
Yugoslav Journal of Operations Research
xx (20xx), Number xx, xxx–xxx
DOI: https://doi.org/10.2298/YJOR230515002S

Research Article

A PRODUCTION INVENTORY MODEL WITH
IMPERFECT ITEM AND LOW QUALITY

MANUFACTURING UNDER α-CUT TYPE-2 FUZZY
ENVIRONMENT USING FUZZY H2

DIFFERENTIATION

Chinmay SAHA*
School of Applied Science & Humanities,

Haldia Institute of Technology, Haldia, Purba Midnapur-721657, W.B., India
chinmay.math@hotmail.com, ORCID: 0009-0009-0416-8875

Dipak Kumar JANA
Gangarampur College, Gangarampur, Dakshin Dinajpur, 733124, W.B., India

dipakjana@gmail.com, ORCID: 0000-0003-2297-6576

Avijit DUARY
Department of Applied Mathematics, Maulana Abul Kalam Azad University of

Technology, Haringhata, Nadia-741249, W.B., India
avijitduary@gmail.com, ORCID: 0000-0002-1429-7680

Received: May 2023 / Accepted: October 2023

Abstract: This study delves into a fuzzy economic manufacturing model focused on
inventory models encountering imperfect and low-quality production processes, inclu-
sive of rework scenarios. The concern arises primarily during epidemics when unsold
items accumulate, escalating maintenance costs due to constant deterioration. Uniquely,
this research incorporates a special mathematical formulation contrasting discounted low-
quality items with non-discounted ones under fuzzy conditions. Enhanced computer tech-
niques founded on fuzzy logic are employed to refine identification, decision-making, and
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optimization. These situations are depicted through a bi-objective framework aiming for
a simultaneous minimization of overall cost and emissions, subject to a meticulously de-
vised constraint set. The significance of optimal manufacturing is accentuated by attribut-
ing a triangular fuzzy number to economic production quantity. The EPQ model’s optimal
total cost is discerned in its crisp form, meriting emphasis. Production inventory, varying
from raw materials to unfinished products, sometimes includes imperfect items, posing
significant challenges like increased production costs and delayed processes. Addressing
this involves implementing rigorous quality control measures and possibly adopting lean
manufacturing principles aimed at minimizing waste and enhancing production efficiency.
These strategies aid in maintaining quality, ensuring customer satisfaction, and sustaining
profits by mitigating the challenges posed by inferior quality items within the production
inventory.

Keywords: Production inventory, inventory model using fuzzy differentiation, deteriora-
tion items, low quality and imperfect items.
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1. INTRODUCTION
In the past, a wide range of Economic Production Quantity (EPQ) models have been

scrutinized by numerous scholars. Some of these models have considered the occurrence
of defective goods during production. For example, the study by Sana et. al. [1] postu-
lated that the duration until the manufacturing process deviates into a sub optimal condi-
tion follows an exponential distribution, featuring flawed quality and changeable produc-
tion rates. Salameh and Jaber [2] presented a novel approach to inventory management
that considered the presence of defective goods. They incorporated the EPQ/Economic
Order Quantity (EOQ) formulation into their model to account for defective items. Sev-
eral other contributions to the field of imperfect production were made by scholars such
as Rosenblatt and Lee [3], Ben-Daya and Hariga [4], Hayek and Salameh [5], Goyal
and Cardenas-Barron [6], Chung and Hou [7], Goyal, Hung, and Chen (2003), Ghosh-
Dey [8], etc. Additionally, Manna, Dey, and Mondal [9] introduced a three-layer supply
chain in an imperfect production inventory model with dual storage facilities in a fuzzy-
rough setting. In recent research conducted by Manna [10], a model was developed to
address imperfections in inventory management. This model took into account promo-
tional demand within a random planning period and utilized a population varying genetic
algorithm technique.

Numerous studies have delved deeper into production inventory models incorporating
equipment malfunctions, taking into account preventive maintenance and rework as cru-
cial factors. The economic batch sizing implications of machinery failure and corrective
maintenance were examined in a study conducted by Groenevelt et al. [11], with building
upon their research. Subsequently, Giri et al. [12] put forth an Economic Manufacturing
Quantity (EMQ) model featuring equipment failure and general repair time. Preventive
maintenance, generally implemented to diminish machine breakdown, has been the focus
of numerous research efforts, with significant contributions from Cheung and Hausman
[13], Dohi et al. [14], Lin and Gong [15], Halim et al. [16], El-Ferik [17], Lia and others
[18], Chiu et al. [19], Chiu and Chang [20], among others.
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However, upon reviewing the literature, it appears that few scholars have explored
imperfect production inventory models with returned goods, in the context of stochastic
machine breakdown and stochastic repair time. Lin and Gong (2006) designed an EPQ
model featuring a deteriorating inventory with machine failure and fixed repair time. In-
troducing imperfect production where the manufacturing system may transition from a
’controlled state’ to an ’uncontrolled state’ unpredictably. Additionally, it contemplates
returned goods from markets, replacing them with flawless new products. Two scenarios
are considered: one with stochastic machine repair time and the other with production
downtime.

Fuzzy sets, a concept introduced by Lotfi A. Zadeh in 1965, are a mathematical ap-
proach to representing uncertainty and imprecision in data. They provide a more flexible
and intuitive way [21] to model complex systems and make decisions when dealing with
incomplete or vague information. A collection of elements with a continuous member-
ship function, ranging from 0 to 1, where each element has a degree of membership in the
set. b. Membership Function: A function that maps elements to their membership val-
ues in a fuzzy set. It can be represented by various mathematical forms (e.g., triangular,
trapezoidal, Gaussian).

Fuzzy differential equations(FDE) [22] are a type of differential equation where the
coefficients and/or initial conditions are fuzzy sets instead of crisp numbers. These cate-
gories of equations are employed in circumstances where the factors or initial states are
uncertain or imprecise and rendering conventional differential equations are inapplicable.
Here are some key points about fuzzy differential equations: Fuzzy differential equations
[23] can be utilized to model a diverse array of systems, including biological systems,
ecological systems, and financial systems. There are several methods for rectifying fuzzy
differential equations, including the interval method [24], the parametric method, and the
direct method. The Outcome to a fuzzy differential equation is a fuzzy set [25], which
represents the range of possible values for the solution. Fuzzy differential equations can
be used to analyze the stability of a system [26] and to make predictions about its behavior
over time. Fuzzy differential equations are often used in conjunction with fuzzy logic and
fuzzy control systems to model and control complex systems. One of the challenges of
working with fuzzy differential equations is that they can be computationally expensive
to solve, particularly when dealing with high-dimensional systems.

Hukuhara differentiability [27], also known as pseudo-differentiability or fuzzy differ-
entiability, is a generalization of classical differentiability that applies to functions defined
on fuzzy sets. In classic analysis, a function is considered differentiable at a point if its
derivative is defined or present at that point. However, in fuzzy calculus, a function can be
”partially differentiable” or ”fuzzy differentiable” at a point, meaning that its derivative
exists only in a fuzzy or uncertain sense. Specifically, a function f defined on a fuzzy set
X is mentioned to be Hukuhara differentiable at a point x0 in X if there exists a fuzzy
number µ such that, for any ε > 0, there exists a δ > 0 such that for any x in X , the
following inequality holds:

| f (x)− f (x0)| ≤ µ(|x− x0|+ ε) (1)

where |x−x0| denotes the distance between x and x0. The value of µ represents the degree
of differentiability of the function at x0.
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Hukuhara differentiability [27] has applications in fields such as fuzzy control sys-
tems, fuzzy optimization, and image processing, among others.

The differentiability of the fuzzy function must first be established in order to cre-
ate an FDE. A fuzzy function is a type of function that maps elements from a fuzzy
set to elements in another fuzzy set. Unlike classical functions, which have precise and
well-defined outputs for each input, fuzzy functions allow for more flexible and uncer-
tain mappings. Zadeh and Chang were the ones who initially presented the idea of fuzzy
derivative in 1972. Hukuhara differentiability is a concept in mathematics that is related
to the notion of differentiability in calculus. The concept was introduced by the Japanese
mathematician Kôsaku Yosida in the 1950s.

Hukuhara differentiability [28] is a elaboration on the theory of differentiability that
is suitable for functions that are not necessarily continuous. A function is said to be
Hukuhara differentiable at a point if it satisfies a certain Lipschitz-type condition in a
neighborhood of that point.

Formally, let f be a genuine numerical function established on a subset U of Euclidean
space. Then, f is said to be Hukuhara derivable at a point x in U if there exists a non-
negative constant L such that for all y in a neighborhood of x,

| f (y)− f (x)| ≤ Lω(|y− x|) (2)

where ω is a continuity modulus, which is a function that measures the degree of
continuity of f. The Lipschitz-type condition implies that the function f is locally Lip-
schitz, which means that it is Lipschitz continuous in a neighborhood of x. Hukuhara
differentiability has applications in a variety of fields, including control theory, signal
processing, and optimization. In these fields, Hukuhara differentiability is used to ana-
lyze the behavior of functions that may not be continuous, and to develop techniques for
optimizing such functions. Hukuhara differentiability is a broadening of the concept of
differentiability [29] that is suitable for functions that are not necessarily continuous. It
has applications in a variety of fields, and is used to analyze the behavior of functions that
may not be well-behaved under traditional calculus methods.

Differentiability of fuzzy functions [30] is an advanced concept within the field of
fuzzy mathematics, specifically fuzzy calculus. Fuzzy functions, also known as fuzzy-
valued functions or fuzzy mappings, are functions that map elements from one fuzzy set
to another. The study of differentiability of fuzzy functions involves understanding how
these functions change with respect to their input variables and under what conditions
they can be considered differentiable. And Hukuhara differentiability, named after Mi-
chio Hukuhara, is a notion of differentiability specifically designed for fuzzy functions. It
offers a structure to specify the fuzzy-valued function’s derivative, allowing for the analy-
sis of rates of change and local linear approximations in fuzzy calculus. Differentiability
of fuzzy functions <empty citation> is an advanced concept within the field of fuzzy
mathematics, specifically fuzzy calculus. Fuzzy functions, also known as fuzzy-valued
functions or fuzzy mappings, are functions that map elements from one fuzzy set to an-
other. The study of differentiability of fuzzy functions involves understanding how these
functions change with respect to their input variables and under what conditions they
can be considered differentiable. And Hukuhara differentiability, named after Michio
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Hukuhara, is a notion of differentiability specifically designed for fuzzy functions. It of-
fers a structure to specify the fuzzy-valued function’s derivative, allowing for the analysis
of rates of change and local linear approximations in fuzzy calculus.

Hukuhara differentiability [28] is based on the theory of α-cuts, which are crisp sets
obtained by fixing a threshold value α and intersecting it with the fuzzy set. The α-
cuts capture the extent to which elements in the domain have membership in the fuzzy
set. The main idea behind Hukuhara differentiability is to describe the derivative of a
fuzzy function in terms of the α-cuts. Here are some key points regarding Hukuhara
differentiability:

α-Cuts: In relation to a fuzzy set, the α-cut at a particular level α is determined by
intersecting the fuzzy set with a definite set delineated by the α threshold. The conse-
quent definite set signifies the elements having a membership degree that is equal to or
higher than α . Hukuhara Difference: The Hukuhara difference among two fuzzy sets A
and B is described as the maximum difference between corresponding α-cuts, where the
maximum is chosen over all α values between 0 and 1. It measures the extent of overlap
or separation among the fuzzy sets. Hukuhara Derivative: Pertaining to a fuzzy function,
the Hukuhara derivative at a specific point is delineated in terms of the Hukuhara differ-
ence of the α-cuts of the fuzzy function evaluated at that point. It measures the local
rate of change or slope of the fuzzy function. Properties and Applications: Hukuhara
differentiability has several useful properties, such as linearity, chain rule, and relation to
convexity. It has been applied in various areas, incorporating of fuzzy optimization, fuzzy
control systems [29], and fuzzy differential equations, providing a mathematical foun-
dation for analyzing fuzzy systems and making decisions in the presence of uncertainty.
Hukuhara differentiability offers a valuable tool for extending the notion of differentia-
bility to fuzzy functions, enabling the study of local behavior and approximation of fuzzy
systems through linearization techniques.

Type-1 fuzzy differential equations are a type of differential equation where the vari-
ables and parameters are fuzzy sets. Fuzzy sets are sets that allow for partial membership
of an element in the set, where the degree of membership is represented by a membership
function. In type-1 fuzzy differential equations [31], the differential equations involve
fuzzy numbers [32] as coefficients or initial/boundary conditions. The solutions to these
equations are also fuzzy sets, and the degree of membership of a point in the solution set
is determined by the membership functions of the fuzzy sets in the equation.

This study initially presents the concept of Hukuhara discrepancy (H-difference) grounded
on defined perfect Type-2 Fuzzy Numbers [T2FNs], and subsequently, by implementing
this concept in a production inventory model, it is revealed that the Type-2 Hukuhara
discrepancy [33] H2-difference is essentially the H-difference. This methodology, when
applied within a mathematical structure in a production inventory model, is used to iden-
tify the most profitable production and inventory strategies for a business engaged in the
manufacture and sale of a product. The goal of the model is to minimize the overall
production and inventory costs while fulfilling consumer demand. In this context, trian-
gular Perfect Quasi Type-2 Fuzzy Numbers [34] (T PT 2FN), a form of fuzzy number
frequently employed to represent uncertainty in scenarios with incomplete or imprecise
information, are utilized. Finally, an admissibility and a method for resolving T2FDEs
[35] are exemplified via illustrations and examples.
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2. FUNDAMENTAL IDEAS WITH FUZZY

The utility of Type-1 Fuzzy Numbers (T1FNs) is found in their ability to embody
uncertainty when data is either partial or inaccurate. T1FNs are distinguished by their
membership function, which accords a membership level to each member within the set.

Each constituent in the scope of discourse within a T1FN is mapped by the member-
ship function to a membership grade ranging from 0 to 1. This degree of association
demonstrates the extent to which the constituent belongs to the fuzzy set. Typically,
T1FNs are delineated by a triangular or trapezoidal membership function, simplifying
both understanding and calculation. As an illustration, a triangular T1FN [36] with pa-
rameters (a,b,c) possesses a membership function equating to 1 at x = b and drops pro-
gressively to 0 at x= a and x= c. In the same vein, a trapezoidal T1FN bearing parameters
(a,b,c,d) holds a membership function equal to 1 for x within the range [b,c] and tapers
off proportionately to 0 for x within the ranges [a,b] and [c,d].

T1FNs are widely used in diverse areas, involving regulatory mechanisms, decision-
making, and pattern recognition [37], among others. They provide a way to handle uncer-
tainty and imprecision in a quantitative manner, making them a powerful tool for model-
ing real-world problems.

In this article, the symbol R represents the entirety of real numbers. The collection of
Type-1 Fuzzy Numbers (T1FNs) on R is denoted as E1, while the set of perfect T2FNs
on R is represented by E2. The α− cut of a fuzzy set A is indicated as Aα .

A Type-1 fuzzy set is the simplest and most basic form of fuzzy set in fuzzy logic. It
is distinguished by a membership function that assigns a degree of membership to each
element within the domain of discussion. The membership function correlates elements,
from the universe of discourse to a value between 0 and 1, expressing the extent to which
an element is a member of the fuzzy set.

In a formal context, a Type-1 fuzzy set A within a domain of discourse U is charac-
terized by its membership function µA(x), where x represents an element from U. The
membership function µA(x) quantifies the extent to which x belongs to the fuzzy set A,
varying between 0 (indicating no membership) and 1 (representing complete member-
ship). The mathematical form of the membership function can adopt different shapes,
such as triangular, trapezoidal, or Gaussian, based on the distinctive features and shape of
the fuzzy set.

For example, consider a universe of discourse U representing the heights of people
in a certain population. A Type-1 fuzzy set ”Tall” can be defined in this context, where
the membership function assigns a degree of membership to each height value in U, in-
dicating the degree to which a person is considered tall. The membership function may
be a triangular function centered around a certain height value, such as 180 cm, with
membership values decreasing as the height deviates from the center.

That is, for every element of the domain of discussion, the membership function as-
signs an interval of values between 0 and 1, rather than a single value. This interval can
be interpreted as the range of possible degrees of membership of the element in the fuzzy
set.

For example, suppose we have a universe of discourse of temperatures and we want
to define a fuzzy set ”Hot”. Instead of assigning a single value for each temperature, we
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assign an interval of possible degrees of membership. So, for a temperature of 30 degrees
Celsius, we might assign the interval [0.7,0.9] to represent the fact that it is very likely to
be ”hot”, but there is some indeterminacy in the membership degree.

When there’s a need to manage ambiguous or inexact membership within a fuzzy set,
interval-valued fuzzy sets prove beneficial. They introduce a broader way of portraying
ambiguity and are applicable in the formation of complicated and erratic systems. These
special kinds of fuzzy sets, denoted as IVFS, offer a richer and subtler way of modeling
uncertain or vague data. Traditional fuzzy sets provide only a singular value of member-
ship to each set component, however, IVFS allocate a range of values demonstrating the
membership degree of every member. The distinguishing attribute of an IVFS is a pro-
jection from a discourse universe to a collection of real line intervals, where each interval
signifies a member’s membership degree from a portion of the set. Several key features of
IVFS are their closure under both intersection and union and a monotonically ascending
attribute which guarantees that a member’s degree of membership won’t diminish as the
interval’s breadth expands. IVFS have a diverse array of applications in fields such as
decision-making [38], pattern recognition, and control systems. For example, IVFS can
be used to model uncertainty in sensor readings or to represent imprecise knowledge in
expert systems. Inference with IVFS can be more complex than with traditional fuzzy
sets, as it involves computing the intersection and union of intervals rather than simple
arithmetic operations. However, several algorithms have been developed for performing
inference with IVFS, including interval arithmetic and interval extension methods. The
use of IVFS can provide several advantages over traditional fuzzy sets, including greater
expressiveness, more robustness to noisy or imprecise data, and better modeling of uncer-
tainty and imprecision.

The ”Hukuhara discrepancy” is a notion in fuzzy set theory that is employed to gauge
the extent of dissimilarity among two fuzzy sets. In other words, the Hukuhara difference
[39] between A and B is the largest possible degree of membership of an element in A
that is not a member of B, or vice versa. The Hukuhara difference is a useful measure
in fuzzy set theory because it captures the degree of difference between two fuzzy sets
[40], taking into account both their overlapping and non-overlapping regions. It is also
a continuous function, meaning that minor modifications in the fuzzy sets will result in
small changes in their Hukuhara difference.

Definition 1. Let’s suppose that we have f : (a,b) → E1 and t0 ∈ (a,b) ⊂ R. Now,
f (t) will be differentiable at t0, as per the original representation, provided there’s an
element f ′ (t0) ∈ E1, that ensures for every h > 0, adequately near zero, there exist
f (t0 +h) H

f f (t0) , f (t0) H
f f (t0 −h), along with the associated limit conditions:

lim
h→0

f (t0 +h) H
f f (t0)

h
= lim

h→0

f (t0) H
f f (t0 −h)

h
= f ′ (t0) (3)

Alternatively, the function f (t) suppose to be derivable at t0, in the second format, if
there exists an entity f ′ (t0) ∈ E1, such that for all h > 0, sufficiently close to zero, there
are f (t0) H

f (t0 +h) , f (t0 −h) H
f f (t0), as well as the subsequent boundaries.

lim
h→0

f (t0) H
f f (t0 +h)

−h
= lim

h→0

f (t0 −h) H
f f (t0)

−h
= f ′ (t0) (4)
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In the given scenario, the borders are taken into account in the context of the metric
space (E1,d1), where d1(u,v) is defined as the supremum of the set of Hausdorff distances,
dH(uα ,vα), for all α satisfying 0 ≤ α ≤ 1 and for any u,v that belong to E1. Here, dH
signifies the Hausdorff distance.

In the context of type 2 fuzzy logic, the utilization of point-valued representation is a
particular approach to denote ambiguity in the realm of type 2 fuzzy sets[41]. Contrasting
type 1 fuzzy sets, which allot a unique membership worth to each constituent of the dis-
course universe, type 2 fuzzy sets introduce increased adaptability. This is made possible
by accommodating the portrayal of ambiguity directly in the membership values.

In type 2 fuzzy sets, the membership function is determined with respect to a fuzzy set
comprising fuzzy sets. This implies that, for every element x in the universe of discourse,
the membership degree is expressed by a type 1 fuzzy set defined within the range of [0,1].
Nevertheless, in certain scenarios, it might be preferable to represent the membership
degree of an element in a type 2 fuzzy set using a solitary point instead of a type 1 fuzzy
set. This representation is referred to as the point-valued representation.

The point-valued representation in type 2 fuzzy sets involves [42] replacing the type
1 fuzzy sets that define the membership grades for each element with a single point that
represents the most likely membership grade for that element. This point is referred to as
the ”footprint of uncertainty” and is defined as the centroid of the type 1 fuzzy set that
represents the membership grades for that element. The use of the point-valued represen-
tation can simplify the computation of operations on type 2 fuzzy sets, as it reduces the
complexity of working with sets of sets. However, it also results in some loss of infor-
mation, as the point-valued representation [42] does not capture the full range of possible
membership grades for each element. As such, the choice of whether to use the point-
valued representation or not depends on the specific application and the trade-off [43]
between accuracy and computational intractability.

This membership function displays the extent to which an element x is a part of a set,
represented by a triangular form. The function’s height signifies the level of membership,
with a peak value of 1.0 denoting complete membership and a minimum value of 0.0
denoting absence of membership. A vertical cross-section of this membership function
for a specific value of x, let’s say x=0.5, would be a line parallel to the y-axis intersecting
the membership function at the membership level for x=0.5. In this scenario, the vertical
cross-section would be a line intersecting the membership function at a value of 0.5,
suggesting that the membership level of x=0.5 in the set represented by the membership
function is 0.5.

The illustration of a vertical slice of a membership function is a useful tool for un-
derstanding how fuzzy logic works and for visualizing the degree to which an element
belongs to a particular set. By examining the shape of the membership function and the
degree of membership for different values of the input variable, it is possible to make
informed decisions about how to use fuzzy logic to model complex systems.

Definition 2. The visualization of a vertical section: The membership function serves
as a mathematical representation of the degree to which a specific element belongs to
a set. In the realm of fuzzy logic, it is utilized to determine the level of membership of
an element in a particular set. A vertical section of a membership function refers to a
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graphical depiction that illustrates the membership degree of a specific element in a set
while holding the input variable at a constant value. The vertical section of a Type-2
Fuzzy Set (T2FS) at a fixed point x0 ∈ X is a Type-1 Fuzzy Set (T1FS) with its domain as
the secondary domain or primary membership denoted as Jx0 . The membership function
of the vertical section is known as the second-tier membership function, µÃ (x0), and it
can be expressed as: µÃ(x0,u) = Ã(x0) = {(u,µ) | u ∈ Jx0 ,µ ∈ [0,1]} .

Each constituent of a discourse universe is linked with a degree of membership in
a fuzzy set through a membership function. The depiction of a membership function
through a vertical slice representation generates a chart that exhibits the membership de-
gree for every value within the discourse range.

To create a vertical slice representation, you can choose a fixed value for the degree of
membership and draw a horizontal line across the membership function. The points where
the line crosses or meets the membership function represent the values in the universe of
discourse that have that degree of membership.

For example, suppose we have a fuzzy set ”tall” that maps people’s heights to a degree
of membership. We might use a vertical slice representation to show which heights have
a degree of membership of 0.5 (i.e., are ”somewhat tall”). The graph would show the
heights where the membership function is equal to 0.5.

Vertical slice representations can be useful for understanding how fuzzy sets represent
uncertainty, as they provide a visual representation of how degrees of membership vary
across the universe of discourse [44].

Definition 3. SĀ (x0 | α̃) denotes an α̃ - cut the subordinate membership function µÃ (x0).

In the domain of fuzzy logic, an α̃-cut of a fuzzy set refers to a clear-cut subset of the
universe of discourse that encompasses all the elements having a membership degree
equal to or exceeding a specified threshold value α̃ .

Likewise, the α̃-cut of the secondary membership function of a fuzzy set, as discussed
in [45], refers to a distinct subset of the secondary universe of discourse. This subset in-
cludes all the elements whose degree of secondary membership equals or surpasses the
specified threshold value α̃ . To understand this better, consider a fuzzy set ”Tall” that
maps people’s heights to a degree of membership. The secondary membership function
could represent the degree of certainty about the degree of membership, such as how cer-
tain we are about the degree of tallness of a person given their height. For example, if the
primary membership function for ”Tall” gives a degree of membership of 0.7 for someone
who is 6 feet tall, the secondary membership function could give a degree of 0.8 for our
degree of certainty about that person being tall. Assuming we assign α̃ a value of 0.6 for
the secondary membership function, the α̃-cut corresponding to the secondary member-
ship function as per [46], will encapsulate a segment of the secondary discourse universe.
This segment will include all values having a secondary membership degree that is 0.6 or
higher. This subset signifies the values that offer a relatively assured determination of a
person’s tallness based on their height.

In the realm of type-2 fuzzy logic, the α̃-slice plane representation is utilized as a tool
for depicting a type-2 fuzzy set [47]. This type-2 fuzzy set is a unique fuzzy set where
the membership function itself takes the form of a fuzzy set. From another perspective,
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the membership function for a type-2 fuzzy set can be seen as a collection of membership
functions, each signifying a distinct uncertainty level or ambiguity related to the extent of
an element’s membership in the set. The α̃-cut plane representation can be employed to
illustrate a type-2 fuzzy set, showcasing how each element’s membership degree fluctu-
ates with changing levels of uncertainty. The α̃-cut plane functions as a two-dimensional
chart which maps out each set element’s membership degree in relation to the level of
ambiguity. By setting a specific α̃ value (which represents the level of ambiguity) and
taking a vertical cut through the membership function at that point, the α̃-cut plane is
formed. The slice that results is a type-1 fuzzy set that reflects each element’s member-
ship degree in the set for that specific level of ambiguity. By showcasing these type-1
fuzzy sets across a spectrum of α̃ values, the α̃-cut plane enables the visualization of the
membership degree fluctuation relative to changing ambiguity levels.

The α̃-cut plane representation can be useful for visualizing the level of uncertainty in
a type-2 fuzzy set and for understanding how the degree of membership of each element
in the set changes as the level of uncertainty changes. It can also be used for performing
operations on type-2 fuzzy sets, such as union, intersection, and complement. A triangular
second-order fuzzy set [48] is a fuzzy set characterized by a triangular membership func-
tion with uncertain levels of membership. In a second-order fuzzy set, both the degree of
membership and the degree of uncertainty itself are uncertain. A second-order fuzzy set
shaped as a triangle is characterized by a lower membership function (LMF), an upper
membership function (UMF), and a principle set (PS) [29]. The secondary membership
function is portrayed in the top insert, depicting a vertical cut at the position x0. The ᾱ-cut
at the position x0 is designated as α̃ = 0.7. The uncertainty footprint of a second-order
fuzzy set, referred to as the α̃-plane, is displayed when α̃ = 0. The two-dimensional
field of a type 2 fuzzy set is comprised of both primary and secondary membership de-
grees. The primary membership degree signifies an element’s membership degree in the
fuzzy set, while the secondary membership degree corresponds to the level of uncertainty
related to the primary membership degree.

For example, suppose we have a fuzzy set A that symbolizes the concept of ”tallness”
in humans. The primary membership function for A might be defined using a triangular
membership function that assigns a degree of membership to each height value. However,
because the concept of tallness is somewhat subjective, there may be a degree of uncer-
tainty associated with each degree of membership. The secondary membership function
for A could be defined as a Gaussian distribution that models this uncertainty. Alterna-
tively, it could be argued that there exists a limited area within the T2FS on the x and u
axes in the two-dimensional plane, which can be referred to as the uncertainty footprint
of Ã. In other words, the uncertainty regarding the primary memberships of the T2FS
is contained within this bounded region. The FOU(Ã) is the same as Ã0(α̃ = 0 - Plane)
(Figure 1).

Differentiable fuzzy mappings are a type of mathematical function that maps input
values to fuzzy output values. Fuzzy mappings are used to represent uncertain or impre-
cise information in a more realistic way than classical mappings. A differentiable fuzzy
mapping is a fuzzy mapping that has a well-defined derivative at each point in its do-
main. This property is important in many applications, such as control systems, machine
learning, and optimization, where it is necessary to compute the gradient or Jacobian
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of the mapping.For the establishment of a differentiable fuzzy mapping, it is necessary
to outline the membership functions that represent the fuzzy sets in both the input and
output domains. Thereafter, we can utilize the conventional calculus laws to ascertain
the mapping’s derivative concerning the input parameters. A wide array of applications,
encompassing fuzzy control, fuzzy decision-making, and fuzzy clustering, employ dif-
ferentiable fuzzy mappings. These mappings serve as a robust instrument for modeling
intricate systems grappling with ambiguity and inexactness. The concept of a fuzzy in-
terval is integral within the structure of fuzzy set theory, encapsulating number sets with
diverse membership degrees that are contained within a specific interval.

This means that instead of belonging to either 0 or 1 (representing fully membership
in a set), a number can have a value that ranges between 0 and 1. This is useful when
dealing with uncertain data or when making decisions based on values that have a range
of certainty. For example, if a person is asked to assign a confidence level to their answer
to a question, they may not be able to assign a numerical value of 0 or 1, but might
instead give a value between 0.5 and 0.8, indicating that they are somewhat certain of
their answer. Fuzzy intervals can also be used to compare different groups of data and see
how they differ in terms of certainty. For any α ∈ [0,1], we denote

Fα(x) =
[

f
α
(x), f̄α(x)

]
,x ∈ T

Here, for each α ∈ [0,1], the endpoint functions f̄ α, f α : T →R are referred to as the
upper and lower functions of F , respectively.

Following that, we present the concept of derivatives (referred to as gH derivatives)
associated with fuzzy functions, which originate from the difference (gH-difference) in
fuzzy intervals. In the event that there is an F ′ (x0) ∈ FC which complies with the
mentioned formula, we proclaim that F is differentiable under Hukuhara (concisely, gH-
differentiable) at the point x0.

It should be noted that the concept of gH-differentiability for interval-valued functions
has been established based on the gH-difference of intervals, as discussed in [49]. Addi-
tionally, alternative definitions have been put forward in [19], utilizing inner-difference,
and in [50], employing π-difference, in the instance of interval-valued functions. In this
segment, our goal is to investigate the correlation between the gH-derivative of a fuzzy
function F and the gH-differentiability of the span of interval functions Fα . Furthermore,
we are enthralled to comprehending how the gH-differentiability of a fuzzy function F is
linked to the differentiability of its boundary functions f α and f̄ α .

Definition 4. Suppose that every vertical slice of a T2FS, Ã, has a subordinate level equal
to one, denoted as fx(u) = 1. A primary cluster of Ã is the amalgamation of all points
where this condition holds true, and can be described as follows:

µPS(x) =
∫

x∈X
u/x s.t. fx(u) = 1 (5)

where µPS(x) is the membership function of primary cluster of Ã. the α-cut of that α̃ -
plane are outlined below

Ãα
α̃ =

(
Aα

α̃ , Ā
α
α̃

)
(6)
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where Aα
α̃

and Āα
α̃

are the α-cuts of the LMF and UMF of α̃ - plane of Ã respectively.

Theorem 5. Symbolization of T2FS using α-cuts: A T2FS, Ã, can be expressed by ag-
gregating all its α-cuts in the following manner:

Ã =
⋃

∀α̃∈[0,1]
α̃

⋃
∀α∈[0,1]

αÃα
α̃ (7)

Theorem 6. The principle of extensional for T2FS α-cuts states that if we have a Carte-
sian product X = X1 × . . .×Xn of universes and T2FSs Ã1, . . . , Ãn defined in each respec-
tive universe, and if we have another universe Y with a T2FS B̃ ∈ Y that can be obtained
as a result of a monotonic mapping f : X → Y applied to Ã1, . . . , Ãn, then B̃ can be repre-
sented as the union of adopting the same mapping to all of its decomposed α-cuts:

B̃ = f
(
Ã1, . . . , Ãn

)
=

⋃
∀α̃∈[0,1]

α̃
⋃

∀α∈[0,1]
α f

(
Ãα

1,α , . . . , Ã
α
n,α

)
(8)

To establish the differentiability of functions with type-2 fuzzy number values, it is
necessary to define a metric space. Huang and Yang [51] have introduced a distance
measure for T2FSs, which we adopt in this study.

d2(Ã, B̃) =
∫ b

a
H f (µÃ(x),µB̃(x))dx (9)

where

H f (µÃ(x),µB̃(x)) =
∫ 1

0 α̃ dH (SÃ(x | α̃),SB̃(x | α̃)) dα̃∫ 1
0 α̃ dα̃

(10)

= 2
∫ 1

0
α̃ dH (SÃ(x | α̃),SB̃(x | α̃)) dα̃.

In fuzzy set theory, a second type of fuzzy set extends the concept of a first type of
fuzzy set by considering uncertainty not only in the membership values but also in the
membership grades themselves. To measure the distance between type-2 fuzzy sets, a
distance measure in the context of metric spaces can be employed. Here are some key
points about the distance measure for type-2 fuzzy sets: Type-2 Fuzzy Sets: A type-2
fuzzy set is defined by a set of type-1 fuzzy sets, where each type-1 fuzzy set represents a
membership function over a universe of discourse. The uncertainty in a type-2 fuzzy set
arises from the range of possible membership functions that could represent the set. And
a metric space is a mathematical construct that defines a distance function, also known
as a metric, between elements in a set. The distance function satisfies certain properties
such as non-negativity, symmetry, and the triangle inequality. Also the distance measure
for type-2 fuzzy sets extends the concept of a metric to handle the uncertainty associated
with type-2 fuzzy sets. It quantifies the similarity or dissimilarity between type-2 fuzzy
sets based on their membership grades and the uncertainty associated with them.

Theorem 7. The measurement of distance, denoted as d2, establishes a metric within the
realm of type-2 fuzzy sets.
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Proof. Confirmation of the triangle inequality is detailed subsequently, while the other
attributes are apparent.

d2(Ã, B̃)+d2(B̃,C̃)

=
∫ b

a
H f (µÃ(x),µB̃(x)) dx+

∫ b

a
H f (µB̃(x),µC̃(x)) dx

=
∫ b

a

(
H f (µÃ(x),µB̃(x))+H f (µB̃(x),µC̃(x))

)
dx

= 2
∫ b

a

∫ 1

0
α̃ {dH (SÃ(x | α̃),SB̃(x | α̃))+dH (SB̃(x | α̃),SC̃(x | α̃))} dα̃ dx

⩾ 2
∫ b

a

∫ 1

0
α̃ dH (SÃ(x | α̃),SC̃(x | α̃)) dα̃ dx = d2(Ã,C̃).

The ultimate inequality is formulated following the triangular inequality of Hausdorff
distance

2.1. Type-2 fuzzy numbers

Type-2 fuzzy numbers (T2FNs) are an extension of Type-1 fuzzy numbers, which
incorporate additional uncertainty in their membership function. T2FNs represent the
membership degrees of a crisp value being within a fuzzy set, considering both primary
and secondary uncertainties. Unlike Type-1 fuzzy numbers that have a single member-
ship function, T2FNs have a primary membership function and a secondary membership
function. The primary membership function represents the uncertainty in the degree of
membership, while the secondary membership function represents the uncertainty in the
support of the T2FN.

Definition 8. A T2FS, Ã, is referred to as a perfect T2FN when the following requirements
are fulfilled: 1. The UMF and LMF of FOU(Ã) are themselves T1FNs,

2. The upper membership function (UMF) and lower membership function (LMF) of
the PS of Ã themselves represent T1FNs.

A comprehensive depiction of a T2FN can be realized by utilizing its FOU and PS,
under the condition that each vertical segment comprises T1FNs and the segmented func-
tions possess identical features (for instance, linear). The representation of a triangular
perfect QT2FN in a parametric closed form simplifies the discussion in this document,
as we examine a collection of such QT2FNs where the LMF and UMF overlap within
each PS. The mathematical formula that outlines the membership function of a set is the
parametric equation of a triangular fuzzy set. A triangular fuzzy set is a specific category
of fuzzy sets characterized by a membership function that is triangular in form.

Let w̃ ∈ E2 be a triangular ideal QT2FN with the core m. The parametric equation of
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the triangular ideal QT2FN can be expressed as follows:

w̃α
α̃ = (wα

α̃ , w̄
α
α̃) (11)

w̄α
α̃ =

[
L̄α

wα
α̃

, R̄α
wα̃

]
,

L̄α

wα
α̃

= Lα
w1

− (1− α̃)
(
Lα

w1
− L̄α

w0

)
,

R̄α
wα̃

= Rα
w1

+(1− α̃)
(
R̄α

w0
−Rα

w1

)
wα

α̃ =
[
Lα

wα̃
,Rα

wα̃

]
,

Lα
wα̃

= Lα
w1

− (1− α̃)
(
Lα

w1
−Lα

w0

)
,

Rα
wα̃

= Rα
w1

+(1− α̃)
(
Rα

w0
−Rα

w1

)
where, L̄α

w0
⩽ Lα

w1
⩽ Lα

w0
⩽ Rα

w0
⩽ Rα

w1
⩽ R̄α

w0
. The α - cuts of LMF and UMF of FOU(w̃)

are wα
0 =

[
Lα

w0
,Rα

w0

]
, w̄α

0 =
[
L̄α

w0
, R̄α

w0

]
respectively where Lα

w0
=m−(1−α)

(
m−Lw0

)
,Rα

w0
=

m+(1−α)
(
Rw0

−m
)

are the left and right endpoints of wα
0 with the support

[
Lw0

,Rw0

]
, L̄α

w0
=

m− (1−α)
(
m− L̄w0

)
, R̄α

w0
= m+(1−α)

(
R̄w0 −m

)
are the left and right endpoints of

the w̄α
0 with the support

[
L̄w0 , R̄w0

]
respectively. The α− cut of PS is wα

1 =
[
Lα

w1
,Rα

w1

]
where Lα

w1
= m− (1−α)(m−Lw1) ,R

α
w1

= m+(1−α)(Rw1 −m) are the left and right
endpoints of wα

1 respectively with the support [Lw1 ,Rw1 ].
Consequently, the triangular perfect QT2FN, w̃, can be constructed using the septuple

w̃ =
(
L̄w0 ,Lw1 ,Lw0

,m,Rw0
,Rw1 , R̄w0

)
where L̄w0 ⩽ Lw1 ⩽ Lw0

⩽ m ⩽ Rw0
⩽ Rw1 ⩽ R̄w0

[52].
[w̃◦ z̃]αα̃ =

([
wα

α̃ ◦ zα

α̃

]
, [w̄α

α̃ ◦ z̄α
α̃ ]
)

where w̃◦ z̃ means w̃+ z̃ or w̃− z̃ or w̃× z̃ or w̃÷ z̃.

2.2. Differentials of type-2 fuzzy functions

In this section, we demonstrate the differentiability of functions possessing type-2
fuzzy number values, a concept that bears resemblance to the idea of robustly generalized
differentiability[53].

Theorem 9. Given x̃, ỹ ∈ E2, the α̃-plane pertaining to the H2-difference between x̃ and
ỹ corresponds to the H-difference between the LMF and UMF of x̃ and ỹ.

Proof. Suppose that the H2-difference between x̃ and ỹ is z̃. As a result, x̃ = ỹ+ z̃.
Using the α̃− plane extension principle as suggested by [52], we derive x̃α̃ = ỹα̃ + z̃α̃ .
It implies (xα̃ , x̄α̃) =

(
y

α̃
, ȳα̃

)
+
(
z

α̃
, z̄α̃

)
=

(
y

α̃
+ z

α̃
, ȳα̃ + z̄α̃

)
, which further leads to

xα̃ = y
α̃
+z

α̃
and x̄α̃ = ȳα̃ + z̄α̃ . Then, it can be inferred that z

α̃
= xα̃ Hyα̃ and z̄α̃ = x̄α̃ Hȳα̃

Definition 10. Suppose T = (a,b) ⊆ R. Hence, f̃ is characterized as a type-2 fuzzy
number-valued function on T if f̃ : T → E2. It is represented as an n-dimensional vector
of type-2 fuzzy number-valued functions on T if f̃ : T → E2 ×E2 × . . .×E2︸ ︷︷ ︸n = E2n.
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Figure 1: Type-2 fuzzy functions with α-cut illustration

In the given context, the boundaries are acknowledged within the metric space (E2,d2).
We term f̃ (t) as ”the H2-differentials outlined in its primary form” if it is differentiable as
per the Definition, and ”the H2-differentials outlined in the secondary form” if it is indeed
differentiable. This is similar to the theorem displayed in the citation [54]. If f̃ (t) is an
H2-differential defined according to the Definition, then f̃ ′ (t0) ∈ R.

Fuzzy H2 differentiability is a concept that extends the traditional notion of differen-
tiability to fuzzy functions. In the context of fuzzy sets and fuzzy logic, differentiability
is often ill-defined or not applicable due to the inherent uncertainty and imprecision as-
sociated with fuzzy sets. Fuzzy H2 differentiability attempts to address this limitation by
providing a framework for characterizing the differentiability of fuzzy functions.

In the research introduced here, type-2 fuzzy sets are identified as vital tools for ad-
dressing the numerous complex uncertainties and imprecision inherent in real-world in-
ventory systems, particularly those with imperfect items. Unlike type-1 fuzzy sets that
utilize clear-cut membership functions, type-2 fuzzy sets incorporate an additional di-
mension with fuzzy membership functions. This supplementary element is essential for
encompassing the intrinsic ambiguities when assessing item imperfections. For example,
in production systems, the evaluation of an item’s quality isn’t always clear-cut, as there
are shades of gray which can be accurately represented by type-2 fuzzy sets. Moreover, in
volatile environments where supply chain disruptions, demand volatility, and production
quality variation are common, type-2 fuzzy sets provide a more adaptable and resilient
modelling approach. By leveraging type-2 fuzzy sets, the decision-making process in the
model is significantly improved, resulting in more dependable, sturdy, and insightful out-
comes. This is crucial for optimizing inventory management, lowering costs, and enhanc-
ing customer satisfaction by maintaining a balance between high-quality and imperfect
items. In conclusion, type-2 fuzzy sets are essential for capturing real-world intricacies
and promoting informed decision-making in inventory systems.
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3. MATHEMATICAL MODEL

This part showcases multiple examples and situations involving type-2 fuzzy differen-
tial equations, coupled with references to their real-world applications. It’s worth noting
that, for the sake of clarity, our attention is primarily directed towards the triangular per-
fect QT2FNs in the given examples.

Table 1: Notations for Parameters
Symbol Name of Variable
θ(t) inventory status at time t (unit)
P consistent manufacturing pace (unit/time)
R steady reprocessing pace (unit/time)
Ap expense for setup for each cycle in the manufacturing procedure

($)
Ar expense for setup for every cycle in the reprocessing procedure

($)
Ã uncertain inventory expense (($)/item year)
cp cost per unit per manufacturing cycle ($)
cd cost per unit for degradation per manufacturing duration ($)
cr cost per unit of reprocessing per round ($)
cs cost of waste per unit per cycle ($)
hp cost per unit for inventory per manufacturing cycle ($)
Q̃P Uncertain production volume (unit)
η fraction of inferior quality items in the manufacturing procedure
ξ proportion of faulty items in the production procedure
hr carrying cost of inventory per unit per round in the reprocessing

procedure ($)
ϕ depreciation rate of fixed stock
ξ0 proportion of faulty items manufactured in the previous produc-

tion procedure
ξr percentage of defective goods in the reprocessing procedure
ψ reduction rate in defect rate post quality enhancement investment
ω cost of missed opportunities subsequent to quality improvement

investment

In a manufacturing process, the raw materials inventory level will decrease as mate-
rials are used in production. As production progresses, the work in progress inventory
level will increase as partially finished products accumulate. Finally, as finished goods
are produced, the finished goods inventory level will increase until the products are sold
and shipped out of the facility, at which point the inventory level will decrease. If θ̃1(t)
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Table 2: Expressions and Functions of Variables

Symbol Name of Variable
θ(t) available inventory level (unit)
T manufacturing duration (unit time)
S selling price of items ($)
TP retailer’s total profit ($)

reflects the inventory quantity at that point from t = 0 to t = t1

dθ̃1(t)
dt

= (1−ξ )P−D−ϕθ̃1(t), θ̃(t) ∈ E1, θ̃(t1) = 0 (12)

dθ̃2(t)
dt

= (1−η −ξ )P−D−ϕθ̃2(t), θ̃(t) ∈ E2, θ̃2(t1) = θ̃1(t1) (13)

dθ̃3(t)
dt

= −D−ϕθ̃3(t), θ̃(t) ∈ E3, θ̃(t3) = 0 (14)

Equation for low quality items

dθ̃4(t)
dt

= ηP−D1 −ϕθ̃4(t), θ̃(0) ∈ E2 (15)

dθ̃5(t)
dt

= −D1 −ϕθ̃5(t), θ̃(0) ∈ E3 (16)

Equation for imperfect items

dθ̃6(t)
dt

= ξ P−D2 −ϕθ̃6(t), θ̃(0) ∈ E2 (17)

dθ̃7(t)
dt

= −D2 −ϕθ̃7(t), θ̃(0) ∈ E2 (18)

An inventory with high quality and low quality items refers to a stock of goods that in-
cludes both products of superior and inferior quality. This type of inventory is common in
many industries, including manufacturing, retail, and distribution. The high quality items
are products that meet or exceed customer expectations and provide superior value. The
items are typically more expensive than low quality items and are often associated with
a premium brand or reputation. High quality items tend to have longer lifespans, better
performance, and are less likely to fail or need repairs. On the other hand, low qual-
ity items are products that do not meet customer expectations and provide lower value.
These items are often associated with lower cost brands and are typically cheaper than
high quality items. Low quality items tend to have shorter lifespans, lower performance,
and are more likely to fail or need repairs.

Managing the inventory with high quality and low quality items can be challenging.
Companies need to balance the cost of inventory management with the value of the prod-
ucts they are stocking. They need to ensure that they have enough high quality items to
meet demand while minimizing the amount of low quality items in stock to avoid neg-
ative customer experiences. The value of the proportion of low quality items η in the
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Figure 2: Inventory behavior during a production cycle

production process can vary depending on various factors such as the type of product be-
ing manufactured, the complexity of the manufacturing process, and the quality control
measures in place. In general, it is desirable to have a low proportion of low quality items
in the production process, as this can result in lower costs, higher customer satisfaction,
and a better overall reputation for the company.

Based on the H2-differentiability in the second form, the T2FDE can be considered
analogous to the following system of type-1 fuzzy differential equations:

θ̇ α̃1(t) = P−D−ϕθ sα̃1
θ̄α̃1(0) ∈ E1
θ̇ α̃1

(t) = P−D−ϕθ sα̃1
θ α̃1

(0) ∈ E1

(19)


θ̇ α̃2(t) = P−Pη −ξ P−D−ϕθ sα̃2 ,
θ̄α̃2(0) ∈ E2
θ̇ α̃2

(t) = P−Pη −ξ P−D−ϕθ sα̃2
,

θ α̃2
(0) ∈ E2

(20)
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θ̇ α̃3(t) =−D−ϕθ sα̃3 ,
θ̄α̃3(0) ∈ E3
θ̇ α̃3

(t) =−D−ϕθ sα̃3
,

θ α̃3
(0) ∈ E3

(21)


θ̇ α̃4(t) = ηP−D1 −ϕθ sα̃4 ,
θ̄α̃4(0) ∈ E2
θ̇ α̃4

(t) = ηP−D1 −ϕθ sα̃4
,

θ α̃4
(0) ∈ E2

(22)


θ̇ α̃5(t) =−D1 −ϕθ sα̃5 ,
θ̄α̃5(0) ∈ E3
θ̇ α̃5

(t) = ηP−D1 −ϕθ sα̃5
,

θ α̃5
(0) ∈ E3

(23)


θ̇ α̃6(t) = ξ P−D2 −ϕθ sα̃6 ,
θ̄α̃6(0) ∈ E2
θ̇ α̃6

(t) = ηP−D2 −ϕθ sα̃6
,

θ α̃6
(0) ∈ E2

(24)


θ̇ α̃7(t) =−D2 −ϕθ sα̃7 ,
θ̄α̃7(0) ∈ E3
θ̇ α̃7

(t) = ηP−D2 −ϕθ sα̃7
,

θ α̃7
(0) ∈ E3

(25)

where θ̇ α̃(t) =
[

dθ̃(t)
dt

]
, θ̇

α̃

α̃(t) =
[

dθ̃(t)
dt

]
α̃

. Using the α − cut, as discussed above in the

literature we have two Ordinary Differential Equations [ODEs] systems:

˙̄Lα
θα̃
(t) =−kL̄α

θα̇
(t)+ kR̄α

θ α
sα̃

L̄α

θ α
α̃

(0) = Lα
θ1
(0)− (1− α̃)

(
Lα

θ1
(0)− L̄α

θ0
(0)

)
˙̄Rα

θα̃
(t) =−kR̄α

θα̇
(t)+ kL̄α

θ α
sα̃

R̄α
θα̇
(0) = Rα

θ1
(0)+(1− α̃)

(
R̄α

θ0
(0)−Rα

θ1
(0)

)
Solving equation

θ1(t) = − 1
ηϕ

(D+(ξ −1)P)eη(−t)ϕ (eηtϕ −1
)

(26)

θ2(t) =
1
ϕ

et1(−ϕ)
(
−
(
etϕ − et1ϕ

)
(D+P(η +ξ −1))+θ1 (t1)ϕetϕ) (27)

θ3(t) =
1
ϕ

De−tϕ (et2ϕ − etϕ) (28)
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θ4(t) =
1
ϕ

e−tϕ (ηP−D1)
(
etϕ − et1ϕ

)
(29)

θ̃5(t) =
1
ϕ

e−tϕ (D1
(
et2ϕ − etϕ)+ηP

(
etϕ − et2ϕ

)
+θ4 (t1)ϕet2ϕ

)
(30)

θ6(t) =
1
ϕ

e−tϕ (ξ P−D2)
(
etϕ − et2ϕ

)
(31)

θ7(t) =
1
ϕ

D2

(
eϕ(t2−t)−1

)
(32)

where θ̄ α
α̇
(t) =

[
L̄α

θᾱ
(t), R̄α

θᾱ
(t)

]
,θ α

α̇(t) =
[
Lα

θᾱ
(t),Rα

θα̇
(t)

]
, θ̄ α

sα̇
=

[
L̄α

θsx̄
, R̄α

θsz̄

]
and θ

α
sα̇ =[

Lα
θsz̄
,Rα

θss̄

]
.

θ̄ α
α̃
(t) =

[(
Lα

θ1
(0)− (1− α̃)

(
Lα

θ1
(0)− L̄α

θ0
(0)

))
e−kt + R̄α

θs jα

(
1− e−kt

)
,(

Rα
θ1
(0)+(1− α̃)

(
R̄α

θ0
(0)−Rα

θ1
(0)

))
e−kt + L̄α

θsi

(
1− e−kt

)]
θ

α
α̃(t) =

[(
Lα

θ1
(0)− (1− α̃)

(
Lα

θ1
(0)−Lα

θ0
(0)

))
e−kt +Rα

θsiα

(
1− e−kt

)
,(

Rα
θ1
(0)+(1− α̃)

(
Rα

θ0
(0)−Rα

θ1
(0)

))
e−kt +Lα

θsi

(
1− e−kt

)]
α, α̃ ∈ [0,1]

Based on the T2FS α-cut principle of mathematical extension, the explanation for
0 ⩽ t ⩽ 10,k = 0.05 is

θ̃(t) =
⋃

∀α̃∈[0,1]
α̃

⋃
∀α∈[0,1]

α
(
θ

α
α̇(t), θ̄

α
α̇ (t)

)
that can be de-fuzzified using a technique like the centroid approach. The FOU(θ̃(t)) for
0 ⩽ t ⩽ 10 and k = 0.05 is shown by its LMF and UMF. The assumption is made that
the membership functions obtained from the professor’s experience are more reliable and
trustworthy compared to those obtained from the students, and hence are considered as
the primary source of information at α̃ = 1, while the membership functions obtained
from the students are considered at lower levels of α̃ , i.e., 0 ⩽ α̃ < 1.

The more reliable an experience is in comparison to others, the larger the α̃-plane that
includes their membership functions. In accordance with the guidance of a knowledgeable
source and others with a less competent level than that of the influence, the starting popu-
lation can be depicted. According to H2-differentiability at the starting point, the T2FDE
can be of similar significance to T1FDEs system, Ã = (a1,a2,a3,a4), P̃ = (p1, p2, p3, p4)
and T̃ = (Ap1 ,Ap2 ,Ap3 ,Ap4) be trapezoidal fuzzy numbers. Also let Fuzzy demand rate
R̃ = (r1,r2,r3,r4).

The fuzzy combined production inventory amount θ̃1 is first obtained as

θ1 =
Ap1 d1

QP
+ a1QP

2

(
1− r4

p1

)
,

Ap2 d2
QP

+ a2QP
2

(
1− r3

p2

)
,

Ap3 d3
QP

+ a3QP
2

(
1− r2

p3

)
,

Ap4 d4
QP

+ a4QP
2

(
1− r1

p4

)]
. (33)
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The outcome is as follows:

P(θ1) =
1
6

[
Ap1 d1

QP
+ a1QP

2

(
1− r4

p1

)
+

2Ap2 d2
QP

+ 2a2QP
2

(
1− r3

p2

)
+

2Ap3 d3
QP

+ 2a3QP
2

(
1− r2

p3

)
+

Ap4 d4
QP

+ a4QP
2

(
1− r1

p4

)]
. (34)

∂P(θ1)
∂QP

= 1
6

[
− 1

Q2
P

(
Ap1d1 +2Ap2d2 +2Ap3 d3 +Ap4d4

)]
+ 1

2

[
a1

(
1− r4

p1

)
+2a2

(
1− r3

p2

)
+2a3

(
1− r2

p3

)
+a4

(
1− r1

p4

)]
. (35)

Let (∂P(θ1))/∂QP = 0, then to determine the ideal manufacturing capacity. Q∗
P

Q∗
P =

√
2(Ap1 d1+2Ap2 d2+2Ap3 d3+Ap4 d4)

a1(1−(η4/p1))+2a2(1−(η3/p2))+2a3(1−(η2/p3))+a4(1−(η1/p4))
(36)

θ2 =
[

Ap1 d1
qP4

+
a1qP1

2

(
1− η4

p1

)
,

Ap2 d2
qP3

+
a2qP2

2

(
1− η3

p2

)
,

Ap3 d3
qP2

+
a3qP3

2

(
1− η2

p3

)
,

Ap4 d4
qP1

+
a4qP4

2

(
1− η1

p4

)]
. (37)

Additionally, we can derive the representation of θ̃2 as:

P(θ2) =
1
6

[
Ap1 d1

qP4
+

a1qP1
2

(
1− r4

p1

)
,

2Ap2 d2
qP3

+
2a2qP2

2

(
1− r3

p2

)
,

2Ap3 d3
qP2

+
2a3qP3

2

(
1− r2

p3

)
,

Ap4 d4
qP1

+
a4qP4

2

(
1− r1

p4

)]
(38)

with 0 < qP1 ⩽ qP2 ⩽ qP3 ⩽ qP4 .
If we replace the inequality criteria, the formula’s meaning will not change. And

qP2 −qP1 ⩾ 0, qP3 −qP2 ⩾ 0, qP4 −qP3 ⩾ 0 and qP1 > 0.

The next Phases we apply the extension of the Lagrangian approach. The Lagrangian
approach is a mathematical technique used in optimization problems, particularly in the
field of calculus of variations and mathematical physics. It is named after the Italian math-
ematician Joseph-Louis Lagrange, who introduced the method in the late 18th century.

Step 1: We are to solve the unconstrained problem,

Minimize P(θ2) =
1
6

[
Ap1 d1

qP4
+

a1qP1
2

(
1− r4

p1

)
,

2Ap2 d2
qP3

+
2a2qP2

2

(
1− r3

p2

)
+

2Ap3 d3
qP2

+
2a3qP3

2

(
1− r2

p3

)
+

Ap4 d4
qP1

+
a4qP4

2

(
1− r1

p4

)]
. (39)

∂P
∂qP1

= a1
2

(
1− r4

p1

)
− Ap4 d4

q2
P1

, ∂P
∂qP2

= 2a2
2

(
1− r3

p2

)
− 2Ap3 d3

q2
P2

,

∂P
∂qP3

= 2a3
2

(
1− r2

p3

)
− 2Ap2 d2

q2
P3

∂P
∂qP4

= a4
2

(
1− r2

p4

)
− Ap1 d1

q2
P4

. (40)
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After that, set zero to all partial derivatives of the obtained outcomes. Those are

∂P
∂qP1

= 0, then qP1 =
√

2Ap4 d4
a1(1−(r4/p1))

, ∂P
∂qP2

= 0, (41)

then qP2 =
√

4Ap3 d3
2a2(1−(r3/p2))

, (42)

∂P
∂qP3

= 0, then qP3 =
√

4Ap2 d2
2a3(1−(r2/p3))

, ∂P
∂qP4

= 0, (43)

then qP4 =
√

2Ap1 d1
a(1−(r/p)) . (44)

L
(
qP1 ,qP2 ,qP3 ,qP4 ,λ

)
= P

(
θ̃2

)
−λ (qP2 −qP1) . (45)

Step2: In the second step, we proceed to take the partial derivative of the follow-
ing expression: L

(
qP1 ,qp2 ,qP3 ,qP4 ,λ

)
in connection with to find the minimization of

L
(
qP1 ,qp2 ,qP3 ,qP4 ,λ

)
.

Then we set all partial derivative value is set to zero. Following that, we attain

qP1 = qP2 =

√
2(2Ap3 d3+Ap4 d4)

a1

(
1− r4

p1

)
+2a2(1−(r3/p2))

,

qP3 =
√

4Ap2 d2
2a3(1−(r2/p3))

, and qP4 =
√

2Ap1 d1
a4(1−(r1/p4))

. (46)

Step 3: The Lagrangian function is then

L
(
qP1 ,qP2 ,qP3 ,qP4 ,λ1,λ2

)
= P(C2)−λ1 (qP2 −qP1)−λ2

(
qP3 −qP2

)
qP1 = qP2 = qP3 =

√
2(2Ap2 d2+2Ap3 d3+Ap4 d4)

a1(1−(r4/p1))+2a2(1−(r3/p2))+2a3(1−(r2/p3))
and

qP4 =
√

2Ap1 d1
a4(1−(r1/p4))

. (47)

Step 4: The Lagrangian equation is expressed as follows:

L
(
qP1 ,qP2 ,qP3 ,qP4 ,λ1,λ2,λ3

)
=P(θ2)−λ1 (qP2 −qP1)−λ2

(
qP3 −qP2

)
−λ3

(
qP4 −qP3

)
.

To find the minimization, consider the Lagrangian:

L(qP1 ,qP2 ,qP3 ,qP4 ,λ1,λ2,λ3).

We compute the partial derivatives of

L(qP1 ,qP2 ,qP3 ,qP4 ,λ1,λ2,λ3)

with respect to qP1 ,qP2 ,qP3 ,qP4 ,λ1,λ2,λ3, and set each partial derivative to zero to solve
for qP1 ,qP2 ,qP3 ,qP4 .

qP1 = qP2 = qP3 = qP4 (48)
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And this is equal to

q∗P =

√
2
(
Ap1d1 +2Ap2d2 +2Ap3d3 +Ap4d4

)
a1 (1− (r4/p1))+2a2 (1− (r3/p2))+2a3 (1− (r2/p3))+a4 (1− (r1/p4))

(49)

Due to the previously described curative solution Q̃P =
(
qP1 ,qP2 ,qP3 ,qP4

)
If each

inequality requirement is satisfied, the procedure concludes with Q̃P as the locally ideal
answer to the problem.

As there is no other local best answer to the preceding formula, the inventory model
with fuzzy production quantity has the best possible answer using the Extensions of the
Lagrangian approach. Now using the fuzzy technique the optimum solution will be: Q̃∗

P =
(q∗P,q

∗
P,q

∗
P,q

∗
P).

Finally, to relate to a numerical example, we employ trapezoidal fuzzy numbers. Four
parameters, a, b, c, and d, make up a trapezoidal fuzzy number, a particular kind of
fuzzy number. The fuzzy number appears trapezoid-like form is determined by these
characteristics. A membership function that gives a level of membership to each value in
the universe of discourse defines the trapezoidal fuzzy number. The size of the trapezium
and the separation of the value from its edges define this degree of membership.

4. NUMERICAL EXAMPLE

Within a clothing production site, substandard pieces can be identified through issues
like inadequate seams, hue inconsistencies, or incorrect sizes. Pieces showing minor
defects may exhibit loose threads, while flawless ones are deemed as premium. Likewise,
in an electronics manufacturing site, suboptimal goods might have defective components
or shoddy construction, leading them to break down prematurely. Goods with trivial
cosmetic blemishes are labeled as blemished, whereas those operating without hitches are
considered flawless and function without hitches. The primary goal of any manufacturing
site is to boost the production of high-quality goods and reduce the yield of inferior and
slightly defective pieces.

Hence, manufacturing enterprises should emphasize and focus on elements such as
Efficiency, Quality Guarantee, Cost-Effective Strategies, Flexibility, and Consistency.
Moreover, batch processing might assist in final product adjustments. These enterprises
forecast their output and enhance their methods through various tactics. Considerations
include managing capacity, optimizing manufacturing, ensuring quality, overseeing in-
ventory, and advancing improvement strategies.

As an example, let’s say the company’s predicted need for a single cycle, utilizing
fuzzy logic, approximates 11,000 units. The anticipated setup costs amount to 300, and
the inventory expense is estimated at 0.5 for every unit. After initiating production, they
can produce a maximum of 80 units daily. Additionally, there’s a consistent daily require-
ment of around 80 units during the active manufacturing period.

To sum up, we convert the verbal data expressions ”around the value of X” or ”near the
mark of X” into trapezoidal fuzzy numbers as detailed later. Both expressions ”around the
value of X” and ”near the mark of X” can be denoted as (1.00,1.05,1.1,1.15) respectively.
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Table 3: Compare between parameters

ξ0 η0 P (unit/time) Total Cost ($) θ ∗ (Units) Ã∗ ($/item year)
0.0012 0.0012 2400 12223.44 193 16,672
0.0018 0.0018 2400 12437.49 195 16,973
0.0025 0.0018 2500 12593.71 204 17,176
0.0021 0.0018 2500 12654.18 218 17,378
0.0022 0.0018 2600 12635.25 236 17,471
0.0027 0.0018 2700 12707.45 260 17,474
0.0028 0.0018 2700 12782.06 291 17,675
0.0029 0.0018 2800 12881.69 328 17,777
0.0030 0.0018 2900 12950.74 359 17,872
0.0032 0.0018 3000 13054.67 362 17,979
0.0033 0.0018 3000 13054.67 362 18,170

Finally, the fuzzy traits in this situation can be re-positioned according to the rule
stated above. Fuzzy traits refer to properties or aspects of objects or concepts that are
vague, hard to quantify, or measure.

It is assumed that the yearly demand which is fuzzy in nature = ”greater or lower than
14,000”

D̃ = (d1,d2,d3 , d4) = (9500,10,000,10,500,11,000)

Also the setup cost in fuzzy = ”greater or lower than $100”
=
(
Ap1 ,Ap2 ,Ap3 ,Ap4

)
=(100,105,105,115).

And the cost of the inventory in fuzzy expression = ”about $450” = ã=(a1,a2,a3,a4)
= (400$, 455$, 500$, 550$).

The fuzzy production daily rate = ”greater on less 80” units daily = P̃=(p1, p2, p3, p4)=
(70,77,85,89).

Demand flow rate in fuzzy = ”about 60 ”” = R̃ = (r1,r2,r3,r4) = (57,60,60,63).
And, the value after manufacturing process in fuzzy Q̃P =

(
qP1 ,qP2 ,qP3 ,qP4

)
with

0 < qP1 ⩽ qP2 ⩽ qP3 ⩽ qP4 .
We obtain the ideal fuzzy production quantity by substituting the aforementioned

fuzzy parameter values into formula given in equation 37,
Q̃∗

P = (4028.77,4028.77,4028.77,4028.77).
Table 3 highlights the influence of the imperfect rate on the optimal lot size θ and

optimal quantity. It is clear that as the percentage of the defective rate increases, the
lot size also increases. Likewise, there is a significant variation in the total cost, which
increases with higher levels of imperfection in the manufacturing process. However, the
impact on the optimal quantity level is relatively humble, with a slight increase observed
up to a 15 % defective rate, followed by a decrease with further increases in defective
products.

The findings presented in Table 3 reveal that the total cost and optimal lot size exhibit a
substantial increase with higher defective rates, particularly in scenarios involving higher
demand and production rates. As the number of defective products produced rises, the
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(a) Impact of increasing imperfect production
on inventory

(b) Impact of decreasing imperfect production
on inventory

(c) Impact of increasing low quality production
on inventory

(d) Impact of decreasing low quality produc-
tion on inventory

Figure 3: Inventory level in the industrial production process and the impact of imperfect and low
quality items parameters

corresponding lot size to be ordered also increases. However, the impact on the number
of units is less pronounced for higher production and demand rates, especially when the
holding cost per unit is relatively low.

The connection or correlation between the alteration in the inspection rate and the
optimal lot size is demonstrated below, utilizing data from Example 1 for further analysis.
It is evident that as the frequency of inspections rises, the optimal lot size decreases.
In this analysis, the inspection rate is varied from 24,000 units (on par with the rate of
production, the frequency of inspections also increases) to 42,000 units per year (one and
a half times higher than the production rate), while keeping the defective product rate
fixed at 20%. All other data remain unchanged. The combined expenses and quantity
level are demonstrated in Table 6. Notably, the quantity level remains relatively stable,
exhibiting insignificant variation in response to significant changes in the frequency of
inspections, assuming a consistent level of defective products being manufactured.

The optimal lot size and quantity undergo changes corresponding to variations in the
defective production rate.

If the examination frequency and flawed goods manufacturing rate are altered concur-
rently, it can have different effects depending on the specific changes made. For example,
if the inspection rate is increased while the defective products production rate remains the
same, it is likely that the number of detected defects will increase, resulting in a decrease
in the quantity of faulty goods dispatched to clients. This data is shown on the table
4. On the other hand, if the production rate of defective products is increased while the
inspection rate remains the same, there will likely be an increase in the number of defec-
tive products that are shipped to customers, potentially leading to a decrease in customer
satisfaction and increased costs due to returns, repairs, and replacements.
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(a) proportion produced items and imperfect
items in production process

(b) proportion produced items and low quality
items in production process

Figure 4: Images Compare between parameters of imperfect and low quality items production

Table 4: Changes in parameters of various functions

P
(Units

produced
annually)

θ 1 Total Cost
($/Year)

Q∗

(Units)
Ã∗

($/item year)

23,000 13,300 17,783.27 2,289 16,877
25,000 13,350 17,793.67 2,243 16,971
28,000 13,375 17,803.15 2,202 17,072
30,000 13,400 17,811.81 2,166 17,143
32,000 13,425 17,819.77 2,134 17,192
34,000 13,475 17,827.10 2,106 17,362
36,000 13,550 17,833.88 2,080 17,472
38,000 13,600 17,840.17 2,057 17,553
40,000 13,650 17,846.02 2,035 17,886
42,000 13,725 17,851.47 2,016 17,982

Finally, the simultaneous variation of the inspection rate and defective production
rate is examined, and their impact or influence on the size of the lot, quantity level, and
sum total of expenses is assessed. The corresponding data is presented in Table 6. It is
evident that the total cost increases as both the inspection rate and defective rate increase.
Additionally, it is noticeable that when the evaluation rate surpasses the production rate
(M > p), and optimal conditions in Table 6 reveal that the optimal batch size deduced
from our proposed method comes close to the batch size calculated by the economic
order quantity model. The variations in the optimal batch size and quantity, considering
the changes in the proportion of defects and the rate of inspection, are depicted here.

5. SENSITIVITY ANALYSIS

Changes in holding and ordering costs can affect the inventory structure and the to-
tal cost of inventory management. A higher holding cost may result in smaller order
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Table 5: Relative differences among various parameters of the desired functions

η ϕ t ξ D(Units) P Q̃P(Units)
0.002 0.085 0.433 1.125 30000 24000 1428
0.002 0.085 0.453 1.125 30000 24000 1428
0.002 0.085 0.453 1.130 30000 24000 1500
0.002 0.085 0.453 1.135 30000 24000 1505
0.002 0.095 0.453 1.140 35000 24000 1737
0.002 0.095 0.453 1.145 35000 24000 1748
0.002 0.095 0.453 1.150 34000 24000 1703
0.005 0.095 0.453 1.150 34000 24000 1703
0.008 0.095 0.453 1.150 34000 24000 1702
0.010 0.095 0.453 1.155 34000 24000 1708
0.010 0.095 0.453 1.155 34000 25000 1715
0.010 0.095 0.453 1.155 32000 22000 1603
0.010 0.095 0.453 1.160 33000 23000 1661
0.010 0.110 0.453 1.160 33000 23000 1661
0.010 0.110 0.453 1.160 33000 23000 1661

quantities, while a higher ordering cost may result in larger order quantities. If any of
these parameters change, it can have a significant impact on the inventory model and its
outcomes. For example, if the demand rate increases, the reorder point may need to be
adjusted to ensure that enough inventory is available to meet the increased demand. If
the lead time increases, It might be necessary to raise the safety stock level in order to
accommodate the extended waiting period. In inventory management, there are several
parameters that can be adjusted to optimize the inventory level and reduce costs. These
parameters include Order Quantity, setup cost per cycle in the production process Ap,
production rate P etc. Table 5 gives an tabulated form of the parameter change. In a pro-
duction inventory model, increasing the value of the inventory item generally results in
decreasing the total cost of production. This is because higher value items typically have
a lower cost per unit of production, due to economies of scale. When the value of an in-
ventory item is increased, the cost of producing each unit of the item generally decreases.
This is because many fixed costs associated with production, such as setup costs or equip-
ment maintenance costs, are spread over a larger number of units. As a result, sum total of
expenses of producing the inventory item decreases. However, it is important to note that
this relationship may not hold true in all cases. Other factors such as demand variability,
lead times, and holding costs can also impact the total cost of production. Therefore, it
is important to consider all relevant factors when making decisions related to production
and inventory management.

Now we divide the production process in phases 1, 2, 3 and 4. In a production inven-
tory model, the production process can be divided into four phases:

Stages 1 Procurement: At the outset of the manufacturing cycle, the enterprise pro-
cures essential components or raw materials. This step encompasses determining the
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Table 6: The value in this table indicates how well the related models’ predictions were made.

Attribute Adjustments (%) Attribute Value θ

(Units) Ã∗ Total Cost
($/Year)

Cost for setup
(Ap)

−35% 60 13471 37 17,671.65
−25% 90 13801 45 17,759.68
+25% 150 14325 58 17,899.26
+35% 180 14547 63 17,958.36

Cost for holding
(hp)

−35% 0.3 12910 37 17,675.81
−25% 0.45 13389 45 17,762.20
+25% 0.75 13870 58 17,896.04
+35% 0.9 13916 63 17,951.37

Production rate
(P)

−35% 12,000 13720 47 17,949.81
−25% 18,000 13915 50 17,881.72
+25% 30,000 14229 53 18,696.91
+35% 36,000 14866 54 18,766.95

Imperfect items
(ξ )

−35% 18,000 13479 53 17,744.79
−25% 27,000 13222 52 17,798.52
+25% 45,000 14910 51 18,858.99
+35% 54,000 14927 51 18,977.76

Low quality items
(η)

−35% 0.1 12020 52 16,410.33
−25% 0.15 13352 52 17,121.43
+25% 0.25 14103 51 18,547.80
+35% 0.3 14720 51 19,263.32

Deteriorating rate
(ϕ)

−35% 3.5 14123 102 17,822.63
−25% 4.0 14594 69 17,830.06
+25% 4.5 15171 42 18,836.21
+35% 5.0 15465 35 18,937.78

material volume, gauging the order’s time frame, and finalizing the acquisition with the
vendor.

Stages 2 Acquisition: Post the procurement, the company acquires the ordered com-
ponents or raw materials. This stage involves assessing these materials against quality
benchmarks, authenticating the volume secured, and revising stock logs.

Stages 3 Manufacturing: Subsequent to the material validation, the fabrication process
kicks off. It encompasses transforming the sourced materials into end products follow-
ing the enterprise’s established procedures. This stage involves orchestrating fabrication
timelines, overseeing the crafting process, and appraising the completed items to ensure
they match quality benchmarks.

Stages 4 Dispatch: Post the product completion, these are either delivered to clien-
tele or reserved in stock for upcoming demands. This dispatch stage entails organizing
goods for delivery, ensuring proper packaging, and revising stock ledgers to denote the
dispatched items.

Then using table 6 the changes in the inventory is shown in the following table. There
are several factors to implementing production inventory in phases, one of them is reduced
risk. Implementing production inventory in phases allows for a more controlled and man-
ageable process. By implementing the inventory system in phases, you can identify any
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Table 7: Changes in Phase.

Phase

1 2 3 4

1 97(7.98%) 38(7.20%) 98(11.77%) 37(3.05%)
2 13(11.07%) 88(7.24%) 105(16.38%) 15(8.32%)
3 61(5.03%) 135(17.04%) 110(15.14%) 119(9.79%)

Table 8: Steadily introducing production inventory with changes in Phases.

Joint Phases 1
and 2

Phases 2
and 3

Joint
phases

Phases 1
and 2

Phases 2
and 4

(1,1) 7(0.58%) 0(0.00%) (3,1) 1(0.08%) 7(0.58%)
(1,2) 3(0.25%) 3(0.25%) (3,2) 4(0.33%) 82(6.75%)
(1,3) 46(3.79%) 6(0.49%) (3,3) 25(2.05%) 71(5.84%)
(1,4) 41(3.37%) 4(0.33%) (3,4) 113(23.05%) 39(3.21%)
(2,1) 4(0.33%) 23(1.89%) (4,1) 1(0.08%) 31(2.55%)
(2,2) 73(6.01%) 18(1.48%) (4,2) 8(0.66%) 48(61.56%)
(2,3) 124(7.45%) 22(1.81%) (4,3) 4(0.33%) 85(7.00%)
(2,4) 337(17.63%) 25(2.06%) (4,4) 24(1.97%) 51(4.20%)

issues or challenges early on and make adjustments before the system is fully deployed.
This can help to reduce the risk of costly errors or failures. Also faster implementation
production inventory in phases can also help to speed up the implementation process. By
breaking the process down into smaller, more manageable phases, you can focus on spe-
cific areas of the inventory system and get them up and running quickly. This can help
to reduce the overall time it takes to implement the system. And improved efficiency
in production inventory in phases allows you to focus on specific areas of the inventory
system and optimize them for efficiency. By taking a phased approach, you can identify
areas where improvements can be made and implement changes before moving on to the
next phase. This can help to improve overall efficiency and productivity. Implementing
production inventory in phases allows you to manage your resources more effectively. By
focusing on specific areas of the inventory system, you can allocate resources more effi-
ciently and ensure that you have the right people and tools in place to get the job done.
Implementing production inventory in phases can help to reduce risk, speed up imple-
mentation, improve efficiency, and manage resources more effectively. It can also help to
ensure that the inventory system is optimized for your specific needs and requirements.

5.1. Experiment results

When we accept ai,t
(
XG

i
)

is the total production operation and Sv
i for phase i at time

t fulfils the conditions
(
Sṽ

i , t
)
= (Sv

i , t), additionally ai,t
(
XG

i
)

is 0;a′i,t
(
XG

i
)

is one if the
phase Sv

i for Phase i at time t holds the relation (Si
v, t) = (Sv

i , t), and a′i,t
(
XG

i
)

has reduced

value. Also V G
i =

(
vG

p,1,v
G
i , · · · ,vG

i

)
and the XG

i is derived by checking the appropriate
phases from the mutant individual generation phases as explained.
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Figure 5: Depicting Steadily production inventory with changes in Phases

Phase 1: Let ηl ⩾ 0, be a likelihood that the i-th approach in the candidate pool will
be chosen, and populate each ηl as 1/K, where K is the number of tactics in the pool as a

whole, meet the requirement
K
∑

l=1
ηl = 1.

Phase 2: Give the likelihood range
[

l−1
∑

s=0
ps,

l
∑

s=0
ps

]
, l = 1,2, . . . , K to the i-th phase,

satisfying p0 = 0.
Phase 3: Now the l′− th phase to generate V G

p for the locate XG
p , whereas Rrand is a

uniformly generated random number at random from the range [0,1], and the preferred

Rrand meets Rrand ∈
[

l′−1
∑

s=0
ps,

l′

∑
s=0

ps

)
.

Step 4: After finishing up the crossover and selection processes at the current gener-
ation G , note how many test subjects produced by the i− th approach were competent
enough to enter the following generation, NumG

i , then steadily add these figures. NumG
i

in a predetermined number of subsequent cycles G′ to obtain Numl , where Numl is the
whole population of trial subjects produced by the i− th method that made the transition
into the future over G′ generations.

Phase 5: Next phase the value ηl of the i− th strategy with ηl =
Numl

K
∑

s=1
Nums

satisfying

the condition G mod G′ = 0.
The experimental phase UG

p =
(

uG
i,1,u

G
i,2, · · · ,uG

i

)
is modified with

uG
i =

{
vG

i , if q(0,1)⩽ q or q = qr

xG
i , otherwise

where rq(0,1) ∈ [0,1] is a uniformly distributed random value, with determined prob-
ability CR ∈ [0,1] is a constant, and qr is a integer taken between 1 to D.

We select the execution which is used to decide if the XG
i or UG

i the new group arrives.
The phase i of decision process is written as

XG+1
i =

{
UG

i , if fi
(
UG

i
)
⩾ fi

(
XG

i
)

XG
p , otherwise

When there is the most growth Xmax is reached, the process is revoked, and the ideal
condition is identified. If not, the procedure moves on to the next step.
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Figure 6: Depicting Data Obtained in Production process in Phases

From the manufacturing process, we derive Four Stages (n = 4), as presented in table
7 and table 8. Around 10% of the components in this segment result in below-standard,
flawed items, while the remaining 90% are directly used as complete items for fulfilling
orders at the manufacturing site. Even though 90% of the items are finalized by the end
of Stage 3, these three Stages can be analyzed to meet the objectives of the suggested
production and inventory project.

During regular operational production, 1350(T2 = 1350) entries from an inventory
data-set were collected, as detailed in the subsequent table.

Considering Stage i, denote ηi,t and η ′
i,t as the current and forecast fractions of infe-

rior quality products in the production sequence (picking consistent numbers that align
with inventory steadiness) at moment t. The difference between these two parameters is
given by ∆ηi,t = θi,t − θ ′

i,t . Based on this difference, the inventory discrepancy stage Su
i

is segmented into four classifications, namely i ∈ {1,2,3,4}: a negative variation state
S1

i , a tolerable state S2
i , an average variation state S3

i , and a condition of high fluctua-
tion S4

i . These categories align with the following duration: ∆η0
i < ∆ηi,t ⩽ ∆η1

i ,∆η1
i <

∆ηi,t ⩽ ∆η2
i , ∆η2

i < ∆ηi,t ⩽ ∆η3
i ,∆ηi,t > ∆η3

i , where ∆η0
i ,∆η1

i ,∆η2
i , and ∆η3

i are defin-
ing parameters with ∆η0

i < ∆η1
i < 0 and ∆η3

i > ∆η2
i > 0. For this study, the values

are: −1500,−1000,1000 and 1500 for Stage 1; −3500,−1000,1000,1500 for Stage 2;
−5000,−3000,1000,4000 for Stage 3; and −2500,−1000,1000,2500 for Stage 4.

In the subsequent data processing steps, each sample of data is turned into a set of in-
ventory fluctuation phases θ u

i ,u ∈ {1,2,3,4} and i ∈ {1,2,3,4}. These are the phases
θ u

i θ v
i+1,u,v ∈ {1,2,3,4}. Because, θ u

i and θ u
i ,θ

v
i+1 further expressed as θ u

i = u and
θ u

i ,θ
v
i+1 = (u,v). Table 9 and Table 10 describe for every single Component and any

mixture of double Phases, the frequency distribution of phases, respectively, based on the
practise data. It is noticed that for (single) Stages 1, 2, and 3, the prevailing condition is
θ 2

1 ,θ
4
2 and θ 2

3 , representing 75.20%,77.31% and 73.04% of all the instances of the stages,
respectively.
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ή (S

1 ũS
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3



Table of spreadsheet 9 and 10 present the estimate conclusions for Phase 2 and Phase
3 for normal time periods respectively. The modified result of θiũSṽ

i+1 (in the modifi-
cation), and (θi+1ṽ , t) together with Si+1ṽ (i.e., the predicted state). For resemblance,
the 7th column the relative likelihood is described P(Si+1ṽ, t) along with the matching
projected state (Si+1ṽ) gained from P(Si

uSi+1ṽ, t) (i.e., the anticipated outcome without
given threshold only on Markov models). The final column displays the current condition
θ v

i+1 for Phase i+1 on time t.
The first term’s worth is far less than the cost of the reelection campaign, this results

in the likelihood of the starting procedure âi+1
k(u1−1)+v1,k(ũ−1)+ṽ from (4,2) to (4,2) reduc-

ing while from (4,2) to (3,3) rising. The outcome is
(
S2

uS3
ṽ,11

)
reaches its highest

point (0.588) a joint phases (3,3), higher than its value (0.110) at (4,2). Consequently,(
S3

ṽ,11
)

has the real-world example that is most likely Sv
3 = 3, the scenario is as pre-

sumed adopting the earlier method. In overview, the exact phase prediction in Table 11
demonstrates that the parameter’s adjustment η i

gP(ũ, ṽ | c,uc,vc,ur,vr) can enhance non-
dominant state prediction greatly in phase(s).

Markov models are widely employed as probabilistic models for predicting future
events based on the analysis of past events. These models possess the Markov property,
which signifies that the prediction of a future event relies solely on the current state of
the system and not its historical context. The predictive accuracy of Markov models
depends on various factors, including the model’s order, the size and quality of the dataset,
and the nature of the events being predicted. Numerous studies have investigated the
impact of increasing the model’s complexity on the accuracy of its predictions. It has been
observed that raising the model’s order generally enhances its accuracy up to a certain
point. However, beyond that point, further increases in the model’s order do not yield
significant improvements in prediction accuracy. This phenomenon can be attributed to
over-fitting, where the model becomes overly complex and starts capturing noise in the
data rather than the underlying pattern.

The prediction accuracy of Markov models can be influenced by various factors, one
of which is the size and quality of the dataset. For accurate predictions, Markov mod-
els require a substantial amount of data. If the dataset is insufficient in size or of low
quality, the model may fail to capture the underlying pattern effectively. Moreover, if
the dataset is biased or not representative, the predictions made by the model may be
inaccurate. Additionally, the type of events being predicted can impact the prediction ac-
curacy of Markov models. These models perform best when predicting discrete events
with a limited number of possible outcomes. Conversely, when dealing with continuous
events or those with a large number of potential outcomes, Markov models may not be the
most suitable choice. In such cases, alternative methods like neural networks or regres-
sion models might be more appropriate. To achieve accurate predictions using Markov
models, it is crucial to consider several factors, including the model’s order, the size and
quality of the dataset, and the nature of the events being predicted. By comprehending
these factors and selecting appropriate parameters and techniques, Markov models can be
effectively utilized to make accurate predictions across a wide range of applications.

Additionally, the anticipated stages acquired from the initial and the fresh anticipated
outcomes are identical, suggesting that the estimated outcomes for inventory phases at
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Phase 3 remain consistent despite alterations in the ηg2 parameter. Furthermore, all
variations fall within a range of 0.68%, providing evidence that the outcomes remain
unchanged even with modifications in ηg2.

Markov models are powerful mathematical tools used to analyze and predict the be-
havior of systems that exhibit temporal dependencies. These models are based on the con-
cept of Markov processes, which are stochastic processes that satisfy the Markov property.
According to the Markov principle, the upcoming actions of a system are determined ex-
clusively by its current position and are not affected by its prior positions. This property
makes Markov models particularly useful for modeling and analyzing systems with lim-
ited memory or where the history of the system is not relevant. One of the key applications
of Markov models is in the field of probability theory and statistics. Markov chains, which
are a type of Markov model, are extensively used to model various phenomena such as
weather patterns, stock market movements, genetic sequences, and even language gener-
ation. Markov models are characterized by a collection of states and a series of transition
probabilities linking those states. These transformation probabilities determine the likeli-
hood of transitioning from one state to another in a given time step. Markov models can
be classified into different types based on the properties of their state space and transition
probabilities, such as homogeneous Markov models, non-homogeneous Markov models,
and hidden Markov models.

The final manufacturing process or marinating the inventory level any action taken
will be immensely affect the changes. Accordingly, the importance of the recommended
Markov models is conclusively demonstrated. Here it is illustrated the contrast of the
proper Markov models with the proposed models. In this provisions of clause we exclu-
sively emphasize the resemblance of the inventory variety phase estimations while de-
liberately ignoring the correlation of modeling propagation of variation. This is because
cutting-edge models of variation propagation in the relevant literature [55] primarily em-
ploy conventional Markov models (i.e., TMM). Moreover, when predicting the stages of
inventory fluctuation, this research presents a preliminary data set for modeling inventory
variation. As a result, we provide a brief comparison of the phase estimations between
our posited model and the test-wide prediction findings for double Phases. Predictive an-
alytic can be a valuable tool for manufacturers to manage their production inventory more
effectively. By analyzing historical data and identifying patterns, predictive models can
provide insights into future demand, potential supply chain disruptions [56], and optimal
inventory levels. Here are some key notes on prediction findings in production inven-
tory: Forecasting demand: Predictive models can analyze historical sales data, market
trends, and other factors to forecast future demand for a particular product. This can help
manufacturers optimize their inventory levels and avoid stock outs or overstocking. By
analyzing data from quality inspections and other sources, predictive models can identify
potential quality issues in the production process. This can help manufacturers address
these issues before they impact the final product and reduce the amount of inventory that
needs to be scrapped. Predictive models can analyze data from the supply chain [57],
such as shipping times and supplier reliability, to predict lead times for raw materials and
other components. This can help manufacturers avoid stock outs and delays in the pro-
duction process. Predictive models can analyze data from the production process, such as
machine up time and production rates, to optimize production schedules and reduce idle
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time. This can help manufacturers improve efficiency and reduce the amount of inventory
that is in process at any given time. Overall, predictive analytic can help manufactur-
ers make more informed decisions about their production inventory and improve their
overall efficiency and profitability. Table 12 presents the outcome for numerous phases.
From Table 12 , it is noticed that for Phases 1 and 2, over all the main components (i.e.,
S1

uS2
ṽ = (2,4)

)
,65.93% and 54.24% are correctly predicted by the model; while for

non-dominant phases (i.e., S1ũS2ṽ ̸= (2,4)),0% and 18.35% are precisely recognised.

6. CONCLUSION

During production, when there’s a prevalence of substandard or defective products,
it’s crucial to understand the underlying system using mathematical modeling. Should
one find themselves facing the production of such items, a series of measures can be
adopted. First, pinpointing the main reason is essential, be it due to inadequate staff
training, outdated machinery, or other contributing factors. Upon recognizing these chal-
lenges, proactive solutions can be pursued. It’s essential to re-evaluate and enhance pro-
duction methods, possibly through technological upgrades, additional staff training, or
the introduction of robust quality assurance practices. Strengthening quality oversight en-
sures that flaws are spotted and rectified promptly. It might even be beneficial to onboard
more personnel dedicated to this task. Continuous communication with all involved par-
ties is of paramount importance to maintain trust and reinforce relationships. Emphasizing
quality can greatly influence the overall success of production, aligning the output with
the anticipations of both clients and affiliates. The focus of this research is on introducing
deterministic stock frameworks, articulated through precise mathematical equations.

Items with flaws are strictly disallowed, and the effects of economic inflation, value
decrease, initial stock influence on demand, and substandard products are scrutinized. To
enhance a production process that yields substandard or flawed goods, several strategies
can be adopted. A pivotal move is pinpointing the primary reason behind these product
deficiencies. Recognizing this fundamental issue offers clarity on the necessary modifi-
cations for refining the manufacturing workflow. It’s also imperative to enforce stringent
quality assurance protocols to detect and rectify production anomalies.

To overcome these limitations, future research could consider incorporating stochastic
elements into the model to account for uncertainties in demand and supply. Additionally,
the model could be extended to include dynamic factors such as market trends and com-
petitor analysis to enable more accurate decision-making. Furthermore, exploring the
potential of incorporating advanced technologies such as machine learning or artificial
intelligence into the production process could further optimize quality control and mini-
mize the production of low quality and imperfect items. By addressing these limitations
and incorporating the outlined strategies for improvement, the production process can be
enhanced, resulting in higher quality products that meet or exceed customer expectations.
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