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Abstract: This research provides a comprehensive analysis of a complex retrial queue,
specifically a M1,M2/G1,G2/1 model. The unique characteristic of this model is its con-
sideration of customer impatience, which can manifest as either persistent or impatient
behavior. The study explores the intricate dynamics of the system, including the interplay
between customer impatience and the retrial, service, repair, and reserved processes. To
enhance realistic modeling, the study introduces a service orbit and repair services that
are activated when the server breaks down. The Chapman-Kolmogorov equations are
established, and the supplementary variables method is used to present the steady-state
solutions. We provide the necessary and sufficient condition for the system to be stable,
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along with several specific cases. Explicit closed-form expressions for various perfor-
mance measures are provided, which are then used to construct an expected total cost
function. Numerical results are also presented to demonstrate how system parameters
affect performance measures and the total cost function.

Keywords: Unreliable retrial queue, reserved times, two types of orbit, performance
measures, cost function.
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1. INTRODUCTION

Over recent years, there has been a significant growth in the literature on retrial
queues. The concept of retrial has been widely used as mathematical models in various
real-world communication systems, such as cognitive radio networks, communications
networks, call centers, cellular mobile networks, and IP networks. For an overview of
main results and methods, see Falin [1], Falin and Templeton [2], Templeton [3], Artalejo
and Gómez-Corral [4], and Yang and Templeton [5].

Customers highly prioritize their waiting time and are inclined to discontinue their
engagement with a system when service delays become excessive. These incidents can
occur in queueing systems when server reliability is not high. The service interruptions
caused by breakdowns and subsequent repairs contribute to an increase in customer wait-
ing times and provide an additional opportunity for incoming customers to join the retrial
group. Retrial queues with server breakdowns and repairs have been addressed by many
authors [6, 7, 8, 9, 10, 11, 12, 13, 14].

Impatience is a critical factor affecting the dynamics and performance of queue-
ing systems, as traditional models often overlook the complexities introduced by cus-
tomer dissatisfaction and frustration during long waits. Customers who become im-
patient may abandon the queue, a behavior that significantly impacts system perfor-
mance and optimization. To address these issues, researchers have extended traditional
queueing theory by including models that account for customer behavior, abandonment
rates, and retrial processes. Notable models, such as the finite-source retrial queue, re-
trial orbits, and impatient customer queues, provide insights into how impatience af-
fects system performance and design [15, 16, 17, 18, 19, 20]. Additionally, server re-
liability issues and service interruptions further complicate the situation, leading to in-
creased waiting times and affecting customer decisions to rejoin or abandon the queue
[6, 7, 8, 9, 10, 11, 12, 13, 14, 21, 22, 23]. Understanding the dual aspects of customer
patience-persistent customers who reattempt service and impatient customers who may
renege or balk-is essential for analyzing and improving queueing systems.

Single-server retrial queueing models with two or more types of customer arrivals
have been attracted significant attention from numerous researchers, including two-way
communication [6, 24, 25, 26, 27], two classes of customers [28, 29, 30], batch arrivals
[8, 20, 31, 32], two classes of batch arrivals [7, 8, 9], Markovian arrival process [28],
[33], [34], priority customers [17, 35, 36, 37] negative customers [12, 13, 38, 39]. Other
researchers have investigated retrial queueing models that account for both persistent and
impatient customers. Taleb and Aissani [40] studied an unreliable retrial queue that ac-
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commodates both persistent and impatient customers. In this system, if a primary cus-
tomer finds the server available, they are served immediately. However, if the server is
busy, persistent customers enter into an orbit and continue to attempt to receive service
until the server becomes available. In contrast, impatient customers leave the system
without being served. The study also incorporated corrective and preventive maintenance
strategies, which allowed for calculating performance metrics and analyzing the time until
the server’s first failure. Recently, Aissani et al. [16] conducted a study on an unreliable
retrial queueing system with a linear retrial policy, accommodating both persistent and im-
patient customers under different service distributions. Persistent customers, if blocked
by a busy server, enter a retrial orbit and continue to attempt access until they succeed,
whereas impatient customers leave the system if blocked. The server is subject to both
passive and non-conservative active breakdowns. The authors used the supplementary
variable method to derive the stationary probability distribution and various performance
metrics. Additionally, they applied the embedded Markov chain method to determine the
stationary distribution of customers in the retrial orbit at the end of service epochs.
In this study, we investigate an unreliable retrial queueing system denoted as M1,M2/
G1,G2/1, featuring a repairable server and incorporating elements such as balking, reneg-
ing, a service orbit, and reservation mechanisms. The service orbit is designed only for
impatient customers who face service disruptions due to server breakdowns. Instead of
choosing to leave the system permanently, these customers opt to enter a service orbit,
where they wait for the issue to be resolved and for their service to be completed. This
model accommodates either persistent or impatient customers. Although these customer
types play a critical role, their impact has often been overlooked in queueing literature.
It is essential to understand how the distinct behaviors and needs of persistent versus im-
patient customers affect queue dynamics, as their influence can significantly alter system
performance.

Motivation of this study:
The motivation for this study arises from the growing need to analyze the performance

of complex retrial queueing systems in various real-world applications. Queueing systems
are prevalent across many domains, including telecommunications, transportation, man-
ufacturing, and service industries. Retrial queueing systems are particularly noteworthy
because they account for customer impatience, which can manifest as either persistent or
impatient behavior.

– Focus of the study: This study specifically examines a M1,M2/G1,G2/1 retrial
queue with two types of customer arrivals: persistent and impatient. It also considers
service times, retrial times, repair times, customer balking behavior, and reserved times
for impatient customers only. This focus reflects the complexity of real-world scenarios.
Understanding and analyzing such intricate systems can lead to improvements in customer
satisfaction, resource utilization, and operational efficiency.

– Theoretical foundation: By addressing the ergodicity requirement for system stabil-
ity and deriving analytical findings for the stationary distribution. This study aims to pro-
vide a solid theoretical foundation for understanding the behavior of the retrial queueing
system under various conditions. Additionally, the development of diverse performance
metrics allows for a comprehensive evaluation of the system’s efficiency and effective-
ness.
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– Cost analysis: A thorough cost analysis is crucial for optimizing practical applica-
tions. In this study, we have developed a detailed cost model for the proposed queueing
system and calculated the total expected cost per unit of time. This approach enables
decision-makers to make well-informed choices that enhance system performance while
balancing various trade-offs effectively.

– Overall contribution: This study aims to provide valuable insights and methodolo-
gies for analyzing the performance of complex retrial queueing systems. By addressing
the needs and challenges encountered in modern applications, the study contributes to
various fields, including communication networks, cognitive radio networks, call centers,
transportation, manufacturing, and service industries.

Scope and novelty of this study:
– The scope of this work is focused on addressing a significant research gap in queue-

ing theory. Specifically, it examines the unreliable retrial queue M1,M2/G1, G2/1 with a
repairable server, two types of customer arrivals, service orbit, and reserved times-an area
not yet explored in the existing literature. By considering customers’ impatience, which
can manifest as either persistent or impatient behavior. This study aims to provide a com-
prehensive understanding of the dynamics and performance of such complex queueing
systems.

– To achieve this objective, the study employs the supplementary variable technique
and the generating function method to evaluate the behavior of the considered retrial
queue. These techniques facilitate a thorough analysis of system dynamics, including
the impact of both persistent and impatient customer behavior on system performance.

– Furthermore, the study extends beyond theoretical analysis by proposing a novel
structure for the queueing system and presenting numerical examples to illustrate its prac-
tical implications. By using graphs, the study provides insights into the behavior of the
proposed retrial queue under various scenarios and parameter settings.

– In addition to theoretical and numerical analysis, the study introduces a comprehen-
sive cost function to quantify system performance. More precisely, we analyze how these
performance measures impact the expected total cost of the system. We also explore how
variations in service times, repair times, and customer behaviors influence overall costs.
This analysis provides insights into cost-effective strategies for managing the queue and
repair processes.

– Overall, the novelty of this work lies in its holistic approach to addressing a previ-
ously unexplored research gap in queueing theory. By combining analytical and numeri-
cal techniques, the study offers valuable insights into the sensitivity analysis of the perfor-
mance of complex queueing systems with customers, who may exhibit either persistent
or impatient behavior. This contributes to both theoretical advancements and practical
applications across various domains.

The primary goal of this investigation is to assess the queue length distribution and
the orbit size, which will aid in the development and evaluation of new metrics for mea-
suring system behavior. Additionally, the managerial implications demonstrate how the
model’s results can be applied to enhance operational efficiency, customer satisfaction,
and profitability in various service environments.

The paper is organized as follows. Section 2 presents a mathematical description
of the model with a practical motivation. Section 3 offers an exhaustive analysis of the
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considered model. System performance measures and some reliability indices of interest
are developed in Section 4. Illustrative numerical examples for sensitivity analysis are
provided in Section 5. A cost analysis and the key managerial implications are discussed
in Section 6. Finally, Section 7 concludes the paper.

2. DESCRIPTION OF THE MODEL

We consider an unreliable retrial queue M1,M2/G1,G2/1 with a repairable server,
including balking and reneging, a service orbit, and reservations that accommodate ei-
ther persistent or impatient customers. The dynamics of the retrial queueing model are
illustrated in Figure 1.

This model is described as follows:

• Persistent (respectively, impatient) customers arrive at the system according to a
Poisson process with rate λ1 > 0 (resp. λ2 > 0).

• If the server is idle upon arrival, then the service of the incoming customer (per-
sistent or impatient) begins immediately. If a persistent customer arrives and finds
the server blocked, the customer leaves the service area and enters the orbit. On
the other hand, if an impatient customer arrives and finds the server blocked, the
customer decides either to join the orbit with probability m, or to balk the system
with probability m = 1−m.

• The retrial time of persistent (resp. impatient) customer follows an arbitrary dis-
tribution characterized by its probability distribution function (pdf) A1(w) (resp.
A2(w)) and density function (d f ) a1(w) (resp. a2(w)). Let LA1 [s] (resp. LA2 [s]) de-
note the Laplace-Stieltjes Transform (LST ) of the distribution A1(w) (resp. A2(w)),
and α1 j = (−1) jL j

A1
[0] (resp. α2 j = (−1) jL j

A2
[0]) be the jth moment of this distri-

bution for persistent (resp. impatient) customers.

• We assume that the service policy follows the FCFS discipline. This means that if
the primary customer (a customer arriving from outside) arrives first, it will cancel
any access attempts by the secondary customer (a customer coming from the orbit)
to the server. In this case, the secondary customer will either return to their position
in the orbit with probability q or renege from the system with probability q = 1−q.

• The service times of both types of customers are assumed to be independent and
identically distributed (iid). The service times for persistent (resp. impatient) cus-
tomers follow a general distribution with pd f B1(x) (resp. B2(x)), and b1(x) (resp.
b2(x)) denotes the d f of the service time. Let LB1 [s] (resp. LB2 [s]) be the LST
of the service time distribution for persistent (resp. impatient) customers, and
β1 j = (−1) jL j

B1
[0] (resp. β2 j = (−1) jL j

B2
[0]) represents the jth moment of the

service time of a persistent (resp. impatient) customer.

• The server is subject to active breakdowns and fails after an exponentially dis-
tributed time with mean 1/θ . Upon breakdown, it undergoes corrective and imme-
diate repair, aimed at quickly addressing any faults or failures, thereby maintaining
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system performance and reliability, and the repair time is a random variable char-
acterized by an unknown with pdf C(y), with df c(y), LST LC[s], and the first two
moments denoted by γ1 and γ2, where γ j = (−1) jL j

C[0] for j = 1,2.

• When an impatient customer’s service is interrupted, it has two options: either it
stays in the service area with a probability r, or it enters a service orbit with a
complementary probability r = 1−r. In contrast, a persistent customer permanently
chooses to stay in front of the server. If an impatient customer enters the service
orbit due to a server failure, the server must wait for the customer to return after the
server repair. This waiting period is referred to as the reserved time. The reserved
time is governed by an arbitrary distribution with a pdf D(v), a df d(v), a LST
LD[s], and the first two moments denoted by δ1 and δ2, where δ j = (−1) jL j

D[0] for
j = 1,2.
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Figure 1: Dynamics of the retrial queueing model

All the introduced variables are mutually independent of each other.
Conditional completion rates: for retrial time of a persistent (resp. an impatient)

customer is α1(w) =
a1(w)

1−A1(w)
(resp. α2(w) =

a2(w)
1−A2(w)

), for service time of a persistent

(resp. an impatient) customer is β1(x) =
b1(x)

1−B1(x)
(resp. β2(x) =

b2(x)
1−B2(x)

), for repair time

(resp. reserved time) is γ(y) = c(y)
1−C(y) (resp. δ (v) = d(v)

1−D(v) ).
Now, we define the probability distribution function (pdf) F(x), and its complement

F(x) = 1−F(x) over the interval [0,1]. The LST of the pd f , denoted as LF [s], is given by:
LF [s] =

∫
∞

0 e−sxdF(x). The complementary LST , LF [s], is defined as: LF [s] =
∫

∞

0 e−sx(1−
F(x))dx. This complementary LST can be related to LF [s] by the formula: LF [s] =

1−LF [s]
s .
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We use h̄ as a parameter to differentiate between the service periods offered to impa-
tient and persistent customers within the system, where:

h̄ =

{
0, indicates service to impatient customers,
1, indicates service to persistent customers.

2.1. Practical justification for the proposed queueing model in call centers

Example 1. Customer service plays a crucial role in telecom companies such as Oore-
doo, Orange, and T-Mobile, which offer a wide range of communication services. These
companies assign two-way phones in their service centers to effectively handle customer
requests, complaints, and issues.

In this system, the server represents the radio channel that customers use to make their
calls. Customers can be classified into two categories based on their calling behavior:

Persistent callers: These customers persistently attempt to make a call, even when
faced with difficulties or delays. They demonstrate determination and patience in their
pursuit of accessing the service.

Impatient callers: These customers are more likely to give up or balk if they encounter
obstacles or delays while trying to access the service. They are prone to abandoning their
call attempts under unfavorable circumstances.

Impatient callers exhibit different behaviors when they encounter an unavailable com-
munication channel:

Probability m: The primary impatient caller continues to wait for the communication
channel to become free, remaining in the retrial orbit. They are willing to wait for their
turn and keep retrying.

Probability m: The primary impatient caller leaves the current channel and seeks an
alternative option by balking.

Probability q: The secondary impatient caller makes another call attempt after a
random interval while in the retrial orbit.

Probability q: The secondary impatient caller leaves the system by reneging, deciding
not to retry, and abandoning their intention to use the service.

The communication channel can handle only one call at a time due to its limited
capacity. Factors such as network congestion or technical issues can impact the channel’s
reliability. During maintenance or downtime, callers are unable to access the service until
the connection is restored.

When the channel fails and an impatient caller is using it, this caller has two options:

i- With probability r, it can remain in front of the server to complete their service,

ii- With probability r, it can enter the service orbit.

Once the channel is repaired and becomes available again, it must wait for the impa-
tient customer in the service orbit to return. Customers in the service orbit are given the
highest priority to regain access. This prioritization ensures uninterrupted service and
enhances user satisfaction.
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3. QUEUEING MODEL ANALYSIS

In this section, we establish the stability condition and the steady-state distributions
using Markov process techniques (supplementary variables method and generating func-
tions). Figure 2 shows the rate transition diagram.

The Markov process can be represented by:

X(t)t≥0 = {ϖ(t),ϕ(t),κ(t),ξ 01(t),ξ 02(t),ξ 1(t),ξ 2(t),ξ 3(t),ξ 4(t)}t≥0,

in which,

• ϖ(t) indicates the server state:

ϖ(t) =


0, if the server is free,
1 (resp. 2), if the persistent (resp. impatient) customer occupies

the server,
3, if the server is being repaired after an active breakdown,
4, if the server is reserved.

• ϕ(t) denotes the state of a customer in service after an active breakdown:

ϕ(t) =

 0 (resp. 1), if the persistent (resp. impatient) customer in service
remains in front of the server,

2, the impatient customer in service enters into the service orbit.

• κ(t) indicates the number of customers in the orbit at time t.

ξ 01(t) (resp. ξ 02(t)): Elapsed retrial time of a persistent (resp. an impatient) customer,

ξ 1(t) (resp. ξ 2(t)): Elapsed service time of a persistent (resp. an impatient) customer,

ξ 3(t): Elapsed repair time,

ξ 4(t): Elapsed reserved time of an impatient customer.

We establish the corresponding probabilities for the scenario where there are n cus-
tomers in the system at time t:

• P(1)
0,0 (t) = P(1)(ϖ(t) = 0,κ(t) = 0) (resp. P(2)

0,0 (t) = P(2)(ϖ(t) = 0,κ(t) = 0)): Prob-
ability that the system is empty when the server is serving persistent (resp. impa-
tient) customers.

• P(1)
0,n (t,w)∂w=P(1)(ϖ(t)= 0,κ(t)= n,w≤ ξ 01(t)<w+∂w) (resp. P(2)

0,n (t,w)∂w=

P(2)(ϖ(t) = 0,κ(t) = n,w ≤ ξ 02(t) < w+ ∂w), n ≥ 1: Probability that the server
is free during the retrial period of persistent (resp. impatient) customers.

• P1,n(t,x)∂x=P(ϖ(t)= 1,κ(t)= n,x≤ ξ 1(t)< x+∂x) (resp. P2,n(t,x)∂x=P(ϖ(t)=
2,κ(t) = n,x ≤ ξ 2(t)< x+∂x)): Probability that the server will be occupied by a
persistent (resp. an impatient) customer during the retrial period.
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Figure 1: Rate transition diagram of the model

11

Figure 2: Rate transition diagram of the model

• P3,0,n(t,x,y)∂x∂y=P(ϖ(t) = 3,ϕ(t) = 0,κ(t) = n,x ≤ ξ 1(t)< x+∂x,y ≤ ξ 3(t)<
y+ ∂y) (resp. P3,1,n(t,x,y)∂x∂y =P(ϖ(t) = 3,ϕ(t) = 1,κ(t) = n,x ≤ ξ 2(t) < x+
∂x,y ≤ ξ 3(t)< y+∂y)): Probability that the persistent (resp. impatient) customer
remains in front of the server when the server is under repair.

• P3,2,n(t,x,y)∂x∂y=P(ϖ(t) = 3,ϕ(t) = 2,κ(t) = n,x ≤ ξ 2(t)< x+∂x,y ≤ ξ 3(t)<
y+∂y): Probability that the impatient customer enters into a service orbit when the
server is under repair.

• P4,n(t,x,v)∂x∂v=P(ϖ(t) = 4,κ(t) = n,x ≤ ξ 2(t) < x + ∂x,v ≤ ξ 4(t) < v+ ∂v):
Probability that the impatient customer reserved the server during the retrial period.



10 N. Dehamnia et al. / Performance of an Unreliable Retrial Queue

3.1. The steady-state distribution

Now, we define the limiting probabilities associated with the process X(t)t≥0:

lim
t→∞

P(k)
0,0 (t) = P(k)

0,0 , lim
t→∞

P(k)
0,n (t,w) = P(k)

0,n (w), lim
t→∞

Pk,n(t,x) = Pk,n(x), k = 1,2,

lim
t→∞

P3,l,n(t,x,y) = P3,l,n(x,y), l = 0,1,2, lim
t→∞

P4,n(t,x,v) = P4,n(x,v).

Let us assume that for x = y = v = 0; Pk,−1(x) = 0, for k = 1,2; P3,l,−1(x,y) = 0, for
l = 0,1,2; and P4,−1(x,v) = 0.

3.2. The generating functions

Next, we introduce the following probability-generating functions:

P(k)
0 (z,w) =

∞

∑
n=1

P(k)
0,n (w)z

n, Pk(z,x) =
∞

∑
n=0

Pk,n(x)zn, k = 1,2,

P3,l(z,x,y) =
∞

∑
n=0

P3,l,n(x,y)zn, l = 0,1,2, P4(z,x,v) =
∞

∑
n=0

P4,n(x,v)zn,

which are convergent for each w ≥ 0, x ≥ 0, y ≥ 0, v ≥ 0, and for all |z| ≤ 1.

Theorem 2. The inequality h̄
[

λ1β11

(
1+θγ1

)
1−q(1−LA1 [λ1])

]
+ h̄

[
mλ2β21

(
1+θγ1+rθδ1

)
1−q(1−LA2 [λ2])

]
< 1, is a neces-

sary and sufficient condition for the ergodicity.

Proof. By applying the technique of supplementary variables to the Kolmogorov differ-
ential equations and multiplying these equations by zn, considering the sum over n > 0,
we find the following expressions:

[λk +αk(w)+
∂

∂w
]P(k)

0 (z,w) = 0, k = 1,2, (1)

[θ +λ1 +β1(x)+
∂

∂x
]P1(z,x) =

∫
∞

0
γ(y)P3,0(z,x,y)dy

+ λ1zP1(z,x), (2)[
θ +mλ2 +β2(x)+

∂

∂x

]
P2(z,x) =

∫
∞

0
γ(y)P3,1(z,x,y)dy+

∫
∞

0
δ (v)

× P4(z,x,v)dv+mλ2zP2(z,x), (3)[
λ1 + γ(y)+

∂

∂x

]
P3,0(z,x,y) = λ1zP3,0(z,x,y), (4)

[
mλ2 + γ(y)+

∂

∂x

]
P3,1(z,x,y) = mλ2zP3,1(z,x,y), (5)
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mλ2 + γ(y)+

∂

∂x

]
P3,2(z,x,y) = mλ2zP3,2(z,x,y), (6)

[
mλ2 +δ (v)+

∂

∂x

]
P4(z,x,v) = mλ2zP4(z,x,v), (7)

P(k)
0 (z,0) =

∫
∞

0
Pk(z,x)βk(x)dx−λkP(k)

0,0 , k = 1,2, (8)

P1(z,0) =
λ1(1−qz)

z

∫
∞

0
P(1)

0 (z,w)dw+
1
z

∫
∞

0
α1(w)P

(1)
0 (z,w)dw

+ λ1P(1)
0,0 , (9)

P2(z,0) =
λ2(1−qz)

z

∫
∞

0
P(2)

0 (z,w)dw+
1
z

∫
∞

0
α2(w)P

(2)
0 (z,w)dw

+ λ2P(2)
0,0 , (10)

P3,0(z,x,0) = θP1(z,x), (11)

P3,1(z,x,0) = rθP2(z,x), (12)

P3,2(z,x,0) = rθP2(z,x), (13)

P4(z,x,0) =
∫

∞

0
γ(y)P3,2(z,x,y)dy. (14)

The normalization equation is given as follows:

h̄
[

P(1)
0,0 +

∞

∑
n=1

∫
∞

0
P(1)

0,n (1,w)dw+
∞

∑
n=0

(∫
∞

0
P1,n(1,x)dx

+
∫

∞

0

∫
∞

0
P3,0,n(1,x,y)dxdy

)]
+ h̄

[
P(2)

0,0 +
∞

∑
n=1

∫
∞

0
P(2)

0,n (1,w)dw

+
∞

∑
n=0

(∫
∞

0
P2,n(1,x)dx+

∫
∞

0

∫
∞

0
P3,1,n(1,x,y)dxdy

+
∫

∞

0

∫
∞

0
P3,2,n(1,x,y)dxdy+

∫
∞

0

∫
∞

0
P4,n(1,x,v)dxdv

)]
= 1. (15)

Let,

N(z) = λ1z+θ

(
1−LC[λ1z]

)
,

M(z) = mλ2z+θ −LC[mλ2z]
(

rθ + rθLD[mλ2z]
)
.

By substituting equation (11) into (4), we find

P3,0(z,x,y) = θP1(z,x)e−λ1zy(1−C(y)). (16)
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Now, by replacing equation (12) into (5), we get

P3,1(z,x,y) = rθP2(z,x)e−zmλ2y(1−C(y)). (17)

Substituting equation (13) into (6), gives

P3,2(z,x,y) = rθP2(z,x)e−zmλ2y(1−C(y)). (18)

Replacing equations (14) and (18) into (7), leads to

P4(z,x,v) = rθLC[zmλ2]P2(z,x)e−zmλ2v(1−D(v)). (19)

By substituting equations (9) and (16) into (2), we find

P1(z,x) =

[
λ1(1−qz)

z

∫
∞

0
P(1)

0 (z,w)dw+
1
z

∫
∞

0
α1(w)P

(1)
0 (z,w)dw

+ λ1P(1)
0,0

]
e−N(z)xB1(x). (20)

Substitution of equations (10), (17), and (19) into (3), provides

P2(z,x) =

[
λ2(1−qz)

z

∫
∞

0
P(2)

0 (z,w)dw+
1
z

∫
∞

0
α2(w)P

(2)
0 (z,w)dw

+ λ2P(2)
0,0

]
e−M(z)xB2(x). (21)

From equations (16) and (20), we get

P3,0(z,x,y) = θ

[
λ1(1−qz)

z

∫
∞

0
P(1)

0 (z,w)dw+
1
z

∫
∞

0
α1(w)P

(1)
0 (z,w)dw

+ λ1P(1)
0,0

]
e−N(z)xB1(x) e−λ1zyC(y). (22)

From equations (17) and (21), we find

P3,1(z,x,y) = rθ

[
λ2(1−qz)

z

∫
∞

0
P(2)

0 (z,w)dw+
1
z

∫
∞

0
α2(w)P

(2)
0 (z,w)dw

+ λ2P(2)
0,0

]
e−M(z)xB2(x)e−mλ2zyC(y). (23)

According to equations (18) and (21), we get

P3,2(z,x,y) = rθ

[
λ2(1−qz)

z

∫
∞

0
P(2)

0 (z,w)dw+
1
z

∫
∞

0
α2(w)P

(2)
0 (z,w)dw

+ λ2P(2)
0,0

]
e−M(z)xB2(x)e−mλ2zyC(y). (24)
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From equations (19) and (21), we have

P4(z,x,v) = rθ

[
λ2(1−qz)

z

∫
∞

0
P(2)

0 (z,w)dw+
1
z

∫
∞

0
α2(w)P

(2)
0 (z,w)dw

+ λ2P(2)
0,0

]
LC[mλ2z]e−M(z)xB2(x)e−mλ2zvD(v). (25)

From equations (1) (for k = 1), (8) (for k = 1), and (20), we obtain

P(1)
0 (z,0) =

λ1zP(1)
0,0

[
1−LB1 [N(z)]

]
LB1 [N(z)]

(
(1−qz)+qzLA1 [λ1]

)
− z

. (26)

From equations (1) (for k = 2), (8) (for k = 2), and (21), we find

P(2)
0 (z,0) =

λ2zP(2)
0,0

[
1−LB2 [M(z)]

]
LB2 [M(z)]

(
(1−qz)+qzLA2 [λ2]

)
− z

. (27)

We introduce equation (26) in (1) (for k = 1), we obtain

P(1)
0 (z,w) =

λ1zP(1)
0,0

[
1−LB1 [N(z)]

]
e−λ1wA1(w)

LB1 [N(z)]
(
(1−qz)+qzLA1 [λ1]

)
− z

. (28)

We introduce equation (27) in (1) (for k = 2), we find

P(2)
0 (z,w) =

λ2zP(2)
0,0

[
1−LB2 [M(z)]

]
e−λ2wA2(w)

LB2 [M(z)]
(
(1−qz)+qzLA2 [λ2]

)
− z

. (29)

Similarly, by determining P(1)
0 (z,w) and P(2)

0 (z,w) as in equations (28) and (29), we
can derive the expressions for P1(z,x), P2(z,x), P30(z,x,y), P31(z,x,y), P32(z,x,y), and
P4(z,x,v), all of which depend on P(1)

0,0 or P(2)
0,0 .

Using the normalization condition (see equation (15)), the probability P0,0 can be
found as follows: P0,0 = h̄P(1)

0,0 + h̄P(2)
0,0 .

Thus, after some mathematical manipulations, we find that:

P0,0 = h̄
[

1−q(1−LA1 [λ1])−λ1β11

(
1+θγ1

)
[

1−q(1−LA1 [λ1])

][
1+λ1β11

(
1+θγ1

)]
−λ1β11LA1 [λ1]

(
1+θγ1

)]

+h̄
[

1−q(1−LA2 [λ2])−mλ2β21

(
1+θγ1+rθδ1

)
[

1−q(1−LA2 [λ2])

][
1+λ2β21

(
1+θγ1+rθδ1

)]
−mλ2β21LA2 [λ2]

(
1+θγ1+rθδ1

)]. (30)
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From equation (30), we obtain the expression ρ = 1−P0,0. To ensure the stability of
the system, it is necessary and sufficient that ρ < 1. This condition guarantees that the
probability P0,0 (probability that the system is empty) is strictly positive. In other words,
the system is stable if and only if:

h̄
[ λ1β11

(
1+θγ1

)
1−q(1−LA1 [λ1])

]
+ h̄

[mλ2β21

(
1+θγ1 + rθδ1

)
1−q(1−LA2 [λ2])

]
< 1.

4. SYSTEM PERFORMANCE MEASURES

The main aim of this section is to derive explicit formulas for the probabilities of
server states, as well as for various performance measures.

4.1. Probability of the server states:

Corollary 3. If the stability condition is satisfied, the probability generating functions for
the server states are as follows:

1. When the server is free during the retrial period of persistent (resp. impatient)
customers:

P(1)
0 =

λ1β11

(
1+θγ1

)(
1−LA1 [λ1]

)
P(1)

0,0

1−q
(

1−LA1 [λ1]
)
−λ1β11

(
1+θγ1

) ,
P(2)

0 =
mλ2β21

(
1+θγ1 + rθδ1

)(
1−LA2 [λ2]

)
P(2)

0,0

1−q
(

1−LA2 [λ2]
)
−mλ2β21

(
1+θγ1 + rθδ1

) .
2. When the server is occupied by a persistent (resp. an impatient) customer:

P1 =
λ1β11

(
1−q(1−LA1 [λ1])

)
P(1)

0,0

1−q
(

1−LA1 [λ1]
)
−λ1β11

(
1+θγ1

) ,
P2 =

λ2β21

(
1−q(1−LA2 [λ2])

)
P(2)

0,0

1−q
(

1−LA2 [λ2]
)
−mλ2β21

(
1+θγ1 + rθδ1

) .
3. When the server is under repair and the persistent (resp. impatient) customer cur-

rently being served must remains in the service area:

P3,0 =
θγ1λ1β11

(
1−q(1−LA1 [λ1])

)
P(1)

0,0

1−q
(

1−LA1 [λ1]
)
−λ1β11

(
1+θγ1

) .

P3,1 =
rθγ1λ2β21

(
1−q(1−LA2 [λ2])

)
P(2)

0,0

1−q
(

1−LA2 [λ2]
)
−mλ2β21

(
1+θγ1 + rθδ1

) .
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4. When the server is under repair and the impatient customer currently being served
enters into a service orbit:

P3,2 =
rθγ1λ2β21

(
1−q(1−LA2 [λ2])

)
P(2)

0,0

1−q
(

1−LA2 [λ2]
)
−mλ2β21

(
1+θγ1 + rθδ1

) .
5. When the server is reserved by an impatient customer:

P4 =
rθδ1λ2β21

(
1−q(1−LA2 [λ2])

)
P(2)

0,0

1−q
(

1−LA2 [λ2]
)
−mλ2β21

(
1+θγ1 + rθδ1

) .
6. When the server is blocked by a persistent customer:

PBP =
λ1β11

(
1−q(1−LA1 [λ1])

)(
1+θγ1

)
P(1)

0,0

1−q
(

1−LA1 [λ1]
)
−λ1β11

(
1+θγ1

) .

7. When the server is blocked by an impatient customer:

PBI =
λ2β21

(
1+θγ1 + rθδ1

)(
1−q

(
1−LA2 [λ2]

))
P(2)

0,0

1−q
(

1−LA2 [λ2]
)
−mλ2β21

(
1+θγ1 + rθδ1

) .

8. When the server is under repair:

PRepair =
h̄θγ1λ1β11

(
1−q(1−LA1 [λ1])

)
P(1)

0,0

1−q
(

1−LA1 [λ1]
)
−λ1β11

(
1+θγ1

)
+

h̄θγ1λ2β21

(
1−q(1−LA2 [λ2])

)
P(2)

0,0

1−q
(

1−LA2 [λ2]
)
−mλ2β21

(
1+θγ1 + rθδ1

) .
Proof. The demonstration is based on the following mathematical relationships: P(k)

0 =∫
∞

0 P(k)
0 (1,w)dw, Pk =

∫
∞

0 Pk(1,x)dx, for k = 1,2; P3, j =
∫

∞

0
∫

∞

0 P3, j(1,x,y)
dxdy, for j = 0,1,2; P4 =

∫
∞

0
∫

∞

0 P4(1,x,v)dxdv; PBP = P1 +P3,0; PBI = P2 +P3,1 +P3,2 +
P4; and PRepair = h̄P3,0 + h̄(P3,1 +P3,2).

4.2. Reliability analysis
In this section, we aim to present reliability indices for our retrial queue.

Corollary 4. If the system is in a steady state,
1. The active breakdown frequency is defined as:

WABF =
h̄θλ1β11

(
1−q(1−LA1 [λ1])

)
P(1)

0,0

1−q
(

1−LA1 [λ1]
)
−λ1β11

(
1+θγ1

)
+

h̄θλ2β21

(
1−q(1−LA2 [λ2])

)
P(2)

0,0

1−q
(

1−LA2 [λ2]
)
−mλ2β21

(
1+θγ1 + rθδ1

) .
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2. The state system availability Av is obtained as:

Av = h̄P(1)
0,0

[
1+

λ1β11

(
2+θγ1 − (1+θγ1 −q)LA1 [λ1]−q

)
1−q

(
1−LA1 [λ1]

)
−λ1β11

(
1+θγ1

) ]
+ h̄P(2)

0,0

[
1+

+

λ2β21

(
1+m(1+θγ1 + rθδ1)−LA2 [λ2]

(
m(1+θγ1 + rθδ1)+q

))
1−q

(
1−LA2 [λ2]

)
−mλ2β21

(
1+θγ1 + rθδ1

) ]
.

Proof. To derive the results for the active breakdown frequency of the server and the
steady-state availability of the server. It is easy to see that:

WABF = θ(h̄P1 + h̄P2),

Av = h̄(P(1)
0,0 +P(1)

0 +P1)+ h̄(P(2)
0,0 +P(2)

0 +P2).

4.3. Number of customers in terms of generating functions

Corollary 5. The probability generating functions associated with the number of cus-
tomers in the retrial orbit (Po(z)) and in the system (Ps(z)) are given as follows:

Po(z) = P0,0 + h̄
(

P(1)
0 (z)+P1(z)

[
1+θLC[λ1z]

])
+ h̄

(
P(2)

0 (z)

+ P2(z)
[
1+θLC[mλ2z]+ rθLC[mλ2z]LD[mλ2z]

])
,

Ps(z) = P0,0 + h̄
(

P(1)
0 (z)+ zP1(z)

[
1+θLC[λ1z]

])
+ h̄

(
P(2)

0 (z)

+ zP2(z)
[
1+θLC[mλ2z]+ rθLC[mλ2z]LD[mλ2z]

])
,

where,

P(1)
0 (z) =

zP(1)
0,0

[
1−LB1 [N(z)]

][
1−LA1 [λ1]

]
LB1 [N(z)]

(
(1−qz)+qzLA1 [λ1]

)
−z

, P1(z) =
λ1P(1)

0,0

[
(1−qz)+qzLA1 [λ1]−z

]
LB1 [N(z)]

LB1 [N(z)]

(
(1−qz)+qzLA1 [λ1]

)
−z

,

P(2)
0 (z) =

zP(2)
0,0

[
1−LB2 [M(z)]

][
1−LA2 [λ2]

]
LB2 [M(z)]

(
(1−qz)+qzLA2 [λ2]

)
−z

, P2(z) =
λ2P(2)

0,0

[
(1−qz)+qzLA2 [λ2]−z

]
LB2 [M(z)]

LB2 [M(z)]

(
(1−qz)+qzLA2 [λ2]

)
−z

.

Proof. The generating functions are given by:
Po(z) = h̄P(1)

o (z)+ h̄P(2)
o (z), and Ps(z) = h̄P(1)

s (z)+ h̄P(2)
s (z),
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with,

P(1)
o (z) = P(1)

0,0 +P(1)
0 (z)+P1(z)+P3,0(z),

P(2)
o (z) = P(2)

0,0 +P(2)
0 (z)+P2(z)+P3,1(z)+P3,2(z)+P4(z),

P(1)
s (z) = P(1)

0,0 +P(1)
0 (z)+ z

(
P1(z)+P3,0(z)

)
,

P(2)
s (z) = P(2)

0,0 +P(2)
0 (z)+ z

(
P2(z)+P3,1(z)+P3,2(z)+P4(z)

)
.

4.4. Mean performance measures

Corollary 6. • Mean number of customers in the orbit (E[No]) and in the system (E[Ns]):

E[No] = h̄
[
η
(1)
1 +η

(1)
2 +η

(1)
3

]
+ h̄

[
η
(2)
1 +η

(2)
2 +η

(2)
3

]
,

E[Ns] = E[No]+ h̄P1

(
1+θγ1

)
+ h̄P2

(
1+θγ1 + rθδ1

)
.

• Mean waiting time of customers in the orbit (Wo) and in the system (Ws):

Wo =
E[No]

h̄λ1 + h̄λ2
, Ws =

E[Ns]

h̄λ1 + h̄λ2
,

where,
η
(1)
1 =

E ′′
1 (1)E

′
2(1)−E ′

1(1)E
′′
2 (1)

2
(

E ′
2(1)

)2 , η
(2)
1 =

G′′
1(1)G

′
2(1)−G′

1(1)G
′′
2(1)

2
(

G′
2(1)

)2 ,

η
(1)
2 = P′

1(1)
(

1+θγ1

)
, η

(2)
2 = P′

2(1)
(

1+θγ1 + rθδ1

)
,

η
(1)
3 = P1

(
λ1θγ2

2

)
, η

(2)
3 = P2

(mλ2

(
rθ

(
2γ1δ1+δ2

)
+θγ2

)
2

)
,

P′
1(1) =

E ′′′
3 (1)E ′′

4 (1)−E ′′
3 (1)E

′′′
4 (1)

3
(

E ′′
4 (1)

)2 , P′
2(1) =

G′′′
3 (1)G′′

4(1)−G′′
3(1)G

′′′
4 (1)

3
(

G′′
4(1)

)2 ,

E ′
1(1) =−λ1β11P(1)

0,0

[
1−LA1 [λ1]

][
1+θγ1

]
,

E ′′
1 (1) =−λ1P(1)

0,0

[
1−LA1 [λ1]

](
4β11

[
1+θγ1

]
+λ1β12

[
1+θγ1

]2
+λ1β11

[
θγ2

])
,

E ′
2(1) = λ1β11

[
1+θγ1

]
+q

[
1−LA1 [λ1]

]
−1,

E ′′
2 (1) = λ1

(
2β11q

[
1−LA1 [λ1]

][
1+θγ1

]
+λ1β12

[
1+θγ1

]2
+λ1β11

[
θγ2

])
,

E ′′
3 (1) =−2λ 2

1 β11P(1)
0,0

[
q(1−LA2 [λ2])−1

][
1+θγ1

]
,

E ′′′
3 (1) =−3λ1P(1)

0,0

[
q(1−LA1 [λ1])−1

][(
N′(1)

)2
β12 −N′′(1)β11 −2β11N′(1)

]
,

E ′′
4 (1) = 2N′(1)E ′

2(1), E ′′′
4 (1) = 3

[
E ′′

2 (1)N
′(1)+E ′

2(1)N
′′(1)

]
,
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N′(1) =−λ1

[
1+θγ1

]
, N′′(1) =−λ 2

1

[
θγ2

]
,

G′
1(1) =−mλ2β21P(2)

0,0

[
1−LA2 [λ2]

][
1+θγ1 + rθδ1

]
,

G′′
1(1) = −mλ2P(2)

0,0

[
1−LA2 [λ2]

](
4β21

[
1+ θγ1 + rθδ1

]
+mλ2β22

[
1+ θγ1 + rθδ1

]2
+

mλ2β21

[
θγ2 +2rθγ1δ1 + rθδ2

])
,

G′
2(1) = mλ2β21

[
1+θγ1 + rθδ1

]
+q

[
1−LA2 [λ2]

]
−1,

G′′
2(1) = mλ2

(
2β21q

[
1−LA2 [λ2]

][
1+θγ1 + rθδ1

]
+mλ2β22

[
1+θγ1 + rθδ1

]2
+

mλ2β21

[
θγ2 +2rθγ1δ1 + rθδ2

])
,

G′′
3(1) =−2mλ 2

2 β21P(2)
0,0

[
q(1−LA2 [λ2])−1

][
1+θγ1 + rθδ1

]
,

G′′′
3 (1) =−3λ2P(2)

0,0

[
q(1−LA2 [λ2])−1

][(
M′(1)

)2
β22 −M′′(1)β21 −2β21M′(1)

]
,

G′′
4(1) = 2M′(1)G′

2(1), G′′′
4 (1) = 3

[
G′′

2(1)M
′(1)+G′

2(1)M
′′(1)

]
,

M′(1) =−mλ2

[
1+θγ1 + rθδ1

]
, and M′′(1) =−(mλ2)

2
[
θγ2 +2rθγ1δ1 + rθδ2

]
.

Proof. By definition, we have

E[No] = h̄P
′(1)
o (1)+ h̄P

′(2)
o (1), E[Ns] = h̄P

′(1)
s (1)+ h̄P

′(2)
s (1).

The quantities Ws and Wo are calculated by using Little’s formula.

4.5. Particular cases

In this subsection, we explore some particular cases that align with the literature, as
detailed below:

1. If the parameters (λ2,θ) → (0,0), then our model reduces to an M/G/1 retrial
queue with a reliable server and no customer loss. This means that the findings of
our study expand upon the research conducted by Gómez-Corral [41]. In this case,
the stability condition is : λ1β11

LA1 [λ1]
< 1.

2. If λ1 → 0, and D(v) = 1−e−δv, then our model reduces to an M/G/1 retrial queue
with balking, which aligns with the conclusions reported by Wu et al. [18]. In this

case, the stability condition becomes:
mλ2β21(1+θγ1+

rθ

δ1
)

1−q(1−LA2 [λ2])
< 1.

3. In the case where λ1 → 0, our model reduces to an unreliable retrial queue with
random reserved time and geometric loss, which aligns with the results obtained
by Taleb et al. [19]. In this case, the stability condition of our system becomes:
mλ2β21(1+θγ1+rθδ1)

1−q(1−LA2 [λ2])
< 1.
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5. NUMERICAL EXAMPLES AND SENSITIVITY ANALYSIS

5.1. Sensitivity analysis

In this section, we conduct a sensitivity analysis to examine how different system
parameters influence key performance metrics. By exploring various numerical scenar-
ios and adjusting system parameters, we aim to understand their impact on the system’s
behavior. The following assumptions are made for this analysis:

- The service times for both customer types (persistent and impatient) follow a Gamma

distribution. The probability density functions are b1(x;0.8,β1) =
β 0.8

1
Γ(0.8)x−0.2e−β1x

(for persistent customers) and b2(x;0.4,β2)=
β 0.4

2
Γ(0.4)x−0.6×e−β2x (for impatient cus-

tomers).

- The retrial times for both customer types follow a two-step Erlang distribution (E2).
The probability density functions are a1(w) = α2

1 we−α1w (for persistent customers)
and a2(w) = α2

2 we−α2w (for impatient customers).

- The repair times are Gamma distributed with the probability density function c(y;1.5,γ)=
2γ1.5
√

π
y0.5e−γy.

- The reservation times are Gamma distributed with the probability density function
d(v;2.5,δ ) = 4δ 2.5

3
√

π
v1.5e−δv.

The procedure for calculating P0,0, WABF , E[No], and E[Ns] is outlined in Algorithm 1.

Algorithm 1 : Algorithm for Computing P0,0, WABF , E[No] and E[Ns]

Begin
Input: n, h̄, λ1, λ2, α1, α2, β1, β2, m, q, r, θ , γ , and δ .

1. For i = 1 to n
(a) Compute α11, α12, α21, α22, β11, β12, β21, β22, γ1, γ2, δ1, δ2 from Section 5.1.
(b) Compute P0,0.
(c) If ρ < 1 then

i. Compute steady-state probabilities from Section 4.1.
ii. Compute WABF from Section 4.2.

iii. Compute E[No] from Section 4.4.
iv. Compute E[Ns] from Section 4.4.

(d) Output: P0,0, WABF , E[No], and E[Ns].
(e) End If

2. End For

End

5.2. Results and discussion

The following values are chosen to satisfy the stability condition: h̄ = 0, λ1 = 6,
λ2 = 6, α1 = 1, α2 = 1, β1 = 5, β2 = 5, m = q = r = 0.5, θ = 2, γ = 6, and δ = 5.
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– As illustrated in Figures 3 and 4, an increase in the arrival rate (λ2) leads to greater con-
gestion within the system, which consequently results in a decrease in the probabil-
ity P0,0. As the system becomes busier, the strain on resources intensifies, raising
the likelihood of faults or failures. Consequently, a higher λ2 correlates with more
frequent active breakdowns (WABF ).

Higher values of β2, γ , and δ suggest that the system can handle issues and service
customers more efficiently. This efficiency increases the probability P0,0. Specif-
ically, an increase in β2 enhances the system’s reliability and stability, which de-
creases the WABF . However, while higher γ and δ values indicate better recovery
and service capabilities, they may also reflect more frequent interruptions in the
normal service process, potentially leading to a rise in the WABF .
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Figure 3: Effect of λ2 and β2 on P0,0 and WABF
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Figure 4: Effect of γ and δ on P0,0 and WABF

– Figures 5 and 6 show that increasing the parameters β2 and r is associated with a
reduction in the mean number of customers in orbit (E[No]) and the mean number of
customers in the system (E[Ns]). This indicates that improving service quality and
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reducing waiting times, particularly when customers choose to remain in front of
the server until repairs are completed, significantly enhances service efficiency. As
a result, the system becomes more effective at handling customer demand, thereby
decreasing both E[No] and E[Ns].
Conversely, an increase in the parameters λ2 and θ leads to higher values of E[No]
and E[Ns]. This trend is driven by the increased demand and strain on the servers
due to higher customer arrival rates. Additionally, higher rates of active breakdowns
contribute to a growing backlog of services, causing more customers to accumulate
within the system. Consequently, both E[No] and E[Ns] increase.
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Figure 5: Influence of the parameters λ2 and β2 on E[No] and E[Ns]
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Figure 6: Influence of the parameters θ and r on E[No] and E[Ns]

6. ECONOMIC ANALYSIS OF SYSTEM PERFORMANCE METRICS

In this section, we develop a cost function to enhance the system’s cost-effectiveness
and present numerical examples to illustrate its impact on performance measures. We also
discuss key managerial implications derived from the retrial queueing model.
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6.1. Cost analysis

This analysis focuses on evaluating the total cost, which comprises two main compo-
nents: the service cost, which is related to service capacity, and the waiting cost, which
is associated with customer waiting. From a quality-of-service perspective, the goal is to
understand how system parameters such as the probability P0,0, the mean number of cus-
tomers in orbit (E[No]), the arrival rate (λ2), the reservation rate (δ ), and the parameters
m, q, and r affect the total cost (CT ).

The total cost CT per unit of time is given by the following formula:

CT =C f P0,0 +Cb(1−P0,0)+Cc(h̄λ1 + h̄λ2)+CoE[No],

where,
C f ≡ the cost of server preparation work when the system is empty,
Cb ≡ the cost for server operation when the server is blocked,
Cc ≡ the preparation cost per occupancy cycle,
Co ≡ the cost of waiting for customers in orbit.

6.2. Results and discussion

Now, we fix the appropriate values of parameters Co = 80, C f = 250, Cb = 940, and
Cc = 310, and we choose the other parameters (h̄ = 0, λ1 = 6, λ2 = 6, α1 = 1, α2 = 1,
β1 = 5, β2 = 5, m = q = r = 0.5, θ = 2, γ = 6, and δ = 5) to ensure model stability.

As observed in Figures 7 and 8, the total cost (CT ) increases with higher values of the
parameters m, q, r, λ2, and E[No]. This increase is primarily due to the additional strain
these factors place on the system. For example, a higher customer arrival rate (λ2) or
increases in m, q, and r lead to a rise in the mean number of customers in orbit (E[No]),
which causes congestion and longer waiting times.
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Figure 7: Impact of the parameters λ2, m, q, r, and δ on CT

Since CT accounts for both service costs and costs associated with customer waiting,
any factor that contributes to congestion or delays will inevitably lead to a higher total
cost. Conversely, increasing the parameter δ and the probability P0,0 leads to a reduction
in the total cost. An increase in δ enhances the system’s ability to efficiently manage
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reserved customers, thereby reducing their waiting time and expediting service. This im-
provement not only speeds up the service process but also lowers associated waiting costs,
resulting in reduced operational costs and, consequently, a lower total cost. Additionally,
a higher P0,0 indicates that the system operates efficiently during idle periods, with min-
imal congestion or delays. This optimal performance during downtime further reduces
total costs by ensuring effective resource utilization and minimizing service interruptions.
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6.3. Managerial implications of the queueing model
This section highlights the key managerial implications derived from our retrial queue-

ing model, demonstrating how its results can be utilized to enhance operational efficiency,
customer satisfaction, and profitability across various service environments.

1. Optimal resource management:
- Resource allocation: The model can assist managers in optimally allocating re-
sources based on customer behavior (persistent vs. impatient) and repair times.
By adjusting service and repair rates, businesses can minimize waiting times and
improve service efficiency.
- Maintenance planning: The model helps in planning maintenance and repairs
more effectively, reducing server downtime and increasing service availability.

2. Improving customer satisfaction:
- Strategies for handling impatient customers: By understanding how impatient
customers react to service interruptions, managers can develop strategies to enhance
their experience. For instance, optimizing retry rates or offering compensations can
reduce abandonment and improve satisfaction.
- Reducing abandonment rates: Adjusting mechanisms for managing waiting cus-
tomers, such as refund policies or incentives, can decrease abandonment rates and
keep customers engaged.

3. Cost analysis:
- Cost-benefit analysis: The model quantifies costs related to waiting times, ser-
vice interruptions, and repairs. This information allows managers to perform cost-
benefit analyses to make informed investment decisions regarding infrastructure or
repair technologies.
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- Reducing operational costs: By optimizing model parameters, businesses can
lower operational costs associated with repair periods and extended waiting times,
including managing customer withdrawals and server maintenance.

4. Strategic planning:
- Demand forecasting: The model helps forecast service demand based on customer
behavior and repair times. Managers can use these forecasts to adjust staffing levels
and service schedules, thereby enhancing operational efficiency.
- Adaptation to changes: Sensitivity analyses demonstrate how changes in system
parameters affect performance measures, enabling managers to quickly adapt to
fluctuations in demand or variations in service and repair times.

5. Service system design:
- Queue system design: Model results can guide the design of service systems by
determining the best configuration for handling different customer behaviors. This
may involve designing more efficient queue systems and optimizing mechanisms
for managing retries and service resumption.

7. CONCLUSION
Through this investigation, we explored an unreliable retrial queue M1,M2/G1, G2/1

with a repairable server, including balking, reneging, a service orbit, and reservations
that accommodate either persistent or impatient customers. The required condition for
the system to be stable is verified. The supplementary variables method was applied to
establish the steady-state distributions of the server state, such as the generating function
of the number of customers in the system and in the orbit. We acquired some significant
system performance measures. Several specific cases were also addressed in this research
work, and numerical examples were evaluated to illustrate our findings.

In the future, we suggest further developments to be conducted on the mathematical
analysis of an unreliable retrial queue with two types of batch arrivals, one persistent and
the other impatient, as well as with repairs and reservations.

Acknowledgements: The authors are grateful to the reviewers for their valuable com-
ments, which contributed significantly to the improvement of the research paper.

Funding: This research received no external funding.

REFERENCES

[1] G. I. Falin, “A survey of retrial queues,” Queueing Systems: Theory and Applications, vol. 7,
pp. 127–168, 1990.

[2] G. L. Falin and J. G. C. Templeton, Retrial Queues. Chapman & Hall, London, 1997.
[3] J. G. C. Templeton, “Retrial queues,” TOP, vol. 7, pp. 351–353, 1999.
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[41] A. Gómez-Corral, “Stochastic analysis of a single server retrial queue with general retrial
times,” Naval Research Logistics, vol. 46, pp. 561–581, 1999.


	INTRODUCTION
	DESCRIPTION OF THE MODEL
	Practical justification for the proposed queueing model in call centers

	QUEUEING MODEL ANALYSIS
	The steady-state distribution
	The generating functions

	SYSTEM PERFORMANCE MEASURES
	Probability of the server states:
	Reliability analysis
	Number of customers in terms of generating functions
	Mean performance measures
	Particular cases

	NUMERICAL EXAMPLES AND SENSITIVITY ANALYSIS
	Sensitivity analysis
	Results and discussion

	ECONOMIC ANALYSIS OF SYSTEM PERFORMANCE METRICS
	Cost analysis
	Results and discussion
	Managerial implications of the queueing model

	CONCLUSION

