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Abstract: Because of the quantitative and qualitative uncertainty and complexity, it is 

not sufficient to use just Multicriteria Decision Making (MCDM), but also Multi-Criteria 

Decision Analysis (MCDA). The MCDM relates to the methods by which decisions are 

taken (i.e., selection of alternatives, ranked or ordered, and for what is analyzed being 

objective values. While MCDA offers a comprehensive approach for systematic 

assessment of criteria considering its impact on decision outcomes. Given that both 

methods have their own strengths, it is necessary to apply both MCDM and MCDA in 

agricultural economics which has a lot of uncertainty because of market price variability, 

increasing input costs and changing weather patterns. In this paper, Fuzzy Hypersoft Sets 

(FHSs), is used to model this problem and a case study is solved with Stable Preference 
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Ordering Towards Ideal Solution (SPOTIS), Random Forest (RF), and Multi-Objective 

Optimization by Ratio Analysis (MULTIMOORA) to identify the most favorable crop 

for Jane's farm in terms of weather, costs required during agricultural production process 

like water or land usage, pesticide resistance against pests as well as market demand. 

Maize as an alternative 𝐴7 = 0.526 was identified as the best choice by all three methods 

with Tomatoes and Rice scoring second, based on calculated score values. Thus, it 

enables us to study both quantitative and qualitative data, making it extremely able for 

agriculture uncertainties. This unique usage of sophisticated mathematics integrated with 

machine learning allows the decision-makers to find more accurate results, meaning it 

can manage economic risks better and allocate resources intelligently in agriculture. The 

comparative analysis with existing studies highlights the superiority of proposed work. 

Thus, it is significantly superior in accuracy. Hence farmers can harness farm economics 

to address these challenges by managing economic risks using mathematical decision-

making tool, thereby leading them towards sustainability of livelihoods, food security 

and a resilient agricultural sector. 

Keywords: Uncertainty, agriculture economics, fuzzy hypersoft set theory, aggregate 

operators (AO), MCDM and MCDA techniques. 

MSC: 03E72, 90B50. 

1. INTRODUCTION 

Crop economics, a branch of agricultural economics, applies economic principles to 

the production, distribution, and consumption of crops. It includes several factors that 

impact the financial aspects around crop production like input costs, sale prices, market 

trends, guidelines issued by federal bodies and overall profitability. Also, the costs of 

seed, fertilizer and pesticides and the labor used to harvest crops can all affect how 

farming is economically feasible. Crop production economics and risk might be crucial 

components of agriculture decision-making (DM) which can influence farmers in 

addition to stability for food corresponding security around the globe. This is because 

agriculture is a highly dynamic enterprise characterized by several different changes in 

price levels and demand patterns [1]. Again, climate variability makes crop output much 

more uncertain. As weather patterns have become more variable and less predictable, 

extreme weather events like droughts, floods, heat waves and storms are becoming more 

frequent [2]. These weather changes can either damage crops, lower yields or result in 

complete loss of crops. As a result, farmers must manage their resources prudently as 

well as invest on technologies that can reduce the impacts of ad-verse climatic 

conditions.  Farmers and other stakeholders require support to maneuver the intricacies of 

agricultural production coupled with changing dynamics of the markets where decision-

making and optimization in crop economics under uncertainty play a pivot role [3]. 

Several studies underline these as important issues towards sustainable and more 

profitable agriculture. Rastogi et al.’s paper states that data analytics, IoT devices [4], 

satellite imagery allows farmers to make right decisions about resource allocation, 

irrigation schedules and pest management. In this way agricultural productivity goes up 

while input use declines leading to improved financial outcomes eventually. Crop 

diversity on the other hand has been deeply analyzed in literature as one approach used in 

managing risk in case of unpredictable events [5]. It also helps protect farm income 

through spreading risks over multiple commodities. Moreover, there are models for 
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optimization designed for decision-making (DM) purposes particularly when faced with 

ambiguity [6, 7, 8]. Optimizing cropping patterns to come up with best responses is 

proposed by Wani et al.’s article which uses stochastic optimization model incorporated 

with climate variability [9]. This way, farmers can identify the best crops and cropping 

patterns that will have minimum losses and maximum revenues by considering different 

climatic situations. Also, they suggest that the calculation of numerous climate scenarios 

gives rise to probabilities for decision-making. Government support as well as policy 

changes also affect how crop economists make their decisions and optimize their 

strategies [10]. Kumar and Chandel’s study investigates the impact of agricultural 

policies on financial choices made by farmers [11]. 

Since crops are largely dependent on external factors such as market price between 

harvest and marketing, variation in input costs, weather phenomena and similar other 

unpredictable situations; all this leads to crop economics being fraught with uncertainties. 

For farmers who need to allocate resources to optimize productivity and sustainability, 

these uncertainties create complicated decision-making problems. Fuzzy set (FS) [12] 

theory is a powerful mathematical framework over the imprecise and ambiguous data, 

which arises quite often within agricultural scenario where uncertainties need to be 

modeled represented & managed. This is very different from traditional discrete logic 

that relies on clear-cut distinctions, standard truth values of 0 or 1. FS theory avoids this 

problem by permitting an object to belong in a certain available set with the membership 

degree between operating limits full and void. This is especially useful in the sort of crop 

economics, where definitive information is less or incomplete and mostly decisions will 

be based on global knowledge. This theory is further extended to various set structures 

like: Single-valued fuzzy sets, multiple-valued fuzzy sets [13, 14], bipolar fuzzy sets 

[15], interval-valued fuzzy sets [16], m-polar interval-valued fuzzy sets [17], and hesitant 

fuzzy sets [18]. Many applications of fuzzy sets in real-life has been proposed by [19, 

20]. Then, Atanassov extended the FS theory to intuitionistic fuzzy sets (IFS) [21] in 

1986 which include the values of membership and non-membership. Through this 

foundation, it was generalized to Pythagorean fuzzy (PF) sets by [22] and applied with 

the rules of PF sets for solving multiple-criteria decision-making problems [23, 24], 

Indeterminacy in uncertain environments was introduced by Smarandache [25] in 1998 

through a new theory known as neutrosophic set. The concept of the soft set is mapping 

at-tributes to the power set of a universal set, but it showed the significant bifurcation of 

attributes [26]. The theory of fuzzy soft set and its applications in MCDM were proposed 

by Maji [27, 28]. Smarandache [29] proposed the hypersoft set in 2018, which is a new 

set structure and anew from the product of divided attributes to the set on a universal set 

of attributes. It also retains fuzzy hypersoft sets, intuitionistic hypersoft sets, and 

neutrosophic hypersoft sets with considering truthiness, incertitude, and in-determinacy. 

Later, the definition of fuzzy hypersoft sets FHSs, the aggregate operators with similarity 

measures, and distance measures was proposed by [30, 31, 32] along with matrix 

notations and algorithms in case studies. The hybrid structures with applications in our 

daily life were also presented [33, 34], and with the integration of machine learning was 

proposed by [35].  

Recent advances in smart agriculture and digitalization strategies have revolutionized 

the agricultural sector, especially for small-scale farmers, who are burdened with various 

economic and environmental issues. One of the example studies, by Bagherzadeh [36] 

that presented a study of smart technologies through wireless sensor networks and the 
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potential they could help in improving crop productivity and the sustainability of 

resource management in agriculture. The authors partially suggest that resource 

monitoring technology can be optimized to a more significant extent. The work of Panda 

et al. [37] in a similar field could be observed with appropriate analysis. The potential of 

smart agriculture is further explored in the study by Zhou [38] and Nourkhah et al. [39], 

which describe an integrated technique for improving soil suitability through soil quality 

prediction and technological monitoring capacity. The studies of Yongyi Gu et al. [40] 

and Debnath [41] explain the opportunities to increase the economic capacity of farmers 

and develop efficient strategies in a market of uncertainty. Antifragility analyses, such as 

the one by Li et al. [42], could be an appropriate example of monitoring the progress in 

digital agriculture that has an integral role in ensuring the economy is stable. Overall, 

these sources give a more updated view of how future digitalization will look in 

agriculture, the study [43] presents the importance of smart technology in agriculture.  

Recent advances in mathematical models and machine learning have varied 

implications across different research areas. El-Douh et al. [44] provide new insights into 

the predictivity problem by using machine-learning techniques and association rules 

within a neutrosophic background. In healthcare applications, uncertain management can 

provide an even higher result. The operation of fuzzy logic systems is presented in a 

study by Khaliq et al. [45] which explains the dynamics of tumor growth in a fuzzy 

situation using the generalized Hukuhara derivative system. Such an integrative system is 

presented in the work of Rahman [46] which operates in a hypersoft setting. Some other 

theoretical works are represented by Smarandache [47] studies about the SuperHyperSoft 

Set and its fuzzy representation and the examination of hypersoft and indeterm hypersoft 

sets [48]. Additionally, Imran and Ali [49] discuss the interplay between tourism and 

economic development in Pakistan, utilizing systemic analytics to uncover the synergistic 

relationships that drive economic growth. These sources cumulatively showcase a high 

integrative potential of fuzzy systems in multiple areas, from theoretical mathematics to 

data analysis and applied sciences. 

Crop economics, as a subject, is just immensely complex and uncertain. And that 

certainty has lots of uncertainty around it too because farmers must make decisions on 

not only resource allocation but also how to behave in an ever more unpredictable world. 

These uncertainties can come in the shape of rising input costs, unpredictable weather 

patterns, pest incursion, or changes to government policy which may also have further 

sub-divided values. If these factors are ignored in crop economics, they may have the 

potential to significantly impact yield and profit margins and create unique barriers as 

farmers consider economically viable adaptation strategies that can also be unsustainable. 

The existing Decision-making models do not allow us to address the quantitative and 

qualitative uncertainty together. Also, the existing models are unable to address the 

uncertainty of further bi-furcated attributes and due to nature of the agriculture problems. 

Integrating techniques of MCDM and MCDA to solve the crop economic 

uncertainties would result in more accurate solutions of the issues together. The MCDM 

technique, MULTIMOORA, and the Random Forest model under fuzzy hypersoft set 

theory have been proposed to address the uncertainty of further bifurcation of attributes. 

While MCDA technique SPOTIS have been applied to address the quantitative and 

qualitative nature of the problem together. By leveraging the complementary strengths of 

MCDM and MCDA, decision-makers can achieve greater precision and adaptability in 
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agricultural planning, ultimately improving risk management and fostering sustainable 

agricultural practices. 

This paper originality, it integrates MCDM technique (namely MULTIMOORA 

method and Random Forest model) proposed under FHSs based framework and MCDA 

technique SPOTIS is used for tackling agriculture decision making issues combining 

complexities and uncertainties. The studies in the past were carried out by using either 

one method at a time or only considered quantitative approaches, so this paper is 

beneficial as all the methods are used together and it can be used to solve crop production 

economics. This unique usage of sophisticated mathematics integrated with machine 

learning allows the decision-makers to find more accurate results, meaning it can manage 

economic risks better and allocate resources intelligently in agriculture. 

The following indicates that how the work is organized:  

▪ Section 2: Preliminaries are presented. 

▪ Section 3: Definition, and mathematical notions of MULTIMOORA method, 

Random Forest Model and MCDA technique SPOTIS. 

▪ Section 4: The proposed case study that shows the applicability of the algorithm. 

▪ Section 5: Result discussion, comparison and limitations. 

▪ Section 6: Concluded with future directions. 

2. PRELIMINARIES 

In this section, we will cover some fundamental definitions essential to building the 

framework of this paper: hypersoft sets (HSS), and fuzzy hypersoft sets (FHSs).  

Definition 1. [29] Let, 𝛼1, 𝛼2, 𝛼3, … ,  𝛼𝑡  𝑓𝑜𝑟  𝑡 ≥ 1  𝑏𝑒 𝑡 distinct parameters, whose 

corresponding parametric values are respectively the sets 𝛶1, 𝛶2, 𝛶3, … , 𝛶𝑡 with 𝛶𝑖 ∩ 𝛶𝑗 

= ∅, for   ≠ 𝑗, and 𝑖, 𝑗 ∈  {1, 2, … , 𝑡}. Then the pair (𝛤, 𝛬) where 𝛬 =  { 𝛶1 × 𝛶2 × 𝛶3 ×
… × 𝛶𝑡 : t is finite and real valued} is known as hypersoft set over 𝛺 𝑤𝑖𝑡ℎ mapping. 

Γ ∶ Λ = Υ1 × Υ2 × Υ3 × … × Υ𝑡  ⟶ 𝑃(Ω). (1) 

Definition 2. [30, 31, 32] In equation (1), if we assign the values to each attribute in the 

form of truthiness < 𝑇 >  where 𝛤 ∶ 𝑇 → [0,1]. then the pair (𝛤, 𝛬) is called a fuzzy 

hypersoft set. 

Definition 3. [50] Multi-Criteria Decision Making (MCDM) is a branch of operations 

research that evaluates and rank multiple complex criteria in decision-making processes. 

It involves various methods and tools designed to help decision-makers choose the best 

option among alternatives based on different criteria and preferences. 

3. MATHEMATICAL METHODS 

Mathematical modeling is important for study real-world complex problems. It helps 

to make decisions, inspires advances in technology and science, assesses and manage 

risks facing society, and builds the knowledge needed to ensure that transformation.  

3.1. MCDM Technique MULTIMOORA in Term of Hypersoft Set 

Multi-Objective Optimization by Ratio Analysis (MULTIMOORA) [51] is an 

established Multi-Criteria Decision-Making (MCDM) technique that has been applied to 
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solve complex decision-making problems under various conflicting and sometimes 

competing criteria. MULTIMOORA is unique in that it provides a full overview by 

merging three different methods to assess alternatives with respect to performance over 

various criteria. The Ratio System, the Reference Point Approach and the Full 

Multiplicative Form enable these methods to rank all possible alternatives.  

 

Figure 1: The graphical form of MULTIMOORA MCDM method 

Figure 1 shows the graphical representation of the algorithm. Table 1 shows the 

mathematical form of the algorithm. 

Table 1: The Mathematical representation of MULTIMOORA method 

Input Goal, Criteria’s 𝓒𝒊, and Alternative’s 𝓐𝒋 

Output Ranking and final prioritization 
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In this approach, optimal alternative can be selected as: 
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In this approach, optimal alternative can be selected as: 
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In this approach, optimal alternative can be selected as: 𝑢𝑖 =
𝑎𝑖

𝑏𝑖
  

Where,   𝑎𝑖 = ∏ 𝜔𝑖𝑟𝑖𝑗𝑗∈Ω𝑚𝑎𝑥
  , 𝑏𝑖 = ∏ 𝜔𝑖𝑟𝑖𝑗𝑗∈Ω𝑚𝑖𝑛

 

 

As it is known, after determining the alternatives to be evaluated with respect to certain criteria 

using MULTIMOORA method, 3 different ranking lists are built. By applying dominance theory, 

the alternative that seems first on all ranking lists is considered the optimally ranked eligible 

variant. 

 

From crop economic point of view, MULTIMOORA uses several quantitative criteria 

such productivity parameters and target specific input expenses or price over market 

return to rank various crops scenario directly. It can also blend with qualitative results 

from soil health, environmental impact, farmer preference. Therefore, in this traditional 

framework, farmers can both rank alternatives objectively and choose the best alternative 

under various scenarios even when levels of correction are uncertain through presenting a 

simple value-based decision rule that could be applied to any dataset relevant 

information. 

MULTIMOORA
METHOD

RSA approach RPA approach FMF approach
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3.2. Random Forest (RF) Model 

Random Forests (RF) is an ensemble learning method for classification and 

regression, that operates by constructing multiple decision trees at training time and 

developing a consensus based on predictions made by some or all the individual 

constituent classifiers. Introduced by Leo [52], it works by creating decision trees using 

bootstrap optimization and random subsets of features to produce tree diversity. It is an 

ensemble method (regressor or classifier), the predictions of all trees are averaged (in 

case of regression) and majority voting done in (case classification), which helps to 

improve performance on noisy dataset, also its more powerful & accurate than single 

decision tree. 

Crop economists can use the Random Forest (RF) model as a practical approach to 

improve decision making amidst uncertainty. Up to the point of Jane, a small-scale 

farmer trying to figure out what crop she is going to plant in her limited land; RF can 

process all this data with historical weather patterns, soil conditions, market prices and 

input costs. Building several numbers of decision trees with a large variety of datasets, 

the RF model bundles greater accuracy and resilience in making decisions than single 

decision tree. This ensemble model helps to reduce any error in individual prediction and 

ultimately be beneficial in the case of complexities and uncertainties occur at crop 

agriculture. 

3.3. MCDA technique - Stable Preference Ordering towards Ideal Solution 

(SPOTIS) 

Stable Preference Ordering Towards Ideal Solution (SPOTIS) [53] is one of these 

several Multi-Criteria Decision Analysis (MCDA) techniques. As mentioned in the 

introduction, SPOTIS investigates ranking and selecting alternatives based on how well 

each aligns with an ideal solution across many criteria. This is especially useful in 

decision making cases, where multiple conflicting criteria need to be considered 

simultaneously such as crop economics (yield vs cost), or market demand and 

environmental impacts etc. SPOTIS will assess the distance of each action from an ideal 

solution and hence guide DMs to select a best alternative in due consideration, ensuring 

structured complexity and uncertainty of multi-criteria decision-analysis situations. 

Readers are referred to the actual paper [53] for an in-depth mathematical formulation 

and comprehensive explanation. 

4. NUMERICAL ILLUSTRATION 

4.1. Calculations Using MULTIMOORA Method Based on FHSs 

Jane, who is a small-scale farmer operating a small family business in agriculture 

faces the dilemma of which crop to plant in this next planting season due to her limited 

land and resources. With so many economic considerations for the farmer, it makes her 

decision difficult as to when and which crop she should plant. Jane must put these 

options in the context of what crops will be most profitable, grower friendly to adverse 

weather conditions and conversely costs that are associated with accumulating yield. To 

deal with these complexities, Jane can combine MCDM (MULTIMOORA) and MCDA 

technique SPOTIS for providing her decision-making results. By applying the 

MULTIMOORA technique, Jane can measure different crop options against one another 
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according to a set of preferences defined by various quantitative criteria (crop yield 

estimates vs. costs including for seeds, fertilizers and labor, market prices) This helps to 

determine what the best economic choice for crops are with conditions. Jane could also 

apply MCDA technique to evaluate non-quantifiable attributes (e.g., the risk of extreme 

weather events; match between soil and crop; pest susceptibility) For example, some 

MCDA techniques would allow Jane to decide critically how much one criterion is more 

important than another given her risk aversion and the long-run game she wants for a 

farm. MCDA considers expert opinions, weather forecasts and local knowledge among 

others when making decisions allowing for a robust model that fully encompasses the 

natural ambiguities of agricultural decision-making.  

With the integration of MCDM and MCDA techniques, Jane can make a better choice 

with regards to crop selection covering both quantitative and qualitative dimensions. 

Having a combined approach makes it easier for her to choose the crop that will get 

maximum profit and very less risk, enabling her smallholder farming business more 

sustainable and resilient. The flowchart of proposed problem is presented in Figure 2. 

 The task of getting enough information before making up a mind involves watching 

market trends that can tell what customers around are interested in purchasing and 

discussing this matter with other farmers as well as agricultural consultants among others 

so that these choices can be made with some accuracy regards yields per hectare etc., 

according to media reports about sales happening currently across countries, Table 2, 

presents the attributes and alternatives of this case study. 

 

 

Figure 2: The algorithm for proposed case study and modelling 
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Table 2: The proposed alternatives and attributes in case study 

Alternative Criteria 

𝚨𝟏 Rice ∁𝟏 Demand 

𝚨𝟐 Soybeans ∁𝟐 Sale Price (Expected) 

𝚨𝟑 Wheat ∁𝟑 Weather (Flood, high temp etc.) 

𝚨𝟒 Oats ∁𝟒 Harvest cost 

𝚨𝟓 Potato ∁𝟓 Soil fertility 

𝚨𝟔 Sugarcane ∁𝟔 Seeds cost 

𝚨𝟕 Maize ∁𝟕 Irrigation facility 

𝚨𝟖 Tomatoes   

 

Assume that the relation for the function ℱ: ∁1 × ∁2 × ∁3 × ∁4 × ∁5 × ∁6 × ∁7→
𝑃(Α) as ℱ( ∁1 × ∁2 × ∁3 × ∁4 × ∁5 × ∁6 × ∁7)  and we get hypersoft sets are presented 

in Table 3. In this case, plainly a decision-maker with {𝕄1 = 𝐽𝑎𝑛𝑒} who wants to choose 

the best crop on her farm should consider most of characteristics related to farming 

facilities and conditions at least available. Jane decides based on a lot of parameters such 

as expected yield, cost to cultivate it, resistant against pests and diseases, and market 

demand. Jane applies Fuzzy Hypersoft Sets (FHSs) (presented in Table 3) to reveal her 

preferences/opinions concerning each potential crop. FHSs enable her to take a mix from 

qualitative and quantitative data, which captures the nature of uncertainty and ambiguity 

in decision making. The data used in this study can be retrieved from [55]. 

Table 3: Fuzzy hypersoft set decision matrix proposed by decision-maker. 

Alternative / 

Criteria 

𝑪𝟏 𝑪𝟐 𝑪𝟑 𝑪𝟒 𝑪𝟓 𝑪𝟔 𝑪𝟕 

𝑨𝟏 0.080 0.021 0.125 0.341 0.112 0.234 0.123 

𝑨𝟐 0.176 0.558 0.511 0.281 0.550 0.390 0.713 

𝑨𝟑 0.136 0.675 0.326 0.309 0.197 0.650 0.891 

𝑨𝟒 0.020 0.425 0.262 0.216 0.420 0.530 0.507 

𝑨𝟓 0.040 0.312 0.388 0.267 0.266 0.631 0.298 

𝑨𝟔 0.005 0.338 0.382 0.161 0.159 0.660 0.116 

𝑨𝟕 0.010 0.520 0.311 0.171 0.840 0.970 0.781 

𝑨𝟖 0.012 0.210 0.257 0.367 0.280 0.540 0.213 
 

The weights are calculated using the entropy method. 𝑤𝑐1 =  0.254; 𝑤𝑐2  =
 0.045; 𝑤𝑐3  =  0.062, 𝑤𝑐4  =  0.287, 𝑤𝑐5  =  0.141, 𝑤𝑐6  = 0.170; 𝑤𝑐7  =  0.039. 
 

Solution: 

Step 1. Construction of decision matrix. 

Step 2-4. Calculations using RSA, RPA, FMF methods of MULTIMOORA are presented 

in Table 4. 
 

The MULTIMOORA method was employed for evaluating a set of crop alternatives 

having similar attributes as given in Table 2. Here, the three individual approaches 

including Ratio System; Reference Point Approach and Full Multiplicative Form are 

used to calculate ranking. Using dominance theory [51], the alternative with top ranked 

positions in all the ordered rankings as most preferred alternative. Figure 3 shows that 
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𝐴7 = 𝑀𝑎𝑖𝑧𝑒 is the best-ranked alternative, whereas 𝐴8 = 𝑇𝑜𝑚𝑎𝑡𝑜𝑠 𝑎𝑛𝑑 𝐴1 = 𝑅𝑖𝑐𝑒 are 

the second and third ranked in crop selection for her farm.  

Table 4: The calculated results using proposed MULTIMOORA method based on FHSs 

Alternatives RSA RPA FMF 

𝑨𝟏 0.0215792 0.0576 741551.718 

𝑨𝟐 0.0039243 0.0103 127856.161 

𝑨𝟑 0.0018103 0.0209 113208.766 

𝑨𝟒 0.0116689 0.0219 236248.732 

𝑨𝟓 0.0131453 0.0445 401864.397 

𝑨𝟔 0.0211727 0.0479 370002.167 

𝑨𝟕 0.0359856 0.0911 773951.525 

𝑨𝟖 0.0261933 0.0675 870021.246 
 

Step 5. The optimal choice for the Jane to harvest is calculated and presented below in 

Table 5.  

Table 5: Crop production economics ranking 

Method Alternative Scores ranking 

RSA 𝒴7 >  𝒴8  >  𝒴1  >  𝒴6  >  𝒴5  >  𝒴4  >  𝒴2  > 𝒴3 
 

RPA 𝔡7
𝑚𝑎𝑥 < 𝔡8

𝑚𝑎𝑥 < 𝔡1
𝑚𝑎𝑥 < 𝔡6

𝑚𝑎𝑥 < 𝔡5
𝑚𝑎𝑥 < 𝔡4

𝑚𝑎𝑥 < 𝔡3
𝑚𝑎𝑥 < 𝔡2

𝑚𝑎𝑥  

FMF 𝑢8  >  𝑢7  >  𝑢1  >  𝑢5  >  𝑢6  >  𝑢4  >  𝑢2  >  𝑢3 

 

4.2. Calculations Using Random Forest (RF) Model 

Implementing the Random-Forest model to represent how decision is made. The code 

below (Appendix A) is designed to solve a case study on how the decision-maker can use 

the model built from data in Table 3 and that includes Jane motivations over each of her 

potential crops, this explanation corresponds with Figure 3. An RF model then is applied 

to the dataset of multiple crops (alternatives) and their characteristics (criteria). 
 

 
Figure 3: MULTIMOORA method based on FHSs calculated results 

 

Implementation Steps: 

▪ Pre-process Data: Information provided in Table 3 (containing Jane's preferences 

represented through Fuzzy Hypersoft Sets, i.e., FHSs), needs to be converted from 

linguistic terms into data that can undergo analysis. FHSs assign a grade of 

membership to every crop within the different attributes, corresponding to 

uncertainty and vagueness in Jane's adores. 
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▪ Feature Selection: Table 3 shows each attribute as a feature for the Random Forest 

model. Features can be classifier-dependent attributes with numerical values (e.g. 

demand, weather, cost etc.) and the calculated means are presented in Figure 4. 

▪ Training the Model: We train RF model on dataset described in Table 3. It builds 

more than one decision trees by randomly choosing subsets of data (crops) and 

features(attributes) to make sure that our model engagements the degenerate case, 

where it’s too overfitted. Suited crops of a dataset are differentiated by recursively 

splitting the set on selected features each tree in forest is built from. 

▪ Testing the Model: After training the RF model predicts how applicable each crop 

is through an aggregation of all decision trees hence determining the ranking So 

when Jane lists her attributes and preferences, these predictions are used to rank the 

crops by predicted score Figure 3, which is a measure of their overall suitability 

given any set of Jane's characteristics. 

▪ Model Validation: The performance of the model is then evaluated by testing how 

well the RF models prediction outputs compare with any known outcomes or expert 

judgement. This step enables us to validate that the model accurately reflects Jane’s 

preferences and delivers consistent recommendations. 

 

Figure 4: RF Model for mean ranking calculations 

Analysis of data from Table 3 was carried out to decide which crop is the best choice 

for Jane’s farm using a power ensemble learning known as Random Forest (RF) model. 

The RF model used a range of traits including predicted mean, cultivation cost, pest 

tolerance, expected demand and weather uncertainty. The RF model captures 

uncertainties and variability in Jane's preferences as well as farming conditions by 

creating different decision tree-based models on multiple crops, attributes. This indicate 
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that among all the potential benefits Maize was Jane's best alternative overall. Mixing 

both qualitative and quantitative features of the crops into RF model was able to provide 

a rich analysis that informed decision making. The consistency of these rankings on 

various decision tress within the RF model indicates that Maize is a preferred choice for 

Jane's farm. 

4.3. Calculations using SPOTIS Method 

Stable Preference Ordering Towards the Ideal Solution (SPOTIS) is a Multi-Criteria 

Decision Analysis (MCDA) technique designed to rank alternatives based on their 

proximity to an ideal solution. In the context of crop selection for Jane’s farm, the 

SPOTIS method can be used to evaluate various crop alternatives considering multiple 

attributes, such as expected yield, cultivation costs, pest resistance, market demand, and 

environmental sustainability. The goal is to determine which crop is closest to the ideal 

solution across all criteria. 

Step-by-Step Calculations for SPOTIS 

▪ Construct the Decision Matrix (see Table 3) 

▪ Determine Ideal and Anti-Ideal Solutions 

▪ Calculate the Distances to the Ideal and Anti-Ideal Solutions 

▪ Calculate the Relative Closeness 𝐶𝑖 to the Ideal Solution 

▪ Rank the Alternatives 

The calculated 𝐶𝑖 values for the alternatives are presented below in Table 6 and based 

the scores one can list the best alternative.  

Table 6. Ranking of alternatives based on MCDA method SPOTIS 

Alternatives 𝐂𝒊 values Ranking 

𝑨𝟏 0.478 3 

𝑨𝟐 0.173 7 

𝑨𝟑 0.169 8 

𝑨𝟒 0.217 6 

𝑨𝟓 0.399 5 

𝑨𝟔 0.455 4 

𝑨𝟕 0.526 1 

𝑨𝟖 0.500 2 

 

The SPOTIS method results indicate that 𝐴7 = 0.526 (Maize) is the most suitable 

crop for Jane's farm, followed by Rice and Tomatoes. The ranking reflects that Maize has 

the closest proximity to the ideal solution across the criteria, balancing high yield, 

moderate costs, and good market demand. Rice is the second best, offering a good 

compromise between cost and market demand but slightly lower yield performance.  

5. RESULT DISCUSSION, COMPARISON AND LIMITATIONS 

The authors adopted three methods SPOTIS, Random Forest (RF), and 

MULTIMOORA to identify the most favorable crop for Jane's farm in terms of weather, 

costs required during agricultural production process like water or land usage, pesticide 

resistance against pests as well as market demand. Maize was identified as the best 

choice by all three methods, with Tomatoes and Rice scoring second. The alternative 
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ranking shows that SPOTIS results are depends on how much it resembles an ideal 

solution, effectively balancing both benefit and cost criteria. The most preferable 

alternative crop found as Maize. A machine learning Random Forest (RF) model is 

employed to assess crop rankings, accounting for the interactive nature of these 

attributes. Reasons: RF also ranks Maize the highest consumer-preference and it is best 

for use of production situations under uncertain conditions. MULTIMOORA is also 

applied, and Maize is the best alternative, further validating the findings. Jane is 

confident to choose Maize as the best crop so far. This study demonstrates the power of 

mixing decision-making tools to provide robust means for addressing uncertainties and 

assuring reliable agricultural decisions. 

Future advancements can be made in the following directions [54, 55, 56] as well to 

enhance the literature broadness [57, 58]. It can be extended to explore fuzzy fixed-point 

results applied to fuzzy differential equations [59], fuzzy sampled-data stabilization for 

chaotic nonlinear systems [60] and focus on sliding mode control for semi-Markov jump 

T-S fuzzy systems with time delays [61]. Recent advancements in multi-criteria decision-

making (MCDM) methods highlight their diverse applications using aggregation 

operators [62, 63, 64, 65]. The fuzzy model to use to analyze the impacts of smog 

mitigation through a comprehensive MCDM framework [66] and logistics specialist 

selection has been studied by [67]. The study can be extended to the concepts proposed in 

[68, 69] as well. 

Study limitations and Recommendations: Listed results of this study are consistent 

among SPOTIS, Random Forest (RF), and MULTIMOORA methods however have 

some limitations. These techniques depend on the data entered to a high degree of 

condition and comprehensiveness, which means that any imperfect or obsolete 

information can easily yield incorrect decisions. Moreover, the models are largely based 

on static data and not equipped to consider real-time changes in markets or even 

developments related to weather. In summary, to mitigate these limitations it is 

imperative that future studies focus on the integration of real-time data, improve both 

quality and diversity in model inputs, and especially explore hybrid models combining 

different DM approaches. The development of user-friendly tools to make decisions and 

a deeper exploration into decision-making models could advance the practical usefulness 

that can work, like providing Jane with informed more sustainable choices. 

Ethical Considerations: Getting informed consent is important when you are 

learning from farmers. All data should be securely stored and with strong access control 

to ensure no one is authorized to use the data outside what was already agreed upon by 

farmer. Must focus on privacy and security, in line with well-documented policies of all 

data consumption. It would also be good to recognize the wider social, economic and 

environmental impacts of any new farming practices or technologies that are introduced 

so as not only as contribute towards strong resilient sustainable communities but ensure 

benefits are equally shared. 

Future directions: The new research should consider how to model a real-time data 

about weather and market conditions for more adaptable decision-making. Hybrid 

models that integrate machine learning methods with MCDM / MCDA can be used to 

improve the accuracy in dealing with decision problems. Additional studies could 

examine sub-divided criteria frameworks for strategic planning, improve data quality and 

variety, as well as develop farmers need based decision support systems. Also, in the 

broad-scale and cope social and economic implications of various agricultural 
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technologies could become clearer to adopt models that can facilitate or assistant 

strategies with respect to each region leading sustainable adoption. 

6. CONCLUSION 

The paper presents an integrated decision-making model for agriculture using MCDM 

techniques: i.e. MULTIMOORA and Random Forest under Fuzzy Hypersoft Sets 

(FHSs), and MCDA technique Stable Preference Ordering Towards Ideal Solution 

(SPOTIS). This study identifies the quantitative as well as qualitative uncertainties and 

complexities prevailing in agricultural economics due to volatile market prices, 

constantly rising input costs, fluctuating weather conditions among several other factors. 

The framework, however, is a power tool for improving decision-making processes by 

bringing together MCDM and MCDA approaches allowing farmers to make well-

informed decisions about the allocation of resources which gives them an additional edge 

over maximizing income. 

The studies in the past were carried out by using either one method at a time or only 

considered quantitative approaches, so this paper is beneficial as all the methods are used 

together and it can be used to solve crop production economics. This unique usage of 

sophisticated mathematics integrated with machine learning allows DM to serve more 

accurate results. Application and validation of the model with case study demonstrate its 

advantage to deliver real-world benefits such as increased farm economics, improved risk 

management for individual farmers and resilience overall.  
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APPENDIX 

The source code used for the correlation calculation using RF Model for the proposed 

case study. 

 

Python Code:  
str_list = [] # empty list to contain columns with strings (words) 

for colname, colvalue in data.iteritems(): 

if type(colvalue[1]) == str: 

str_list.append(colname) 

# Get to the numeric columns by inversion 

num_list = data.columns.difference(str_list) 

# Create Dataframe containing only numerical features 

data_num = data[num_list] 

f, ax = plt.subplots(figsize=(16, 12)) 

plt.title('Pearson Correlation of features') 

# Draw the heatmap using seaborn 

#sns.heatmap(data_num.astype(float).corr(),linewidths=0.25,vmax=1.0, 

square=True, cmap="PuBuGn", linecolor='k', annot=True) 

sns.heatmap(data_num.astype(float).corr(),linewidths=0.25,vmax=1.0, 

square=True, cmap="cubehelix", linecolor='k', annot=True) 


