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Abstract: Unpredictability and uncertainty occur worldwide in various aspects of real
life. We cannot predict some specific outcomes or events precisely due to multiple fac-
tors, randomness, complexity and limited information. These situations can be handled
efficiently in a systematic way by using neutrosophic sets. In real-world applications,
transportation is essential in all sorts of movement of goods, services and people to meet
various needs and demands efficiently. This study concentrated on the multiple objec-
tives, multiple choice transportation problem in interval-valued trapezoidal neutrosophic
contexts. The conversion procedure employs a de-neutrosophication process that relies on
interval numbers rather than crisp numbers. By using an interval-valued trapezoidal neu-
trosophic fuzzy programming method based on interval number, the identified uncertain
transportation problem is then solved. Additionally, an illustrative instance is presented
to showcase the successful implementation of the proposed methodology.

*Corresponding author



2 S. Sinika and G. Ramesh / Neutrosophic MOMISTP using Interval Numbers

Keywords: Trapezoidal fuzzy number, trapezoidal neutrosophic fuzzy number, multi-
objective solid transportation problem, interval-based de-neutrosophication, interval num-
ber.

MSC: 90C29, 90B06.

1. INTRODUCTION

The transportation problem is a versatile concept applied in the field of operational
research, logistics and supply chain management due to its practical relevance and im-
pact on various industries. It helps to find the most economical means of transporting
goods from numerous suppliers to various consumers to satisfy supply and demand con-
straints. As globalization evolves, classic transportation problems lack in fulfilling the
transportation criteria due to the condition of roads, climate changes, types of vehicles,
etc. Hence, Haley [1] extended his transportation problem into solid transportation with
three dimensions: supply, demand, and conveyance, and the application is majorly in
the public distribution sectors. Products from the industries must be delivered from the
source to the destination with various modes of transport, including trucks, trains, aircraft
or ships. Initially, the researcher’s primary objective in solving the solid transportation
problem is to minimize the overall cost associated with transportation goods. Addressing
multiple conflicting goals in decision-making is necessary in the current real-life scenar-
ios. Hence, in order to develop optimization theory and techniques, a multi-objective
transportation problem is essential. Different objective functions may include minimiz-
ing transportation costs, time, carbon emissions, inventory costs etc., and maximizing
profit, resource utilization, customer satisfaction, service level etc. Lee and Moore [2]
studied the transportation problem with multiple objectives. In addition, multi-objective
multi-item transportation problem addresses the transportation of various types of items
or products concurrently. Each item may have different characteristics, such as size and
weight, which cannot affect transport decisions. Environmental concerns, transportation
cost per unit, and fuel consumption rate are increasingly significant today. One or more
routes are essential to reduce the ecological impact, lower operating costs, and meet sus-
tainability goals.

Moreover, in current real-life circumstances, uncertainty arises everywhere for vari-
ous reasons, such as financial instability, climate variability, road conditions, traffic sce-
narios, metropolitan works, etc. Fuzzy set theory by Zadeh [3] can efficiently handle
these uncertainties. Jimenez and Verdegay [4] addresses transportation problem by man-
aging ambiguous datasets using interval and fuzzy approaches. Pramanik and Roy [5]
addressed a multiobjective transportation model utilizing a priority based fuzzy goal pro-
gramming approach through fuzzy parameters. For handling fuzzy variables, Kundu et al.
[6] presented a defuzzification method in the multi-objective multi-item solid transporta-
tion problem (MOMISTP). Chakraborty et al. [7] modeled fuzzy inequality constraint
and obtained optimal solution by using three methods in solving fuzzy MOMISTP. Rani
et al. [8] suggested converting an unbalanced MOMISTP to a balanced one using trape-
zoidal fuzzy as parameters numbers. Giri et al. [9] discussed fuzzy MOMISTP with fuzzy
fixed-charge to minimize the overall fuzzy cost for balanced and unbalanced problems.
Kar et al. [10] formulated a chance constraint model with the credibility of fuzzy vari-
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ables in solving fuzzy MOMISTP. A multi-objective transportation problem with type-2
trapezoidal fuzzy numbers as parameters, together with goodness of fit and parameter es-
timation, was given by Kamal et al. [11]. Using the weighting Tchebycheff approach,
Khalifa et al. [12] solve fuzzy MOMISTP in a fuzzy environment. Mardanya and Roy
[13] derived a novel rule using interval, rough interval and expected value operator for
trapezoidal fuzzy MOMISTP. Rekabi et al. [14] formulated an innovative multi-objective
model to design a responsive and sustainable pharmaceutical supply chain network, incor-
porating Cap-and-Trade policies, various manufacturing technology options, and diverse
transportation mode selections.

Handling vagueness and hesitation is not appropriate when using a fuzzy set. At-
tanasov [15] expanded the concept fuzzy set with a negation part (non-membership) along
with membership, terming it an intuitionistic set. Pramanik and Roy [16] introduced an
intuitionistic fuzzy goal programming approach to address vector optimization problem
by resolving an unbalanced transportation problem with multiple objectives. Chakraborty
et al. [17] considered multiple choices in solving intuitionistic MOMISTP and obtained
the optimal solution using three models: interactive satisfied, global criteria and goal pro-
gramming. Roy et al. [18] converts the multi-objective intuitionistic fuzzy transportation
problem’s objective function into an interval form and the optimal solutions are attained
by using the techniques such as intuitionistic fuzzy and goal programming. In order to
tackle MOMI 4D transportation in an LR-type intuitionistic fuzzy environment, Samanta
et al. [19] proposed a unique and convex combination approach. Using weighted Tcheby-
chef metrics and min-max programming, Midya et al. [20] concentrated on intuitionistic
MOMI fixed charge STP with parameters represented as trapezoidal fuzzy integers. Shiv-
ani and Deepika [21] investigated the impact of proper and incorrect driving styles on car-
bon emissions, handling three programming strategies to handle MOMI 4D transportation
in an interval-valued intuitionistic settings.

Smarandache [22] added one more parameter (indeterminacy) to handle the neutral
thoughts that suit even more efficiently than fuzzy and intuitionistic sets. Biswas et al.
[23] formulated interval trapezoidal neutrosophic numbers and established several arith-
metic operations to address multiple attribute decision making problem. In a neutrosophic
environment, Rizk et al. [24] developed a unique algorithm to find the best solution
for multi-objective transportation problem. By addressing a neutrosophic multi-objective
transportation p-facility location problem, Das et al. [25] collectively describe the im-
pact of carbon emission into the atmosphere. Giri and Roy [26] adapted single-valued
trapezoidal neutrosophic number in four-dimensional MOMISTP to lessen the overall
transit cost, time and release of carbon. Khalil et al. [27] discussed real-life applications
in interval-valued neutrosophic environments. Through the solution of MOTP in a neu-
trosophic context, Revathi et al. [28] examined uncertain variables. By applying linear
programming techniques in real life, Hosseinzadeh and Tayyebi [29] obtained an effective
solution in a multi-objective neutrosophic transportation problem. Kumar et al. [30] de-
veloped neutrosophic programming approach for multi-objective transportation problem
based on non-linear hyperbolic functions. Gupta et al. [31] developed a neutrosophic goal
programming method for the multi-objective fixed-charge transportation problem which
incorporates neutrosophic characteristics.
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1.1. Aim of the article

Contemporary research has focused more on interval numbers than crisp ones due to
the intricate nature of real-world environments. Interval numbers offer several advantages
when dealing with uncertain data, insufficient information, and modeling fuzziness. In-
terval numbers are useful for representing data from different sources with different levels
of uncertainty, making them well-suited for sensitivity analysis. Representing numbers in
a specified range is more practical and flexible. Avoiding the complexity of membership
functions, intervals offer a clear and concise means of expressing uncertainty. During
literature survey, many experts have gone through their research in MOMISTP using in-
terval numbers. Nagarajan et al. [32] presented a procedure to solve a multi-objective
solid transportation problem with interval based parameters. Using the nearest approx-
imation technique, Dalman et al. [33] created an interval programming method to deal
trapezoidal fuzzy MOMISTP. Considering the MOMISTP with budget constraints and
safety measures, Sifaoui and Aider [34] formulated two models, namely the expected
value as well as the chance-constrained model. This leads us to prefer interval numbers
instead of crisp ones in interval-valued trapezoidal neutrosophic contexts.

1.2. Structure of the article

This article addresses the subject of solving a multi-objective multi-item solid trans-
portation problem using interval-valued trapezoidal neutrosophic fuzzy approach. An al-
gorithm for interval-valued trapezoidal neutrosophic programming is introduced, employ-
ing interval numbers. The efficiency is demonstrated by solving an example and thereafter
comparing it with the reference [26]. This article follows a well-defined format, with an
introduction in section 1, background information on the topic in section 2, the mathemat-
ical formulation of the interval-valued trapezoidal neutrosophic fuzzy MOMISTP and its
conversion to an interval problem using an interval-based de-neutrosophication technique
elaborated in section 3, a detailed explanation of the proposed algorithm for interval-
valued trapezoidal neutrosophic fuzzy programming using interval numbers provided in
section 4, a discussion of the problem and numerical illustrations in section 5, sensitivity
analysis is done in section 6, the research’s positive aspects and drawbacks are highlighted
in section 7, and section 8 concludes with a summary of the study’s future research and
recommendations.

2. PRELIMINARIES

2.1. Interval number

An interval number on R is defined as f̃ =
[

f L, f R
]
=
{

f : f L ≤ f ≤ f R, f ∈ R
}

. Here

f L and f R are the left and the right limits of f̃ respectively. Also, f̃m = f L+ f R

2 and f̃w =
f R− f L

2 are the mid-point and width (half-width) of an interval. Then, the interval number
can also be written in the form of a mid-point and width as

f̃ =
〈

f̃m, f̃w
〉
=
{

f : f̃m − f̃w ≤ k ≤ f̃m + f̃w, f ∈ R
}
.
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2.2. Arithmetic operations on Interval number

The interval arithmetic operations provided by [35] are given below.
If f̃ =

[
f L, f R

]
and g̃ =

[
gL,gR

]
and for ∗ ∈ {+,−,×,÷}, then

f̃ ∗ g̃ =
〈

f̃m, f̃w
〉
∗
〈
g̃m, g̃w

〉
=
〈

f̃m ∗ g̃m,max{ f̃w, g̃w}
〉
.

2.3. Trapezoidal fuzzy number

The membership function of a trapezoidal fuzzy number T = ( f1, f2, f3, f4), where
f1, f2, f3, f4 ∈ R is given as

µT (x) =


x− f1
f2− f1

, f1 ≤ x ≤ f2

1, f2 ≤ x ≤ f3
f4−x
f4− f3

, f3 ≤ x ≤ f4

0, otherwise

2.4. Interval-valued trapezoidal neutrosophic fuzzy number [36]

. Let f1, f2, f3, f4 ∈ R such that f1 ≤ f2 ≤ f3 ≤ f4. An interval-valued trapezoidal
neutrosophic fuzzy number can be expressed as T̃n = ⟨( f1, f2, f3, f4); [ρL,ρR],
[κL,κR], [νL,νR]⟩, where ρL : X → [0,1], ρR : X → [0,1] are the lower truth and upper
truth degrees, κL : X → [0,1], κR : X → [0,1] are the lower indeterminacy and upper
indeterminacy degrees, νL : X → [0,1],and νR : X → [0,1] are the lower falsity and upper
falsity degrees whose functions are defined as

ρL
T̃n
(x) =


ρL x− f1

f2− f1
, x ∈ [ f1, f2]

ρL, x ∈ [ f2, f3]

ρL f4−x
f4− f3

, x ∈ [ f3, f4]

0, otherwise

ρR
T̃n
(x) =


ρR x− f1

f2− f1
, x ∈ [ f1, f2]

ρR, x ∈ [ f2, f3]

ρR f4−x
f4− f3

, x ∈ [ f3, f4]

0, otherwise

κ
L
T̃n
(x) =


( f2−x)+κL(x− f1)

f2− f1
, x ∈ [ f1, f2]

κL, x ∈ [ f2, f3]
(x− f3)+κL( f4−x)

f4− f3
, x ∈ [ f3, f4]

1, otherwise

κ
R
T̃n
(x) =


( f2−x)+κR(x− f1)

f2− f1
, x ∈ [ f1, f2]

κR, x ∈ [ f2, f3]
(x− f3)+κR( f4−x)

f4− f3
, x ∈ [ f3, f4]

1, otherwise
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ν
L
T̃n
(x) =


( f2−x)+νL(x− f1)

f2− f1
, x ∈ [ f1, f2]

νL, x ∈ [ f2, f3]
(x− f3)+νL( f4−x)

f4− f3
, x ∈ [ f3, f4]

1, otherwise

ν
R
T̃n
(x) =


( f2−x)+νR(x− f1)

f2− f1
, x ∈ [ f1, f2]

νR, x ∈ [ f2, f3]
(x− f3)+νR( f4−x)

f4− f3
, x ∈ [ f3, f4]

1, otherwise

3. STATEMENT AND FORMULATION OF THE PROBLEM

3.1. Notations

m,n: Number of origins and destinations respectively (i = 1,2, ...,m, j = 1,2, ...,n)
c: Number of conveyances (vehicles used for transportation) (k = 1,2, ...,c)
r: The number of routes or paths connecting each origin and each destination (p =
1,2, ...,r)
xN

i jkp & xI
i jkp: The interval-valued trapezoidal neutrosophic fuzzy number and interval

number respectively represents the volume of commodities (products) transported by the
kth transportation vehicle (conveyance) along the pth route, beginning from the ith source
and concluding at the jth destination.
Li jp & LI

i jp: The distance between the ith starting point and the jth destination utilizing
the pth route in the form of a real value and an interval number respectively.
F N

i jkp & F I
i jkp: Interval-valued trapezoidal neutrosophic fuzzy fixed charge and interval

fixed charge when some volume of goods (products) moved by the kth transportation ve-
hicle (conveyance) along the pth route, begins at the source denoted as ith and concludes
at the destination designated as jth respectively.
T N

i jkp & T I
i jkp: Unit interval-valued trapezoidal neutrosophic fuzzy transportation time and

interval transportation time per kilometre through pth route by kth transportation vehicle
(conveyance) from the ith origin and reaching the jth destination respectively.
P N

i jkp & P I
i jkp: Unit interval-valued trapezoidal neutrosophic fuzzy carbon emission and

interval carbon emission per kilometre via kth transportation vehicle (conveyance) on a
pth route, starting from the ith origin and ending at the jth destination, respectively.
yi jkp: The binary element with a value of 1, if there is a transportation of certain quantities
by kth transportation vehicle (conveyance) through pth route from the ith source to the jth

destination and 0, otherwise.
AN

i & AI
i : The interval-valued trapezoidal neutrosophic fuzzy number and interval

number indicating the products availability at the ith origin respectively.
DN

j & DI
j : Demand for the products expressed as an interval-valued trapezoidal neu-

trosophic fuzzy number and interval number at the jth destination respectively.
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EN
kp & EI

kp : Transport vehicle capacity (conveyance) for the kth vehicle along the pth

route, expressed as an interval-valued trapezoidal neutrosophic fuzzy number and inter-
val number.
ZN

k & ZI
k : The objective function expressed as interval number and interval-valued

trapezoidal neutrosophic fuzzy number respectively.

3.2. Assumptions

• All interval-valued trapezoidal neutrosophic fuzzy number are non-negative.

• The routes and the driving style are smooth and good.

• No penalty and tax for carbon emission.

3.3. Mathematical Formulation

3.3.1. Model 1: Interval-valued trapezoidal neutrosophic fuzzy multi-objective multi-item
solid transportation problem:

Given optimization problems are formulated in consideration of economic conditions
and the desire to develop a cleaner environment. Our primary goal is to reduce carbon
emissions, transportation expenses, and travel time. Model 1 is developed in accordance
with the objective function and constraints established by [26]. In this study, we exam-
ine various factors including transportation cost, transportation time, fixed cost, carbon
emissions, transportation vehicles, availability, and demand. All of these factors are rep-
resented by interval-valued trapezoidal neutrosophic fuzzy numbers. By representing in
this manner, one can effectively manage risks and address uncertainty in projects or sit-
uations involving precise or uncertain parameter estimations in a methodical fashion. In
addition, the exact distance between the starting and ending points is specified in real
numbers. It is assumed in this context that the products are conveyed via c conveyances
along r routes from m sources to destinations n.

Minimizing transportation cost

Minimize ZN
1 =

m

∑
i=1

n

∑
j=1

c

∑
k=1

r

∑
p=1

CN
i jkp xN

i jkp Li jp

+
m

∑
i=1

n

∑
j=1

c

∑
k=1

r

∑
p=1

FN
i jkp yi jkp (1)

Minimizing transportation time

Minimize ZN
2 =

m

∑
i=1

n

∑
j=1

c

∑
k=1

r

∑
p=1

T N
i jkp xN

i jkp Li jp (2)



8 S. Sinika and G. Ramesh / Neutrosophic MOMISTP using Interval Numbers

Minimizing carbon emission

Minimize ZN
3 =

m

∑
i=1

n

∑
j=1

c

∑
k=1

r

∑
p=1

PN
i jkp xN

i jkp Li jp (3)

subject to
n

∑
j=1

c

∑
k=1

r

∑
p=1

xN
i jkp ≤ AN

i , i = 1,2, ...,m (4)

m

∑
i=1

c

∑
k=1

r

∑
p=1

xN
i jkp ≥ BN

j , j = 1,2, ...,n (5)

m

∑
i=1

n

∑
j=1

xN
i jkp ≤ EN

kp, k = 1,2, ...,c & p = 1,2, ...,r (6)

xN
i jkp ≥ 0N ∀ i, j,k, p (7)

3.3.2. A technique to de-neutrosophication based on intervals
The transformation of the interval-valued trapezoidal neutrosophic fuzzy number into

an interval number, rather than a crisp number, provides greater flexibility in analyzing
the results and helps to avoid the complexity in real-life circumstances. Therefore, we
transform Model 1 into Model 2 using the interval-based de-neutrosophication technique
proposed by [36]. Specifically, we transform an interval-valued trapezoidal neutrosophic
fuzzy number into an interval number by assigning arbitrary values for the α, β , and γ-
cut, represented as the midpoint and width (half-width).
The transportation cost CN

i jkp is calculated interms of interval number as follows.

Let CN
i jkp =

〈
(c1,c2,c3,c4); [ρL,ρR], [κL,κR], [νL,νR]

〉
be any transportation cost in interval-

valued trapezoidal neutrosophic fuzzy number.

Let α, β , γ, r and s ∈ [0,1] and assume β & γ as 1−α then the (α,β & γ) - cut of an
interval-valued trapezoidal neutrosophic fuzzy transportation cost is given as[

α
L
CN

i jkp
,αR

CN
i jkp

]
;
[
β

L
CN

i jkp
,β R

CN
i jkp

]
;
[
γ

L
CN

i jkp
,γR

CN
i jkp

]
. (8)

Let M (αL
CN

i jkp
),W (αL

CN
i jkp

),M (αR
CN

i jkp
),W (αR

CN
i jkp

),M (β L
CN

i jkp
),W (β L

CN
i jkp

),M (β R
CN

i jkp
),

W (β R
CN

i jkp
),M (γL

CN
i jkp

),W (γL
CN

i jkp
),M (γR

CN
i jkp

) and W (γR
CN

i jkp
) are the mid-point and width

(half-width) form of (α,β & γ) - cut of an interval-valued trapezoidal neutrosophic trans-
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portation cost respectively. Here,

M (αL
CN

i jkp
) =

1
2
{(c1 + c4)+

α

ρL (c2 − c1 − c4 + c3)},

W (αL
CN

i jkp
) =

1
2
{(c4 − c1)−

α

ρL (c4 − c3 + c2 − c1)}

M (αR
CN

i jkp
) =

1
2
{(c1 + c4)+

α

ρR (c2 − c1 − c4 + c3)}

W (αR
CN

i jkp
) =

1
2
{(c4 − c1)−

α

ρR (c4 − c3 + c2 − c1)}

M (β L
CN

i jkp
) =

1
2
{(c1 + c4)+

α

1−κL (c2 − c1 − c4 + c3)}

W (β L
CN

i jkp
) =

1
2
{(c4 − c1)−

α

1−κL (c4 − c3 + c2 − c1)}

M (β R
CN

i jkp
) =

1
2
{(c1 + c4)+

α

1−κR (c2 − c1 − c4 + c3)}

W (β R
CN

i jkp
) =

1
2
{(c4 − c1)−

α

1−κR (c4 − c3 + c2 − c1)}

M (γL
CN

i jkp
) =

1
2
{(c1 + c4)+

α

1−νL (c2 − c1 − c4 + c3)}

W (γL
CN

i jkp
) =

1
2
{(c4 − c1)−

α

1−νL (c4 − c3 + c2 − c1)}

M (γR
CN

i jkp
) =

1
2
{(c1 + c4)+

α

1−νR (c2 − c1 − c4 + c3)}

W (γR
CN

i jkp
) =

1
2
{(c4 − c1)−

α

1−νR (c4 − c3 + c2 − c1)}

Then, we can write equation (8) as[〈
M (αL

CN
i jkp

),W (αL
CN

i jkp
)
〉
,
〈
M (αR

CN
i jkp

),W (αR
CN

i jkp
)
〉]

;[〈
M (β L

CN
i jkp

),W (β L
CN

i jkp
)
〉
,
〈
M (β R

CN
i jkp

),W (β R
CN

i jkp
)
〉]

;[〈
M (γL

CN
i jkp

),W (γL
CN

i jkp
)
〉
,
〈
M (γR

CN
i jkp

),W (γR
CN

i jkp
)
〉]

Now, apply convex combination to combine the lower and upper bound of each member-
ship functions and it is written as[

r.
〈
M (αL

CN
i jkp

),W (αL
CN

i jkp
)
〉
+ (1-r).

〈
M (αR

CN
i jkp

),W (αR
CN

i jkp
)
〉]

;[
r.
〈
M (β L

CN
i jkp

),W (β L
CN

i jkp
)
〉
+ (1-r).

〈
M (β R

CN
i jkp

),W (β R
CN

i jkp
)
〉]

;[
r.
〈
M (γL

CN
i jkp

),W (γL
CN

i jkp
)
〉
+ (1-r).

〈
M (γR

CN
i jkp

),W (γR
CN

i jkp
)
〉]
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Now, using the arithmetic operations provided in section 2.2, we obtained[
r
〈
M (αL

CN
i jkp

)+ (1-r).M (αR
CN

i jkp
),max{W (αL

CN
i jkp

),W (αR
CN

i jkp
)}
〉]

;[
r.
〈
M (β L

CN
i jkp

)+ (1-r).M (β R
CN

i jkp
),max{W (β L

CN
i jkp

),W (β R
CN

i jkp
)}
〉]

;[
r.
〈
M (γL

CN
i jkp

)+ (1-r).M (γR
CN

i jkp
),max{W (γL

CN
i jkp

),W (γR
CN

i jkp
)}
〉]

Here, we choose r=1 as the highest membership grade, then〈
M (αL

CN
i jkp

),max{W (αL
CN

i jkp
),W (αR

CN
i jkp

)}
〉
;〈

M (β L
CN

i jkp
),max{W (β L

CN
i jkp

),W (β R
CN

i jkp
)}
〉
;〈

M (γL
CN

i jkp
),max{W (γL

CN
i jkp

),W (γR
CN

i jkp
)}
〉

For converting into an interval number, it is written as

s.
〈
M (αL

CN
i jkp

),max{W (αL
CN

i jkp
),W (αR

CN
i jkp

)}
〉
+(1− s).

{〈
M (β L

CN
i jkp

),

max{W (β L
CN

i jkp
),W (β R

CN
i jkp

)}
〉
+
〈
M (γL

CN
i jkp

),max{W (γL
CN

i jkp
),W (γR

CN
i jkp

)}
〉}

Again by section 2.2,〈
s.M (αL

CN
i jkp

)+ (1-s).M (β L
CN

i jkp
)+ (1-s).M (γL

CN
i jkp

),max
{

W (αL
CN

i jkp
),

W (αR
CN

i jkp
),W (β L

CN
i jkp

),W (β R
CN

i jkp
),W (γL

CN
i jkp

),W (γR
CN

i jkp
)
}〉

As a result, we obtain the interval form of an interval-valued trapezoidal neutrosophic
fuzzy number by choosing the highest membership grade for ‘s’ (s=1) and is attained as

R(CN
i jkp) =

〈
M (αL

CN
i jkp

),max
{

W (αL
CN

i jkp
),W (αR

CN
i jkp

),W (β L
CN

i jkp
),W (β R

CN
i jkp

),

W (γL
CN

i jkp
),W (γR

CN
i jkp

)
}〉

Similarly, we can convert the interval-valued trapezoidal neutrosophic fuzzy fixed cost,
transportation time and carbon emission.

3.4. Ranking of interval-valued trapezoidal neutrosophic fuzzy numbers

The mathematical connection between two interval-valued trapezoidal neutrosophic
fuzzy numbers utilizing interval numbers is provided in the reference [36]. Let’s consider
two interval-valued trapezoidal neutrosophic fuzzy numbers as

T̃n1 =
〈
(a1,a2,a3,a4); [ρ1L,ρ1R], [κ1L,κ1R], [ν1L,ν1R]

〉
T̃n2 =

〈
(b1,b2,b3,b4); [ρ2L,ρ2R], [κ2L,κ2R], [ν2L,ν2R]

〉
.
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The interval form of the two interval-valued trapezoidal neutrosophic fuzzy numbers is
assumed using the section 3.3.2, with the representation of mid-point and width (half-
width) as R(T̃n1) =

〈
m(T̃n1),w(T̃n1)

〉
and R(T̃n2) =

〈
m(T̃n2),w(T̃n2)

〉
.

Then, the acceptibility grade A
(

R(T̃n1)⃝< R(T̃n2)
)

of the first interval is considered to
be inferior to the second interval is given as

A
(

T̃n1⃝< T̃n2
)
= A

(
R(T̃n1)⃝< R(T̃n2)

)
=

m(T̃n2)−m(T̃n1)

w(T̃n2)+w(T̃n1)
,

where w(T̃n2)+w(T̃n1) ̸= 0.
And it is explained in the following manner:

(i) If A(T̃n1⃝< T̃n2) = 0, then the acceptance of T̃n1 inferior to T̃n2 is not allowed.

(ii) If 0 < A(T̃n1⃝< T̃n2) < 1 & A(T̃n1⃝< T̃n2) ≥ 1, then then the acceptance of T̃n1
inferior to T̃n2 is allowed.

3.4.1. Model 2: Interval multi-objective multi-item solid transportation problem

Minimizing transportation cost

Minimize ZI
1 =

m

∑
i=1

n

∑
j=1

c

∑
k=1

r

∑
p=1

CI
i jkp xI

i jkp LI
i jp +

m

∑
i=1

n

∑
j=1

c

∑
k=1

r

∑
p=1

F I
i jkp yi jkp (9)

Minimizing transportation time

Minimize ZI
2 =

m

∑
i=1

n

∑
j=1

c

∑
k=1

r

∑
p=1

T I
i jkp xI

i jkp LI
i jp (10)

Minimizing carbon emission

Minimize ZI
3 =

m

∑
i=1

n

∑
j=1

c

∑
k=1

r

∑
p=1

PI
i jkp xI

i jkp LI
i jp (11)
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subject to
n

∑
j=1

c

∑
k=1

r

∑
p=1

xI
i jkp ≤ AI

i , i = 1,2, ...,m (12)

m

∑
i=1

c

∑
k=1

r

∑
p=1

xI
i jkp ≥ BI

j, j = 1,2, ...,n (13)

m

∑
i=1

n

∑
j=1

xI
i jkp ≤ EI

kp, k = 1,2, ...,c & p = 1,2, ...,r (14)

xI
i jkp ≥ 0I ∀ i, j,k, p (15)

where, CI
i jkp =

〈
M (CI

i jkp),W (CI
i jkp)

〉
, xI

i jkp =
〈
M (xI

i jkp),W (xI
i jkp)

〉
,

LI
i jp =

〈
M (LI

i jp),W (LI
i jp)

〉
,F I

i jkp =
〈
M (F I

i jkp),W (F I
i jkp)

〉
,

T I
i jkp =

〈
M (T I

i jkp),W (T I
i jkp)

〉
, PI

i jkp =
〈
M (PI

i jkp),W (PI
i jkp)

〉
AI

i =
〈
M (AI

i ),W (AI
i )
〉
, BI

j =
〈
M (BI

j),W (BI
j)
〉
,

EI
kp =

〈
M (EI

kp),W (EI
kp)

〉
,and ZI

R =
〈
M (ZI

R),W (ZI
R)
〉
, R = 1,2,3

4. PROPOSED INTERVAL-VALUED TRAPEZOIDAL NEUTROSOPHIC
FUZZY PROGRAMMING APPROACH USING INTERVAL NUMBERS

This section presents the proposed interval-valued trapezoidal neutrosophic fuzzy
(IVTNF) programming approach using interval numbers.
Step (1) Convert Model 1 into Model 2 using section 3.3.2.
Step (2) Check whether the problem considered in Model 2 is balanced or not.

i.e., R(
m

∑
i=1

AN
i ) = R(

n

∑
j=1

BN
j ) = R(

c

∑
k=1

r

∑
p=1

EN
kp).

i.e.,
m

∑
i=1

AI
i =

n

∑
j=1

BI
j =

c

∑
k=1

r

∑
p=1

EI
kp.

Now, check whether ∑
m
i=1 AI

i = ∑
n
j=1 BI

j holds.

Let ∑
m
i=1 AI

i =
〈
M (AI

i ),W (AI
i )
〉

and ∑
n
j=1 BI

j =
〈
M (BI

j),W (BI
j)
〉

Case (i) If ∑
m
i=1 AI

i = ∑
n
j=1 BI

j, then move to step (3).

Case (ii) If ∑
m
i=1 AI

i < ∑
n
j=1 BI

j, then introduce dummy interval availability equal to

n

∑
j=1

BI
i −

m

∑
i=1

AI
i =

〈
M (BI

j),W (BI
j)
〉
−
〈
M (AI

i ),W (AI
i )
〉

=
〈
M (BI

j)−M (AI
i ),max{W (AI

i ),W (BI
j)}

〉
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Start Model 1 Model 2
Check

Balancing

Unbalanced

Add Inter-
val Dummy

rows /
Columns

/ Con-
veyances

Balanced

Check Total
Supply = Total
Demand=Total

Conveyance

Solve Model 2
by considering

as a single
objective

Frame Pay-
off matrix

Find the
Lower and

Upper Bound

Frame
Model 3

Solve using
GAMS Software

Stop

No

Yes

Yes

Yes

Yes

Figure 1: Flowchart of Proposed Algorithm

Case (iii) If ∑
m
i=1 AI

i > ∑
n
j=1 BI

j, then introduce dummy interval demand equal to

m

∑
i=1

AI
i −

n

∑
j=1

BI
j =

〈
M (AI

i ),W (AI
i )
〉
−
〈
M (BI

j),W (BI
j)
〉

=
〈
M (AI

i )−M (BI
j),max{W (AI

i ),W (BI
j)}

〉
Step (3) Check whether ∑

m
i=1 AI

i = ∑
n
j=1 BI

j = ∑
c
k=1 ∑

r
p=1 EI

kp holds.
Let us consider

m

∑
i=1

AI
i =

n

∑
j=1

BI
j = T =

〈
M (T I

q ),W (T I
q )
〉

and
c

∑
k=1

r

∑
p=1

EI
kp =

〈
M (EI

kp),W (EI
kp)

〉
Case (i) If T = ∑

c
k=1 ∑

r
p=1 EI

kp, then proceed with step (4).

Case (ii) If T < ∑
c
k=1 ∑

r
p=1 EI

kp, then check whether interval dummy availability / demand
was added in step (2). Then go through with the following steps.
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Subcase (ii(a)) If any one of interval dummy source / destination was already added, then
increase that corresponding interval dummy source / destination by using the formula

c

∑
k=1

r

∑
p=1

EI
kp −T =

〈
M (EI

kp),W (EI
kp)

〉
−
〈
M (T I

q ),W (T I
q )
〉

=
〈
M (EI

kp)−M (T I
r ), max{M (EI

kp),W (T I
r )}

〉
=
〈
M (E1

I
kp),W (E1

I
kp)

〉
(say).

Subcase (ii(b)) If neither an interval dummy source nor an interval dummy destination
were introduced in Step 2, then add an interval dummy source and an interval dummy
destination with availability and demand equal to

〈
M (E1

I
kp),W (E1

I
kp)

〉
Case (iii) If T >∑

c
k=1 ∑

r
p=1 EI

kp, then check whether interval dummy availability / demand
was added in step (2). Then go through with the following steps.
Subcase (iii(a)) If any one of interval dummy source / destination was already added, then
increase that corresponding interval dummy source / destination by using the formula

T −
c

∑
k=1

r

∑
p=1

EI
kp =

〈
M (T I

q ),W (T I
q )
〉
−
〈
M (EI

kp),W (EI
kp)

〉
=
〈
M (T I

q )−M (EI
kp), max{M (EI

kp),W (T I
q )}

〉
=
〈
M (E1

I
kp),W (E1

I
kp)

〉
(say).

And also, introduce an dummy interval destination / interval source having the interval
demand / interval availability as

〈
M (E1

I
kp),W (E1

I
kp)

〉
.

Subcase (iii(b)) If neither an dummy interval source nor an dummy interval destination
was introduced in Step 2, then add an dummy interval source as well as an dummy interval
destination having interval availability and interval demand equal to

〈
M (E1

I
kp),W (E1

I
kp)

〉
.

The transportation cost from the newly constructed source to all destinations through any
conveyances is assumed to be zero. Model 2 has now transformed into a balanced multi-
objective multi-item interval transportation problem.
Step (4) Determine the most efficient solution X I

R, R = 1,2,3 for each specific case. The
values of X I

R for model 2 can be obtained by treating the multi-objective as a single goal.
That is, focus on one objective function at a time and disregard the others.

Solve Model 2 using the following two steps.
(i) Use GAMS software to find M (ZI

R), R = 1,2,3
(ii) Calculation for the width (half-width) W (ZI

R), R = 1,2,3 is given as follows.

W (ZI
1) = Max{W (CI

i jkp),W (LI
i jp),W (F I

i jkp),W (AI
i ),W (BI

j),W (EI
kp)}

W (ZI
2) = Max{W (T I

i jkp),W (LI
i jp),W (AI

i ),W (BI
j),W (EI

kp)}
W (ZI

3) = Max{W (PI
i jkp),W (LI

i jp),W (AI
i ),W (BI

j),W (EI
kp)},

where i = 1,2, ...,m, j = 1,2, ...,n, k = 1,2, ...,c & p = 1,2, ...,r.
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Therefore, the respective optimal solutions X I
R are obtained for different R objectives.

Step (5) Find out the objective values using the above calculated optimal solutions and
frame out a pay-off matrix using the objective values as


ZI

1 ZI
2 · · · ZI

R

X I
1 ZI

1(X
I
1) ZI

2(X
I
1) · · · ZI

R(X
I
1)

X I
2 ZI

1(X
I
2) ZI

2(X
I
2) · · · ZI

R(X
I
2)

...
...

...
. . .

...
X I

R ZI
1(X

I
R) ZI

2(X
I
R) · · · ZI

R(X
I
R)


Step (6) Determine the lower and upper bounds for each objective function by the follow-
ing instructions.

(i) The lower bound (LIT
R ) and upper bound (U IT

R ) of truth membership function in the
form of interval is calculated using LIT

R = min[ZI
R(XR)] and U IT

R = max[ZI
R(XR)], R =

1,2,3 respectively.

(ii) The lower bound (LII
R ) and upper bound (U II

R ) of indeterminacy membership function
in the form of interval is calculated using LII

R = LIT
R and U II

R = LIT
R + s(U IT

R −LIT
R ), R =

1,2,3 respectively.

(iii) The lower bound (LIF
R ) and upper bound (U IF

R ) of falsity membership function in the
form of interval is calculated using LIF

R = LIT
R + t(U IT

R −LIT
R ) and U IF

R =U IT
R , R = 1,2,3

respectively, where s and t are chosen by the decision maker between (0,1) for indeter-
minacy and falsity.

Then formulate the lower µL(ZI
R(x)) and upper µU (ZI

R(x)) truth membership functions as
follows.

µ
L(ZI

R(x)) =


1, ZI

R(x)< LIT
R

ρ
U IT

R −ZI
R(x)

U IT
R −LIT

R
, LIT

R ≤ ZI
R(x)≤U IT

R

0, ZI
R(x)>U IT

R

µ
U (ZI

R(x)) =


1, ZI

R(x)< LIT
R

U IT
R −ZI

R(x)
U IT

R −LIT
R

, LIT
R ≤ ZI

R(x)≤U IT
R

0, ZI
R(x)>U IT

R

Similarly the lower πL(ZI
R(x)) and upper πU (ZI

R(x)) indeterminacy membership func-
tions as follows.

π
L(ZI

R(x)) =


1, ZI

R(x)< LII
R

ρ
U II

R −ZI
R(x)

U II
R −LII

R
, LII

R ≤ ZI
R(x)≤U II

R

0, ZI
R(x)>U II

R
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π
U (ZI

R(x)) =


1, ZI

R(x)< LII
R

U II
R −ZI

R(x)
U II

R −LII
R

, LII
R ≤ ZI

R(x)≤U II
R

0, if ZI
R(x)>U II

R

Formulate the lower νL(ZI
R(x)) and upper νU (ZI

R(x)) falsity membership functions as fol-
lows.

ν
L(ZI

R(x)) =


0, ZI

R(x)< LIF
R

ρ
ZI

R(x)−LIF
R

U IF
R −LIF

R
, LIF

R ≤ ZI
R(x)≤U IF

R

1, ZI
R(x)>U IF

R

ν
U (ZI

R(x)) =


0, ZI

R(x)< LIF
R

ZI
R(x)−LIF

R
U IF

R −LIF
R

, LIF
R ≤ ZI

R(x)≤U IF
R

1, ZI
R(x)>U IF

R

where 0 ≤ ρ ≤ 1, U IT
R ̸= LIT

R , U II
R ̸= LII

R and U IF
R ̸= LIF

R .
Step (7) By employing the membership functions mentioned above, Model 2 can be for-
mulated as Model 3 and is presented as follows.
Model 3

Maximize γ −ζ − τ

subject to µ
L(ZI

R(x))≥ γ, µ
U (ZI

R(x))≥ γ,

π
L(ZI

R(x))≤ ζ , π
U (ZI

R(x))≤ ζ ,

ν
L(ZI

R(x))≤ τ, ν
U (ZI

R(x))≤ τ

γ ≥ ζ , γ ≥ τ, 0 ≤ γ ≤ 1, 0 ≤ ζ ≤ 1, 0 ≤ τ ≤ 1
constraints (12) to (15)

Model 3 again written as

Maximize γ −ζ − τ

subject to ZI
R(x)+ γ(U IT

R −LIT
R )≤U IT

R , ZI
R(x)+

γ

ρ
(U IT

R −LIT
R )≤U IT

R ,

ZI
R(x)+ζ (U II

R −LII
R )≥U II

R , ZI
R(x)+

ζ

ρ
(U II

R −LII
R )≥U II

R ,

ZI
R(x)− τ(U IF

R −LIF
R )≤ LIF

R , ZI
R(x)−

τ

ρ
(U IF

R −LIF
R )≤U IF

R

γ ≥ ζ , γ ≥ τ, 0 ≤ γ ≤ 1, 0 ≤ ζ ≤ 1, 0 ≤ τ ≤ 1
constraints (12) to (15).

Here R=1,2,3 and γ,ζ ,τ represents the degree of truth, indeterminacy and falsity respec-
tively.
Step (8) Use GAMS software to solve Model 3 to find the efficient solution.
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5. NUMERICAL ILLUSTRATION

The construction company intends to convey the materials from two distinct factories
to two separate building sites by employing two distinct types of vehicles (V) via two
distinct routes (Paths(P)). The objective of the decision makers is to determine the quantity
of product transportation by minimizing transportation expenses, duration, and carbon
emissions. The problem’s foundation is determined by referencing [26], and we analyze
it inside a framework of interval-valued trapezoidal neutrosophic conditions. Approach
the topic from a neutrosophic perspective, allowing decision makers to thoroughly assess
their ideas from all potential angles, encompassing positive, negative and neutral aspects.
The interval-valued trapezoidal neutrosophic fuzzy (IVTNF) transportation cost are given
in Table 1. The IVTNF fixed cost, IVTNF carbon emission, IVTNF transportation time,
IVTNF supply and IVTNF demand are displayed in Table 2, 3 and 4 and 5 respectively.

Table 1: Interval-valued trapezoidal neutrosophic fuzzy transportation cost
j → V c IVTNF tranportation cost (CN

i jkp)

i ↓ - P r D1 D2

So
ur

ce
s

1 1-1 (3,5,6,8); [0.8,1.0]; [0.2,0.4]; [0.1,0.3] (5,6,7,8); [0.8,1.0]; [0.0,0.2]; [0.1,0.3]
1-2 (2,4,6,9); [0.6,0.8]; [0.1,0.3]; [0.0,0.2] (4,6,9,11); [0.8,1.0]; [0.1,0.3]; [0,0.2]
2-1 (4,5,6,7); [0.7,0.9]; [0.1,0.3]; [0.0,0.2] (2,5,6,9); [0.6,0.8]; [0.2,0.4]; [0.0,0.2]
2-2 (5,7,9,11); [0.7,0.9]; [0.2,0.4]; [0.1,0.3] (4,6,9,11); [0.8,1.0]; [0.1,0.3]; [0,0.2]

So
ur

ce
s

2 1-1 (5,9,11,13); [0.7,0.9]; [0.1,0.3]; [0,0.2] (7,9,11,13); [0.8,1.0]; [0,0.2]; [0.2,0.4]
1-2 (6,7,8,9); [0.7,0.9]; [0.2,0.4]; [0,0.2] (6,8,10,12); [0.6,0.8]; [0.2,0.4]; [0.1, .3]
2-1 (2,3,5,7); [0.6,0.8]; [0.1,0.3]; [0,0.2] (3,4,5,6); [0.6,0.8]; [0,0.2]; [0.2,0.4]
2-2 (4,6,8,10); [0.7,0.9]; [0.0,0.2]; [0.1,0.3] (4,5,6,8); [0.7,0.9]; [0.0,0.2]; [0.2,0.4]

Table 2: Interval-valued trapezoidal neutrosophic fuzzy fixed cost
j → V c IVTNF fixed cost (FN

i jkp)

i ↓ - P r D1 D2

So
ur

ce
s

1 1-1 (2,3,4,5); [0.8,1.0]; [0.1,0.3]; [0.0,0.2] (5,6,7,8); [0.6,0.8]; [0.2,0.4]; [0.0,0.2]
1-2 (3,5,7,8); [0.6,0.8]; [0.1,0.3]; [0.2,0.4] (6,7,8,9); [0.6,0.8]; [0.1,0.3]; [0.1,0.3]
2-1 (4,5,6,8); [0.7,0.9]; [0.1,0.3]; [0.1,0.3] (3,4,5,6); [0.6,0.8]; [0.0,0.2]; [0.0,0.2]
2-2 (3,4,5,6); [0.7,0.9]; [0.0,0.2]; [0.1,0.3] (4,5,6,7); [0.7,0.9]; [0.2,0.4]; [0.0,0.2]

So
ur

ce
s

2 1-1 (6,7,8,10); [0.7,0.9]; [0.0,0.2]; [0.0,0.2] (3,5,7,10); [0.8,1.0]; [0.0,0.2]; [0.0,0.2]
1-2 (5,7,8,10); [0.6,0.8]; [0.1,0.3]; [0.0,0.2] (5,6,7,9); [0.8,1.0]; [0.1,0.3]; [0.0,0.2]
2-1 (4,5,7,9); [0.6,0.8]; [0.1,0.3]; [0,0.2] (4,5,7,9); [0.7,0.9]; [0.1,0.3]; [0.0,0.2]
2-2 (4,6,7,8); [0.7,0.9]; [0.1,0.3]; [0.2,0.4] (5,6,7,9); [0.7,0.9]; [0.2,0.4]; [0.1,0.3]

Table 3: Interval-valued trapezoidal neutrosophic fuzzy carbon emission
j → V c IVTNF carbon emission (PN

i jkp)

i ↓ - P r D1 D2

So
ur

ce
s

1 1-1 (7,8,9,10); [0.7,0.9]; [0.1,0.3]; [0.0,0.2] (4,5,6,7); [0.6,0.8]; [0.1,0.3]; [0.1,0.3]
1-2 (6,7,8,9); [0.6,0.8]; [0.0,0.2; [0.1,0.3] (5,6,8,9); [0.7,0.9]; [0.1,0.3]; [0.1,0.3]
2-1 (5,6,7,8); [0.8,1.0]; [0.2,0.4]; [0.1,0.3] (3,5,7,9); [0.7,0.9]; [0.1,0.3]; [0.2,0.4]
2-2 (6,7,9,10); [0.7,0.9]; [0.2,0.4]; [0.1,0.3] (5,6,7,10); [0.6,0.8]; [0.0,0.2]; [0.0,0.2]

So
ur

ce
s

2 1-1 (7,9,10,11); [0.7,0.9]; [0.1,0.3]; [0.2,0.4] (3,4,6,7); [0.7,0.9]; [0.0,0.2]; [0.1,0.3]
1-2 (3,5,7,8); [0.7,0.9]; [0.0,0.2]; [0.0,0.2] (4,5,7,10); [0.7,0.9]; [0.1,0.3]; [0.2,0.4]
2-1 (6,7,8,9); [0.8,1.0]; [0.1,0.3]; [0.1,0.3] (5,6,9,10); [0.6,0.8]; [0.1,0.3]; [0.1,0.3]
2-2 (3,4,6,9); [0.8,1.0]; [0.0,0.2]; [0.0,0.2] (4,6,8,10); [0.6,0.8]; [0,0.2]; [0,0.2]
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Table 4: Interval-valued trapezoidal neutrosophic fuzzy transportation time
j → V c IVTNF transportation time (T N

i jkp)

i ↓ - P r D1 D2

So
ur

ce
s

1 1-1 (3,5,7,11); [0.6,0.8]; [0.2,0.4]; [0.0,0.2] (3,4,6,8); [0.6,0.8]; [0.0,0.2]; [0.0,0.2]
1-2 (4,5,6,8); [0.7,0.9]; [0.2,0.4; [0.2,0.4] (7,9,10,11); [0.6,0.8]; [0.2,0.4; [0.2,0.4]
2-1 (5,7,9,12); [0.7,0.9]; [0.1,0.3]; [0.1,0.3] (5,6,7,8); [0.7,0.9]; [0.1,0.3]; [0.1,0.3]
2-2 (6,7,9,10); [0.7,0.9]; [0.2,0.4]; [0.1,0.3] (7,9,10,12); [0.7,0.9]; [0.0,0.2]; [0.1,0.3]

So
ur

ce
s

2 1-1 (4,6,8,10); [0.6,0.8]; [0.2,0.4]; [0.1,0.3] (2,5,7,9); [0.8,1.0]; [0.1,0.3]; [0.1,0.3]
1-2 (3,5,7,9); [0.7,0.9]; [0.0,0.2]; [0.1,0.3] (3,6,8,9); [0.8,1.0]; [0.0,0.2]; [0.0,0.2]
2-1 (3,5,7,8); [0.7,0.9]; [0.1,0.3]; [0.0,0.2] (3,4,7,9); [0.7,0.9]; [0,0.2]; [0,0.2]
2-2 (4,6,7,9); [0.6,0.8]; [0.2,0.4]; [0.1,0.3] (4,5,6,7); [0.6,0.8]; [0.1,0.3]; [0.1,0.3]

Table 5: Interval-valued trapezoidal neutrosophic availability and demand and its corresponding
interval form

i AN
i AI

i j DN
j DI

j
1 (5,7,9,11); [0.8,1.0]; [0.0,0.2]; ⟨8,1⟩ 1 (4,6,8,9); [0.6,0.8]; [0.0,0.2]; ⟨7.33,1⟩

[0.0,0.2] [0.1,0.3]
2 (6,8,10,12); [0.7,0.9]; [0.0,0.2]; ⟨9,1⟩ 2 (5,6,7,8); [0.8,1.0]; [0.1,0.3]; ⟨6.5,0.5⟩

[0.1,0.3] [0.0,0.2]

The IVTNF conveyance and its corresponding conversion to interval numbers are
given in Table 6. The distances of each routes in real form and its interval form are avail-
able in Table 7. Using section 3.3.2, Model 1 is transformed into Model 2 by converting
the IVTNF parameters into interval numbers and it is given in Table 8.

Table 6: Interval-valued trapezoidal neutrosophic conveyance (Vehicle k) and its corresponding
interval form

k EN
k1 EI

k1 k EN
k2 EI

k2
1 (3,5,6,8);[0.6,0.8];[0.2,0.4]; ⟨5.5,0.3⟩ 1 (4,5,6,7);[0.8,1.0];[0.0,0.2]; ⟨5.5,0.5⟩

;[0.1,0.3] ;[0.1,0.3]
2 (4,6,7,9);[0.7,0.9];[0.1,0.3]; ⟨6.5,0.3⟩ 2 (5,7,8,10);[0.7,0.9];[0.0,0.2]; ⟨7.5,0.5⟩

[0.1,0.3] [0.1,0.3]

Table 7: Distance of routes in real and its corresponding interval form
Availability (i) Demand (j) Li j1 LI

i j1 Li j2 LI
i j2

1 1 12 ⟨12,0⟩ 34 ⟨34,0⟩
2 18 ⟨18,0⟩ 56 ⟨56,0⟩

2 1 45 ⟨45,0⟩ 16 ⟨16,0⟩
2 37 ⟨37,0⟩ 48 ⟨48,0⟩
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Table 8: Transportation cost(CI
i jkp), fixed cost(F I

i jkp), carbon emission(PI
i jkp) and transportation

time(T I
i jkp) in interval form

j → Vehicle c CI
i jkp F I

i jkp
i ↓ - Path r D1 D2 D1 D2

So
ur

ce
s

1 V1-P1 ⟨5.50,0.50⟩ ⟨6.50,0.50⟩ ⟨3.50,0.50⟩ ⟨6.50,0.50⟩
V1-P2 ⟨4.67,1⟩ ⟨7.50,1.50⟩ ⟨6.33,0.83⟩ ⟨7.50,0.39⟩
V2-P1 ⟨5.50,0.50⟩ ⟨5.50,0.50⟩ ⟨5.29,0.33⟩ ⟨4.50,0.50⟩
V2-P2 ⟨8,0.78⟩ ⟨7.50,1.50⟩ ⟨4.50,0.50⟩ ⟨5.50,0.50⟩

So
ur

ce
s

2 V1-P1 ⟨10.43,1⟩ ⟨10,1⟩ ⟨7.29,0.50⟩ ⟨5.88,1⟩
V1-P2 ⟨7.50,0.50⟩ ⟨9,0.78⟩ ⟨7.50,0.50⟩ ⟨6.38,050⟩
V2-P1 ⟨3.67,1⟩ ⟨4.50,0.50⟩ ⟨5.67,1⟩ ⟨5.79,1⟩
V2-P2 ⟨7,1⟩ ⟨5.29,0.50⟩ ⟨6.71,0.33⟩ ⟨6.29,0.33⟩

j → Vehicle c (PI
i jkp) (T I

i jkp)

i ↓ - Path r D1 D2 D1 D2

So
ur

ce
s

1 V1-P1 ⟨8.50,0.50⟩ ⟨5.50,0.39⟩ ⟨5.33,1⟩ ⟨4.67,1⟩
V1-P2 ⟨7.50,0.50⟩ ⟨7,0.89⟩ ⟨5.29,0.33⟩ ⟨9.83,0.13⟩
V2-P1 ⟨6.50,0.50⟩ ⟨6,0.78⟩ ⟨7.79,0.72⟩ ⟨6.50,0.39⟩
V2-P2 ⟨8,0.89⟩ ⟨5.83,0.50⟩ ⟨8,1⟩ ⟨9.50,0.50⟩

So
ur

ce
s

2 V1-P1 ⟨9.71,0.33⟩ ⟨5,1⟩ ⟨7,0.78⟩ ⟨6.13,1⟩
V1-P2 ⟨6.21,1⟩ ⟨5.57,0.78⟩ ⟨6,1⟩ ⟨7.25,1⟩
V2-P1 ⟨7.50,0.50⟩ ⟨7.5,1.39⟩ ⟨6.21,1⟩ ⟨5.29,1.50⟩
V2-P2 ⟨4.75,1⟩ ⟨7,1⟩ ⟨6.50,0.28⟩ ⟨5.50,0.39⟩

5.1. Problem Discussion

First check whether the problem is balanced or not i.e., ∑
m
i=1 AI

i =∑
n
j=1 BI

j =∑
c
k=1 ∑

r
p=1 EI

kp.
From Table 6 & 7, ∑

m
i=1 AI

i = ⟨17,1⟩ and ∑
n
j=1 BI

j = ⟨13.83,1⟩. Hence ∑
m
i=1 AI

i > ∑
n
j=1 BI

j.
Then by step 2 (case (iii)), increase the total interval demand by ⟨3.17,1⟩. Therefore,
∑

m
i=1 AI

i = ⟨17,1⟩ = ∑
n
j=1 BI

j. Also, the total conveyances is given as ∑
c
k=1 ∑

r
p=1 EI

kp =

⟨25,0.5⟩. Hence by step (3), T = ⟨17,1⟩. Therefore, ∑
m
i=1 AI

i = ∑
n
j=1 BI

j < ∑
c
k=1 ∑

r
p=1 EI

kp.
Hence by step 3, subcase (ii (a)), increase the total interval demand that already added by
⟨8,1⟩. And introduce dummy interval source and its interval availability as ⟨8,1⟩. Hence
the problem is balanced. i.e., ∑

m
i=1 AI

i = ∑
n
j=1 BI

j = ∑
c
k=1 ∑

r
p=1 EI

kp = ⟨25,1⟩.
Since new interval dummy source and dummy destination are introduced, assume

CI
3 jkp and CI

i3kp, where i, j = 1,2,3 and k, p = 1,2.

Now the problem can be written as

Minimize ZI
1 =

〈
66,0.5

〉
xI

1111 +
〈
66,0.5

〉
xI

1121 +
〈
158.78,1

〉
xI

1112

+
〈
272,0.78

〉
xI

1122 +
〈
117,0.5

〉
xI

1211 +
〈
99,0.50

〉
xI

1221 +
〈
420,1.50

〉
xI

1212

+
〈
420,1.50

〉
xI

1222 +
〈
469.35,1

〉
xI

2111 +
〈
165.15,1

〉
xI

2121 +
〈
120,0.50

〉
xI

2112

+
〈
112,1

〉
xI

2122 +
〈
370,1

〉
xI

2211 +
〈
166.5,0.5

〉
xI

2221 +
〈
432,0.78

〉
xI

2212

+
〈
258.9,0.5

〉
xI

2222 +
〈
95.13,1

〉
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Minimize ZI
2 =

〈
63.96,1

〉
xI

1111 +
〈
93.48,0.72

〉
xI

1121 +
〈
179.86,0.33

〉
xI

1112

+
〈
272,1

〉
xI

1122 +
〈
84.06,1

〉
xI

1211 +
〈
117,0.39

〉
xI

1221 +
〈
550.48,0.13

〉
xI

1212

+
〈
532,0.5

〉
xI

1222 +
〈
315,0.78

〉
xI

2111 +
〈
279.45,1

〉
xI

2121 +
〈
96,1

〉
xI

2112

+
〈
104,0.28

〉
xI

2122 +
〈
226.81,1

〉
xI

2211 +
〈
195.73,1.50

〉
xI

2221 +
〈
348,1

〉
xI

2212

+
〈
264,0.39

〉
xI

2222

Minimize ZI
3 =

〈
102,0.5

〉
xI

1111 +
〈
78,0.5

〉
xI

1121 +
〈
255,0.5

〉
xI

1112

+
〈
272,0.89

〉
xI

1122 +
〈
99,0.39

〉
xI

1211 +
〈
108,0.78

〉
xI

1221 +
〈
392,0.89

〉
xI

1212

+
〈
326.5,0.5

〉
xI

1222 +
〈
436.95,0.3

〉
xI

2111 +
〈
337.5,0.5

〉
xI

2121 +
〈
99.36,1

〉
xI

2112

+
〈
76,1

〉
xI

2122 +
〈
185,1

〉
xI

2211 +
〈
277.5,1.39

〉
xI

2221 +
〈
267.36,0.78

〉
xI

2212

+
〈
336,1

〉
xI

2222

subject to

xI
1111 + xI

1112 + xI
1121 + xI

1122 + xI
1211 + xI

1212 + xI
1221 + xI

1222 + xI
1311

+ xI
1312 + xI

1321 + xI
1322 =

〈
8,1

〉
xI

2111 + xI
2112 + xI

2121 + xI
2122 + xI

2211 + xI
2212 + xI

2221 + xI
2222 + xI

2311

+ xI
2312 + xI

2321 + xI
2322 =

〈
9,1

〉
xI

3111 + xI
3112 + xI

3121 + xI
3122 + xI

3211 + xI
3212 + xI

3221 + xI
3222 + xI

3311

+ xI
3312 + xI

3321 + xI
3322 =

〈
8,1

〉
xI

1111 + xI
1112 + xI

1121 + xI
1122 + xI

2111 + xI
2112 + xI

2121 + xI
2122 + xI

3111

+ xI
3112 + xI

3121 + xI
3122 =

〈
7.33,1

〉
xI

1211 + xI
1212 + xI

1221 + xI
1222 + xI

2211 + xI
2212 + xI

2221 + xI
2222 + xI

3211

+ xI
3212 + xI

3221 + xI
3222 =

〈
6.5,0.5

〉
xI

1311 + xI
1312 + xI

1321 + xI
1322 + xI

2311 + xI
2312 + xI

2321 + xI
2322 + xI

3311 + xI
3312

+ xI
3321 + xI

3322 =
〈
11.17,1

〉
xI

1111 + xI
1211 + xI

1311 + xI
2111 + xI

2211 + xI
2311 + xI

3111 + xI
3211 + xI

3311 =
〈
5.5,0.3

〉
xI

1112 + xI
1212 + xI

1312 + xI
2112 + xI

2212 + xI
2312 + xI

3112 + xI
3212 + xI

3312 =
〈
5.5,0.5

〉
xI

1121 + xI
1221 + xI

1321 + xI
2121 + xI

2221 + xI
2321 + xI

3121 + xI
3221 + xI

3321 =
〈
6.5,0.3

〉
xI

1122 + xI
1222 + xI

1322 + xI
2122 + xI

2222 + xI
2322 + xI

3122 + xI
3222 + xI

3322 =
〈
7.5,0.5

〉
xI

i jkp ≥ 0I ∀ i, j = 1,2,3 & k, p = 1,2.

Use step 4, to solve the problem individually and obtain the solution as

X I
1 =⇒


xI

1121 = ⟨5.83,1.50⟩, xI
1322 = ⟨2.17,1.50⟩, xI

2312 = ⟨3,1.50⟩,
xI

2321 = ⟨0.67,1.50⟩, xI
2322 = ⟨5.33,1.50⟩, xI

3112 = ⟨1.5,1.50⟩,
xI

3211 = ⟨5.5,1.50⟩, xI
3212 = ⟨1,1.50⟩ and ZI

1 = ⟨479.91,1.50⟩.
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X I
2 =⇒


xI

1111 = ⟨5.5,1.50⟩, xI
1121 = ⟨0.33,1.50⟩, xI

1322 = ⟨2.17,1.50⟩,
xI

2321 = ⟨3.67,1.50⟩, xI
2322 = ⟨5.33,1.50⟩, xI

3121 = ⟨1.5,1.50⟩,
xI

3212 = ⟨5.5,1.50⟩, xI
3221 = ⟨1,1.50⟩ and ZI

2 = ⟨382.63,1.50⟩

X I
3 =⇒


xI

2122 = ⟨5.83,1.39⟩, xI
1321 = ⟨6.33,1.39⟩, xI

1322 = ⟨1.67,1.39⟩,
xI

2312 = ⟨3,1.39⟩, xI
2321 = ⟨0.17,1.39⟩, xI

3112 = ⟨1.5,1.39⟩,
xI

3211 = ⟨5.5,1.39⟩, xI
3212 = ⟨1,1.39⟩ and ZI

3 = ⟨443.08,1.39⟩

By step 5, the pay-off matrix is framed as follows.


ZI

1 ZI
2 ZI

3
X I

1
〈
479.91,1.50

〉 〈
544.99,1.50

〉 〈
454.74,1.50

〉
X I

2
〈
479.91,1.50

〉 〈
382.63,1.50

〉 〈
586.74,1.50

〉
X I

3
〈
748.09,1.50

〉 〈
606.32,1.50

〉 〈
443.08,1.39

〉


Based on step 5, For each objective function, find the lower and upper bounds of all the
three membership functions. Assume the value for s & t as 0.2 and it is shown below.



R = 1 R = 2 R = 3
LIT

R
〈
479.91,1.50

〉 〈
382.63,1.50

〉 〈
443.08,1.39

〉
U IT

R
〈
748.09,1.50

〉 〈
606.32,1.50

〉 〈
586.74,1.50

〉
LII

R
〈
479.91,1.50

〉 〈
382.63,1.50

〉 〈
443.08,1.39

〉
U II

R
〈
533.55,1.50

〉 〈
427.37,1.50

〉 〈
471.81,1.50

〉
LIF

R
〈
533.55,1.50

〉 〈
427.37,1.50

〉 〈
471.81,1.50

〉
U IF

R
〈
748.09,1.50

〉 〈
606.32,1.50

〉 〈
586.74,1.50

〉


Now using step 6, Model 2 can be converted into Model 3 for the problem is given as
follows.

Maximize γ −ζ − τ

subject to

ZI
1(x)+ γ⟨268.18,1.50⟩ ≤ ⟨748.09,1.50⟩, ZI

1(x)+
γ

ρ
⟨268.18,1.50⟩ ≤ ⟨748.09,1.50⟩,

ZI
1(x)+ζ ⟨53.64,1.50⟩ ≥ ⟨533.55,1.50⟩, ZI

1(x)+
ζ

ρ
⟨53.64,1.50⟩ ≥ ⟨533.55,1.50⟩

ZI
1(x)− τ⟨214.54,1.50⟩ ≤ ⟨533.55,1.50⟩, ZI

1(x)−
τ

ρ
⟨214.54,1.50⟩ ≤ ⟨533.55,1.50⟩

ZI
2(x)+ γ⟨223.69,1.50⟩ ≤ ⟨606.32,1.50⟩, ZI

2(x)+
γ

ρ
⟨223.69,1.50⟩ ≤ ⟨606.32,1.50⟩

ZI
2(x)+ζ ⟨44.74,1.50⟩ ≥ ⟨427.37,1.50⟩, ZI

2(x)+
ζ

ρ
⟨44.74,1.50⟩ ≥ ⟨427.37,1.50⟩

ZI
2(x)− τ⟨178.95,1.50⟩ ≤ ⟨427.37,1.50⟩, ZI

2(x)−
τ

ρ
⟨178.95,1.50⟩ ≤ ⟨427.37,1.50⟩
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ZI
3(x)+ γ⟨143.66,1.50⟩ ≤ ⟨586.74,1.50⟩, ZI

3(x)+
γ

ρ
⟨143.66,1.50⟩ ≤ ⟨586.74,1.50⟩

ZI
3(x)+ζ ⟨28.73,1.50⟩ ≥ ⟨471.81,1.50⟩, ZI

3(x)+
ζ

ρ
⟨28.73,1.50⟩ ≥ ⟨471.81,1.50⟩

ZI
3(x)− τ⟨114.93,1.50⟩ ≤ ⟨471.81,1.50⟩, ZI

3(x)−
τ

ρ
⟨114.93,1.50⟩ ≤ ⟨471.81,1.50⟩

γ ≥ ζ , γ ≥ τ, 0 ≤ γ ≤ 1, 0 ≤ ζ ≤ 1, 0 ≤ τ ≤ 1
constraints (12) to (15)

According to step 7, we addressed the above problem using GAMS software and achieved
the effective solution, which is presented in Table 9.

Table 9: Optimal solution in inteval form(Mid-point and width)
Optimal solution (Model 3) Transportation cost Transportation time Carbon emission

xI
1111 = ⟨2.3935,1.50⟩

xI
1121 = ⟨2.2705,1.50⟩ ⟨533.73,1.50⟩ ⟨486.74,1.50⟩ ⟨509.76,1.50⟩

xI
2122 = ⟨1.1661,1.50⟩

Table 10: Comparison Table
Transportation cost Transportation time Carbon emission

Proposed method [532.23, 535.23] [485.24, 488.24] [508.26, 511.26]
[26] [Interval-valued NP] 785.55 823.14 734.43

[26] [Interval-valued PHFP] 969.97 951.21 848.55
[24] [NCPA] 948.07 892.97 872.46

Figure 2: Comparison of the optimal solution between the proposed method and the existing
methods

6. SENSITIVITY ANALYSIS

Sensitivity analysis is a technique employed to analyze how the input values impact
the output of the proposed model. It is used to understand the robustness of the model and
its results produced by the suggested method. In the proposed interval-valued trapezoidal
neutrosophic fuzzy programming approach using interval numbers, we have used three
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decision variables s, t ∈ (0,1) & ρ ∈ [0,1]. And these decision variables are analyzed in
three ways as given below.
(i) Both s & t took same values in (0,1) and ρ = 0.9 (fixed), for example, s, t ∈
(0,1) & ρ = 0.9.
(ii) Both s, t took same values in (0,1) and ρ ∈ [0,1], for example, s, t = 0.1 & ρ ∈ [0,1].
(iii) s & t took different values in (0,1) and ρ ∈ [0,1]. For example, s = 0.1, t = 0.8 & ρ ∈
[0,1].
In case (i), we have obtained the following interval transportation cost, time and carbon

emission.
If s, t = 0.1 & ρ = 0.9, then ZI

1 = ⟨506.74,1.50⟩, ZI
2 = ⟨483.98,1.50⟩ & ZI

3 = ⟨508.19,1.50⟩.
If s, t = 0.2 & ρ = 0.9, then ZI

1 = ⟨533.73,1.50⟩, ZI
2 = ⟨486.74,1.50⟩

& ZI
3 = ⟨509.76,1.50⟩.

If s, t = 0.3 & ρ = 0.9, then ZI
1 = ⟨560.36,1.50⟩,

ZI
2 = ⟨489.22,1.50⟩ & ZI

3 = ⟨511.54,1.50⟩.
If s, t = 0.4 & ρ = 0.9, then ZI

1 = ⟨587.18,1.50⟩, ZI
2 = ⟨491.85,1.50⟩ & ZI

3 = ⟨513.22,1.50⟩.
If s, t = 0.5 & ρ = 0.9, then ZI

1 = ⟨614.01,1.50⟩, ZI
2 = ⟨494.48,1.50⟩

& ZI
3 = ⟨514.91,1.50⟩.

If s, t = 0.6 & ρ = 0.9, then ZI
1 = ⟨640.82,1.50⟩, ZI

2 = ⟨516.85,1.50⟩ & ZI
3 = ⟨529.28,1.50⟩.

If s, t = 0.7 & ρ = 0.9, then ZI
1 = ⟨667.63,1.50⟩, ZI

2 = ⟨539.20,1.50⟩ & ZI
3 = ⟨543.63,1.50⟩.

If s, t = 0.8 & ρ = 0.9, then ZI
1 = ⟨694.47,1.50⟩, ZI

2 = ⟨561.59,1.50⟩ & ZI
3 = ⟨558.02,1.50⟩.

If s, t = 0.9 & ρ = 0.9, then ZI
1 = ⟨721.27,1.50⟩, ZI

2 = ⟨583.96,1.50⟩ & ZI
3 = ⟨572.38,1.50⟩.

The above effective solutions are displayed graphically in Figure 3, 4 and 5.
In case (ii), we attained the solutions are as same as case (i) for all ρ ∈ [0,1]. From this,
we observed that, if s & t both chosen as same value, we got the same solution for all
ρ ∈ [0,1].
For case (iii), different values for s & t are chosen randomly and checked with all ρ ∈
[0,1].
For example, if s = 0.1, t = 0.8, for ρ = 0 we obtained ZI

1 = ⟨506.73,1.50⟩, ZI
2 =

⟨561.6,1.50⟩ & ZI
3 = ⟨483.6,1.50⟩ and for the remaining ρ values, the solutions are

ZI
1 = ⟨506.73,1.50⟩, ZI

2 = ⟨483.94,1.50⟩ & ZI
3 = ⟨508.20,1.50⟩.

If s = 0.6, t = 0.8, then the solution for ρ = 0 is ZI
1 = ⟨640.84,1.50⟩, ZI

2 = ⟨561.6,1.50⟩
& ZI

3 = ⟨551.20,1.50⟩ and the remaining solutions for ρ ∈ (0,1] are
ZI

1 = ⟨640.83,1.50⟩, ZI
2 = ⟨516.85,1.50⟩ & ZI

3 = ⟨529.29,1.50⟩.
If s = 0.8, t = 0.1, for ρ = 0,0.1 we have ZI

1 = ⟨694.5,1.50⟩, ZI
2 = ⟨561.59,1.50⟩

& ZI
3 = ⟨558,1.50⟩. And for remaining ρ values, the solution is ZI

1 = ⟨614,1.50⟩,
ZI

2 = ⟨494.47,1.50⟩ & ZI
3 = ⟨514.91,1.50⟩

If s = 0.8, t = 0.6, for ρ = 0.1 we have ZI
1 = ⟨640.8,1.50⟩, ZI

2 = ⟨514.1,1.50⟩
& ZI

3 = ⟨525,1.50⟩. And for remaining ρ=0,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9,1, the solution
is ZI

1 = ⟨640.8,1.50⟩, ZI
2 = ⟨516.9,1.50⟩ & ZI

3 = ⟨529.3,1.50⟩. The above obtained solu-
tions are displayed graphically in Figure 6, 7 & 8. From the above analysis, we observed
that for all combination of parameters s, t & ρ , the interval transportation time, interval
transportation cost and interval carbon emission are obtained minimum when compared
to the existing methods [26] & [24].
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Figure 3: Transportation cost obtained using same values of s, t ∈ (0,1) and ρ ∈ [0,1]
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Figure 4: Transportation time obtained using same values of s, t ∈ (0,1) and ρ ∈ [0,1]
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Figure 5: Carbon emission obtained using same values of s, t ∈ (0,1) and ρ ∈ [0,1]
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Figure 6: Transportation cost obtained using different values of s, t ∈ (0,1) and ρ ∈ [0,1]
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Figure 7: Transportation time obtained using different values of s, t ∈ (0,1) and ρ ∈ [0,1]
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Figure 8: Carbon emission obtained using different values of s, t ∈ (0,1) and ρ ∈ [0,1]

7. ADVANTAGES OF THE PROPOSED APPROACH
• The authors in [26] define the parameters of the multi-objective multi-item trans-

portation problem as single-valued trapezoidal neutrosophic fuzzy numbers.
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• They classified the neutrosophic transportation problem into five models in order to
achieve the optimal solution through the application of neutrosophic programming
approach.

• They employ three models to transform the supplied neutrosophic problem into an
interval problem, also they assumed the situation to be imbalanced.

• The parameters analyzed in our article are represented as interval-valued trape-
zoidal neutrosophic fuzzy numbers. Analyzing trapezoidal fuzzy numbers with
interval truth, interval indeterminacy and interval falsity are desirable and efficient.

• Our proposed solution instantly transforms the unbalanced problem into a balanced
one. Balanced transportation problems can depict situations where resources are
appropriately aligned with demand, resulting in potentially enhanced stability and
efficiency in logistics.

• Furthermore, our proposed solution utilizes a single model (Model 2) to transform
the original problem into an interval problem.

• In addition, we achieve a more effective solution compared to the one provided by
[26] as seen in Table 10. Figure 2 provides a graphical representation of it.

• Moreover, sensitivity analysis provides more valid to the proposed programming
based on interval numbers in neutrosophic environment with interval-valued trape-
zoidal numbers as parameters.

8. CONCLUSION AND PROSPECTS FOR FURTHER RESEARCH
This article discusses the multi-objective multi-item solid transportation issue in a

neutrosophic environment, using interval-valued trapezoidal neutrosophic numbers as pa-
rameters. We utilize the interval-valued trapezoidal neutrosophic fuzzy programming
approach to tackle the problem. The originality of this study is in the utilization of in-
terval numbers, as alternative to crisp numbers, to address the situation at hand. We con-
ducted a validation of our suggested approach by solving an example, and we achieved
a very efficient solution when comparing it to the solutions presented in the references
[26] and [24]. The comparison of transportation cost, time, and carbon emission with
the existing techniques is clearly presented in Table 10 using interval numbers. Compar-
ing the mid-point of the transportation cost, time, and carbon emission of the suggested
approach with interval-valued pythagorean hesitant fuzzy programming, interval-valued
neutrosophic programming, and neutrosophic compromise programming approach is also
shown in Figure 2. Finally, the problem is analyzed for the parameters s, t & ρ and results
are represented graphically in Figure 3 to 8. In future study, metaheuristic methodolo-
gies such as genetic algorithm and simulated annealing will be employed for constructing
and developing algorithms to solve problems involving interval numbers. The purpose
of this study is to improve the algorithmic efficacy, practical applicability, and theoreti-
cal foundation of solutions for the multi-objective, multi-item interval-valued trapezoidal
neutrosophic transportation problem by employing interval numbers.
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