))

∑ 𝜑𝑧+1(1+𝑇(𝐴𝑧))
𝑞+1
𝑧=1

 𝑚𝑖𝑛. (1, (𝛼𝑧
𝜌))

𝑞+1
𝑧=1 ;

1 −  ∑
𝜑𝑧+1(1+𝑇(𝐴𝑧))

∑ 𝜑𝑧+1(1+𝑇(𝐴𝑧))
𝑞+1
𝑧=1

 𝑚𝑖𝑛. (1, ((1 − 𝛽𝑧)
𝜌))

𝑞+1
𝑧=1 ;

1 −  ∑
𝜑𝑧+1(1+𝑇(𝐴𝑧))

∑ 𝜑𝑧+1(1+𝑇(𝐴𝑧))
𝑞+1
𝑧=1

 𝑚𝑖𝑛. (1, (1 − 𝛾𝑧)
𝜌)𝑞+1

𝑧=1 )

 
 
 

1

𝜌

  

Thus Eq. (11) is true for 𝑚 = 𝑞 + 1. Hence, it shows that Eq. (11) holds for all 𝑚 ∈ 𝑁. 

2.3. Single-valued neutrosophic Yager power ordered weighted averaging operator 

 Let 𝐴𝑧 = (𝛼𝑧 , 𝛽𝑧 , 𝛾𝑧) be SVNSs for 𝑧 = 1, 2, … ,𝑚. Then 𝑆𝑉𝑁𝑂𝑊𝐴 operator of 

dimension m is a function 𝑆𝑉𝑁𝑌𝑃𝑂𝑊𝐴:Ω𝑚 ⟶ Ω with weight vector 𝜔 =
 (𝜔1, 𝜔2, … , 𝜔𝑚)𝑇 such that   𝜔𝑧 ∈ [0, 1], and ∑ 𝜔𝑧

𝑚
𝑧=1 = 1. Thus,  

𝑆𝑉𝑁𝑌𝑃𝑂𝑊𝐴𝜔,𝜑(𝐴1, 𝐴2, … , 𝐴𝑚) =  
⊕𝑧=1 

𝑚 𝜔𝑧(1+𝑇(𝐴𝜆(𝑧)))𝐴𝜆(𝑧)

∑ 𝜔𝑧(1+𝑇(𝐴𝜆(𝑧)))
𝑚
𝑧=1
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=

(

 
 
 
 
 

∑
𝜔𝑧(1+𝑇(𝐴𝜆(𝑧)))

∑ 𝜔𝑧(1+𝑇(𝐴𝜆(𝑧)))
𝑚
𝑧=1

 𝑚𝑖𝑛. (1, 𝛼𝜆(𝑧)
𝜌)𝑚

𝑧=1 ;

1 −∑
𝜔𝑧(1+𝑇(𝐴𝜆(𝑧)))

∑ 𝜔𝑧(1+𝑇(𝐴𝜆(𝑧)))
𝑚
𝑧=1

 𝑚𝑖𝑛. (1, (1 − 𝛽𝜆(𝑧))
𝜌)𝑚

𝑧=1 ;

∑
𝜔𝑧(1+𝑇(𝐴𝜆(𝑧)))

∑ 𝜔𝑧(1+𝑇(𝐴𝜆(𝑧)))
𝑚
𝑧=1

 𝑚𝑖𝑛. (1, (1 − 𝛾𝜆(𝑧))
𝜌 )𝑚

𝑧=1
)

 
 
 
 
 

1
𝜌

 (14) 

Where (𝜆(1), 𝜆(2), … , 𝜆(𝑚)) are the permutations of 𝜆(𝑧) for which 𝐴𝜆(𝑧−1) ≥ 𝐴𝜆(𝑧) and 

𝑇(𝐴𝜆(𝑧)) denotes the support of the largest SVNSs 𝐴𝜆(𝑧) from the other SVNSs. 

Therefore, 𝑇(𝐴𝜆(𝑧)) = ∑ 𝑆𝑢𝑝𝑝. (𝐴𝜆(𝑧), 𝐴𝜆(𝑦)).
𝑚
𝑧=1 𝑦≠𝑧  

In the next subsection, we introduced a single-valued neutrosophic Yager power 

geometric operator, and a single-valued neutrosophic Yager power ordered weighted 

geometric aggregation operator (SVNYPOWGA) for SVNSs. 

2.4. Single-valued neutrosophic Yager power geometric operator 

Let 𝐴𝑧 = (𝛼𝑧 , 𝛽𝑧, 𝛾𝑧) be SVNSs for 𝑧 = 1, 2, … ,𝑚. Then, the single-valued 

neutrosophic Yager power geometric (SVNYPG) operator is a function defined as 

follows: 

𝑆𝑉𝑁𝑌𝑃𝐺 (𝐴1, 𝐴2, … , 𝐴𝑚) = ⊗𝑧=1
𝑚 𝐴𝑧

(1+𝑇(𝐴𝑧))

∑ (1+𝑇(𝐴𝑧))𝑚
𝑧=1  (15) 

Where 𝑇(𝐴𝑧) =  ∑ 𝑆𝑢𝑝𝑝. (𝐴𝑧 , 𝐴𝑦),
𝑚
𝑧=1 𝑦≠𝑧  and 𝑆𝑢𝑝𝑝. (𝐴𝑧, 𝐴𝑦) defines the support of 

𝐴𝑦 and 𝐴𝑧 satisfying the following properties:  

(i) 𝑆𝑢𝑝𝑝. (𝐴𝑧, 𝐴𝑦) ∈ [0,1]. 

(ii) 𝑆𝑢𝑝𝑝. (𝐴𝑧, 𝐴𝑦) = 𝑆𝑢𝑝𝑝. (𝐴𝑦 , 𝐴𝑧). 

(iii) 𝑆𝑢𝑝𝑝. (𝐴𝑧, 𝐴𝑦) ≥ 𝑆𝑢𝑝𝑝. (𝐴𝑟 , 𝐴𝑠) if𝑑 (𝐴𝑧, 𝐴𝑦) < 𝑑(𝐴𝑟 , 𝐴𝑠) 𝑑 (𝐴𝑧, 𝐴𝑦) < 𝑑(𝐴𝑟 , 𝐴𝑠) 

where d denotes the distance measure. 

The aggregating operator in Eq. (15) has been obtained by using Yager’s PA operator 

and Yager product operation YO2. By applying Yager operations on SVNSs, we get the 

following theorem. 

Theorem 3. Let 𝐴𝑧 = (𝛼𝑧 , 𝛽𝑧 , 𝛾𝑧) be SVNSs for 𝑧 = 1, 2, … ,𝑚. Then by applying 

SVNYPG on SVNSs, the aggregated value obtained is also an SVNS. Therefore, 

𝑆𝑉𝑁𝑌𝑃𝐺 (𝐴1, 𝐴2, … , 𝐴𝑚) =⊗𝑧=1
𝑚 𝐴𝑧

(1+𝑇(𝐴𝑧))

∑ (1+𝑇(𝐴𝑧))𝑚
𝑧=1   

=

(

  
 1 − ∑

(1+𝑇(𝐴𝑧))

∑ (1+𝑇(𝐴𝑧))𝑚
𝑧=1

 𝑚𝑖𝑛. (1, (1 − 𝛼𝑧)
𝜌);

∑
(1+𝑇(𝐴𝑧))

∑ (1+𝑇(𝐴𝑧))𝑚
𝑧=1

 𝑚𝑖𝑛. (1, 𝛽𝑧
𝜌); 𝑚

𝑧=1

𝑚
𝑧=1

∑
(1+𝑇(𝐴𝑧))

∑ (1+𝑇(𝐴𝑧))𝑚
𝑧=1

 𝑚𝑖𝑛. (1, 𝛾𝑧
𝜌) 𝑚

𝑧=1 )

  
 

1

𝜌

 (16) 

where  𝑇(𝐴𝑧) = ∑ 𝑆𝑢𝑝𝑝. (𝐴𝑧 , 𝐴𝑦).
𝑚
𝑧=1 𝑦≠𝑧   (17) 
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Theorem 4. Let 𝐴𝑧 = (𝛼𝑧 , 𝛽𝑧 , 𝛾𝑧) be SVNSs for 𝑧 = 1, 2, … ,𝑚. Then by applying 

SVNYPWGA on SVNSs, the aggregated value obtained is also a SVNSs, 𝜑 =
 (𝜑1, 𝜑2, … , 𝜑𝑚)𝑇is the weight vector of 𝐴𝑧 where 𝜑𝑧 ∈  [0, 1]𝑇s.t ∑ 𝜑𝑧

𝑚
𝑧=1 = 1. 

Therefore, 𝑆𝑉𝑁𝑌𝑃𝑊𝐺: 𝜓𝑚 → 𝜓 accepts the following 

𝑆𝑉𝑁𝑌𝑃𝐺𝜑(𝐴1, 𝐴2, … , 𝐴𝑚) =⊗𝑧=1
𝑚 (𝐴𝑧)

(1+𝑇(𝐴𝑧))

∑ (1+𝑇(𝐴𝑧))𝑚
𝑧=1

 . 

=

(

  
 1 − ∑

𝜑𝑧(1+𝑇(𝐴𝑧))

∑ 𝜑𝑧(1+𝑇(𝐴𝑧))𝑚
𝑧=1

 𝑚𝑖𝑛. (1, (1 − 𝛼𝑧)
𝜌);

∑
𝜑𝑧(1+𝑇(𝐴𝑧))

∑ 𝜑𝑧(1+𝑇(𝐴𝑧))𝑚
𝑧=1

 𝑚𝑖𝑛. (1, 𝛽𝑧
𝜌); 𝑚

𝑧=1

𝑚
𝑧=1

∑
𝜑𝑧(1+𝑇(𝐴𝑧))

∑ 𝜑𝑧(1+𝑇(𝐴𝑧))𝑚
𝑧=1

 𝑚𝑖𝑛. (1, 𝛾𝑧
𝜌) 𝑚

𝑧=1 )

  
 

1

𝜌

 (18) 

Where 𝑇(𝐴𝑧) = ∑ 𝜑𝑧𝑆𝑢𝑝𝑝. (𝐴𝑧, 𝐴𝑦).𝑚
𝑧=1 𝑦≠𝑧  (19) 

The proof of the given theorem is similar to theorem 2. 

2.5. Single-valued neutrosophic Yager power ordered the weighted geometric 

operator  

Let 𝐴𝑧 = (𝛼𝑧 , 𝛽𝑧, 𝛾𝑧) be SVNSs for 𝑧 = 1, 2, … ,𝑚. Then 𝑆𝑉𝑁𝑌𝑃𝑂𝐺𝐴 operator is a 

function 𝑆𝑉𝑁𝑌𝑃𝑂𝑊𝐺𝐴:Ω𝑚 ⟶ Ω with weight vector 𝜔 =  (𝜔1, 𝜔2, … , 𝜔𝑚)𝑇 s.t  𝜔𝑧 ∈
[0, 1], and ∑ 𝜔𝑧

𝑚
𝑧=1 = 1. Thus, 

𝑆𝑉𝑁𝑌𝑃𝑂𝑊𝐺𝐴𝜔(𝐴1, 𝐴2, … , 𝐴𝑚) =  ⊗𝑧=1
𝑚 𝐴𝜆(𝑧)

(1+𝑇(𝐴𝜆(𝑧)))

∑ (1+𝑇(𝐴𝜆(𝑧)))
𝑚
𝑧=1  

=  

(

 
 
 
 

1 − ∑
𝜔𝑧(1+𝑇(𝐴𝜆(𝑧)))

∑ 𝜔𝑧(1+𝑇(𝐴𝜆(𝑧)))
𝑚
𝑧=1

 𝑚𝑖𝑛. (1, (1 − 𝛼𝜆(𝑧))
𝜌 )𝑚

𝑧=1 ;

∑
𝜔𝑧(1+𝑇(𝐴𝜆(𝑧)))

∑ 𝜔𝑧(1+𝑇(𝐴𝜆(𝑧)))
𝑚
𝑧=1

 𝑚
𝑧=1 𝑚𝑖𝑛. (1,   𝛽𝜆(𝑧)

𝜌);

 ∑
𝜔𝑧(1+𝑇(𝐴𝜆(𝑧)))

∑ 𝜔𝑧(1+𝑇(𝐴𝜆(𝑧)))
𝑚
𝑧=1

 𝑚𝑖𝑛. (1, 𝛾𝜆(𝑧)
𝜌)𝑚

𝑧=1
)

 
 
 
 

1

𝜌

 (20) 

where (𝜆(1), 𝜆(2), … , 𝜆(𝑚)) are the permutations of 𝜆(𝑧) for which 𝐴𝜆(𝑧−1)≥𝐴𝜆(𝑧) and 

𝑇(𝐴𝜆(𝑧)) denotes the support of the 𝑧𝑡ℎ 𝑡ℎ𝑒 largest SVNSs 𝐴𝜆(𝑧) from the other SVNSs. 

Hence, 𝑇(𝐴𝜆(𝑧)) = ∑ 𝑆𝑢𝑝𝑝. (𝐴𝜆(𝑧), 𝐴𝜆(𝑦)).
𝑚
𝑧=1 𝑦≠𝑧  

In the next section, we develop the application of proposed aggregation operators in 

the MADM problem. 

3. APPLICATION OF AGGREGATION OPERATORS IN MADM 

PROBLEM 

In this section, we propose a MADM method using SVNYP aggregation operators 

under SVN environment. Here MADM problem is studied to investigate the advantage of 

evaluating the emerging software systems selection under the SVN environment. Let 

𝑀 = {𝑀1, 𝑀2, … ,𝑀𝑚} be a finite set of alternatives, and 𝐿 = {𝐿1, 𝐿2, … , 𝐿𝑛} be a set of 
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attributes having weight vector 𝜑 = {𝜑1, 𝜑2, … , 𝜑𝑙}  such that  𝜑𝑧 ∈ [0,1], ∑ 𝜑𝑧 = 1.𝑚
𝑧=1  

Consider 𝐴𝑧 = (𝛼𝑦𝑧 , 𝛽𝑦𝑧 , 𝛾𝑦𝑧)𝑙×𝑚
 is the SVN decision matrix, where 𝛼𝑦𝑧 denotes the 

degree of truth membership function, 𝛽𝑦𝑧 denotes the indeterminacy membership 

function, and 𝛾𝑦𝑧 denotes the falsity membership function such that  0 ≤ 𝛼𝑦𝑧 + 𝛽𝑦𝑧 + 

 𝛾𝑦𝑧 ≤ 3. 

To interpret and solve the MADM problem, we follow an algorithm using 

SVNYPWA and SVNYPWGA operators as shown in the flowchart (Figure 1). 

 

Figure 1: The flowchart of the proposed MADM algorithm. 

Algorithm: 

Step 1. Select the alternatives and attributes as given in set M and L, respectively. We 

obtain the single-valued neutrosophic decision matrix 𝐷 =  (𝐴𝑦𝑧)𝑙×𝑚; 𝑦 = 1, 2, … , 𝑙;  𝑧 =

1, 2, … ,𝑚. 

Step 2. Compute the normalized SVN decision matrix 𝐷̃ =  (𝐴𝑦𝑧)𝑙×𝑚
 , where 

𝐴𝑦𝑧 = {
(𝛼𝑖𝑗 , 𝛽𝑖𝑗 , 𝛾𝑖𝑗)  for benefit criteria 

(𝛾𝑖𝑗 , 𝛽𝑖𝑗 , 𝛼𝑖𝑗)  for cost criteria
 (21) 



 S. Sharma and S. Singh / SVNYPA Operators and Its Application to MCDM 847 

Step 3. Compute support by using the Hausdorff distance measure given by [46] and is 

given as below: 

𝑆𝑢𝑝𝑝 (𝐴𝑦𝑧, 𝐴𝑦𝑤) = 1 − 𝑑 (𝐴𝑦𝑧, 𝐴𝑦𝑤) (22) 

Where 𝑑 (𝐴𝑦𝑧, 𝐴𝑦𝑤) =
1

3
𝑚𝑎𝑥. (|𝛼𝑦𝑧 − 𝛼𝑦𝑤|, |𝛽𝑦𝑧 − 𝛽𝑦𝑤|, |𝛾𝑦𝑧 − 𝛾𝑦𝑤|). 

Step 4. Apply the weight of the attribute  𝜑𝑧 to obtain the weighted support 𝑇 (𝐴𝑦𝑧 ) 

between 𝐴𝑦𝑧 and 𝐴𝑦𝑤 SVNSs such that 

𝑇 (𝐴𝑦𝑧 ) =  ∑  𝜑𝑧
𝑚
𝑤=1,𝑤≠𝑧  𝑆𝑢𝑝𝑝 (𝐴𝑦𝑧 , 𝐴𝑦𝑤) (23) 

and compute the weight Δ𝑦𝑧 associated with 𝐴𝑦𝑧 ;  𝑦 = 1, 2, … 𝑙; 𝑧 = 1, 2, … ,𝑚 

 Δ𝑦𝑧 = 
𝜑𝑧 (1+𝑇(𝐴𝑦𝑧))

∑ 𝜑𝑧 (1+𝑇(𝐴𝑦𝑧))𝑚
𝑧=1

 (24) 

Where Δ𝑦𝑧 ≥ 0, and ∑ Δ𝑦𝑧 = 1.𝑚
𝑧=1  

 Step 5. Using the information in the decision matrix and by SVNYPWA operator. 

 𝑛𝑦 = 𝑆𝑉𝑁𝑌𝑃𝑊𝐴𝜑(𝐴1, 𝐴2, … ,  𝐴𝑚) =  
⊕𝑧=1 

𝑚 (𝜑𝑧(1+𝑇(𝐴𝑧))𝐴𝑧)

∑ (𝜑𝑧(1+𝑇(𝐴𝑧))𝑚
𝑧=1 )

 = 

(

  
 

1 −

∑
𝜑𝑧(1+𝑇(𝐴𝑧))

∑ 𝜑𝑧(1+𝑇(𝐴𝑧))𝑚
𝑧=1

 𝑚𝑖𝑛. (1, 𝛼𝑧
𝜌);𝑚

𝑧=1

∑
𝜑𝑧(1+𝑇(𝐴𝑧))

∑ 𝜑𝑧(1+𝑇(𝐴𝑧))𝑚
𝑧=1

 𝑚𝑖𝑛. (1, (1 − 𝛽𝑧)
𝜌); 𝑚

𝑧=1

1 − ∑
𝜑𝑧(1+𝑇(𝐴𝑧))

∑ 𝜑𝑧(1+𝑇(𝐴𝑧))𝑚
𝑧=1

 𝑚𝑖𝑛. (1, ) (1 − 𝛾𝑧)
𝜌𝑚

𝑧=1 )

  
 

 
1

𝜌 (25)  

We can also utilize, 𝑛̃𝑦 = 𝑆𝑉𝑁𝑌𝑃𝐺𝜑(𝐴1, 𝐴2, … , 𝐴𝑚) = ⊗𝑧=1
𝑚 𝐴𝑧

(1+𝑇(𝐴𝑧))

∑ (1+𝑇(𝐴𝑧))𝑚
𝑧=1   

=

(

  
 

1 − ∑
𝜑𝑧(1+𝑇(𝐴𝑧))

∑ 𝜑𝑧(1+𝑇(𝐴𝑧))𝑚
𝑧=1

 𝑚𝑖𝑛. (1, (1 − 𝛼𝑧)
𝜌);𝑚

𝑧=1

∑
𝜑𝑧(1+𝑇(𝐴𝑧))

∑ 𝜑𝑧(1+𝑇(𝐴𝑧))𝑚
𝑧=1

 𝑚𝑖𝑛. (1, (𝛽𝑧)
𝜌); 𝑚

𝑧=1

∑
𝜑𝑧(1+𝑇(𝐴𝑧))

∑ 𝜑𝑧(1+𝑇(𝐴𝑧))𝑚
𝑧=1

 𝑚𝑖𝑛. (1, (𝛾𝑧
𝜌)) 𝑚

𝑧=1 )

  
 

 
1

𝜌 (26)  

For obtaining the preference values 𝑛𝑦;  𝑦 = 1, 2, … , 𝑙 of the alternative 𝑀𝑦. 

Step 6. Compute the score value 𝜏 (𝑛𝑦𝑧) using the definition of the score function to 

determine the ranking of the alternatives 𝑀𝑦, to select the most suitable choice 𝑀𝑦. We 

proceed to accuracy value 𝜎 (𝑛𝑦) and 𝜎(𝑛𝑧) if 𝜏𝑦 and 𝜏𝑧 are the same. 

Step 7. Rank the alternative 𝑀𝑦 according to the score value to choose the best 

alternative. To implement this algorithm, we adapt an example [Ye] that illustrates the 

effectiveness of the proposed aggregation operators in the field of MADM problems.  

Example 1. Consider an investment company, which wants to invest a sum amount of 

money in the best company. There are four possible alternatives to invest the money: (1) 

𝑀1 is a car company; (2) 𝑀2 is a food company; (3) 𝑀3 is a computer company; (4) 𝑀4 is 

an arms company. The investment company must take under consideration the following 
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three criteria while selecting the best option: (1) 𝐿1 is the risk; (2) 𝐿2 is the growth; (3) 𝐿3 

is the environmental impact with weight vector of the criteria W = (0.35, 0.25, 0.4). The 

evaluation done by domain an expert for the given criteria is shown in Table 1. 

Table 1: Evaluation of expertise for four alternatives under three attributes 

 𝑀1 𝑀2 𝑀3 𝑀4 

𝐿1 (0.4, 0.2, 0.3) (0.6, 0.1, 0.2) (0.3, 0.2, 0.3) (0.7, 0, 0.1) 

𝐿2 (0.4, 0.2, 0.3) (0.6, 0.1, 0.2) (0.5, 0.2, 0.3) (0.6, 0.1, 0.2) 

𝐿3 (0.2, 0.2, 0.5) (0.5, 0.2, 0.2) (0.5, 0.3, 0.2) (0.4, 0.3, 0.2) 
 

For a selection of the most suitable and effective alternative, we use the SVNYPWA 

and SVNYPWGA operators and follow the algorithm given above: 

Step 1. By using the equation from (20) to (22) in the data presented in Table 1, we 

compute the values of Δ𝑦𝑧; 𝑦 = 1, 2, … , 𝑙; 𝑧 = 1, 2, … ,𝑚 which is shown below. 

Δ = [

0.3371 0.1685 0.4942
0.3352 0.1676 0.4971
0.3307 0.1673 0.5019
0.3346 0.1692 0.4961

] 

Step 2. With the values of Δ and data provided by decision-makers in Table 1, we 

compute the aggregated SVN information, by using SVNYPWAS and SVNYPWGA 

operator to calculate the overall SVNNs for the alternative 𝑀𝑦 as shown in Table 2. 

Table 2: Aggregated values of the alternatives using SVNYPWA and SVNYPWGA 

Alternative SVNYPWA SVNYPWGA 

𝑀1 (0.3010 0.2001, 0.3989) (0.3012, 0.1999, 0.3987) 

𝑀2 (0.5502, 0.1498, 0.2000) (0.5503, 0.1497, 0.1999) 

𝑀3 (0.4338, 0.2502, 0.2498) (0.4339, 0.2501, 0.2497) 

𝑀4 (0.5341, 0.1658, 0.1666) (0.5342, 0.1657, 0.1665) 

 

Step 3. Obtain the score value corresponding to each alternative which is given in Table 

3 by using aggregated values. 

Table 3: Score values of the alternatives 

Alternative SVNYPWA SVNYPWGA 

𝑀1 0.5673 0.5675 

𝑀2 0.7334 0.7335 

𝑀3 0.6445 0.6446 

𝑀4 0.7339 0.7340 

 

Step 4. Rank the alternatives according to the score values shown in Table 4. 

Table 4: Ranking of the alternatives 

Aggregation operator Ranking 

SVNYPWA 𝑀4 > 𝑀2 > 𝑀3 > 𝑀1 

SVNYPWGA 𝑀4 > 𝑀2 > 𝑀3 > 𝑀1 
 

From Table 4, we conclude that alternative 𝑀4 is the best company for the investment. 
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4. SENSITIVITY ANALYSIS 

The different values of the parameter 𝜌 in SVNYPA operator may give different 

results in a decision-making problem. In this section, we analyze the sensitivity of the 

parameter 𝜌. We give variation in the values of parameters 𝜌. The score value and the 

corresponding ranking order of the alternatives for different parameters (range from 0 ≤
𝜌 ≤ 10) based on SVNYPWA and SVNYPWGA operators are shown in Table 5 and 

Table 6. 

Table 5: Influence of parameter by SVNYPWA operator in ranking of alternatives 

𝜌 𝜏 (𝑛1) 𝜏 (𝑛2) 𝜏 (𝑛3) 𝜏 (𝑛4) 𝜏 (𝑛5) Ranking 

1 0.1523 0.1628 0.1565 0.0967 0.1026 𝑀4 > 𝑀2 > 𝑀3 > 𝑀1 

2 0.1541 0.1636 0.1267 0.0986 0.1028 𝑀2 > 𝑀4 > 𝑀3 > 𝑀1 

3 0.1541 0.1637 0.1191 0.0986 0.1028 𝑀2 > 𝑀4 > 𝑀3 > 𝑀1 

4 0.1541 0.1636 0.1163 0.0986 0.1028 𝑀4 > 𝑀2 > 𝑀3 > 𝑀1 

5 0.1541 0.1636 0.1151 0.0986 0.1028 𝑀4 > 𝑀2 > 𝑀3 > 𝑀1 

6 0.1536 0.1638 0.1147 0.0989 0.1031 𝑀4 > 𝑀2 > 𝑀3 > 𝑀1 

7 0.1544 0.1639 0.1145 0.0990 0.1032 𝑀4 > 𝑀2 > 𝑀3 > 𝑀1 

8 0.1541 0.1636 0.1141 0.0984 0.1028 𝑀4 > 𝑀2 > 𝑀3 > 𝑀1 

9 0.1541 0.1637 0.1141 0.0986 0.1028 𝑀4 > 𝑀2 > 𝑀3 > 𝑀1 

10 0.1541 0.1636 0.1140 0.0986 0.1028 𝑀4 > 𝑀2 > 𝑀3 > 𝑀1 

 

Table 6: Influence of parameter by SVNYPWGA operator in ranking of alternatives 

𝜌 𝜏 (𝑛1) 𝜏 (𝑛2) 𝜏 (𝑛3) 𝜏 (𝑛4) 𝜏 (𝑛5) Ranking 

1 0.9249 0.9415 0.9148 0.8731 0.8749 𝑀4 > 𝑀2 > 𝑀3 > 𝑀1 

2 0.9249 0.9414 0.9371 0.8731 0.8749 𝑀2 > 𝑀3 > 𝑀1 > 𝑀4 

3 0.9241 0.9407 0.9406 0.8724 0.8742 𝑀2 > 𝑀3 > 𝑀1 > 𝑀4 

4 0.9249 0.9414 0.9423 0.8731 0.8749 𝑀2 > 𝑀3 > 𝑀1 > 𝑀4 

5 0.9249 0.9414 0.9426 0.8731 0.8749 𝑀2 > 𝑀3 > 𝑀1 > 𝑀4 

6 0.9246 0.9411 0.9425 0.8728 0.8746 𝑀2 > 𝑀3 > 𝑀1 > 𝑀4 

7 0.9244 0.9410 0.9424 0.8727 0.8745 𝑀2 > 𝑀3 > 𝑀1 > 𝑀4 

8 0.9249 0.9414 0.9428 0.8731 0.8749 𝑀2 > 𝑀3 > 𝑀1 > 𝑀4 

9 0.9248 0.9414 0.9427 0.8730 0.8748 𝑀2 > 𝑀3 > 𝑀4 > 𝑀1 

10 0.9249 0.9414 0.9428 0.8731 0.8749 𝑀2 > 𝑀3 > 𝑀1 > 𝑀4 

 

From Table 5, it is evident that by using the SVNYPWA operator, the ranking orders 

for 𝜌 = 1 and 𝜌 > 3 are identical i.e., 𝑀4 > 𝑀2 > 𝑀3 > 𝑀1.  But when 𝜌 = 2,3 the 

ranking order is 𝑀2 > 𝑀4 > 𝑀3 > 𝑀1 and 𝑀2 is selected as the best alternative. On the 

other hand, from Table 6, the ranking order for 𝜌 = 1 is 𝑀4 > 𝑀2 > 𝑀3 > 𝑀1; for 2 ≤
𝜌 ≤ 8; 𝜌 = 10, the ranking order is similar i.e., 𝑀2 > 𝑀3 > 𝑀1 > 𝑀4 and for 𝜌 = 9, the 

ranking order is  𝑀2 > 𝑀3 > 𝑀4 > 𝑀1. Hence, from both, we conclude that the 

corresponding ranking order of the alternatives for the SVNYPWA operator can be 

changed with different values of the parameter. Thus, the algorithm is sensible towards 
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the parameters 𝜌. The suitable choice of the parameter 𝜌 as per the conditions of a system 

is expected to make the decision result more reliable. 

5. CONSISTENCY OF PROPOSED METHOD 

We utilize the MABAC method on the information given in Table 1. For this, the 

systematic procedure is as follows: 

Step 1. Normalize the decision matrix (Table 1). As all the attributes are of the same 

type, so there is no need to normalize them. 

Step 2. Calculate the weighted normalized decision matrix as shown below in Table 7 by 

using Eq. (23). 

Step 3. By using the normalized matrix 𝑛𝑦𝑧 = (𝛼𝑦𝑧 , 𝛽𝑦𝑧 , 𝛾𝑦𝑧) and attribute’s support 

weight 𝜑𝑧, we compute the normalized fuzzy weighting matrix 𝜑𝐹𝑦𝑧 =

 (𝛼′
𝑦𝑧, 𝛽

′
𝑦𝑧

, 𝛾′
𝑦𝑧

) ; 𝑦 = 1, 2, … , 𝑙; 𝑧 = 1, 2, … ,𝑚 by applying the following formula, 

𝜑𝑛𝑦𝑧 = 𝜑𝑙 ⊕ 𝑛𝑦𝑧;   𝑦 = 1, 2, … , 𝑙 ; 𝑧 = 1, 2, … ,𝑚 

= (1 − (1 − 𝛼𝑦𝑧)
∆𝑧

, (𝛽𝑦𝑧)
∆𝑧

, (𝛾𝑦𝑧)
∆𝑧

) (27) 

where Δ𝑦𝑧 = 
𝜑𝑧 (1+𝑇(𝐴𝑦𝑧))

∑ 𝜑𝑧 (1+𝑇(𝐴𝑦𝑧))𝑚
𝑧=1

 . 

Table 7: Normalized neutrosophic decision-matrix 

 𝑀1 𝑀2 𝑀3 𝑀4 

𝐿1 (0.1581, 0.5812, 0.6664) (0.2644, 0.4621, 0.5830) (0.1112, 0.5872, 0.6937) (0.3315, 0, 0.4628) 

𝐿2 (0.0824, 0.7624, 0.8163) (0.1423, 0.6798, 0.7635) (0.1094, 0.7639, 0.8175) (0.1436, 0.6773, 0.7616) 

𝐿3 (0.1044, 0.4514, 0.7099) (0.2914, 0.4493, 0.4493) (0.2938, 0.5464, 0.4458) (0.2238, 0.5503, 0.4500) 

𝜑𝐹𝑦𝑧 = [𝑛𝑦𝑧]𝑙×𝑚 =

𝑀1

𝑀2

𝑀3

𝑀4

𝑀5

 

[
 
 
 
 
 
(𝛼𝑦𝑧, 𝛽𝑦𝑧 , 𝛾𝑦𝑧) (𝛼𝑦𝑧, 𝛽𝑦𝑧 , 𝛾𝑦𝑧) . . . (𝛼𝑦𝑧, 𝛽𝑦𝑧 , 𝛾𝑦𝑧)

(𝛼𝑦𝑧, 𝛽𝑦𝑧 , 𝛾𝑦𝑧) (𝛼𝑦𝑧, 𝛽𝑦𝑧 , 𝛾𝑦𝑧) . . . (𝛼𝑦𝑧, 𝛽𝑦𝑧 , 𝛾𝑦𝑧)
. . . . . .
. . . . . .
. . . . . .

(𝛼𝑦𝑧, 𝛽𝑦𝑧 , 𝛾𝑦𝑧) (𝛼𝑦𝑧, 𝛽𝑦𝑧 , 𝛾𝑦𝑧) . . . (𝛼𝑦𝑧, 𝛽𝑦𝑧 , 𝛾𝑦𝑧)]
 
 
 
 
 

 (28) 

Step 4. Compute the border approximation areas (BBA) values and for BBA matrix 𝑇 =
 [𝑔𝑧]𝑙×𝑚 can be evaluated as 

𝑔𝑧 = (∏ 𝜑𝑛𝑦𝑧
𝑙
𝑦=1 )

1

𝑙 = {(∏ 𝛼𝑦𝑧
𝑙
𝑦=1 )

1

𝑙 , 1 − (∏ 𝛽𝑦𝑧
𝑙
𝑦=1 )

1

𝑙 , 1 − (∏ 𝛾𝑦𝑧
𝑙
𝑦=1 )

1

𝑙} (29) 

where 𝑙 is the no. of alternatives. 

The BBA matrix is calculated using Eq. (29) as follows: 𝑔1 = 〈0.1982, 0.4478, 0.6110〉,
𝑔2 = 〈0.1165, 0.7241, 0.7915〉, 𝑔3 = 〈0.2115, 0.5017, 0.5302〉. 

Step 5. Evaluate the distance between each alternative and BBA matrix by the following 

equation: 
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𝑑𝑦𝑧 = {   

𝑑 (𝜑𝑛𝑦𝑧, 𝑔𝑧)       if 𝜑𝑛𝑦𝑧 > 𝑔𝑧

0                             if 𝜑𝑛𝑦𝑧 = 𝑔𝑧

−𝑑 (𝜑𝑛𝑦𝑧 , 𝑔𝑧)     if 𝜑𝑛𝑦𝑧 < 𝑔𝑧

 (30) 

Where 𝑑 (𝜑𝑛𝑦𝑧, 𝑔𝑧) denotes the distance measure from 𝜑𝑛𝑦𝑧 to 𝑔𝑧 and we calculate the 

distance measure by using Hamming distance [45] between each alternative and BBA 

matrix given in Table 8. 

Table 8: Distance between alternatives and BBA matrix 

 𝐿1 𝐿2 𝐿3 

𝑀1 -0.0762 -0.0324 -0.1123 

𝑀2 0.0266 0.0326 0.0711 

𝑀3 -0.1030 -0.0243 0.0704 

𝑀4 0.2431 0.0345 0.0470 
 

Step 6. Calculate the sum of the distance 𝑆𝑦 = ∑ 𝑆𝑦
𝑙
𝑦=1  for each alternative by using 

Table 8 and the result is as follows: 𝑆1 = −0.2209, 𝑆2 = 0.1303, 𝑆3 = −0.0569, 𝑆4 =
0.3246. By verifying the result by the MABAC method for choosing the best alternative. 

We obtain the following ranking order 𝑀4 > 𝑀2 > 𝑀3 > 𝑀1 and hence, it shows that 𝑀4 

is the best alternative. Thus, by using SVNYP operators and the SVN- MABAC method, 

we obtained 𝑀4 as the most suitable and desirable road construction company although 

there is a slight change in ranking order. Thus, the proposed operators are consistent with 

MABAC method. 

6. COMPARATIVE ANALYSIS 

To justify the advantage of the proposed methods, we consider the same decision-

making problem given in section 5. The comparative analysis between the proposed 

method SVNYPWA and SVNYPWGA with some existing methods such as SVNPWA 

[10], WAA and WGA operators for simplified neutrosophic sets offered in Ye [34], 

SVNDPA and SVNDPGA operators established in Jana and Pal [45], and SVNPHA and 

SVNGPHA operators suggested by Zhao et al. [44] to get the aggregated SVN values, 

score value and ranking of the alternatives.The aggregated SVN values, score value and 

ranking of the alternatives are presented in Table 9, 10, and 11, respectively. 

Table 9: Aggregate values of the existing and proposed methods 

 SVNPWA WAA WGA SVNDPWA SVNDPWGA 

𝑀1 (0.3464, 0.2000, 0.3492) (0.3268, 0.2000, 0.3881) (0.3031, 0.2000, 0.3680) (0.3335, 0.2782, 0.4422) (0.2861, 0.1395, 0.3133) 

𝑀2 (0.5707, 0.1246, 0.2000) (0.5627, 0.1414, 0.2000) (0.5578, 0.1320, 0.2000) (0.5654, 0.1460, 0.2057) (0.5559, 0.0672, 0.1927) 

𝑀3 (0.4423, 0.2281, 0.2630) (0.4375, 0.2416, 0.2616) (0.4181, 0.2352, 0.2551) (0.4444, 0.2775, 0.2695) (0.4051, 0.1398, 0.2141) 

𝑀4 (0.5872, 0.0000, 0.1599) (0.5476, 0.1555, 0.1663) (0.5385, 0.0000, 0.1569) (0.5936, ND, ND) (ND, 0.0673, 0.1487) 

Table 9: (Continued) 

 SVNPHA SVNGPHA Prop. (SVNYPWA) Prop. (SVNYPWGA) 

𝑀1 (0.2885, 0.1565, 0.3200) (0.3032, 0.1011, 0.3867) (0.3186, 0.5419, 0.3813) (0.3187, 0.1145, 0.3812) 

𝑀2 (0.5675, 0.0576, 0.2015) (0.5567, 0.1256, 0.1985) (0.5597, 0.5796, 0.6232) (0.5598, 0.0505, 0.0941) 

𝑀3 (0.4670, 0.2341, 0.5786) (0.4327, 0.6798, 0.2236) (0.4295, 0.6239, 0.6644) (0.4296, 0.0983, 0.1388) 

𝑀4 (0.5534, 0.1236, 0.2390) (0.6754, 0.2145, 0.8897) (0.5534, 0.5487, 0.5888) (0.5536, 0.0188, 0.0589) 
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Table 10: Score values of the existing and proposed methods 

Alternatives SVNPWA WAA WGA SVNDPWA SVNDPWGA 

𝑀1 0.6524 0.5922 0.5863 0.5377 0.6110 

𝑀2 0.9243 0.9169 0.9188 0.7378 0.7652 

𝑀3 0.7858 0.7756 0.7696 0.6323 0.6837 

𝑀4 0.9649 0.9297 0.9601 ND ND 

Table 10: (Continued) 

 SVNPHA SVNGPHA Prop. (SVNYPWA) Prop. (SVNYPWGA) 

𝑀1 0.5678 0.6237 0.4651 0.6076 

𝑀2 0.7376 0.7865 0.4522 0.8050 

𝑀3 0.6541 0.6654 0.3803 0.7308 

𝑀4 0.9867 0.9843 0.4719 0.8253 

Table 11: Ranking order of the alternatives 

Operators Ranking 

SVNPWA 𝑀4, > 𝑀2 > 𝑀3 > 𝑀1 

WAA 𝑀4 > 𝑀2 > 𝑀3 > 𝑀1 

WGA 𝑀4 > 𝑀2 > 𝑀3 > 𝑀1 

SVNDPWA ND 

SVNDPWGA ND 

SVNPHA 𝑀4 > 𝑀2 > 𝑀3 > 𝑀1 

SVNGPHA 𝑀4 > 𝑀1 > 𝑀2 > 𝑀3 

SVNYPWA 𝑀4 > 𝑀1 > 𝑀2 > 𝑀3 

SVNYPWGA 𝑀4 > 𝑀2 > 𝑀3 > 𝑀1 

ND: Divisible by zero problem. 

 

From the numerical example, it is evident that 𝑀4 is the most suitable and desirable 

company. Although the ranking orders of the five methods (SVNPWA, WAA, WGA, 

SVNPHA, SVNGPHA) and the proposed methods are slightly different, but still, appears 

that the alternative 𝑀4 is a desirable and suitable company.  

Example 2. [45] Consider the problem of selecting the best road construction company 

among the five road construction companies (𝑀1) Jaihind Road Builders private (Pvt.) 

limited (Ltd.), (𝑀2)J.K. Construction, (𝑀3) Tata Infrastructure Ltd, (𝑀4) Birla Pvt. Ltd., 

and (𝑀5) Relcon Infra projects Ltd which are alternatives among the five possible 

alternatives 𝑀𝑟(𝑟 = 1, 2, … ,5) under four criteria: 𝐿1: Contractor background experience, 

𝐿2: Technical Capability, 𝐿3: Tender price, and 𝐿4: Completion time. 

From the comparative analysis between the proposed method SVNYPWA and 

SVNYPWGA with SVNDPA and SVNDPGA operator as well as SVNPHA and 

SVNGPHA established by Jana and Pal [45] and Zhao et al. [44] respectively to get the 

aggregated SVN values, score value and ranking of the alternatives are given in Tables 

12, 13 and 14. 

From Table 14, we observed that the ranking produced by [44-45] and the proposed 

method are slightly different, but still, it provides that similar best alternative i.e., 𝑀3.  

This justifies that the proposed methods proposed by us are more advanced and effective. 
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Likewise, to determine the advantages of the proposed operator, we compare the existing 

operator proposed by [44] and [45] with the suggested operator. To justify the 

advantages, we reconsider a numerical Example of Jana and Pal [45]. 

Table 12: Aggregated values of the existing and proposed operators 

 
SVNDPWA SVNDPWGA SVNPHA SVNGPHA 

Proposed 
(SVNYPWA) 

Proposed 
(SVNYPWGA) 

𝑀1 
(0.5810, 0.4377, 

0.2214) 

(0.5636, 0.5934, 

0.2856) 

(0.5871, 0.4382, 

0.2132) 

(0.5567, 0.5876, 

0.2376) 

(0.5777, 0.5353, 

0.2558) 

(0.5778, 0.5352, 

0.2557) 

𝑀2 
(0.6000, 0.3916, 

0.2220) 

(0.4934, 0.5444, 

0.1524) 

(0.6234, 0.4352, 

0.3456) 

(0.5055, 0.5555, 

0.1524) 

(0.5431, 0.4775, 

0.1550) 

(0.6245, 0.4773, 

0.1548) 

𝑀3 
(0.7159, 0.4005, 

0.1820) 

(0.7217, 0.4853, 

0.2105) 

(0.7349, 0.4238, 

0.2210) 

(0.7100, 0.4865, 

0.2564) 

(0.7004, 0.4542, 

0.2119) 

(0.7006, 0.4540, 

0.2117) 

𝑀4 
(0.6673, 0.4241, 

0.2302) 

(0.6443, 0.5375. 

0.2425) 

(0.6578, 0.4376, 

0.2576) 

(0.6534, 0.5467, 

0.2569) 

(0.6559, 0.5011, 

0.2330) 

(0.6561, 0.5009, 

0.2328) 

𝑀5 
(0.7002, 0.5315, 

0.1333) 

(0.6089, 0.5763, 

0.1528) 

(0.8543, 0.6548, 

0.1234) 

(0.7120, 0.6200, 

0.1527) 

(0.6225, 0.5507, 

0.1555) 

(0.6227, 0.5548, 

0.1553) 

Table 13: Score values of the existing and proposed methods 

Alternatives SVNDPWA SVNDPWGA SVNPHA SVNGPHA 
Proposed 

(SVNYPWA) 

Proposed 

(SVNYPWGA) 

𝑀1 0.6406 0.5615 0.6210 0.5534 0.5955 0.5956 

𝑀2 0.6621 0.5989 0.6532 0.6210 0.6368 0.6641 

𝑀3 0.7111 0.6753 0.7233 0.6845 0.6780 0.6782 

𝑀4 0.6710 0.6214 0.6875 0.6332 0.6405 0.6407 

𝑀5 0.6785 0.6266 0.6834 0.6256 0.6373 0.6375 

Table 14: Ranking order of the alternatives 

 SVNDPWA SVNDPWGA SVNPHA SVNGPHA 
Proposed 

(SVNYPWA) 
Proposed 

(SVNYPWGA) 

Ranking 
𝑀3 > 𝑀5 > 𝑀4

> 𝑀2 > 𝑀1 

𝑀3 > 𝑀5 > 𝑀4

> 𝑀2 > 𝑀1 

𝑀3 > 𝑀5 > 𝑀4

> 𝑀2 >  𝑀1 

𝑀3 > 𝑀5 > 𝑀4

> 𝑀2 > 𝑀1 

𝑀3 > 𝑀4 > 𝑀5

> 𝑀2 > 𝑀1 

 

𝑀3 > 𝑀2 > 𝑀4

> 𝑀5 >  𝑀1 

 

Example 3.  In this example, we only change a little data from the example. We can find 

that there are slight changes in the truth-membership value of 𝐿1, 𝐿2, and 𝐿4 attributes for 

alternative 𝑀3. The old value is (0.7, 0.3, 0.4), (0.7, 0.5, 0.2),(0.6, 0.7, 0.1), and (0.8, 0.3, 0.2) 

and now the new value is  (0.6, 0.3, 0.4), (0.6, 0.5, 0.2), (0.6, 0.7, 0.1), (0.6, 0.3, 0.2), 

then we find the changes in the ranking results for the method proposed by Jana and Pal 

[45], and Zhao et al. [44] and the suggested method with SVNYPWA operator. The 

ranking results are given in Table 15. 

From Table 15, we observe that the ranking results of the proposed method with the 

SVNYPWA operator and the existing method are different. The ranking result by the 

proposed method with the SVNYPWA operator remains the same while it is changed by 

existing method. For existing method, the best alternative in both examples given in 

section 6 are different, but on the other hand for similar examples given in section 6, 𝑀3 

is the best alternative by our suggested method. This justifies the advantages of the 

proposed method, which can relieve the influence of too big or too small data. This 

concludes that the result of the proposed method is more reasonable than the existing 

method [44] and [45]. 
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Table 15: Ranking order of the alternatives 

Method 
Score function with WAA 

operator 
Ranking 

The method proposed 

by Jana and Pal [45] 

 

SF (𝑀1) =0.6406, 

SF (𝑀2) = 0.662, 

SF (𝑀3) = 0.6724, 

SF (𝑀4) = 0.6710, 

SF (𝑀5) = 0.6785 

𝑀5 > 𝑀3 > 𝑀4 > 𝑀2 > 𝑀1 

The method proposed 

by Zhao et al. [44] 

SF (𝑀1) =0.6400, 

SF (𝑀2) = 0.656, 

SF (𝑀3) = 0.6432, 

SF (𝑀4) = 0.6700, 

SF (𝑀5) = 0.6785, 

𝑀5 > 𝑀4 > 𝑀2 > 𝑀3 > 𝑀1 

The proposed method 

with the SVNYPWA 

operator 

SF (𝑀1) = 0.5955, 

SF (𝑀2) = 0.6368, 

SF (𝑀3) = 0.6445, 

SF (𝑀4) = 0.6405, 

SF (𝑀5) = 0.6373 

𝑀3 > 𝑀4 > 𝑀5 > 𝑀2 > 𝑀1 

 

7. CONCLUSION 

In this article, the fusion of Yager operators and power operators resulted in the 

development of the SVNYPWA operator, SVNYPOWA operator, SVNYPGA operator, 

and SVNYPOGA operator. However, the newly developed aggregation operators were 

found suitable for handling SVN information in MCDM problems in certain situations. 

The proposed operators have also shown sensitivity towards the hyperparameter ρ. From 

the analysis, it is shown that the corresponding ranking order of the alternatives for the 

SVNYPWA operator can be changed with different values of the parameter and thus, the 

algorithm is sensible towards the parameters 𝜌. The MABAC method was applied for the 

verification to show the consistency of the proposed SVNYPWA aggregation operator. 

Theoretically, our study guides the fusion of information using aggregation operators in 

different situations. Practically, it has implications in the decision making, where we 

need to aggregate the different information from the sources. The application discussed 

in this article utilized artificial data. However, to investigate the proposed method's real-

time implications, we need to create SVN data in a real-time situation, as it is not 

available in any repository. So, in the future, we will try to create SVN data to investigate 

the proposed work's real-time implications. We shall also expand our models to single-

valued neutrosophic soft set environment. 
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