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Abstract: Because of the quantitative and qualitative uncertainty and complexity, it is
not sufficient to use just Multicriteria Decision Making (MCDM), but also Multi-Criteria
Decision Analysis (MCDA). The MCDM relates to the methods by which decisions are
taken (i.e., selection of alternatives, ranked or ordered, and for what is analyzed being
objective values. While MCDA offers a comprehensive approach for systematic
assessment of criteria considering its impact on decision outcomes. Given that both
methods have their own strengths, it is necessary to apply both MCDM and MCDA in
agricultural economics which has a lot of uncertainty because of market price variability,
increasing input costs and changing weather patterns. In this paper, Fuzzy Hypersoft Sets
(FHSs), is used to model this problem and a case study is solved with Stable Preference
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Ordering Towards Ideal Solution (SPOTIS), Random Forest (RF), and Multi-Objective
Optimization by Ratio Analysis (MULTIMOORA) to identify the most favorable crop
for Jane's farm in terms of weather, costs required during agricultural production process
like water or land usage, pesticide resistance against pests as well as market demand.
Maize as an alternative A, = 0.526 was identified as the best choice by all three methods
with Tomatoes and Rice scoring second, based on calculated score values. Thus, it
enables us to study both quantitative and qualitative data, making it extremely able for
agriculture uncertainties. This unique usage of sophisticated mathematics integrated with
machine learning allows the decision-makers to find more accurate results, meaning it
can manage economic risks better and allocate resources intelligently in agriculture. The
comparative analysis with existing studies highlights the superiority of proposed work.
Thus, it is significantly superior in accuracy. Hence farmers can harness farm economics
to address these challenges by managing economic risks using mathematical decision-
making tool, thereby leading them towards sustainability of livelihoods, food security
and a resilient agricultural sector.

Keywords: Uncertainty, agriculture economics, fuzzy hypersoft set theory, aggregate
operators (AO), MCDM and MCDA techniques.

MSC: 03E72, 90B50.
1. INTRODUCTION

Crop economics, a branch of agricultural economics, applies economic principles to
the production, distribution, and consumption of crops. It includes several factors that
impact the financial aspects around crop production like input costs, sale prices, market
trends, guidelines issued by federal bodies and overall profitability. Also, the costs of
seed, fertilizer and pesticides and the labor used to harvest crops can all affect how
farming is economically feasible. Crop production economics and risk might be crucial
components of agriculture decision-making (DM) which can influence farmers in
addition to stability for food corresponding security around the globe. This is because
agriculture is a highly dynamic enterprise characterized by several different changes in
price levels and demand patterns [1]. Again, climate variability makes crop output much
more uncertain. As weather patterns have become more variable and less predictable,
extreme weather events like droughts, floods, heat waves and storms are becoming more
frequent [2]. These weather changes can either damage crops, lower yields or result in
complete loss of crops. As a result, farmers must manage their resources prudently as
well as invest on technologies that can reduce the impacts of ad-verse climatic
conditions. Farmers and other stakeholders require support to maneuver the intricacies of
agricultural production coupled with changing dynamics of the markets where decision-
making and optimization in crop economics under uncertainty play a pivot role [3].
Several studies underline these as important issues towards sustainable and more
profitable agriculture. Rastogi et al.’s paper states that data analytics, IoT devices [4],
satellite imagery allows farmers to make right decisions about resource allocation,
irrigation schedules and pest management. In this way agricultural productivity goes up
while input use declines leading to improved financial outcomes eventually. Crop
diversity on the other hand has been deeply analyzed in literature as one approach used in
managing risk in case of unpredictable events [5]. It also helps protect farm income
through spreading risks over multiple commodities. Moreover, there are models for
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optimization designed for decision-making (DM) purposes particularly when faced with
ambiguity [6, 7, 8]. Optimizing cropping patterns to come up with best responses is
proposed by Wani et al.’s article which uses stochastic optimization model incorporated
with climate variability [9]. This way, farmers can identify the best crops and cropping
patterns that will have minimum losses and maximum revenues by considering different
climatic situations. Also, they suggest that the calculation of numerous climate scenarios
gives rise to probabilities for decision-making. Government support as well as policy
changes also affect how crop economists make their decisions and optimize their
strategies [10]. Kumar and Chandel’s study investigates the impact of agricultural
policies on financial choices made by farmers [11].

Since crops are largely dependent on external factors such as market price between
harvest and marketing, variation in input costs, weather phenomena and similar other
unpredictable situations; all this leads to crop economics being fraught with uncertainties.
For farmers who need to allocate resources to optimize productivity and sustainability,
these uncertainties create complicated decision-making problems. Fuzzy set (FS) [12]
theory is a powerful mathematical framework over the imprecise and ambiguous data,
which arises quite often within agricultural scenario where uncertainties need to be
modeled represented & managed. This is very different from traditional discrete logic
that relies on clear-cut distinctions, standard truth values of 0 or 1. FS theory avoids this
problem by permitting an object to belong in a certain available set with the membership
degree between operating limits full and void. This is especially useful in the sort of crop
economics, where definitive information is less or incomplete and mostly decisions will
be based on global knowledge. This theory is further extended to various set structures
like: Single-valued fuzzy sets, multiple-valued fuzzy sets [13, 14], bipolar fuzzy sets
[15], interval-valued fuzzy sets [16], m-polar interval-valued fuzzy sets [17], and hesitant
fuzzy sets [18]. Many applications of fuzzy sets in real-life has been proposed by [19,
20]. Then, Atanassov extended the FS theory to intuitionistic fuzzy sets (IFS) [21] in
1986 which include the values of membership and non-membership. Through this
foundation, it was generalized to Pythagorean fuzzy (PF) sets by [22] and applied with
the rules of PF sets for solving multiple-criteria decision-making problems [23, 24],
Indeterminacy in uncertain environments was introduced by Smarandache [25] in 1998
through a new theory known as neutrosophic set. The concept of the soft set is mapping
at-tributes to the power set of a universal set, but it showed the significant bifurcation of
attributes [26]. The theory of fuzzy soft set and its applications in MCDM were proposed
by Maji [27, 28]. Smarandache [29] proposed the hypersoft set in 2018, which is a new
set structure and anew from the product of divided attributes to the set on a universal set
of attributes. It also retains fuzzy hypersoft sets, intuitionistic hypersoft sets, and
neutrosophic hypersoft sets with considering truthiness, incertitude, and in-determinacy.
Later, the definition of fuzzy hypersoft sets FHSs, the aggregate operators with similarity
measures, and distance measures was proposed by [30, 31, 32] along with matrix
notations and algorithms in case studies. The hybrid structures with applications in our
daily life were also presented [33, 34], and with the integration of machine learning was
proposed by [35].

Recent advances in smart agriculture and digitalization strategies have revolutionized
the agricultural sector, especially for small-scale farmers, who are burdened with various
economic and environmental issues. One of the example studies, by Bagherzadeh [36]
that presented a study of smart technologies through wireless sensor networks and the
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potential they could help in improving crop productivity and the sustainability of
resource management in agriculture. The authors partially suggest that resource
monitoring technology can be optimized to a more significant extent. The work of Panda
et al. [37] in a similar field could be observed with appropriate analysis. The potential of
smart agriculture is further explored in the study by Zhou [38] and Nourkhah et al. [39],
which describe an integrated technique for improving soil suitability through soil quality
prediction and technological monitoring capacity. The studies of Yongyi Gu et al. [40]
and Debnath [41] explain the opportunities to increase the economic capacity of farmers
and develop efficient strategies in a market of uncertainty. Antifragility analyses, such as
the one by Li et al. [42], could be an appropriate example of monitoring the progress in
digital agriculture that has an integral role in ensuring the economy is stable. Overall,
these sources give a more updated view of how future digitalization will look in
agriculture, the study [43] presents the importance of smart technology in agriculture.

Recent advances in mathematical models and machine learning have varied
implications across different research areas. El-Douh et al. [44] provide new insights into
the predictivity problem by using machine-learning techniques and association rules
within a neutrosophic background. In healthcare applications, uncertain management can
provide an even higher result. The operation of fuzzy logic systems is presented in a
study by Khaliq et al. [45] which explains the dynamics of tumor growth in a fuzzy
situation using the generalized Hukuhara derivative system. Such an integrative system is
presented in the work of Rahman [46] which operates in a hypersoft setting. Some other
theoretical works are represented by Smarandache [47] studies about the SuperHyperSoft
Set and its fuzzy representation and the examination of hypersoft and indeterm hypersoft
sets [48]. Additionally, Imran and Ali [49] discuss the interplay between tourism and
economic development in Pakistan, utilizing systemic analytics to uncover the synergistic
relationships that drive economic growth. These sources cumulatively showcase a high
integrative potential of fuzzy systems in multiple areas, from theoretical mathematics to
data analysis and applied sciences.

Crop economics, as a subject, is just immensely complex and uncertain. And that
certainty has lots of uncertainty around it too because farmers must make decisions on
not only resource allocation but also how to behave in an ever more unpredictable world.
These uncertainties can come in the shape of rising input costs, unpredictable weather
patterns, pest incursion, or changes to government policy which may also have further
sub-divided values. If these factors are ignored in crop economics, they may have the
potential to significantly impact yield and profit margins and create unique barriers as
farmers consider economically viable adaptation strategies that can also be unsustainable.
The existing Decision-making models do not allow us to address the quantitative and
qualitative uncertainty together. Also, the existing models are unable to address the
uncertainty of further bi-furcated attributes and due to nature of the agriculture problems.

Integrating techniques of MCDM and MCDA to solve the crop economic
uncertainties would result in more accurate solutions of the issues together. The MCDM
technique, MULTIMOORA, and the Random Forest model under fuzzy hypersoft set
theory have been proposed to address the uncertainty of further bifurcation of attributes.
While MCDA technique SPOTIS have been applied to address the quantitative and
qualitative nature of the problem together. By leveraging the complementary strengths of
MCDM and MCDA, decision-makers can achieve greater precision and adaptability in
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agricultural planning, ultimately improving risk management and fostering sustainable
agricultural practices.

This paper originality, it integrates MCDM technique (namely MULTIMOORA
method and Random Forest model) proposed under FHSs based framework and MCDA
technique SPOTIS is used for tackling agriculture decision making issues combining
complexities and uncertainties. The studies in the past were carried out by using either
one method at a time or only considered quantitative approaches, so this paper is
beneficial as all the methods are used together and it can be used to solve crop production
economics. This unique usage of sophisticated mathematics integrated with machine
learning allows the decision-makers to find more accurate results, meaning it can manage
economic risks better and allocate resources intelligently in agriculture.

The following indicates that how the work is organized:
= Section 2: Preliminaries are presented.
= Section 3: Definition, and mathematical notions of MULTIMOORA method,

Random Forest Model and MCDA technique SPOTIS.
= Section 4: The proposed case study that shows the applicability of the algorithm.
= Section 5: Result discussion, comparison and limitations.
= Section 6: Concluded with future directions.

2. PRELIMINARIES

In this section, we will cover some fundamental definitions essential to building the
framework of this paper: hypersoft sets (HSS), and fuzzy hypersoft sets (FHSs).

Definition 1. [29] Let, a', a?, a3, .., at for t =1 be t distinct parameters, whose
corresponding parametric values are respectively the sets Y*, Y2, Y3, .., Y  with Y N Y/
=g for £/ and i j € {1,2,...,t}. Then the pair (T, A) where A = {Y* x Y2 x Y3 x
.. X Yt : tis finite and real valued} is known as hypersoft set over Q2 with mapping.

F:A=Y'XY?2xY3x..xY" — P(Q). (1)

Definition 2. [30, 31, 32] In equation (1), if we assign the values to each attribute in the
form of truthiness < T > where I' : T — [0,1]. then the pair (I',A) is called a fuzzy
hypersofft set.

Definition 3. [50] Multi-Criteria Decision Making (MCDM) is a branch of operations
research that evaluates and rank multiple complex criteria in decision-making processes.
It involves various methods and tools designed to help decision-makers choose the best
option among alternatives based on different criteria and preferences.

3. MATHEMATICAL METHODS

Mathematical modeling is important for study real-world complex problems. It helps
to make decisions, inspires advances in technology and science, assesses and manage
risks facing society, and builds the knowledge needed to ensure that transformation.

3.1. MCDM Technique MULTIMOORA in Term of Hypersoft Set

Multi-Objective  Optimization by Ratio Analysis (MULTIMOORA) [51] is an
established Multi-Criteria Decision-Making (MCDM) technique that has been applied to
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solve complex decision-making problems under various conflicting and sometimes
competing criteria. MULTIMOORA is unique in that it provides a full overview by
merging three different methods to assess alternatives with respect to performance over
various criteria. The Ratio System, the Reference Point Approach and the Full
Multiplicative Form enable these methods to rank all possible alternatives.

MULTIMOORA|
METHOD

RSA approach RPA approach FMF approach

Figure 1: The graphical form of MULTIMOORA MCDM method

Figure 1 shows the graphical representation of the algorithm. Table 1 shows the
mathematical form of the algorithm.

Table 1: The Mathematical representation of MULTIMOORA method

Input Goal, Criteria’s C;, and Alternative’s A;
Output Ranking and final prioritization

In this approach, optimal alternative can be selected as:
< Y=Y -Yr
) Where,
R v o Xy
Y = Wi Tij o, ;= wiry , and 1 =y
JE€Qmax JE€Qmin = Y
In this approach, optimal alternative can be selected as:
b = max(w;|r;’ — 1)
< J
& Where,
. ml?lx Tij o J € Qinax
I = | min 75 J € Quin
L
“ In this approach, optimal alternative can be selected as: u; = %
L
E Where, a; = [ljeq,q, @i7ij » bi = [ljeq,, @ity

As it is known, after determining the alternatives to be evaluated with respect to certain criteria
using MULTIMOORA method, 3 different ranking lists are built. By applying dominance theory,
the alternative that seems first on all ranking lists is considered the optimally ranked eligible
variant.

From crop economic point of view, MULTIMOORA uses several quantitative criteria
such productivity parameters and target specific input expenses or price over market
return to rank various crops scenario directly. It can also blend with qualitative results
from soil health, environmental impact, farmer preference. Therefore, in this traditional
framework, farmers can both rank alternatives objectively and choose the best alternative
under various scenarios even when levels of correction are uncertain through presenting a
simple value-based decision rule that could be applied to any dataset relevant
information.
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3.2. Random Forest (RF) Model

Random Forests (RF) is an ensemble learning method for classification and
regression, that operates by constructing multiple decision trees at training time and
developing a consensus based on predictions made by some or all the individual
constituent classifiers. Introduced by Leo [52], it works by creating decision trees using
bootstrap optimization and random subsets of features to produce tree diversity. It is an
ensemble method (regressor or classifier), the predictions of all trees are averaged (in
case of regression) and majority voting done in (case classification), which helps to
improve performance on noisy dataset, also its more powerful & accurate than single
decision tree.

Crop economists can use the Random Forest (RF) model as a practical approach to
improve decision making amidst uncertainty. Up to the point of Jane, a small-scale
farmer trying to figure out what crop she is going to plant in her limited land; RF can
process all this data with historical weather patterns, soil conditions, market prices and
input costs. Building several numbers of decision trees with a large variety of datasets,
the RF model bundles greater accuracy and resilience in making decisions than single
decision tree. This ensemble model helps to reduce any error in individual prediction and
ultimately be beneficial in the case of complexities and uncertainties occur at crop
agriculture.

3.3. MCDA technique - Stable Preference Ordering towards Ideal Solution
(SPOTIS)

Stable Preference Ordering Towards Ideal Solution (SPOTIS) [53] is one of these
several Multi-Criteria Decision Analysis (MCDA) techniques. As mentioned in the
introduction, SPOTIS investigates ranking and selecting alternatives based on how well
each aligns with an ideal solution across many criteria. This is especially useful in
decision making cases, where multiple conflicting criteria need to be considered
simultaneously such as crop economics (yield vs cost), or market demand and
environmental impacts etc. SPOTIS will assess the distance of each action from an ideal
solution and hence guide DMs to select a best alternative in due consideration, ensuring
structured complexity and uncertainty of multi-criteria decision-analysis situations.
Readers are referred to the actual paper [53] for an in-depth mathematical formulation
and comprehensive explanation.

4. NUMERICAL ILLUSTRATION
4.1. Calculations Using MULTIMOORA Method Based on FHSs

Jane, who is a small-scale farmer operating a small family business in agriculture
faces the dilemma of which crop to plant in this next planting season due to her limited
land and resources. With so many economic considerations for the farmer, it makes her
decision difficult as to when and which crop she should plant. Jane must put these
options in the context of what crops will be most profitable, grower friendly to adverse
weather conditions and conversely costs that are associated with accumulating yield. To
deal with these complexities, Jane can combine MCDM (MULTIMOORA) and MCDA
technique SPOTIS for providing her decision-making results. By applying the
MULTIMOORA technique, Jane can measure different crop options against one another
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according to a set of preferences defined by various quantitative criteria (crop yield
estimates vs. costs including for seeds, fertilizers and labor, market prices) This helps to
determine what the best economic choice for crops are with conditions. Jane could also
apply MCDA technique to evaluate non-quantifiable attributes (e.g., the risk of extreme
weather events; match between soil and crop; pest susceptibility) For example, some
MCDA techniques would allow Jane to decide critically how much one criterion is more
important than another given her risk aversion and the long-run game she wants for a
farm. MCDA considers expert opinions, weather forecasts and local knowledge among
others when making decisions allowing for a robust model that fully encompasses the
natural ambiguities of agricultural decision-making.

With the integration of MCDM and MCDA techniques, Jane can make a better choice
with regards to crop selection covering both quantitative and qualitative dimensions.
Having a combined approach makes it easier for her to choose the crop that will get
maximum profit and very less risk, enabling her smallholder farming business more
sustainable and resilient. The flowchart of proposed problem is presented in Figure 2.

The task of getting enough information before making up a mind involves watching
market trends that can tell what customers around are interested in purchasing and
discussing this matter with other farmers as well as agricultural consultants among others
so that these choices can be made with some accuracy regards yields per hectare etc.,
according to media reports about sales happening currently across countries, Table 2,
presents the attributes and alternatives of this case study.

Proposed Problem

| === —[ Mathematical Modeling ]— ==

[ A !

<

Handling tools for
Linguistic ambiguity

Agriculture
Sustainability

h 4

I
1
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Selection of further bi- ) )
furcated atiributes Methasdologics
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| |
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Figure 2: The algorithm for proposed case study and modelling
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Table 2: The proposed alternatives and attributes in case study

Alternative Criteria
A, Rice C1 Demand
A, Soybeans C, Sale Price (Expected)
Az Wheat C3 Weather (Flood, high temp etc.)
Ay Oats C4 Harvest cost
Ag Potato Cs Soil fertility
Ag Sugarcane Ce Seeds cost
A, Maize Gy Irrigation facility
Ag Tomatoes

Assume that the relation for the function F:(C; X C; X C3 X Cy X C5 X Cg X C7—
P(A) as F(Cy X C; X C3 X (4 X C5 X Cg X C;) and we get hypersoft sets are presented
in Table 3. In this case, plainly a decision-maker with {M* = Jane} who wants to choose
the best crop on her farm should consider most of characteristics related to farming
facilities and conditions at least available. Jane decides based on a lot of parameters such
as expected yield, cost to cultivate it, resistant against pests and diseases, and market
demand. Jane applies Fuzzy Hypersoft Sets (FHSs) (presented in Table 3) to reveal her
preferences/opinions concerning each potential crop. FHSs enable her to take a mix from
qualitative and quantitative data, which captures the nature of uncertainty and ambiguity
in decision making. The data used in this study can be retrieved from [55].

Table 3: Fuzzy hypersoft set decision matrix proposed by decision-maker.

Alternative / Cy C, C3 Cy Cs Ce (0

Criteria
Aq 0.080 0.021 0.125 0.341 0.112 0.234 0.123
A, 0.176 0.558 0.511 0.281 0.550 0.390 0.713
Az 0.136 0.675 0.326 0.309 0.197 0.650 0.891
Ay 0.020 0.425 0.262 0.216 0.420 0.530 0.507
Ag 0.040 0.312 0.388 0.267 0.266 0.631 0.298
Ag 0.005 0.338 0.382 0.161 0.159 0.660 0.116
Ay 0.010 0.520 0.311 0.171 0.840 0.970 0.781
Ag 0.012 0.210 0.257 0.367 0.280 0.540 0.213

The weights are calculated using the entropy method. w, = 0.254; w,, =
0.045; w,; = 0.062, w,, = 0.287,w,s = 0.141, w, = 0.170; w.; = 0.039.

Solution:

Step 1. Construction of decision matrix.

Step 2-4. Calculations using RSA, RPA, FMF methods of MULTIMOORA are presented
in Table 4.

The MULTIMOORA method was employed for evaluating a set of crop alternatives
having similar attributes as given in Table 2. Here, the three individual approaches
including Ratio System; Reference Point Approach and Full Multiplicative Form are
used to calculate ranking. Using dominance theory [51], the alternative with top ranked
positions in all the ordered rankings as most preferred alternative. Figure 3 shows that
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A, = Maize is the best-ranked alternative, whereas Ag = Tomatos and A, = Rice are
the second and third ranked in crop selection for her farm.

Table 4: The calculated results using proposed MULTIMOORA method based on FHSs

Alternatives RSA RPA FMF
Ay 0.0215792 0.0576 741551.718
A, 0.0039243 0.0103 127856.161
Az 0.0018103 0.0209 113208.766
Ay 0.0116689 0.0219 236248.732
Ag 0.0131453 0.0445 401864.397
Ag 0.0211727 0.0479 370002.167
A, 0.0359856 0.0911 773951.525
Ag 0.0261933 0.0675 870021.246
Step 5. The optimal choice for the Jane to harvest is calculated and presented below in
Table 5.
Table 5: Crop production economics ranking
Method Alternative Scores ranking
RSA Yr>TYsg>Y1 >Ys >Ys > Yy > Y >Ys
RPA DAY < pPIE < DT < DM < DI < DM < DTIY < DT
FMF Ug > U; > Up > Ug > Ug > Uy > Uy > Uz

4.2. Calculations Using Random Forest (RF) Model

Implementing the Random-Forest model to represent how decision is made. The code
below (Appendix A) is designed to solve a case study on how the decision-maker can use
the model built from data in Table 3 and that includes Jane motivations over each of her
potential crops, this explanation corresponds with Figure 3. An RF model then is applied
to the dataset of multiple crops (alternatives) and their characteristics (criteria).

m RSA
" I n uRPA
wl B FMF

AL A2 A3 A4 A5 A6 A8

A7

10

Ranking
O N B O

Alternative
Figure 3: MULTIMOORA method based on FHSs calculated results

Implementation Steps:

=  Pre-process Data: Information provided in Table 3 (containing Jane's preferences
represented through Fuzzy Hypersoft Sets, i.e., FHSs), needs to be converted from
linguistic terms into data that can undergo analysis. FHSs assign a grade of
membership to every crop within the different attributes, corresponding to
uncertainty and vagueness in Jane's adores.
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=  Feature Selection: Table 3 shows each attribute as a feature for the Random Forest
model. Features can be classifier-dependent attributes with numerical values (e.g.
demand, weather, cost etc.) and the calculated means are presented in Figure 4.

* Training the Model: We train RF model on dataset described in Table 3. It builds
more than one decision trees by randomly choosing subsets of data (crops) and
features(attributes) to make sure that our model engagements the degenerate case,
where it’s too overfitted. Suited crops of a dataset are differentiated by recursively
splitting the set on selected features each tree in forest is built from.

= Testing the Model: After training the RF model predicts how applicable each crop
is through an aggregation of all decision trees hence determining the ranking So
when Jane lists her attributes and preferences, these predictions are used to rank the
crops by predicted score Figure 3, which is a measure of their overall suitability
given any set of Jane's characteristics.

= Model Validation: The performance of the model is then evaluated by testing how
well the RF models prediction outputs compare with any known outcomes or expert
judgement. This step enables us to validate that the model accurately reflects Jane’s
preferences and delivers consistent recommendations.

Pearson Correlation of features 1o

AL

A6

A7

Class
e
3
&
o
N
N
e
I
°
2
5

1

AL AIZ A‘Z »Q;l A‘S B A‘7 A‘B d;SS
Figure 4: RF Model for mean ranking calculations

Analysis of data from Table 3 was carried out to decide which crop is the best choice
for Jane’s farm using a power ensemble learning known as Random Forest (RF) model.
The RF model used a range of traits including predicted mean, cultivation cost, pest
tolerance, expected demand and weather uncertainty. The RF model captures
uncertainties and variability in Jane's preferences as well as farming conditions by
creating different decision tree-based models on multiple crops, attributes. This indicate
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that among all the potential benefits Maize was Jane's best alternative overall. Mixing
both qualitative and quantitative features of the crops into RF model was able to provide
a rich analysis that informed decision making. The consistency of these rankings on
various decision tress within the RF model indicates that Maize is a preferred choice for
Jane's farm.

4.3. Calculations using SPOTIS Method

Stable Preference Ordering Towards the Ideal Solution (SPOTIS) is a Multi-Criteria
Decision Analysis (MCDA) technique designed to rank alternatives based on their
proximity to an ideal solution. In the context of crop selection for Jane’s farm, the
SPOTIS method can be used to evaluate various crop alternatives considering multiple
attributes, such as expected yield, cultivation costs, pest resistance, market demand, and
environmental sustainability. The goal is to determine which crop is closest to the ideal
solution across all criteria.

Step-by-Step Calculations for SPOTIS
= Construct the Decision Matrix (see Table 3)
= Determine Ideal and Anti-Ideal Solutions
= Calculate the Distances to the Ideal and Anti-Ideal Solutions
= Calculate the Relative Closeness C; to the Ideal Solution
= Rank the Alternatives

The calculated C; values for the alternatives are presented below in Table 6 and based
the scores one can list the best alternative.

Table 6. Ranking of alternatives based on MCDA method SPOTIS

Alternatives C; values Ranking
Ay 0.478 3
A, 0.173 7
As 0.169 8
Ay 0.217 6
Ag 0.399 5
Ag 0.455 4
A, 0.526 1
Ag 0.500 2

The SPOTIS method results indicate that A, = 0.526 (Maize) is the most suitable
crop for Jane's farm, followed by Rice and Tomatoes. The ranking reflects that Maize has
the closest proximity to the ideal solution across the criteria, balancing high yield,
moderate costs, and good market demand. Rice is the second best, offering a good
compromise between cost and market demand but slightly lower yield performance.

5. RESULT DISCUSSION, COMPARISON AND LIMITATIONS

The authors adopted three methods SPOTIS, Random Forest (RF), and
MULTIMOORA to identify the most favorable crop for Jane's farm in terms of weather,
costs required during agricultural production process like water or land usage, pesticide
resistance against pests as well as market demand. Maize was identified as the best
choice by all three methods, with Tomatoes and Rice scoring second. The alternative
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ranking shows that SPOTIS results are depends on how much it resembles an ideal
solution, effectively balancing both benefit and cost criteria. The most preferable
alternative crop found as Maize. A machine learning Random Forest (RF) model is
employed to assess crop rankings, accounting for the interactive nature of these
attributes. Reasons: RF also ranks Maize the highest consumer-preference and it is best
for use of production situations under uncertain conditions. MULTIMOORA is also
applied, and Maize is the best alternative, further validating the findings. Jane is
confident to choose Maize as the best crop so far. This study demonstrates the power of
mixing decision-making tools to provide robust means for addressing uncertainties and
assuring reliable agricultural decisions.

Future advancements can be made in the following directions [54, 55, 56] as well to
enhance the literature broadness [57, 58]. It can be extended to explore fuzzy fixed-point
results applied to fuzzy differential equations [59], fuzzy sampled-data stabilization for
chaotic nonlinear systems [60] and focus on sliding mode control for semi-Markov jump
T-S fuzzy systems with time delays [61]. Recent advancements in multi-criteria decision-
making (MCDM) methods highlight their diverse applications using aggregation
operators [62, 63, 64, 65]. The fuzzy model to use to analyze the impacts of smog
mitigation through a comprehensive MCDM framework [66] and logistics specialist
selection has been studied by [67]. The study can be extended to the concepts proposed in
[68, 69] as well.

Study limitations and Recommendations: Listed results of this study are consistent
among SPOTIS, Random Forest (RF), and MULTIMOORA methods however have
some limitations. These techniques depend on the data entered to a high degree of
condition and comprehensiveness, which means that any imperfect or obsolete
information can easily yield incorrect decisions. Moreover, the models are largely based
on static data and not equipped to consider real-time changes in markets or even
developments related to weather. In summary, to mitigate these limitations it is
imperative that future studies focus on the integration of real-time data, improve both
quality and diversity in model inputs, and especially explore hybrid models combining
different DM approaches. The development of user-friendly tools to make decisions and
a deeper exploration into decision-making models could advance the practical usefulness
that can work, like providing Jane with informed more sustainable choices.

Ethical Considerations: Getting informed consent is important when you are
learning from farmers. All data should be securely stored and with strong access control
to ensure no one is authorized to use the data outside what was already agreed upon by
farmer. Must focus on privacy and security, in line with well-documented policies of all
data consumption. It would also be good to recognize the wider social, economic and
environmental impacts of any new farming practices or technologies that are introduced
so as not only as contribute towards strong resilient sustainable communities but ensure
benefits are equally shared.

Future directions: The new research should consider how to model a real-time data
about weather and market conditions for more adaptable decision-making. Hybrid
models that integrate machine learning methods with MCDM / MCDA can be used to
improve the accuracy in dealing with decision problems. Additional studies could
examine sub-divided criteria frameworks for strategic planning, improve data quality and
variety, as well as develop farmers need based decision support systems. Also, in the
broad-scale and cope social and economic implications of wvarious agricultural
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technologies could become clearer to adopt models that can facilitate or assistant
strategies with respect to each region leading sustainable adoption.

6. CONCLUSION

The paper presents an integrated decision-making model for agriculture using MCDM
techniques: i.e. MULTIMOORA and Random Forest under Fuzzy Hypersoft Sets
(FHSs), and MCDA technique Stable Preference Ordering Towards Ideal Solution
(SPOTIS). This study identifies the quantitative as well as qualitative uncertainties and
complexities prevailing in agricultural economics due to volatile market prices,
constantly rising input costs, fluctuating weather conditions among several other factors.
The framework, however, is a power tool for improving decision-making processes by
bringing together MCDM and MCDA approaches allowing farmers to make well-
informed decisions about the allocation of resources which gives them an additional edge
over maximizing income.

The studies in the past were carried out by using either one method at a time or only
considered quantitative approaches, so this paper is beneficial as all the methods are used
together and it can be used to solve crop production economics. This unique usage of
sophisticated mathematics integrated with machine learning allows DM to serve more
accurate results. Application and validation of the model with case study demonstrate its
advantage to deliver real-world benefits such as increased farm economics, improved risk
management for individual farmers and resilience overall.
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APPENDIX

The source code used for the correlation calculation using RF Model for the proposed
case study.

Python Code:

str list = [] # empty list to contain columns with strings (words)

for colname, colvalue in data.iteritems() :

if type(colvalue[l]) == str:

str list.append(colname)

# Get to the numeric columns by inversion

num list = data.columns.difference(str_list)

# Create Dataframe containing only numerical features

data num = datal[num list]

f, ax = plt.subplots(figsize=(1l6, 12))

plt.title('Pearson Correlation of features')

# Draw the heatmap using seaborn
#sns.heatmap (data num.astype (float) .corr(),linewidths=0.25,vmax=1.0,
square=True, cmap="PuBuGn", linecolor='k', annot=True)
sns.heatmap (data num.astype (float) .corr(),linewidths=0.25,vmax=1.0,
square=True, cmap="cubehelix", linecolor='k', annot=True)



