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Abstract: The primary objective of this research is to develop more reliable portfolios by 

accurately calculating risk and return, emphasizing a secure asset weighting strategy. We 

employ the DEA bootstrap method and the SPP-CVaR (Stop-Profit Point-Conditional 

Value at Risk) methodology to achieve this objective. Previous scholarly research often 

lacks a robust statistical foundation for evaluating asset performance, particularly 

regarding sustainability, as traditional approaches rely on single data samples. 

Additionally, many studies fail to account for the relevance of risk and return until the 

investor exits the market. We introduce a new approach focusing on exit time to evaluate 

sustainable investments to address this gap. We employ data envelopment analysis (DEA) 

to assess the performance of these assets, comparing results from both the DEA bootstrap 

method and traditional DEA models. Our DEA models incorporate SPP-CVaR 

(Conditional Value at Risk) as a measure of risk and mean return as the output variable, 

both calculated until the investor exits the market. Traditional DEA models have 

limitations in statistical interpretation, so we enhance our analysis with the DEA bootstrap 

method. This method involves resampling data to create multiple samples, offering a 

distribution of performance measures for each asset and providing a more comprehensive 

understanding of asset performance and uncertainty. By comparing the bootstrap and 

results of conventional methods, we demonstrate the advantages of using statistical 
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techniques to evaluate and compare financial assets. The SPP-CVaR is calculated by 

deriving and converting the risk-neutral density, simulating price paths, and identifying 

stop-profit points. We then analyze the exit time and price distributions to compute the 

SPP-CVaR for each stop-profit point. The value of this study lies in its integration of 

sustainability analysis with risk measures, helping investors build profitable and ethically 

aligned portfolios. By providing a detailed assessment of an asset's sustainability profile, 

our approach assists investors in making informed decisions that align with their financial 

and ethical goals. 

Keywords: Performance evaluation, Stop-Profit Point methodology, Data Envelopment 

Analysis (DEA), Bootstrap DEA, risk measure, efficiency. 

MSC:  91G10, 91G70, 90C08, 62F40. 

 

1. INTRODUCTION 

Sustainable investment has become integral to modern financial strategies, driven by 

the increasing importance of Environmental, Social, and Governance (ESG) criteria. 

Investors are increasingly focused on balancing profitability with sustainability, making it 

crucial to measure these investments' efficiency and performance accurately. Investments 

prioritizing sustainability can address environmental and social challenges by holding 

financial markets accountable for their impacts [1]. However, sustainable investment in the 

stock market extends beyond merely considering ESG criteria; it requires sophisticated 

tools and methods to assess risk and return effectively. 

Data Envelopment Analysis (DEA), first introduced in the literature in 1978 [2], is a 

widely used non-parametric method for measuring efficiency in various contexts, such as 

real-property maintenance activities [3], the efficiency of Army recruiting districts [4], and 

nursing home care in the Netherlands [5]. It is particularly effective in comparing the 

relative efficiencies of decision-making units (DMUs) that perform similar functions by 

transforming multiple inputs into outputs. This method allows for a detailed and 

quantitative analysis of how efficiently resources are utilized across these comparable 

entities. 

DEA has become vital in portfolio and asset pricing research, which helps assess 

relative efficiencies and enhance portfolio performance [6]. Classic DEA models provide 

an effective and practical approach to approximate portfolio efficiency by sampling 

portfolios and incorporating market frictions, demonstrating convergence to the efficient 

portfolio frontier with increasing sample size [7]. By redefining the financial production 

process and treating risk as an input, DEA's ability to rank portfolios is significantly 

improved, aligning efficiency measures with risk-return theory and offering practical 

advantages in financial analysis [8]. 

Furthermore, integrating DEA with multi-source data and machine learning techniques 

has proven to optimize stock selection schemes, substantially improving the out-of-sample 

performance of portfolio strategies and outperforming traditional diversification methods 

[9]. Beyond financial applications, DEA is also valuable in evaluating sustainability 

performance, providing insights into eco-efficiency, and setting benchmarks to mitigate 

environmental degradation. However, challenges remain in integrating social and 

institutional dimensions [10]. 
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In the energy sector, DEA has effectively evaluated dynamic investment performance. 

Using window analysis and directional distance functions, energy portfolios are found to 

achieve higher efficiency than single-energy investments, particularly when employing 

risk-sensitive portfolio methods [11]. The growing use of DEA in sustainability research 

further underscores the need for unified definitions and methodologies to capture the multi-

dimensional nature of sustainability, addressing gaps in social dimensions that remain 

underrepresented in current practices [12]. While widely used, traditional DEA models 

have drawbacks, especially regarding sensitivity to data variability. Bootstrap techniques 

have been integrated into DEA to overcome these limitations, resulting in what we call 

Bootstrap DEA. This approach enhances the robustness and reliability of efficiency scores 

by providing confidence intervals and correcting biases. It allows for a more refined 

analysis, crucial for making well-informed investment decisions. 

Another crucial element in investment analysis is exit time—the period an investment 

stays in a portfolio before being sold off. Exit time offers valuable insights into 

investments' sustainability and long-term performance, making it an essential factor in 

assessing sustainable investments. Traditional approaches often overlook the timing of an 

investor's exit, which is a key factor that can significantly impact an asset's perceived risk 

and return. 

Existing literature has extensively explored sustainability indices' risks, returns, and 

overall market impact. For instance, studies such as those by Tularam et al. [13], De Souza 

Cunha & Samanez [14], and López et al. [15] have conducted comprehensive analyses on 

sustainability, highlighting its potential for global diversification gains in conventional 

stock portfolios [16]. Integrating ESG factors is the most widely embraced and rapidly 

expanding strategy in sustainable investment [17]. Investing in sustainable assets can 

enhance the diversification of conventional stock portfolios worldwide [18]. According to 

Pástor et al. [19], sustainable investing generates a positive social impact by encouraging 

firms to adopt greener practices and shifting more real investment toward environmentally 

friendly firms while reducing investment in less sustainable firms. Sustainable investing is 

now regarded as a mainstream strategy, as the integration of ESG factors into investment 

processes has been proven to create value, enhance risk management, and align with 

stakeholder priorities [20]. Furthermore, pension fund participants demonstrate strong 

support for increased sustainability efforts, even at the expense of financial returns, 

highlighting the significant influence of social preferences in shaping investment policies 

[21]. 

Additionally, sustainable investing influences societal goals through shareholder 

engagement, capital allocation, and indirect impacts, underscoring the importance of 

policy measures to drive transformative changes beyond promoting good business 

practices [22]. Empirical studies reveal that ESG indices perform comparably to 

conventional indices, offering investors viable substitutes for portfolio diversification and 

risk hedging while providing additional ESG benefits [23]. These findings collectively 

reinforce the dual value of sustainable investing, presenting it as a strategy that benefits 

both companies and investors by establishing long-term value and aligning performance 

with broader societal objectives [24]. However, the relationship between ESG ratings and 

stock returns remains ambiguous, as evidenced by findings in specific markets, such as the 

Norwegian stock market [25]. Sustainable investment has taken on a broader significance 

when selecting assets for investment or building a portfolio. 
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To address the evolving nature of sustainable investment, which increasingly 

emphasizes the balance of risk and return over other factors, our research explores the 

multifaceted nature of sustainability in financial markets. Many risk-measuring approaches 

are used in the field of financial risk management. These complex statistical methods are 

essential for assessing the possible level of financial risk present in a company or 

investment portfolio over a given time horizon. In the mid-1990s, Konno & Shirakawa 

[26] introduced an optimization approach for constructing an optimal stock portfolio based 

on minimizing semi-variance. Concurrently, the concept of "value at risk" (VaR) emerged 

as a risk measure, initially proposed by Baumol in 1963 but gaining prominence later. 

Artzner et al. [27] criticized the VaR for lacking subadditivity and convexity. Recognizing 

the limitations of the VaR, Rockafellar & Uryasev [28] proposed the conditional value at 

risk (CVaR) as a more robust risk measure, addressing suboptimality issues associated with 

local minima in the optimization process. CVaR considers the magnitude of losses beyond 

a certain threshold and tail risk, enhancing risk management in securities markets. 

Subsequent contributions by Pflug & Swietanowski [29], Ogryczak & Ruszczyn´ski [30], 

and others further developed the CVaR method. Chekhlov, Uryasev, & Zabarankin [31] 

applied CVaR minimization to portfolio optimization problems. 

Our study builds on these advancements by introducing the Stop-Profit Point (SPP-

CVaR) measure, which incorporates exit time as a critical factor in portfolio optimization. 

This measure, developed by Bin [32], provides a more comprehensive risk assessment by 

capturing the risks associated with stop strategies, such as price volatility and exit time 

uncertainty. Despite the progress in risk measurement, previous studies have focused 

mainly on the entire investment period, neglecting the importance of exit timing. 

Moreover, past research often utilized DEA to evaluate asset performance based on a single 

sample, limiting the results' reliability. 

To overcome these limitations, we propose a novel approach that considers the timing 

of an investor's exit from the market, using the DEA bootstrap method to generate 2000 

samples for a more robust and statistically significant analysis. Our methodology integrates 

the SPP-CVaR risk measure, where risk is calculated based on the exit time determined by 

an investor's stop-profit point. Our study aimed to establish a sustainable ecosystem within 

the financial market and compare it with an unsustainable environment. To estimate the 

parameters μ and σ of the stochastic differential equation (SDE), we use Maximum 

Likelihood Estimation (MLE), which involves maximizing the likelihood function based 

on the observed log returns. To calculate the SPP-CVaR, we estimate the risk-neutral 

density using kernel density estimation. We then transform this density into the real-world 

density using a beta distribution and calibrate the parameters accordingly. 

To simulate price paths, we consider actual market probabilities and risks. From these 

simulations, we derive the real and SPP densities for both prices and exit times, 

incorporating predefined stop-profit points. We simulate random entry times to improve 

the exit time distribution accuracy. Finally, by applying the density transfer function, we 

obtain the SPP of the density of exit time. For high precision, we simulate 100,000 or more 

price paths. These metrics are applied in a two-step sustainable investment approach. The 

initial step focuses on calculating efficiency scores using a DEA model, based on single 

risk and return measures. In the second step, multiple samples of efficiency scores are 

generated from the initial step, employing Bootstrap DEA to produce more reliable and 

accurate efficiency scores. This approach aims to support investors in selecting the most 

suitable assets for their portfolios 
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We also consider the risk and mean return for the entire time horizon, allowing us to 

present the unsustainable investment case where the efficiency of each asset is calculated 

for the entire period. We compare both cases regarding risk, mean return, and efficiency 

scores. We used graphs to illustrate both sustainable and unsustainable investments, 

demonstrating how each asset can be chosen strategically to create a profitable portfolio 

that aims to satisfy investors. This comprehensive approach allows us to offer valuable 

insights into sustainable financial market ecosystems, risk management, and asset 

optimization. The rest of this paper is structured as follows. Section 2 presents the 

mathematical definition and formulation. The methodology is explained in section 3. 

Section 4 includes experimental testing of the methodology. 

2. PRELIMINARY 

This section concentrates on the risk evaluation tools employed in our investigation. 

Beyond traditional measures such as the VaR and CVaR, which assess risk for the entire 

time horizon, we have introduced the SPP-CVaR into our analysis. SPP-CVaR uniquely 

accounts for the investor's exit time, providing a risk assessment until the investor exits the 

market. This approach enables us to amplify the degree of sustainable investment. 

Definition 1. For a specified portfolio comprised of N assets, wherein a position vector 

characterizes each asset, 𝛬 = {𝜆1𝜆,2 , 𝜆3, … . 𝜆𝑛} 
𝑇  and respective returns denoted as 𝑌 =

{𝑦1, 𝑦2, 𝑦3,… . , 𝑦𝑛}, the risk measure is defined as follows: 

For any 𝝀  𝜖 𝛬 , considering a probability distribution linked with y, the probability 

that the loss is less than or equal to a threshold 𝛼 is defined as: 

𝝍(𝜆, 𝛼) = 𝑝(𝑓(𝛬, 𝑌) ≤ 𝛼) = ∫ 𝜋(𝜆, 𝛼)𝑑𝑦
𝑓(𝛬,𝑌)≤𝛼

 (1) 

VaR associated with the portfolio can be defined as: 

𝑉𝑎𝑅𝛽(𝜆, 𝜋) = 𝑚𝑖𝑛{𝛼 ∈ 𝑅: 𝝍(𝜆, 𝛼) ≥ 𝜷} (2) 

Where 𝜷 is the confidence level and 𝑓(𝛬, 𝑌) = −𝛬𝑇𝑌 is a loss function. 

CVaR, which was proposed by Rockafellar & Uryasev [28], is defined as follows: 

𝐶𝑉𝑎𝑅𝛽(𝜆) = 𝑚𝑖𝑛 𝛼 +
1

1−𝛽
∫  [𝑓(𝛬, 𝑌) − 𝛼]+𝜋(𝑦)𝑑𝑦
𝑦∈𝑅𝑁

 (3) 

Where 𝜋(𝑦) is the notation for the probability distribution associated with Y. 

Definition 2. One of the key variables in conducting research is the stop-profit point (𝑚). 
𝑚 is the price at which an investor decides to exit the market. In practical terms, the stop-

profit point can be defined as the difference between the buying and selling prices. 

However, it is important to note that this point is influenced by various factors, such as 

transaction costs and the trader's risk tolerance. 

Definition 3. The stochastic differential equation (SDE) describes the price process is 

based on geometric Brownian motion and is given by: 

𝑑𝑆(𝑡) = 𝑆(𝑡)(𝜇𝑑𝑡 + 𝜎𝑑𝑊(𝑡)) (4) 

W(t) is the Winner process or Brownian motion, where  𝜇 and 𝜎 are constants. 

The following formula gives the exit time for the stop-profit point: 

𝛾𝑚 = 𝑚𝑖𝑛{𝑡 ≥ 0 ;𝑊(𝑡) = 𝑚} (5) 
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𝛾𝑚  is the first time that the price reaches the stop-profit point. 

The density function of the time at which the price first reaches the stop-profit point 

was given by [32]: 

𝑓𝛾𝑚(𝑡) =
|𝑚|

𝑡√2𝜋𝑡
𝑒−

𝑚2

2𝑡  (6) 

The density function of the price process with a stop-profit point can also be obtained 

as follows [32]: 

𝜋(𝑦) = ∑
1

√2𝜋𝜎2(𝑡−𝑠)
𝑒
−

𝑦𝑖
2

2𝜎2(𝑡−𝑠)𝑛
𝑖=1  (7) 

where 0 ≤ 𝑠 ≤ 𝑡 . 

Definition 4. The risk measure known as SPP-CVaR considers the risk up to the point 

when an investor exits the market, which contrasts with other risk measures that assess 

risk over time. We  can solve the portfolio optimization problem by  minimizing  SPP-

CvaR  defined by Bin [32] as follows: 

𝑚𝑖𝑛 𝑆𝑃𝑃 − 𝐶𝑉𝑎𝑅𝛽(𝜆)  = 𝑚𝑖𝑛
(𝑥,∝)∈𝜒∗𝑅

𝛼 +
1

1−𝛽
∫ [𝑓(𝜆, 𝑦) − 𝛼]+
𝑦∈𝑅𝑁

 𝜈(. )𝑑𝑦 (8) 

Where 

𝜈(. ) = ∫ 𝜋(. )
𝑇

0
𝑓𝛾𝑚(. )𝑑𝑡 = ∑

1

√2𝜋𝜎2(𝑡−𝑠)

𝑘
𝑖=1 𝑒

−
𝑦2

2𝜎2(𝑡−𝑠)   
|𝑚|

𝑡√2𝜋𝑡
 𝑒−

𝑚2

2𝑡  (9) 

𝜋(. ) is the density function of the price process with a stop-profit point and 𝑓𝛾𝑚(. ) is 

the cumulative distribution function of the time the price first reaches the stop-profit point. 

The corresponding unconditional density function 𝜈(. ) can be obtained from the 

conditional density function of the price process 𝜋(. ) and the density function of the time 

that first crosses the stop-profit point. 𝑓𝛾𝑚(. ). 

Definition 5. The RDM model was proposed by Portela et al. [33] and inspired by the 

Directional Distance Function model by Chambers et al. [34], which can be applied for 

computing efficiency in the presence of negative data. The present paper uses the RDM 

model since some mean returns are negative. 

For 𝐷𝑀𝑈 𝑗  , 𝑗 = 1,2,… , 𝑛 with inputs 𝑥𝑖𝑗  , 𝑖 = 1,2, … ,𝑚 and outputs 𝑦𝑟𝑗  , 𝑟 = 1,2, … , 𝑠 

in 
m sR +

and the unit  1,2,...,o n which is under assessment. The generic directional 

distance model is represented as: 

𝑚𝑎𝑥 {

𝜃| ∑ 𝜆𝑗𝑦𝑟𝑗 ≥ 𝑦𝑟𝑜 + 𝜃𝑅𝑟𝑜 , 𝑟 = 1,2, … . . , 𝑠
𝑛
𝑗=1

∑ 𝜆𝑗𝑥𝑖𝑗 ≤ 𝑥𝑖𝑜 − 𝜃𝑅𝑖𝑜 , 𝑖 = 1,2, … . . ,
𝑛
𝑗=1  𝑚

∑ 𝜆𝑗 = 1
𝑛
𝑗=1 , 𝜃, 𝜆𝑗 , 𝑅𝑟𝑜, 𝑅𝑖𝑜 ≥ 0

} (10) 

The above model is a non-oriented case, where the input contraction and output 

expansion improve simultaneously. For a given data set, when some of them are negative, 

an ideal point is defined as 𝐼 = (𝑚𝑎𝑥
𝑗
𝑦𝑗 , 𝑟 = 1,2, … . . , 𝑠 , 𝑚𝑖𝑛

𝑗
𝑥𝑗  , 𝑖 = 1,2, … ,𝑚) .The 

vectors 𝑅𝑟𝑜  and 𝑅𝑖𝑜which refers to the range of possible improvement of 𝐷𝑀𝑈 𝑜 are: 

𝑅𝑖𝑜 = 𝑥𝑖𝑜 −𝑚𝑖𝑛
𝑗
{𝑥𝑖𝑗}   ,  𝑖 = 1,2, … ,𝑚 (11) 
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𝑅𝑟𝑜 = 𝑚𝑎𝑥
𝑗
{𝑦𝑟𝑗} − 𝑦𝑟𝑜   , 𝑟 = 1,2, … , 𝑠 (12) 

At the ideal point, I the range of possible improvement can be seen as a surrogate for 

the maximum improvement that 𝐷𝑀𝑈 𝑜 could achieve on each input and output. Such an 

improvement can never be negative [33]. 

3. SUSTAINABLE EFFICIENCY SCORE  

In this section, our primary focus is on sustainable investment. To carry out our 

analysis, we employ the Data Envelopment Analysis (DEA) model to evaluate asset 

efficiency, considering the exit time based on negative data. Subsequently, we utilize the 

bootstrap DEA method to compute the bootstrap score, which serves as a component of 

sustainable investment. To create more sustainable investments, we calculate risk and 

return until the investment exits the market, as this approach provides more accurate results 

for investment. Our risk and return calculations are based on the exit time, where the price 

reaches the stop-profit point. 

3.1. Initial step in sustainable investing 

In the first step, we calculate the exit time based on the stop-profit point. Subsequently, 

corresponding to the exit time, we calculate the risk and return until the exit time. 

Following the aims and financial goals, investors select the optimal exit time, intending to 

create a portfolio. With risk and mean return until exit, we used the following model to 

calculate the efficiency score when our return was positive. 

min    𝜃 

𝑆. 𝑡.   𝐸(𝑌(𝜆)) ≥ 𝐸(𝑌𝑜) 

𝑆𝑃𝑃 − 𝐶𝑉𝑎𝑅(𝑌(𝜆)) ≤  θ (𝑆𝑃𝑃 − 𝐶𝑉𝑎𝑅𝛽
𝑜) 

𝑒𝑇λ = 1 

where 𝜆 ≥ 0, 𝜃 ≥ 0. 

(13) 

The optimal solution θ indicates the efficiency score of the asset under evaluation. 

𝑆𝑃𝑃 − 𝐶𝑉𝑎𝑅𝛽
𝑜 is the value of the risk, and 𝐸(𝑌𝑜) is the mean return of the asset under 

assessing and 𝑜 ∈ {1,2, … , 𝑛}. The vector 𝚲 = {𝝀𝟏𝝀,𝟐 , 𝝀𝟑, … . 𝝀𝒏} 
𝑻 represents the policy 

of investing in different proportions of assets in a portfolio and e  is a vector where all the 

elements are one. To illustrate the first constraint, the return of a portfolio is defined by 

𝑌(𝜆) = ∑ 𝜆𝑗𝑌
𝑗𝑛

𝑗=1 , and the portfolio's mean return is computed as (𝑌(𝜆)) = ∑ 𝜆𝑗𝐸(𝑌
𝑗)𝑛

𝑗=1 . 

As introduced by Ghasemi Doudkanlou et al. [35], the model is utilized to compute the 

efficiency score when the return can take negative value. It yields precise results, owing to 

its consideration of both risk and return factors until the time of investment exit from the 

market. 

Assuming that 𝑌𝑑𝑎𝑦1, 𝑌𝑑𝑎𝑦2, 𝑌𝑑𝑎𝑦3, … . . , 𝑌𝑒𝑥𝑖𝑡 𝑡𝑖𝑚𝑒 are the log of the returns of a specific 

asset up to the exit time, and regarding the negative return, we defined the vector 𝑔𝑇such 

that 

𝑔𝑇 = (𝑅𝑆𝑃𝑃−𝐶𝑉𝑎𝑅𝛽
𝑜   , 𝑅𝐸(𝑌𝑜)) (14) 

Where 
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(

 

 

𝑅𝑆𝑃𝑃−𝐶𝑉𝑎𝑅𝛽
𝑜   = [𝑆𝑃𝑃 − 𝐶𝑉𝑎𝑅𝛽

𝑜 −min(𝑆𝑃𝑃 − 𝐶𝑉𝑎𝑅𝛽
𝑗
: 𝑗 = 1,2, … , 𝑛)]

   
 𝑅𝐸(𝑌𝑜)    = [max(𝐸(𝑌𝑗): 𝑗 = 1,2,3, … , 𝑛) − 𝐸(𝑌𝑜)]           

)

  

𝑔𝑇 is a vector that shows the direction in which 𝜃  is to be maximaized.  This vector is 

a range of possible improvements in the input and output and β is the confidence level. 
𝑆𝑃𝑃 − 𝐶𝑉𝑎𝑅𝛽

𝑜 is the value of the risk, and 𝐸(𝑌𝑜) is the mean return of the asset. Then, we 

solve the following nonlinear model: 

max    𝜃 

𝑆. 𝑡.   𝐸(𝑌(𝜆)) ≥ 𝐸(𝑌𝑜) + 𝜃𝑅𝐸(𝑌𝑜) 

𝑆𝑃𝑃 − 𝐶𝑉𝑎𝑅(𝑌(𝜆)) ≤  𝑆𝑃𝑃 − 𝐶𝑉𝑎𝑅𝛽
𝑜 −  𝜃𝑅𝑆𝑃𝑃−𝐶𝑉𝑎𝑅𝛽

𝑜     

𝑒𝑇λ = 1  

where 𝜆 ≥ 0, 𝜃 ≥ 0. 

(15) 

This model is based on the RDM model in DEA with negative data. It should be noted 

that the optimal value of the model reflects the inefficiency score of each asset, and it 

measures the distance between the asset under evaluation and the efficient frontier. The 

optimal solution 𝜃 indicates the inefficiency score of the asset under evaluation, and the 

asset is efficient when the inefficiency score is zero. In other words, 1 − 𝜃 = 𝜃 ̂shows the 

efficiency score of the asset under evaluation. 

Using the efficiency scores derived from the first step in sustainable investing, which 

are more reliable than those generated by models that calculate risk and return over the 

entire time horizon, we incorporate these scores into the second step for several reasons. 

First, to address the inherent unpredictability of financial markets, and second, to mitigate 

uncertainty and reduce risk levels. Consequently, we aim to utilize Bootstrap DEA, which 

relies on a multitude of resampled efficiency scores rather than a single set, ensuring 

greater robustness in our analysis. 

3.2. Second step in sustainable investing 

We used the bootstrap DEA method, which enhances the reliability of the efficiency 

score, fostering a more robust investment analysis. Many researchers, such as Alonso et al. 

[36], George Assaf et al. [37], Halkos & Tzeremes [38], Tu & Zhang [39], have emphasized 

the importance of bootstrap methods as an alternative way to perform statistical inference, 

especially when the sample size is small or when the sampling distributions are difficult to 

calculate analytically. That is often the case when dealing with nonlinear models or when 

pretesting is involved. 

The following eight steps must be undertaken to collect bootstrap estimates to execute 

the homogeneous bootstrap algorithm. {�̂�∗(𝑥, 𝑦)|𝑏 = 1,… , 𝐵} at a predetermined point 

(𝑥, 𝑦). Our pseudo data consist of pairs (𝑥𝑖 , 𝑦𝑖), where 𝑥𝑖 represents positive risk and  𝑦𝑖  
represents return, which can be both positive and negative. 

(1) From the original dataset, we compute �̂� from model (15) and (13). 

(2) We apply the rule of thumb [40] to obtain the bandwidth parameter h 

ℎ = (
4�̂�5

3𝑛
)

1

5
≈ 1.06�̂�𝑛−

1

5 (16) 
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Where 𝑛 is the number of assets and �̂� is obtained from the original efficiency scores. 

The bandwidth parameter ℎ controls the smoothness of the kernel density estimate. It is 

critical to balance bias and variance in the estimation. 

(3) We generate 𝛽1
∗, . . . , 𝛽𝑛

∗  by drawing on the replacement from the set 

{�̂�1, . . .  , �̂�𝑛, . . . ,2 − �̂�1, . . . ,2 − �̂�𝑛}. 

(4) Then, we draw 𝜀𝑖
∗, 𝑖 = 1, … , 𝑛 independently from the kernel function 𝑘(. ) and 

compute 𝛽𝑖
∗∗ = 𝛽𝑖

∗ + ℎ𝜀𝑖
∗ for each 𝑖 = 1, … , 𝑛. 

Kernel Density Estimation (KDE) relies on several key assumptions: the underlying 

data must be independently and identically distributed (i.i.d), and the probability density 

function (pdf) being estimated should be continuous. The kernel function 𝑘 (⋅) used in KDE 

must be a symmetric, non-negative function that integrates with one. 

(5) for each 𝑖 = 1, … , 𝑛 we compute 𝛽𝑖
∗∗∗

 as follows: 

𝛽𝑖
∗∗∗ = �̅�∗ +

𝛽𝑖
∗∗−�̅�∗

(1+ℎ2𝜎𝑘
2𝜎𝛽
2)1 2⁄  (17) 

where �̅�∗ =
∑ 𝛽𝑖

∗𝑛
𝑖=1

𝑛
, 𝜎𝛽

2= 
∑ (𝛽𝑖

∗−�̅�∗)𝑛
𝑖=1

𝑛
 and 𝜎𝑘

2 is the variance of the probability density 

function used for the kernel function. In addition,  𝜃𝑖
∗,  can be computed as 

𝜃𝑖
∗ = {

2 − 𝛽𝑖
∗∗∗,   ∀ 𝛽𝑖

∗∗∗ < 1

𝛽𝑖
∗∗∗         𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (18) 

(6) The bootstrap sample is created as 𝑋𝑛
∗= {(𝑥𝑖 ,

∗  𝑦𝑖)|𝑖 = 1, . . . 𝑛} where 𝑥𝑖 
∗= 𝜃𝑖

∗�̂�∂  , and 

(𝑦𝑖)=𝜃𝑖
∗�̂�𝑖

−1
𝑥𝑖  

(7) We computed the DEA efficiency estimates �̂�𝑖
∗
(𝑥𝑖 , 𝑦𝑖) for each of the original 

sample observations using the reference set 𝑋𝑛
∗ to obtain a set of bootstrap estimates. 

(8) Finally, we repeat steps 3-7 B times (at least 2000 times) to obtain a set of bootstrap 

estimates {�̂�𝑏
∗
(𝑥, 𝑦)|𝑏 = 1, . . . 𝐵} 

The bootstrap bias estimate for the original DEA estimator �̂�𝐷𝐸𝐴(𝑥, 𝑦) can be calculated 

as follows: 

𝐵𝐼𝐴�̂�(�̂�𝐷𝐸𝐴(𝑥, 𝑦)) = B−1∑ �̂�𝐷𝐸𝐴,𝑏
∗
(𝑥, 𝑦) − �̂�𝐷𝐸𝐴(𝑥, 𝑦)

𝐵
𝑏=1 )  (19) 

Furthermore,  �̂� 𝐷𝐸𝐴
∗
(𝑥, 𝑦) are the bootstrap values, and B is the number of bootstrap 

replications (2000 replications in our case). Then, a biased corrected estimator of 𝜃(x, y) 

can be calculated as follows: 

�̂̂�𝐷𝐸𝐴(x, y) = 2�̂�𝐷𝐸𝐴(𝑥, 𝑦) − B
−1∑ �̂�𝐷𝐸𝐴,𝑏

∗
(𝑥, 𝑦)𝐵

𝑏=1  (20) 

However, according to Simar & Wilson [41], this bias correction can create additional 

noise, and the sample variance of the bootstrap 𝜃𝐷𝐸𝐴
∗
 (𝑥, 𝑦) values need to be calculated. 

The calculation of the variance of the bootstrap values is illustrated below: 

�̂�2 = B−1∑b=1
B   [ �̂�𝐷𝐸𝐴,𝑏

∗
(𝑥, 𝑦)  −  B−1 ∑b=1

B �̂�𝐷𝐸𝐴,𝑏
∗
(𝑥, 𝑦)]2 (21) 

In addition, bias correction should be avoided unless 

|𝐵𝐼𝐴�̂�(�̂�𝐷𝐸𝐴(𝑥, 𝑦))|

�̂�
>
1

√3
 (22) 

Finally, according to Daraio & Simar [42], when the bias is larger than the standard 

deviation (𝜎), bias-corrected estimates must be preferred to the original values. 



 M.G. Doudkanlou et al. / Bootstrap DEA for Sustainable Investment Analysis 

 

10 

4. EMPIRICAL APPLICATION 

This section encompasses the presentation of the data, the execution of empirical 

analysis, and the subsequent interpretation of the results. 

4.1. Data 

In the course of our research, we employed a varied selection of assets encompassing 

stocks, cryptocurrencies, metals, and commodities. This approach was adopted to elucidate 

the nuances of sustainable investment across diverse asset classes. Furthermore, we aimed 

to analyze the performance of these companies at various stop-profit points. We selected 

Gold due to its pivotal role in the global economy and Bitcoin's burgeoning significance in 

the prospective economic landscape. Additionally, we chose Oil since it is a fundamental 

commodity that significantly influences various sectors, showcasing dynamic interplay 

with broader economic trends and developments. 

4.2. Results 

This section analyzes and calculates the bootstrap DEA score while evaluating risk and 

return metrics. To support this analysis, we took two steps. First, we establish stop-profit 

points at the 2%, 4%, 6%, 8%, 10%, and 12% levels. Based on the exit time, we calculate 

the risk and return. Second, we calculate the efficiency score for each asset based on risk 

and return, estimated until the exit time. However, we also calculate the risk (CVaR) and 

return for the entire time horizon, and this approach is referred to as the unsustainable 

investment method.' Finally, we compare these results with those of sustainable 

investments. In the case of unsustainable investments, we utilized only the original 

efficiency score. However, in sustainable investments, we applied resampling techniques 

to assess the stability and reliability of the DEA efficiency scores. Bootstrap DEA involves 

generating multiple samples (bootstrap samples) from the original dataset by randomly 

drawing observations with replacement. Each bootstrap sample is then used to re-estimate 

the DEA efficiency scores. Our sustainable investment analysis is illustrated in Figures 1 

to 7, which explore how each asset is defined in terms of sustainable investment at these 

specific stop-profit points. The efficiency scores are also presented in Tables 1 to 7 for a 

comprehensive understanding of asset performance. �̂� is the efficiency score, and �̂̂� is the 

biased corrected efficiency score. 

Table 1: Key metrics for unsustainable investment (risk and return are calculated for the entire 

time horizon) 

Asset Name CVaR Mean return �̂�∗ 
Coca-Cola 0.03745 0.00018 0.79 

Amazon 0.05365 0.00018 0.68 

Pfizer 0.03969 0.0000865 0.75 

Oil 0.11004 0.00038 1 

Meta 0.000888 0.00007469 0.47 

Tesla 0.09969 0.00229 1 

Gold 0.02453 0.000555 0.58 

Bitcoin 0.11175 0.00178 0.7 
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Table 2: Key metrics at the 2% stop-profit point 

Asset Name SPP-CVaR Mean return Exit time �̂�∗ 𝐵𝐼𝐴�̂�  �̂̂� 

Coca-Cola 0.00023 0.004944 2 1 0 1 

Amazon 0.000916 -0.0001808 8 0.13 -0.13 0.19 

Pfizer 0.00016 0.004614 1 1 -0.669 1 

Oil 0.0006405 -0.022883 2 0.09 -0.09 0.11 

Meta 0.000888 -0.00033 6 0.13 -0.13 0.18 

Tesla 0.001274 -0.002181 26 0.09 -0.09 0.11 

Gold 0.000849 0.000555 28 0.14 -0.14 0.21 

Bitcoin 0.0000577 0.000683005 17 1 0 1 

Table 3: Key metrics at the 4% stop-profit point 

Asset Name SPP-CVaR Mean return Exit time �̂�∗ 𝐵𝐼𝐴�̂�  �̂̂� 

Coca-Cola 0.0007 0.003102 8 0.21 -0.21 0.26 

Amazon 0.001032939 -0.000180802 8 0.16 -0.16 0.21 

Pfizer 0.0001615 0.0189 2 1 0 1 

Oil 0.0012 0.01119 3 0.37 -0.37 0.54 

Meta 0.000297 0.0045272 7 0.6 -0.6 0.71 

Tesla 0.00147078 0.000823773 27 0.16 -0.16 0.19 

Gold 0.00088579 0.001130188 29 0.18 -0.18 0.21 

Bitcoin 0.000807539 0.000683005 17 0.18 -0.18 0.21 

Table 4: Key metrics at the 6% stop-profit point 

Asset Name SPP-CVaR Mean return Exit time �̂�∗ 𝐵𝐼𝐴�̂�  �̂̂� 

Coca-Cola 0.001613 0.002759 16 0.05 -0.048 0.098 

Amazon 0.000966 0.005295 9 0.44 -0.2939 0.73 

Pfizer 0.01018 0.0007945 74 0.01 -0.00996 0.019 

Oil 0.0014067 0.011193274 3 1 0 1 

Meta 0.0002974 0.004527294 7 1 0 1 

Tesla 0.0011657 0.000823773 27 0.05 -0.048 0.098 

Gold 0.0009282 0.0011301 29 0.07 -0.067 0.1371 

Bitcoin 0.0000622 0.00267 21 1 0 1 

Table 5: Key metrics at the 8% stop-profit point 

Asset Name SPP-CVaR Mean return Exit time �̂�∗ 𝐵𝐼𝐴�̂�  𝜃 

Coca-Cola 0.003711 0.002831 22 0.22 -0.1877 0.4077 

Amazon 0.001048 0.00777 10 1 0 1 

Pfizer 0.01262 0.0007677 79 0.06 -0.05766 0.117658 

Oil 0.024909 0.0001518 218 0.03 -0.02942 0.059417 

Meta 0.001178 0.003991 14 0.74 -0.2271 0.9671 

Tesla 0.001165 0.000823 27 0.7 -0.2538 0.9538 

Gold 0.001068 0.001377 43 0.76 -0.2111 0.9711 

Bitcoin 0.000813 0.0002675 21 1 0 1 
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Table 6: Key metrics at the 10% stop-profit point 

Asset Name SPP-CVaR Mean return Exit time �̂�∗ 𝐵𝐼𝐴�̂�  �̂̂� 

Coca-Cola 0.003532 0.003301 24 0.53 -0.53 1 

Amazon 0.002868 0.00758 12 1 0 1 

Pfizer 0.021695 0.0007059 140 0.18 -0.18 0.21 

Oil 0.01765 0.00042815 219 0.17 -0.17 0.21 

Meta 0.00351 0.002751276 36 0.51 -0.51 1 

Tesla 0.003332 -0.000459 74 0.43 -0.43 0.56 

Gold 0.00106 0.0009165 98 1 -0.138041 1 

Bitcoin 0.000845 0.000205 177 1 -0.050333 1 

Table 7: Key metrics at the 12% stop-profit point 

Asset Name SPP-CVaR Mean return Exit time �̂�∗ 𝐵𝐼𝐴�̂�  �̂̂� 

Coca-Cola 0.004888 0.003093076 34 1 0 1 

Amazon 0.013947 0.00114 96 0.13 -0.1192 0.2492 

Pfizer 0.02233 0.0006801 142 0.05 -0.048 0.098 

Oil 0.013085 0.0003295 222 0.07 -0.067 0.1372 

Meta 0.004394 0.002012282 43 0.73 -0.23 0.967 

Tesla 0.006018 0.0012 76 0.32 -0.24 0.5677 

Gold 0.000915 0.0003239 363 0.97 -0.059 0.97 

Bitcoin 0.000886 0.000542 179 1 0 1 

 

Figure 1: Unsustainable investment for all assets (risk and return are calculated for the entire time 

horizon) 
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Figure 2: (a) Sustainable investment with efficiency score & (b) Sustainable investment with 

biased corrected efficiency score 

 

 
 

Figure 3: (a) Sustainable investment with efficiency score & (b) Sustainable investment with 

biased corrected efficiency score 
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Figure 4:  (a) Sustainable investment with efficiency score & (b) Sustainable investment with 

biased corrected efficiency score 

 

  

Figure 5: (a) Sustainable investment with efficiency score & (b) Sustainable investment with 

biased corrected efficiency score 
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Figure 6: (a) Sustainable investment with efficiency score & (b) Sustainable investment with 

biased corrected efficiency score 

  

Figure 7: (a) Sustainable investment with efficiency score & (b) Sustainable investment with 

biased corrected efficiency score 

Improving the availability of key metrics is essential for fostering a more sustainable 

investment landscape. Investors can make more informed choices by considering a range 

of criteria that align with their objectives. Table 1 shows the efficiency scores for each 

asset, where risk and return are calculated for the entire time horizon. Oil and Tesla perform 

well compared to other assets, indicating their potential as high-return investments. 

However, this method can be misleading for investors because the efficiency scores are 

calculated without considering the investor's exit time. Since after exiting the market, risk 

and return become irrelevant for the investor, it is crucial to account for the exit time in the 

efficiency calculations. For example, as demonstrated in Table 2, Amazon and Meta have 
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an efficiency score of 0.13 at a 2% stop-profit point. However, when adjusted for biased 

corrected efficiency scores, Amazon's efficiency score outperforms Meta's. That indicates 

that Amazon is a more efficient and potentially more profitable investment after accounting 

for potential biases in the data than Meta at this stop-profit level. 

The bias-corrected efficiency scores provide a more accurate assessment of each asset's 

performance by mitigating the effects of statistical anomalies or data irregularities. 

Investors can use these adjusted scores to make more informed decisions. In this case, 

despite the initial similarity in raw efficiency scores, the adjusted scores reveal Amazon as 

the better investment choice over Meta at the 2% stop-profit point, highlighting the 

importance of considering corrected data in investment strategies. By incorporating bias-

corrected efficiency scores, investors gain a clearer understanding of asset performance, 

leading to more effective and strategic decision-making aligned with both financial 

objectives and sustainability goals. These results are more reliable than those reported by 

Ghasemi Doudkanlou et al. [35], who did not consider bias correction and only used raw 

efficiency scores. 

Investors should not rely solely on efficiency scores for a well-rounded investment 

strategy focused on sustainability. It is crucial to consider additional factors such as risk, 

exit time, and average return on investment. According to Table 2, a risk-averse investor 

might opt for Bitcoin even though 17 days are required to achieve a 10% profit. This 

comprehensive approach allows investors to better align their asset choices with financial 

goals and sustainability benchmarks. 

Exit time is a critical component of sustainable investing because it directly impacts 

other variables, such as SPP-CVaR and mean returns, which are calculated up to that point. 

Investors obtain a more accurate efficiency score for the underlying asset by considering 

exit time. This detailed analysis provides valuable insights into how long they may need to 

wait to achieve a specific profit target, helping them assess the associated risk and expected 

return during this period. 

Understanding the relationship between exit time and investment performance helps 

investors make more innovative, sustainable choices. For instance, if an asset takes longer 

to exit but offers higher returns, it might be better suited for someone with a long-term 

investment horizon. On the other hand, an asset with a shorter exit time and moderate 

returns could be ideal for those looking to gain quicker profits. This insight allows investors 

to tailor their strategies to match their financial goals and timelines. 

The scatter plots illustrate the sustainable investment analysis at a specific stop-profit 

point, evaluating investments based on biased corrected efficiency scores, risk, and mean 

returns. These 3D scatter plots provide a comprehensive view, surpassing traditional 2D 

graphs in conveying crucial investment decision factors. For instance, at the 12% stop-

profit point, the left plot reveals that Pfizer has a low-efficiency score and high risk. Bitcoin 

and Gold exhibit low risk with relatively similar efficiency scores but differ slightly in their 

risk levels. The right plot introduces a biased corrected efficiency score for a more refined 

analysis. Amazon, Tesla, and Meta are clustered closely, indicating similar risk-return 

profiles, yet Meta has a slightly lower risk compared to Amazon and Tesla. Coca-Cola 

stands out with a high-efficiency score but moderate risk. These visualizations highlight 

the intricate balance between risk, return, and efficiency, aiding investors in making more 

informed and sustainable investment decisions. 
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5. CONCLUSION 

This paper focuses on enhancing sustainability in financial markets to establish a more 

secure environment for investors. Our approach uniquely calculates risk and returns up to 

the point of exit, resulting in a more accurate efficiency score than traditional models, 

considering the entire time horizon without factoring in exit times. This method provides 

a more precise and more practical assessment of asset performance. One of the notable 

advantages of embracing sustainable investment practices is the ability to make informed 

trade-offs among various factors, including risk, return, and exit timing. By optimizing 

these elements, investors can achieve better efficiency scores and align their investment 

choices with financial goals and sustainability benchmarks. Our methodology's versatility 

makes it applicable across different asset classes and investment portfolios for short-term 

and long-term strategies. Sustainable investment practices offer more accurate and reliable 

data, allowing investors to tailor their strategies based on a comprehensive risk and return 

analysis. 

In contrast, unsustainable investments often limit investors to long-term commitments 

due to less precise efficiency assessments. By integrating bias-corrected efficiency scores 

and considering exit times, our approach empowers investors to make more strategic and 

sustainable investment decisions. Overall, this methodology enhances the accuracy and 

reliability of investment performance evaluations and promotes a more sustainable and 

informed investment landscape. That eventually allows investors to navigate the 

complexities of financial markets effectively and contribute to a more sustainable 

economic future. 

Funding: This research received no external funding. 
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