
 

Yugoslav Journal of Operations Research 

# (20##), Number #, #-# 

DOI: https://doi.org/10.2298/YJOR250115026G 

 

Research article 

UNIFIED NEURAL NETWORK ENSEMBLE FOR 

ACCURATE BREAST CANCER CLASSIFICATION WITH 

ENGINEERED FEATURES 

Yunus Emre GÖKTEPE* 

Department of Computer Engineering, Necmettin Erbakan University, 

Konya, 42370, Turkey 

ygoktepe@erbakan.edu.tr, ORCID: 0000-0002-8252-2616 

Received: January 2025 / Accepted: June 2025 

Abstract: This study presents the Unified Neural Network Ensemble for Breast Cancer 

Classification (UNNEBC), a novel ensemble model designed for breast cancer classification. 

An ensemble learning approach based on Convolutional Neural Networks (CNN) was used to 

improve the classification performance by utilizing three CNN models with different 

architectures and two fully connected dense networks. To enrich the dataset and improve 

classification performance, new features named Radius_Texture_Diff, Feature_Std_Dev, and 

Feature_Variance have been introduced. Radius_Texture_Diff captures the difference 

between the radius and texture features, potentially highlighting abnormalities in tumor shape 

and surface characteristics. Feature_Std_Dev represents the standard deviation of all features, 

providing a measure of variability within each tumor sample. Feature_Variance quantifies the 

variance across all features. By incorporating these features alongside the original dataset, we 

aim to enrich the feature space and enhance the model’s ability to capture complex tumor 

patterns. The model was evaluated using the UCI breast cancer dataset and achieved an 

outstanding accuracy of 99.42%. It also showed strong performance in metrics such as 

specificity and sensitivity. The UNNEBC model tackles significant challenges in breast cancer 

classification, such as unequal class distribution and data variability. By using ensemble 

learning and integrating XGBoost as a meta-learner, the model leverages the strengths of 

individual networks and provides more reliable predictions. This study outperforms existing 

approaches. It also highlights the importance of feature engineering and ensemble learning in 

advancing breast cancer diagnosis. 
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1. INTRODUCTION 

Breast cancer remains to be a major contributor to cancer-related mortality among 

women globally, emphasizing the importance of early detection for improving survival 

rates and patient outcomes. According to recent global cancer statistics, breast cancer 

accounted for nearly 11.6% of newly diagnosed cancer cases in 2022, highlighting the 

urgency for developing efficient diagnostic tools that can reliably distinguish between 

benign and malignant cases [1]. While various diagnostic approaches, including 

mammography and histopathological examination, provide valuable insights, the 

variability in human interpretation and the high volume of cases necessitate robust 

automated systems for reliable classification. 

Recent progress in artificial intelligence (AI) has led to the development of 

sophisticated algorithms. These algorithms are capable of analyzing complex patterns in 

large datasets, making them suitable for medical diagnostics. Specifically, machine 

learning (ML) methods have proven their potential across various domains, with 

convolutional neural networks (CNNs) emerging as a cutting-edge approach for image and 

structured data classification [2]. CNNs offer the advantage of inherently discovering 

hierarchical features directly from raw data, reducing the reliance on extensive manual 

feature extraction. While CNNs have been predominantly utilized in image-based medical 

data, they also show promise in handling structured datasets, particularly when coupled 

with feature engineering methods [3]. 

The success of CNNs in cancer classification has been widely documented, with studies 

showing substantial improvements in diagnostic accuracy across various cancer types, 

including lung, skin, and breast cancer. However, a significant challenge of relying on a 

single CNN model lies in its tendency to overfit or underfit the data, especially in medical 

contexts where data imbalance and variance are common. Ensemble learning, which 

involves combining multiple models, offers a solution by aggregating predictions from 

multiple classifiers, thereby enhancing robustness, reducing bias, and capturing a broader 

spectrum of data patterns. 

Breakthroughs in deep learning have yielded significant progress in breast cancer 

detection and classification. CNNs have demonstrated remarkable effectiveness in 

analyzing mammographic images and structured data, showcasing substantial potential for 

accurate diagnosis [4], [5]. In particular, ensemble models that integrate multiple CNN 

architectures have been shown to enhance accuracy and robustness in breast cancer 

classification tasks [6], [7]. These models frequently leverage transfer learning and pre-

trained networks, which allow for improved performance, especially in cases where 

datasets are limited. Additionally, advanced feature engineering techniques along with the 

incorporation of diverse data types such as genetic markers, have further contributed to the 

precision of breast cancer predictions [8]. Although studies on the application of CNN-

based mammography analysis for breast cancer diagnosis are still in their infancy, they 

hold significant potential to improve clinical applications  and outcomes [4]. Current 

research attempts to address key challenges such as data imbalance, utilization of 

multimodal data, and development of more efficient neural architectures to further improve 

detection accuracy and patient follow-up [8]. 

Existing studies have made significant progress in the use of CNN-based and ensemble 

deep learning models in breast cancer classification. However, there are still some 

limitations that need to be addressed. Although existing methods are effective in certain 

cases, they have the risk of producing biased predictions, especially due to data imbalance 



 Y. E. Göktepe / Unified Neural Ensemble for Breast Cancer Classification 3 

[9]. To address this problem, an ensemble learning method supported by XGBoost as a 

meta-learner was used [10], [11], [12]. The ensemble model combines the predictions of 

multiple CNNs and dense networks. In this way, it reduces the biases of individual models 

and takes advantage of diverse feature representations. In addition, XGBoost’s mechanism 

allows minority class examples to be taken into account more in the training process by 

assigning higher weights to misclassified examples. This approach alleviates the data 

imbalance problem and increases the generalization ability of the model. In addition, the 

dependence on large labeled datasets poses a significant challenge due to the costly and 

time-consuming processing of medical images. In addition, existing models are not able to 

effectively integrate multimodal data or fully capture the complex and heterogeneous 

structure of cancerous tissues. These shortcomings highlight the need for innovative 

approaches with higher predictive accuracy, robustness, and generalizability. In this study, 

an innovative method is proposed that aims to overcome the limitations of existing methods 

and improve patient outcomes by increasing accuracy in breast cancer detection. 

This research leverages the strengths of multiple CNN models and dense networks to 

improve the classification performance. In this way, an ensemble approach called Unified 

Neural Network Ensemble for Breast Cancer Classification (UNNEBC) is proposed. The 

ensemble model combines three CNN architectures with two dense, fully connected 

networks. Additionally, new feature engineering techniques are incorporated to enrich the 

dataset and improve the classification performance. In particular, features such as 

radius_texture_diff, feature_std_dev, and feature_variance, each designed to highlight 

different tumor features, are introduced. These features are integrated with the CNN 

architectures. Thus, the model increases its capacity to accurately distinguish between 

benign and malignant samples by leveraging a richer representation of features. 

This research makes two important contributions. The first is the development of an 

ensemble CNN architecture adapted for structured breast cancer data. The other is the 

introduction of computational features that capture information in tumor features. 

Experimental studies have shown that the proposed ensemble model outperforms single 

CNN models and traditional machine learning classifiers in terms of accuracy, precision, 

and robustness. This work aims to provide a reliable, automated solution that can ultimately 

help clinicians make timely and accurate breast cancer diagnoses. Thus, it aims to 

contribute to the growing field of AI-enabled healthcare. Although deep learning models 

achieve successful results, a single CNN may have difficulty generalizing across different 

datasets. To overcome this problem, an ensemble model consisting of multiple CNNs can 

be used. By combining the predictions of different networks, a more accurate and robust 

classification is achieved. This method aims to provide a more balanced representation of 

the data by capturing different features to distinguish benign and malignant tumors.  

2. MATERIALS AND METHODS 

In this section, the structure of the proposed UNNEBC model is examined. The setup 

and the parts that make up the model are clearly introduced to show how the model works. 

Details of the techniques and methodologies employed in UNNEBC are given including 

data preprocessing, model architecture, ensemble learning, feature engineering, and 

evaluation metrics. 

The UNNEBC model leverages an ensemble approach, integrating multiple 

convolutional and dense neural networks to create a unified system aimed at enhancing 

breast cancer classification accuracy. By combining the strengths of various network 
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architectures, UNNEBC is designed to provide a more robust and reliable diagnosis, 

addressing common challenges such as data imbalance and feature variability. 

2.1. Problem Definition 

Breast cancer continues to be a major global health issue and is the most frequently 

diagnosed cancer in women, with significant implications for mortality and morbidity rates 

worldwide. Timely and accurate diagnosis is essential in distinguishing between benign 

and malignant breast tumors, an aspect that can greatly influence treatment pathways and 

patient prognosis. Traditional diagnostic methods, including mammography, ultrasound, 

and histopathology, provide valuable insights but are often limited by variability in 

interpretation among radiologists and pathologists. Moreover, these methods are time-

consuming. They are open to subjective bias, especially in cases where early-stage cancer 

symptoms are vague and difficult to distinguish. 

With these limitations, it is evident that computer-aided diagnostic (CAD) systems are 

required to assist healthcare professionals in making more accurate and consistent 

diagnoses [13]. AI, and more particularly ML, has provided strong tools for such an end, 

with potential for automated analysis of complex medical data. Of the many of these, 

Convolutional Neural Networks (CNNs) have emerged to be particularly useful in image 

and structured data classification owing to their power to learn raw data-based hierarchical 

features automatically [14]. However, despite their strengths, standalone CNN models are 

marred by a series of constraints in medicine. One of the challenges is single CNN model 

overfitting or underfitting due to high variance and class imbalance prevalent in cancer 

data sets. Two, CNNs can represent not only intricate relations but also may be lacking in 

their representational capability over structured clinical data, potentially interfering with 

diagnostic accuracy and generalizability [15]. 

An alternative solution could be ensemble learning, which has some of the inherent 

shortcomings of standalone CNN models circumvented through a combination of outputs 

from a multitude of models for maximizing aggregate performance. Ensemble methods are 

well-known for robustness enhancement alongside reduction in bias and variance of 

prediction models, thereby creating an enhanced diagnostic device. By exploiting the 

different perspectives of disparate CNN and dense network structures, ensemble learning 

has the ability to pick up on more subtle nuances of tumor characteristics better, providing 

a better and more comprehensive picture of the data. Even ensemble models, however, 

must be carefully crafted so that they are able to capture salient features that reflect the 

intrinsic biological characteristics of the disease. 

To further improve the robustness and interpretability of the ensemble model, feature 

engineering plays a critical role. Three new features—radius_texture_diff, 

feature_std_dev, and feature_variance—are developed here to enrich the dataset.  

They are tailored specifically to emphasize tumor features in ways that can differentiate 

between benign and malignant cases. These features were chosen because they correspond 

to known patterns of tumor morphology that can make the model more sensitive and 

specific in detecting malignant cases. 

Therefore, the problem addressed in this study is twofold: 

1. Model Reliability and Accuracy: There is a need to develop an ensemble model that 

can accurately and reliably differentiate between benign and malignant breast tumors. The 

model should not only be highly accurate in classification but also reliable for different 

patient groups and presentations of tumors. 
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2. Enhanced Feature Representation: Traditional CNNs have their limitations when 

expressing structured data in medical diagnosis. Thus, introducing engineered features 

based on tumor characteristics is designed to offer a more comprehensive input 

representation, enhancing the model’s diagnostic accuracy and make it more interpretable 

for medical professionals. 

2.2. Dataset 

The dataset that has been utilized for this study is devoted to the classification of breast 

cancer for the aim of distinguishing between benign and malignant instances of tumor 

cases. It is renowned UCI Breast Cancer Statistics Archive, generously provided from the 

Clinical Medicine Research Institute at the distinguished University of Wisconsin [16]. 

This dataset contains structured data representing various attributes of breast tumors, each 

of which reflects specific morphological and physical characteristics relevant to diagnosis. 

The features include measurements related to tumor size, shape, and texture, which are 

commonly used in clinical settings for cancer detection. 

The dataset consists of 569 samples in total as seen in Table 1, with each sample 

representing an individual tumor case. Each sample includes 32 features (columns) that 

provide quantitative descriptors of the tumor. 

Table 1: Explanation of numerical data related to the database. 

 Count Description 

Number of features 32 ID, diagnosis, and 30 variables 

Number of classes 2 benign / malignant 

Number of instances 569 b = 357 / m = 212 

 

These features can be generally divided into categories according to specific tumor 

characteristics. Radius refers to the average distance from the center to the points along the 

tumor's boundary, providing insights into the tumor's size. Texture measures the standard 

deviation of grayscale values, capturing variations in intensity across the tumor surface. 

Perimeter, area, and compactness relate to the tumor’s boundary and shape, revealing 

structural irregularities that may indicate malignancy. Lastly, symmetry and fractal 

dimension assess the tumor's symmetry and shape complexity, as irregularities in these 

measurements are often associated with malignancy. 

Since this data set is frequently used in scientific studies, it provides a good comparison 

opportunity for evaluating the proposed model [17]. Its extensive application in previous 

research provides a valuable benchmark, allowing for direct comparison of model 

performance and offering insights into advancements in breast cancer classification 

models. The feature-rich nature of the data, combined with the engineered attributes 

introduced here, aims to support precise and reliable model predictions, thereby 

contributing valuable insights into breast cancer diagnosis research. 

2.3. Data Preprocessing 

The dataset used in this study was preprocessed to ensure it was suitable for input into 

machine learning models. Initially, to facilitate efficient and stable training, all feature 

columns were scaled using the StandardScaler to standardize the dataset and improve 

convergence during model training.  

For each feature 𝑋𝑖, the standardized value 𝑋𝑖
′ is computed as: 
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𝑋𝑖
′ =

𝑋𝑖−𝜇

𝜎
 (1) 

where 𝜇 is the mean and 𝜎 is the standard deviation of the feature within the dataset. 

The class labels were transformed into numerical values using LabelEncoder. In 

machine learning, categorical variables must often be transformed into numerical 

representations for model compatibility [18]. For a binary classification problem where the 

target variable has two classes, such as benign and malignant, label encoding can be 

employed to convert these categories into a numerical format. Let y denote the target 

variable containing the binary classes {𝑏𝑒𝑛𝑖𝑔𝑛, 𝑚𝑎𝑙𝑖𝑔𝑛𝑎𝑛𝑡}. The transformation process 

can be described mathematically by defining a mapping from each category to a unique 

integer. For a binary classification: 

𝑏𝑒𝑛𝑖𝑔𝑛 → 0 

𝑚𝑎𝑙𝑖𝑔𝑛𝑎𝑛𝑡 → 1 

This mapping is applied to each instance in the target variable in order to transform the 

categorical values into their respective integer representations as: 

𝑦′ = 𝐿𝑎𝑏𝑒𝑙𝐸𝑛𝑐𝑜𝑑𝑒𝑟(𝑦) 

The dataset was subsequently divided into training and testing sets, with 30% reserved 

for testing purposes. Additionally, the data was reshaped to meet the input requirements 

for the Convolutional Neural Network (CNN) architecture. 

2.4. Feature Engineering 

Feature engineering was performed to introduce additional data attributes that 

emphasize important tumor characteristics, aiming to improve the classifier’s diagnostic 

accuracy. Three new features were generated: Radius_Texture_Diff, Feature_Std_Dev, 

and Feature_Variance. 

Radius_Texture_Diff captures the difference between the radius and texture features, 

potentially indicating abnormalities in tumor shape and surface characteristics. 

𝑟𝑎𝑑𝑖𝑢𝑠_𝑡𝑒𝑥𝑡𝑢𝑟𝑒_𝑑𝑖𝑓𝑓 = 𝑋𝑟𝑎𝑑𝑖𝑢𝑠 − 𝑋𝑡𝑒𝑥𝑡𝑢𝑟𝑒 (2) 

Feature_Std_Dev: Represents the standard deviation of all features, providing a 

measure of variability within each tumor sample. 

𝑓𝑒𝑎𝑡𝑢𝑟𝑒_𝑠𝑡𝑑_𝑑𝑒𝑣 = √
1

𝑁
∑ (𝑋𝑖 − �̅�)2𝑁

𝑖=1  (3) 

where N is the total number of features, 𝑋𝑖  represents the individual feature values, and 

�̅� is the mean of all features. 

Feature_Variance: Measures the variance across all features, which may help identify 

subtle distinctions between benign and malignant cases. 

These engineered features were included alongside the original dataset, adding 

informative dimensions that potentially assist the model in capturing complex tumor 

patterns. By enhancing feature representation, this step aimed to boost the classifier’s 

predictive power and interpretability. 

2.5. Dimensionality Reduction 

Principal Component Analysis (PCA) was employed in this study as a dimensionality 

reduction technique to enhance computational efficiency and improve classification 

accuracy by scaling down the feature set while retaining essential variance in the data. PCA 
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aims to transform the original dataset into a set of uncorrelated variables, referred as 

principal components, that are ordered based on the variance they explain. This process 

helps reduce data complexity and eliminates redundancy, are ordered based on the variance 

they explain on the most informative features. 

Let 𝑋 ∈ ℝ𝑛∗𝑝 represent the standardized data matrix, where 𝑛 signifies the total number 

of samples and 𝑝 indicates the number of features. Each observation in 𝑋 is centered by 

subtracting the mean of each feature, ensuring that PCA is unaffected by differing feature 

scales. PCA aims to derive a set of orthogonal vectors, or principal components, 

𝑤1, 𝑤2, ⋯ , 𝑤𝑘  that maximize the variance of the projections of 𝑋 onto these vectors. 

Formally, the first principal component 𝑤1 is obtained by solving the optimization 

problem: 

𝑤1 = 𝑎𝑟𝑔 𝑚𝑎𝑥 𝑉𝑎𝑟
‖𝑤‖=1

(𝑋𝑤) = 𝑎𝑟𝑔 𝑚𝑎𝑥
‖𝑤‖=1

𝑤𝑇𝑆𝑤 (4) 

where 𝑆 is the covariance matrix of 𝑋 and calculated by: 

𝑆 =
1

𝑛−1
𝑋𝑇𝑋 (5) 

Here, 𝑤1 is the eigenvector corresponding to the largest eigenvalue 𝜆1 of 𝑆, as it 

represents the direction of maximum variance in the data. 

Subsequent principal components 𝑤2, ⋯ , 𝑤𝑘 are determined iteratively by maximizing 

the variance in the orthogonal subspace, subject to the constraint of orthogonality to all 

previously identified components. Thus, the 𝑖-th principal component 𝑤𝑖  is obtained as: 

𝑤𝑖 = 𝑎𝑟𝑔 𝑚𝑎𝑥
‖𝑤‖=1,   𝑤⊥𝑤𝑗 ∀ 𝑗<𝑖

𝑤𝑇𝑆𝑤 (6) 

The solution involves decomposing the covariance matrix 𝑆 into its eigenvalues and 

eigenvectors. The eigenvalues 𝜆1, 𝜆2, ⋯ , 𝜆𝑝 quantify the variance captured by each 

principal component, with larger eigenvalues indicating higher variance. By selecting the 

top 𝑘 components, where 𝑘<𝑝, PCA enables dimensionality reduction while retaining the 

features with the greatest variance. The transformed data matrix 𝑋𝑃𝐶𝐴 can then be 

represented as: 

𝑋𝑃𝐶𝐴 = 𝑋𝑊 (7) 

where 𝑊 = [𝑤1, 𝑤2, ⋯ , 𝑤𝑘] is the matrix of the top 𝑘 eigenvectors. This reduction in 

dimensionality facilitates efficient training and enhances the model’s capacity to make 

accurate predictions on unseen data by focusing on the most relevant features, ultimately 

contributing to improved classification performance. 

2.6. Convolutional Neural Networks (CNNs) 

Convolutional Neural Networks are a class of deep learning models widely used for 

image and structured data classification. CNNs autonomously learn hierarchical patterns 

of features via convolutional layers, which convolve input data with filters to extract 

specific features. For breast cancer classification, CNNs are particularly effective as they 

can capture intricate tumor patterns from imaging or structured tumor characteristics [19]. 

In convolutional layer of a CNN architecture, each filter 𝑊 slides over the input matrix, 

generating feature maps where each map 𝐹 at a spatial location (𝑖, 𝑗) is given by: 

𝐹(𝑖, 𝑗) = ∑ ∑ 𝑋(𝑖 + 𝑘, 𝑗 + 𝑙). 𝑊(𝑘, 𝑙) + 𝑏𝑙𝑘  (8) 

where 𝑋 is the input, 𝑊 is the filter, and 𝑏 is the bias term. Pooling layer reduces the spatial 

dimensions, typically using max-pooling to retain the most relevant features: 
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𝑃(𝑖, 𝑗) = 𝑚𝑎𝑥{𝐹(𝑖. 𝑠 + 𝑘, 𝑗. 𝑠 + 𝑙)|𝑘, 𝑙 ∈ [0, 𝑝]} (9) 

where 𝑠 is the stride and p is the pooling size. The activation function (ReLU) applies non-

linearity [20], enhancing model complexity: 

𝑓(𝑥) = 𝑚𝑎𝑥(0, 𝑥) (10) 

In this study, three distinct CNN models are designed, each consisting of convolutional, 

max-pooling, and dense layers to automatically extract hierarchical feature representations 

from the data. The CNN architecture begins with a 2D convolutional layer with ReLU 

activation to learn spatial patterns, followed by a max-pooling layer that reduces 

dimensionality and prevents overfitting. The network also includes a dropout layer for 

regularization, enhancing the model’s ability to generalize by preventing neuron co-

adaptation. Each CNN outputs class probabilities via a final softmax layer. These CNNs 

are trained independently, and their outputs are later integrated into an ensemble model. 

2.7. Dense Neural Networks 

In addition to CNNs, two dense (fully connected) neural network models were 

implemented to complement the CNNs by focusing on the structured data aspects of the 

dataset. Dense networks are ideal for learning non-spatial features, as they establish 

connections between all neurons in successive layers. Each neuron in a dense layer 

interacts fully with all neurons in the preceding and subsequent layers, learning intricate 

feature interactions that are essential for fine-tuning the classification process. 

In the structure of the dense layer forward pass calculation is executed. Each neuron 

output 𝑦 is calculated as: 

𝑦 = 𝑓(∑ 𝑤𝑖𝑥𝑖 + 𝑏𝑖 ) (11) 

where 𝑓 is an activation function like ReLU or sigmoid, 𝑤 represents weights, 𝑥 is the 

input, and 𝑏 is the bias. Dropout layers are applied to mitigate overfitting by selectively 

deactivating certain neurons at random during the training process. This promotes a more 

generalized feature learning. 

The dense models consist of an input layer, two hidden layers utilizing ReLU 

activation, and dropout layers to avoid overfitting. The output layer employs softmax 

activation, allowing the dense networks to provide class probabilities for benign and 

malignant classifications. Similar to the CNNs, each dense network model was trained 

separately and then combined in the ensemble framework. 

2.8. Ensemble Learning 

Ensemble Learning aggregates outputs from several models to enhance robustness and 

minimize bias and variance. To enhance model performance, a strategy is implemented 

that merges outputs from various CNN and dense models. Ensemble learning helps 

improve the model's resilience and ability by aggregating insights from multiple classifiers. 

In this setup, predictions from the three CNN models and two dense models were obtained 

and concatenated to create a single, unified feature set. This aggregated feature set serves 

as input for a secondary meta-learning classifier, allowing the ensemble to leverage the 

strengths of both CNNs and dense networks. The ensemble learning process reduces 

overfitting and captures a broader range of data patterns, providing a more reliable 

classification of breast cancer cases. 

Ensemble techniques used in this study are model averaging and stacked generalization. 

Model averaging combines outputs by averaging probabilities across models. Stacked 
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generalization trains a secondary (meta-learning) model on the output of base learners, 

improving final predictions: 

𝑧 = ℎ1(𝑥), ℎ2(𝑥), . . . , ℎ𝑛(𝑥)  (12) 

where ℎ𝑖 are the base learners and 𝑧 is given to the meta-learner for final classification. 

2.9. Meta-Learning with XGBoost 

To finalize the ensemble model, XGBoost, a gradient-boosting algorithm known for its 

performance and efficiency in handling structured data, is employed as a meta-learner. 

XGBoost is trained on the concatenated predictions from the CNN and dense models to 

make the final classification decision. With the objective set to binary: logistic, XGBoost 

optimizes for binary classification, where it differentiates between benign and malignant 

cases. Its regularization techniques further improve generalization, making it suitable for 

high-variance datasets such as those seen in medical applications. The inclusion of 

XGBoost as a meta-learner effectively combines the diverse strengths of the individual 

models in the ensemble, resulting in a robust diagnostic classifier. 

XGBoost iteratively trains weak learners on residuals from previous rounds, gradually 

refining classification accuracy through weighted updates. The objective function for 

binary classification in XGBoost is: 

𝑓𝑜𝑏𝑗 = ∑ 𝑙(𝑦𝑖 , �̂�𝑖)𝑖 + ∑ 𝛺(𝑓𝑘)𝑘  (13) 

where ℓ is the loss function (e.g., logistic loss), and Ω is a regularization term controlling 

model complexity. 

2.10. Architecture and Workflow of the UNNEBC 

A novel ensemble model, named UNNEBC (Unified Neural Network Ensemble for 

Breast Cancer Classification), is proposed to enhance the accuracy and robustness of breast 

cancer classification tasks. The UNNEBC model integrates the strengths of various 

artificial intelligence architectures, aiming to achieve significant improvements in both 

performance and reliability.  

A comprehensive pseudocode of UNNEBC is presented in Algorithm 1, which 

describes the sequential execution of the model.  

Algorithm 1: Pseudocode for the UNNEBC model 

Input: breast cancer dataset 

Output: classification report 

Load and preprocess data:  

  X = all columns except the label column (features)  

  y = target labels 

Feature engineering:  

  Calculate X['radius_texture_diff'], X['feature_std_dev'], and 

X['feature_variance']  

  y = transform y into numeric format using LabelEncoder 

  X = scale X (zero mean, unit variance)  

  Initialize PCA with n_components=nc 

  X_pca = reduce dimensions of X using PCA 

  Split data (train set / test set):  

  Reshape X_train and X_test to fit CNN input shape 

  Convert y_train and y_test to categorical format for multi-class 

classification 

Define CNN model:  
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  Add Conv2D layer, MaxPooling2D layer, Flatten layer, Dense layer, 

Dropout layer  

  Add output Dense layer with 2 neurons, softmax activation 

Define Dense model:  

  Add Dense layer, Dropout layer, Dense layer, Dropout layer 

  Add output Dense layer with 2 neurons, softmax activation 

Train CNN and Dense models in the first layer:  

  Initialize cnn_models and dense_models  

  for each model in cnn_models and dense_models do 

    Compile model with optimizer=Adam(learning_rate=0.0001)  

    Fit model on X_train, y_train with early stopping and validation 

split of 0.25 

  end for 

Obtain predictions from each model in the first layer:  

  for each model in cnn_models do 

    cnn_predictions = [model.predict(X_train) for model in cnn_models]  

  end for 

  for each model in dense_models do 

    dense_predictions = [model.predict(X_train) for model in 

dense_models]  

  end for 

Train XGBoost model as meta-learner:  

  stacked_train_input = concatenate cnn_predictions and 

dense_predictions along axis=1 

  Reshape stacked_train_input to fit XGBoost model input requirements 

  Initialize xgb_model = XGBClassifier with parameters  

  Fit xgb_model 

Obtain predictions for test data in the first layer:  

  Calculate cnn_test_predictions  

  Calculate dense_test_predictions 

  stacked_test_input = concatenate cnn_test_predictions and 

dense_test_predictions along axis=1 

  Reshape stacked_test_input to fit XGBoost model input requirements 

Predict on test data using XGBoost model:  

  y_pred = xgb_model.predict(stacked_test_input)  

Print classification report 

 

Additionally, the model's workflow, illustrating the integration of Convolutional 

Neural Networks (CNNs), dense neural networks, feature engineering techniques, and 

meta-learning strategies, is depicted in Figure 1.  

This section delivers a comprehensive explanation of each component of the model, 

highlighting how they interact and contribute to the overall ensemble strategy, which 

combines predictions from multiple networks to improve diagnostic reliability. By 

incorporating advanced feature engineering methods, dimensionality reduction through 

PCA, and utilizing XGBoost as a meta-learner, the UNNEBC model is specifically 

designed to address common challenges in breast cancer diagnosis, such as class imbalance 

and data variability. These strategies work in concert to enhance the model's resilience and 

capacity to adapt across diverse datasets, ultimately offering a more reliable and accurate 

diagnostic tool for breast cancer classification. 
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Figure 1: Workflow of the UNNEBC model 

 

3. RESULTS AND DISCUSSION 

The experimental analysis of the proposed model was conducted on a computer 

equipped with an Intel(R) Core (TM) i5-8250U CPU @ 1.60GHz processor and 12 GB of 

RAM. The implementation of the model was performed using the Python programming 

language on a Windows 11 Pro operating system.  

3.1. Evaluation Metrics 

The obtained experimental results were evaluated through a confusion matrix. It 

provides critical insights into the areas that need improvement for enhancing the model's 

accuracy and effectiveness. By highlighting the discrepancies between actual and predicted 

outcomes, the confusion matrix aids in pinpointing specific instances where the classifier 

may require refinement and adjustment. 

The classification performance of the binary breast tumor classification model (benign 

vs. malignant) was evaluated using the following standard metrics: 

True Positive (TP): Number of correctly predicted malignant cases. 

True Negative (TN): Number of correctly predicted benign cases. 

False Positive (FP): Number of benign cases incorrectly predicted as malignant. 

False Negative (FN): Number of malignant cases incorrectly predicted as benign. 

A confusion matrix was generated, providing insights into the distribution of correctly 

and incorrectly classified instances, including true positives, true negatives, false positives, 

and false negatives. This analysis provides a holistic evaluation of the model’s 

effectiveness and reliability in a real-world diagnostic setting.  

To assess the performance of the proposed ensemble model, several evaluation metrics 

were employed. The primary evaluation metric was accuracy, providing a general measure 

of correct classifications across benign and malignant cases. Additionally, a classification 

report detailing precision, recall, specificity, F1 score, and MCC for each class was 

calculated, allowing for a more nuanced understanding of the model’s strengths and 

weaknesses.  
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Additionally, the model's performance was tracked using Receiver Operating 

Characteristic (ROC) and Precision-Recall (PR) curves. These curves are indispensable 

tools for performance evaluation the of classification models, particularly in scenarios 

involving imbalanced datasets. The ROC curve visualizes the balance between sensitivity 

and specificity by plotting the True Positive Rate (TPR) against the False Positive Rate 

(FPR) across different thresholds [21]. The area under the ROC curve (AUROC) serves as 

a quantitative measure of the model’s ability to differentiate between classes. A higher 

AUROC value signifies superior performance, indicating that the model is more effective 

in accurately identifying both classes. 

The PR curve, on the other hand, emphasizes the trade-off between Precision (true 

positive predictions relative to all predicted positives) and Recall (true positive predictions 

relative to all actual positives). The area under the PR curve (AUPR) is particularly relevant 

for imbalanced datasets, as it highlights the model's focus on the minority (positive) class. 

A high AUPR value suggests that the model effectively balances precision and recall, 

thereby reducing false positives and false negatives. 

These curves and their associated AUC values complement each other in offering a 

well-rounded assessment of a classification model's performance. While the ROC curve is 

more suitable for evaluating models with balanced datasets, the PR curve is particularly 

insightful for imbalanced datasets. By analyzing both metrics, practitioners can gain a 

nuanced understanding of model behavior, facilitating informed decisions in algorithm 

selection, threshold optimization, and hyperparameter tuning for enhanced predictive 

accuracy. 

3.2. Experimental Results 

As depicted by the confusion matrix in Figure 2, the model accurately classified all 108 

negative (benign) samples. Similarly, it correctly identified 62 out of 63 positive 

(malignant) samples. 

Classification metrics were calculated based on the obtained results. Mean and 

maximum values of these metrics are summarized in Table 2. The model achieved a 

maximum precision and specificity of 100%, while other metrics also closely approached 

this value. When the model was repeatedly executed to compute average performance 

values, it achieved a high accuracy of 99.42%. 

 

 

Figure 2: Confusion matrix of the proposed model 
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Table 2: Experimental results of the proposed model 

Evaluation metrics 
Obtained Results 

Average Maximum 

Accuracy % 99,42 99,82 

Precision % 99,08 100,00 

Recall % 99,07 100,00 

Specificity % 98,41 100,00 

F1 Score % 99,07 99,53 

MCC % 97,49 98,76 

 

The average and maximum results of the model's performance metrics are illustrated 

in Figure 3. This figure comprehensively presents the evaluation metrics, highlighting the 

efficacy and robustness of the proposed model across different performance criteria. 

 

Figure 3: The average and maximum results of the model's performance metrics, including 

Accuracy, Precision, Recall, Specificity, F1 Score, and MCC 

The ROC and PR curves of the model are given in Figure 4, which reflects the high 

performance of the model. 

 

 

Figure 4: ROC and PR curves of the proposed model 

The ROC and PR curves and corresponding AUROC and AUPR values of 1.00, 

underscore the model's excellent predictive capability. The results verify the model's 
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efficiency in effectively differentiating between classes and making firm and reliable 

predictions. 

3.3. Comparison with previous models 

The relative performance of the model compared to other approaches to breast cancer 

classification demonstrates its effectiveness. The proposed ensemble CNN model 

demonstrates a considerable improvement in accuracy with an average gain of 2,30% over 

the baseline CNN models. The improvement in accuracy can be attributed to the 

incorporation in design of engineered features and the ensemble architecture, which 

effectively integrates the best of a set of individual classifiers while addressing their 

limitations. Moreover, the enhanced precision and recall values indicate that the model not 

only excludes false positives but also captures malignant cases accurately, and thus it is a 

strong candidate for deployment in clinical practice. Table 3 provides a comparison of 

accuracy performance metric. 

Table 3: Comparative analysis of the proposed method against cutting-edge research studies 

Model Reference Accuracy % 

GWO-SVM [17] 98,07 

SMO [22] 96,20 

BN+RBF [23] 97,42 

SVM [24] 97,20 

GONN [25] 99,26 

KNN [26] 95,34 

Proposed (UNNEBC)  99,42 

 

In comparison to the conventional ML methods like support vector machines and 

random forests, the proposed model outperforms them by leveraging e hierarchical feature 

extraction capability of deep learning. The inclusion of engineered features further 

augments the classification process by providing domain-specific insights that complement 

the CNN's automatic feature learning. 

The results highlight the strength of the new approach, particularly in addressing the 

challenges of imbalanced datasets and subtle feature variations in medical imaging. The 

findings suggest that the ensemble CNN model sets a new benchmark for breast cancer 

classification, paving the way for future research in integrating domain knowledge with 

advanced deep learning techniques. 

3.4. Algorithm Complexity Analysis 

The algorithm has O(n) complexity for the data loading stage, where n is the number 

of samples. The complexity in the data preprocessing and feature engineering steps is 

O(n*m) for the number of features m.  

In the model training stage, the complexity can be measured as O(k² c n f), where k is 

the kernel size, c is the number of channels, and f is the number of filters. The algorithm 

complexity is O(n) for the MaxPooling layer and O(a b) (a: input, b: output size) for the 

Dense layer.  

The Total Training Complexity is calculated as O(e b (k² c n f + a b)), where e is the 

number of epochs and b is the number of batches. 
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4. DISCUSSION 

The UNNEBC model shows how valuable using both advancements in feature 

engineering and dimensionality reduction techniques can be in the accurate and stable 

classification of breast cancer. PCA effectively assisted in reducing the dimensionality of 

the feature space from high-dimensional to a reasonable number without losing the most 

important variance in the data. The reduction resulted in fewer redundant predictor 

variables, increased computational efficiency, and enhanced generalization as visualized 

by the clear separation of classes in the PCA-reduced feature space. The ability to visualize 

features without PCA and then with PCA further demonstrates the value of dimensionality 

reduction to discriminate between benign and malignant cases, as shown in Figure 5. 

 

Figure 5: Feature space visualization without feature reduction and with feature reduction 

In addition to the dimensionality reduction, engineered features such as 

radius_texture_diff, feature_std_dev, and feature_variance also had an important 

contribution in enriching the dataset. They were designed to describe subtle features of the 

tumor that might not be well represented in the data set by the original feature set. 

radius_texture_diff describes how the tumor size relates to the surface irregularity of the 

tumor, which might describe structural irregularity characteristics associated with 

aggressive tumors. feature_std_dev and feature_variance measure the variation of all of 

the features and demonstrate the inherent heterogeneity that is often evident in malignant 

tumors. 

By incorporating engineered features, it improved not only the performance for 

discriminating between classes, but also improved interpretability as the predictions are 

closely representative of biological processes, allowing the predictions to be more 

interpretable and potentially clinically relevant. 

While the engineered features contributed to improved performance, they also 

complemented PCA by providing biologically meaningful information that may not be 

captured solely through dimensionality reduction. This synergy between feature 

engineering and PCA underscores the significance of a holistic approach to feature 

representation in medical diagnostics. 

Therefore, the complement of features engineered into the data and PCA demonstrates 

the need to combine approaches to represent the features for medical diagnosis. What is 
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important to observe here are the costs for each of these approaches. While PCA can reduce 

the feature space, it can also contribute to making the individual features less interpretable. 

Engineered features are domain-knowledge dependent and, although they may be 

biologically relevant, they may need to be further confirmed on other datasets to assess 

their generalizability.  

Findings support a complementary contribution of PCA and engineered features in 

addressing the problem of high-dimensional, heterogeneous data in the breast cancer 

categorization.  The approach improves classification performance and serves as a 

foundation for the development of more interpretable, more trustworthy diagnostic models. 

Future research will explore additional feature engineering methods, other dimensionality 

reduction methods, and feature engineering combined with multi-modal datasets to achieve 

better model performance and clinical relevance. 

5. CONCLUSION 

This paper introduces the Unified Neural Network Ensemble for Breast Cancer 

(UNNEBC) as a strong and effective ensemble model for breast cancer classification. Its 

model is an ensemble of many convolutional neural networks (CNN) and a dense neural 

network with engineered features that are purported to capture the intricate nature of tumor 

morphology. The results demonstrate that this approach can increase classification 

accuracy as the model has a 99.42% average accuracy, and both precision and recall 

demonstrate the model's effectiveness. 

The UNNEBC model effectively addresses many breast cancer classification 

challenges including class imbalance, multi-feature variability, and limited data 

representation. The UNNEBC combines the capabilities of feature engineering and 

ensemble learning to develop an end-to-end diagnostic solution that is scalable and 

interpretable for potential clinical use. In addition, the model's ability to include a terminal 

decision layer on XGBoost using the principles of meta-learning allows it to use the 

knowledge collective of the individual members of the base level model to produce better 

performance rates. 

Future work could see expansion of the model using multi-modal data sources such as 

imaging and genomic data and implement some more advanced feature selection 

algorithms to increase complexity of the feature space. Testing of the UNNEBC on other 

clinical datasets would also enable tests of generalizability and transfer to actual clinical 

diagnostic use. Collectively, this research illustrates that a deep learning ensemble models 

have the potential to revolutionize breast cancer diagnosis through the provision of a 

reliable, more automated, and potentially easier way of assisting in improving patient 

outcomes. 

Availability of data and material 

The dataset used in this study is publicly available from the UCI Breast Cancer 

Wisconsin (Diagnostic) dataset, as detailed in the manuscript [16]. The dataset is available 

for access at the following URL: 

https://archive.ics.uci.edu/static/public/17/breast+cancer+wisconsin+diagnostic.zip. 

The program codes developed for this study are available at the following GitHub 

repository: https://github.com/yegoktepe/breastCancerClassification. 
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