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Abstract: One application of lattices in optimization is defining the equilibrium set of
ordered games, typically using the usual (coordinate-wise) order, which is incomplete in
R”". This incompleteness makes some strategies incomparable, requiring a special game
concept. Using a complete order, like the lexicographic order, results in a complete lattice.
This study explores the properties of a complete lattice with lexicographic order for non-
cooperative games and provides a Python algorithm to determine the Nash equilibrium of
a supermodular game.
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1. INTRODUCTION

Game theory has been used in optimization analysis across various fields, primarily
in economics and computing. The concept of Nash equilibrium has also been applied
in modeling involving computational processes and computer science. Several related
results have been provided by [1], [2], [3], [4], [5], [6], and [7].
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A lattice is a partially ordered set equipped with two binary operations, join and meet.
Lattice is an algebraic topic. In the literature on the development of lattices, the com-
monly used order is the standard order in R"” The coordinate-wise order is an incomplete
order. In some applications, this results in pairs of strategies whose preferences cannot be
compared. Besides incomplete orders, there are also complete orders. A lattice equipped
with a complete order becomes a complete lattice, having properties different from lat-
tices with incomplete orders. One complete order on a lattice, which is a subset of R", is
the lexicographic order. With the use of a complete order, in this case, the lexicographic
order, every element in the lattice can be uniquely and consistently ordered, with no ele-
ments left incomparable. Lattices have been used as a discussion domain in applications
in many fields of economics and industry, particularly in game theory, as seen in [8], [9],
[10], [11], [12], and [13]. However, the use of lexicographic order has not been thor-
oughly explained. Yet, using a lattice with a complete order as a domain would enable
a more comprehensive analysis of all strategies or preferences employed by players or
actors in the fields of economics and industry.

One application of lattices is lattice-based optimization, which can be clearly illus-
trated in the determination of Nash equilibrium from ordered non-cooperative games. In
ordered games, the order of strategies used by each player is considered as the basis of
each player’s preferences. One specific condition that arises due to the order in strategies
is complementary strategies. The set of strategies and the set of Nash equilibria for games
with complementary strategies are generally defined in a lattice. Examples of games with
complementary strategies include supermodular and submodular games. These games
were first described by Topkis [8] and have since been applied in the fields of economics
[9], [14], [11], [15], [16] and industry ([10], [12], and [13]. In the literature related to
supermodular games, the specific impact of using a complete lattice compared to using
an arbitrary lattice (which is generally incomplete) has not been thoroughly discussed.
A complete lattice is built with a complete order, such as the lexicographic order. In
lattices with incomplete order, there is often the problem that some strategies cannot be
compared. Although this issue does not occur in complementary games, using a complete
order will certainly allow the discovery of new properties of the strategy sets and their
Nash equilibrium sets. Based on the explanation above, the research questions (RQ) are
as follows:

1. (RQI) What are the properties of lattices with lexicographic order related to the use

of lattices in the strategy sets of ordered non-cooperative games ?
2. (RQ2) What are the equilibrium properties of ordered non-cooperative games whose
Nash equilibrium is defined on lattices with lexicographic order?
After formulating the research questions, the objectives of this research can be deter-
mined: to formulate the properties of lattices with lexicographic order and then to for-
mulate the existence of equilibrium sets of ordered non-cooperative games whose Nash
equilibrium is defined on lattices with lexicographic order. The rest of this paper is orga-
nized as follows. The research methodology is detailed in Chapter 2. The explanation of
the properties of complete lattices with lexicographic order and the theorems explaining
the Nash equilibrium of ordered non-cooperative games are presented in Chapter 3, which
covers results and discussion. Finally, the research conclusions are presented in Chapter
4, Conclusion.
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2. METHODS

This research is theoretical research, thus the methodology employed is mathematical
theoretical research through literature review and concept development. The first step
is to study supporting references, followed by determining a research theme that has not
been previously discussed and has novelty value. Then the researcher conducts theoretical
analysis to obtain mathematical properties in the form of definitions and theorems. The
necessary information includes references related to orders, lattices, and ordered non-
cooperative games. The detailed theoretical steps used are as follows:

1. Study references related to orders, partially ordered sets, lattices, ordered games,
and Nash equilibrium.

2. Conduct literature review and conclude that the concept of lattice with a complete
order, in this case, the lexicographic order, has not yet been explained in terms of its
properties. Furthermore, this complete lattice can be used for advanced properties
of Nash equilibrium for ordered non-cooperative games.

3. Explain the properties of lattices with lexicographic order related to the use of lat-
tices in the strategy sets of ordered non-cooperative games ?

4. Explain the theorems related to Nash equilibrium in ordered non-cooperative games
defined on lattices with lexicographic order.

3. Lattice with Lexicographical Order and Its Application to Supermodular Game

A lattice (with coordinatewise order) is a partially ordered set (S, <) where every
pair of elements has a unique supremum (least upper bound) and infimum (greatest lower
bound). Mathematically, for any two elements x and y in S, the supremum x V y is the least
element z such that x < z and y < z, while the infimum x Ay is the greatest element w such
that w < x and w < y. This structure ensures that we can always find a common upper and
lower bound for any pair of elements in the set. In addition to the standard order we know
in R, which is the coordinate-wise order <, there are many other order definitions used in
various algebraic topics and applications. One of these is the lexicographic order.

In this study, we focus on the space R”. The choice of R" is based on its geometrically
simple structure and the ease of ordering its elements. This is important because strategies
in non-cooperative games often represent real-world objects, making their illustration and
ordering more intuitive when the domain is R”. Furthermore, the theory of supermodular
games, which has been extensively developed by [11], also works well in R”, where the
elements of this space can be fully ordered using the lexicographical order.

Topologically, the space R" is a Hausdorff space, meaning that any two distinct points
in this space can be separated by disjoint open neighborhoods. This structure ensures that
any subspace of R"” maintains the properties of separability and orderability, which are
crucial in the analysis of supermodular games. Suppose S; is a subset of R”, then the
strategy set S =S| X Sy X --- xS, where each S; follows a lexicographical order, will also
retain a consistent lexicographical ordering.

Moreover, a lattice-based approach in R” is sufficient to guarantee the properties of
monotonicity and supermodularity in the analyzed game. The lattice structure in this
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space meets the requirements for analyzing players’ strategies without the need for addi-
tional, more complex topological structures. Therefore, selecting R" as the domain in this
study is considered appropriate for the needs of supermodular games.

The lexicographic order, which denoted as <, is a way of ordering pairs (or tuples)
of elements. Given two pairs (x1,y;) and (x2,y2), we say that (x;,y;) is less than (xp,y,) if
X1 <xp,orif x; =xp and y; < y,. When applied to a lattice, this order helps in comparing
and arranging pairs of strategies. For example, in the strategy set {1,2,3}, the supremum
of the pairs (1, 1) and (2, 2) is (2, 2), and the infimum is (1, 1). By using the lexicographic
order, we can systematically compare pairs of strategies, ensuring a structured approach
to finding Nash equilibria in supermodular games.

In the context of subsets of R”, a lattice with lexicographic order maintains the same
principles but extends to n-dimensional vectors. For any two vectors X = (x1,x2,...,%,)
andy = (y1,y2,-...,yn) in R", the lexicographic order states that x <;,, y if and only if the
first non-equal element from the left is less in x than in y. The supremum and infimum
are defined similarly: the supremum x V'y is the vector where each component is the
maximum of the corresponding components of x and y, and the infimum x Ay is the vector
where each component is the minimum of the corresponding components. This ordering
is particularly useful in multi-dimensional decision-making processes where strategies are
represented as vectors in R”.

A lattice with lexicographic order is a complete lattice, a property that supports the
analysis of Nash equilibrium existence in ordered games, particularly supermodular games.
In supermodular games, the presence of unordered strategies does not pose a significant
problem. This is because unordered strategies, such as (a,x) and (a,y) (in the case of
a two-player game), will not be compared since each player will not choose the same
strategy in response to a change in the opponent’s strategy. However, in real conditions,
there is always the possibility that players might have no choice but to respond with the
same strategy. For instance, if initially the second player chooses the strategy (a;,x) and
then raises their strategy to y, with x <y, to achieve a higher payoff. Due to the principle
of complementarity and the usual order of strategies, the first player will also achieve a
higher payoff by choosing a higher-ordered strategy, say a,, with a; < a;. In the context
of the < order, strategy a; will not be chosen, but analytically, strategy a; cannot be com-
pared (exist) due to the incompleteness of the coordinatewise order <. On the other hand,
the completeness of possible strategy pairs becomes important in a more comprehensive
strategy analysis. This is because Player 1 might also only be able to choose strategy
ai, which means that a Nash equilibrium is reached. However, in this context, strategies
(a1,x) and (a;,y) cannot be compared with the coordinate-wise order. This issue can be
resolved with the use of a complete order, one of which is the lexicographic order <;,,.

We will define a complete non-cooperative supermodular games. A defined com-
plete non-cooperative supermodular game is a development of the basic supermodu-
lar with a particulary development for lexicographic order. The game used is a triple
G. = (N,S,Fen). That is assumed to consist of a finite number of players denoted as
N € {1,...,n}. The strategy played by each Player i is x;. The game is assumed to con-
sist of a finite number of players denoted as N € {1,...,n}. The strategy played by each
Player i is x;. The strategy x; can be either a single value or a vector value with k vector
elements (k > 2). Each player is assumed to use an equal number of strategies (single or
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vector form with the same number of k elements). The strategy set S; C R¥ is defined such
that x; € S;. Furthermore, the feasible strategy set S; C R is defined as the finite Cartesian
product of §; from i = 1 to i = n, thatis § = 51 x S X --- xS, and denoted as S := x7_|S;.
The set S is a subset of x”_|R”. The selected strategy vector x = {xi,...,x2} € S is the
combination of the strategies x; of each Player and will be chosen to be played. For each
i €{1,...,n}, the payoff function F; : S — R is defined.

If strategy x; is played, each Player i receives a payoff of F;(x). Each player is assumed
to use the same complete lexicographical order, denoted as <;.,. Due to the condition of
complementary strategies, the preference order in the feasible outcome set induces the
same preference order on S. For any chosen strategies x,y € S, x <y, y if it satisfies
F;(x) <jex Fi(y). For each selected strategy in S and any Player i,x_; generally denotes the
strategies of all players in N except Player i. Furthermore, there exists y; € R¥ such that
(yi,x—;) denotes the strategy vector where the chosen strategy x; of Player i is replaced
with y;, while the other components of x remain unchanged.

Thus, strategy x can be represented as x = (x;,x_;). Given any other players’ strategies
x_j, it is denoted as S(x_;), with S;(x_;) = {yi € Si|(yi,x—;) € S}. The set S;(x_;) is the
section of § at x_;. The feasible strategy set for any player may depend on the strategy
choices of other players. For each Player i, S_; = {x_;|S;(x_;) # 0} can be defined. This
set S_; is the non-empty collection of all strategies except for Player i such that there
exists a strategy y; for Player i with (y;,x_;) € S. Therefore, in this case, S_; is also the
projection of S onto the strategy set of all players except Player i. Foreachi€ 1,...,nand

roon . .. . ! " .
any x ,x € S;, the supremum of x’ and x” is called the join and is denoted as x V.x , while
the infimum of x’ and x” is called the meet and is denoted as x Ax . The binary operations
of join and meet on the feasible outcome set of each player which is a subset of R, are
defined respectively asx Vx = (xl1 \/xlll, X, VX)) and X AX = (x1 /\xl/, X AX),
for any x,x eR", Specifically, in R, the lex1c0graphlc order < Slex is apphed with the j ]om
and meet operatlons in R defined respectively as x Vx = supr % and x = infp XX X,
for any X ,x € R. The definition of join and meet operations in the strategy set S; C R?
is analogous to that in the feasible outcome set.

Next, the use of a complete lattice in the existence of equilibrium in the supermodular
game G, will be explained through the following theorem.

Theorem 1. If G. = (N,S,Fcy) is complete supermodular game, the set S of feasible
Jjoint strategies is nonempty and complete under lexicographical order <., and the payoff
Sunction F(y;,x_;) is upper semicontinuos in y; on S(x_;) for each x_; in S_; for each x_;
in S_; and each i, then the set of equilibrium points is a nonempty lattice and a greatest
and a least Nash equilibrium exist.

It can be easily proven that because S is a complete lattice, it implies that S is compact,
thus Theorem 1 will directly follow from the Nash equilibrium existence theorem by
[11]. Next, a theorem will be provided regarding the existence of Nash equilibrium in
supermodular games defined on a lattice with lexicographic order for specific conditions
of each player’s payoff function.

Theorem 2. Given a supermodular game G.. If S; CR",i=1,...,n is a nonempty com-
pact lattice, F;(.,.),i = {1,...,n} is upper-continuous in yi on S; (x_;) € S_;, and payoff
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F;(x) = yi.H (x_;), the equilibrium set x* = (x},...,x}) is a nonempty complete lattice.

Furthermore, if x” ; is a greatest lower bound of the set of feasible strategies of all other
players such that H (xb_ l-) = 0, then there is exists the greatest Nash equilibrium x*' and

the least Nash equilibrium x*".

Proof. By following the proof by Topkis [11], it can be verified that G, has two equilibria,
that is the largest Nash equilibrium and the smallest Nash equilibrium. Because of S; C
R" ,i=1,...,n is a nonempty compact lattice, then S = S; x --- X §, is a nonempty
compact lattice. For each i =1,...,n,F;(.,x_;) is both upper semicontinuous and lower
semicontinuous at the same time. There is exist J; € S; (X_;) such that F; (.,x_;) reach
a maximum at point at y; and holds that F; (x, ;) = argmax,cs Fi(.,x_;). Moreover,
there is Y, such that F;(.,x_;) reach a minimum point at Y, and holds that F; (x, Xi) =
argminyes F; (.,x_;). Since F; (.,x_;),i=1,...,n supermodular in y; on S; for each x_; €
S_;, then F;(.,x_;),i = 1,...,n have an increasing differences in (y;,x_;) on S; x S_;.
Furthermore, for each x_; <j, X' ; and y,

O (vi, X' ) — O (vis X—i) <pex 05 (viX';) — 0 (v, x—i) - M

Based on Inequality (1), if other players can obtain a higher payoff according to their
choice of strategy, then player i can obtain a higher payoff by doing the same thing.
If all opposing players (n — 1 player) of player i do not choose a strategy x_; = xf’ , or
there is exist at most 1 opposing players (I < n — 2) which play strategy x_; = xﬁi, then
player i will choose y; = x{,x; <jex X4,%; € S; as an optimum response to obtain the higher
payoff. Hence, (xf‘,x‘il-) is the greatest Nash equilibrium. Based on Inequality (1), if other
players can obtain a higher payoff according to their choice of strategy, then player i can
obtain a higher payoff by doing the same thing. If all opposing players (n — 1 player)
of player i do not choose a strategy x_; = xf’ , or there is exist at most / opposing players
(I < n—2) which play strategy x_; =x” ;» then player i will choose y; = x¥, x; <jox X4, % € S;
as an optimum response to obtain the higher payoff. Hence, (xf’,x‘i i) is the greatest Nash
equilibrium. [J

4. NUMERICAL COMPUTATIONS

In this subsection, the algorithm to determine the Nash equilibrium of a supermodular
game defined in a lattice with lexicographic order will be explained. The Algorithm 1
is written in the Python programming language and executed on the Spyder platform.
In the algorithm, we facilitate input in LaTeX equation mode and have validated it with
examples of supermodular games. However, the algorithm can only identify one possible
Nash equilibrium (generally the largest). It should be noted that in supermodular games,
there are two equilibria: the largest and the smallest Nash equilibrium. In many cases, the
smallest Nash equilibrium can be identified from the lower bound of the strategy set.

The process begins by requesting the input of each player’s payoff function, namely
Ua(qa,qs) for player A and Ug(gp,qa) for player B, where ¢4 and gp represent the avail-
able strategies for each player. The algorithm then defines the strategy set available to
both players, which is assumed to be a discrete set ordered lexicographically. Once the
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strategies and payoff functions are established, the algorithm evaluates all possible strat-
egy pairs by checking whether each strategy is a best response to the opponent’s strategy.
For each strategy g4 chosen by player A, the algorithm compares the resulting payoff with
the payoff obtained from an alternative strategy qg. If there exists an alternative strategy
q;‘ that yields a higher payoff for player A, then g4 is not a best response. A similar pro-
cess is conducted for player B, where each strategy ¢gp is compared to its alternatives to
determine whether it is a best response to g4. If a strategy pair (g4, gp) satisfies the condi-
tion where neither player can improve their payoff by unilaterally changing their strategy,
then the pair is classified as a Nash equilibrium. The algorithm continues iterating until
all possible strategy combinations have been examined. The final output consists of a list
of all strategy pairs that satisfy the Nash equilibrium condition, which is then presented
as the result. The complete algorithm is provided in the Appendix.

The complexity of the algorithm is determined based on the number of strategies avail-
able to each player in the supermodular game. Let n represent the number of strategies
available to player A, and let m denote the number of strategies available to player B. The
algorithm evaluates all possible strategy pairs (¢4, ¢g), resulting in a total of n X m strat-
egy combinations that need to be examined. For each strategy pair, the algorithm checks
whether the selected strategy is a best response by comparing its payoff against all alterna-
tive strategies within each player’s strategy set. This process consists of two nested loops
for iterating over all possible strategies of the players, as well as two additional loops to
evaluate the best response, each with a complexity of O(n) and O(m), respectively. Con-
sequently, the total complexity of the algorithm can be expressed as O(n’m+nm?). In the
special case where both players have the same number of strategies (n=m), the complex-
ity simplifies to O(n*). This complexity indicates that the algorithm exhibits polynomial
growth in execution time concerning the number of strategies, making it reasonably effi-
cient for games with a small to moderate number of strategies. However, for games with a
large number of strategies, the algorithm’s complexity may become a limitation, requiring
further optimization to improve computational efficiency .

Next, we will provide an illustration of a supermodular game defined within a lattice
with a lexicographic order. The example can be solved analytically and numerically using
the algorithm described earlier. Let’s consider a supermodular game involving two play-
ers, A and B, each choosing from strategies 1, 2, or 3. The payoff functions for the players
are defined as follows: Player A’s payoff function is ua(ga,qs) = qf‘ +4a-qB — q%, and
Player B’s payoff function is ug(ga,qs) = 248 — qa + qa - gg. To find the Nash equi-
librium, we systematically evaluate each strategy combination to determine whether any
player has an incentive to deviate given the strategy of the other player. First, we consider
the strategy pair (1, 1). For Player A, the payoffis u4 (1, 1) = 1, and for Player B, the pay-
off is ug(1,1) = 2. If Player A were to switch to strategy 2, their payoff would increase
to 5, indicating an incentive to switch. Thus, (1, 1) cannot be an equilibrium. Next, we
evaluate the strategy pair (1, 2). Here, Player A’s payoff is us(1,2) = —1 and Player B’s
payoff is ug(1,2) = 5. Player B has no incentive to switch as their payoff would decrease.
However, Player A would benefit by switching to strategy 2, raising their payoff to 4.
Therefore, (1, 2) is not an equilibrium. For the strategy pair (2, 1), Player A receives a
payoff of us(2,1) =5, and Player B receives ug(2,1) = 2. Player B can improve their
payoff by switching to strategy 2, where they would get a payoff of 6. Hence, (2, 1) is
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not an equilibrium either. When examining the strategy pair (2, 2), Player A’s payoff is
us(2,2) = 4 and Player B’s payoff is ug(2,2) = 6. In this case, neither player can increase
their payoff by switching strategies. Player A switching to strategy 1 would reduce their
payoff to -1, and Player B switching to strategy 1 would reduce their payoff to 2. Thus,
(2, 2) is a stable strategy pair and a potential Nash equilibrium.

Finally, we consider the strategy pair (3, 3). Here, Player A’s payoff is u4(3,3) =9
and Player B’s payoff is up(3,3) = 12. Switching strategies would decrease their payoffs
(Player A would get -5 if switching to 1, and Player B would get 4 if switching to 1).
Therefore, (3, 3) is also a stable Nash equilibrium. In conclusion, the Nash equilibrium for
this supermodular game is the strategy pair (3, 3), where both players choose strategy 3.
In this equilibrium, Player A achieves a payoff of 9 and Player B achieves a payoff of 12,
with no incentive for either player to deviate from their chosen strategy. In this example
above, the strategy set {1,2,3} clearly forms a lattice because each pair of strategies has
a supremum and infimum. Strategies are considered in lexicographic order, for instance,
when comparing the strategies (1,1) and (1,2).

5. CONCLUSION

Based on the analysis conducted, a lattice with an order has better properties than a lat-
tice with an incomplete order in terms of the process of comparison and ordering of each
member of the lattice. In its application to complementary game theory, with a domain
that is a complete lattice, the possibility of selecting strategies that do not change when
another player increases their strategy value can still be compared within the strategy set.
This opens the possibility that such strategies could potentially become Nash equilibria
in supermodular games. Additionally, the use of a lattice with lexicographic order paves
the way for new theorems that explain the existence of Nash equilibrium under specific
conditions of payoff functions.
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Tahun Anggaran 2024, through research grant: Skema Penelitian Fundamental (PF UNS),
Grant Number: 194.2/UN27.22/PT.01.03/2024.

REFERENCES

[1] S. Penmatsa and A. T. Chronopoulos, “Game theoretic static load balancing for distributed
systems,” Journal of Parallel and Distributed Computing, vol. 71(4), pp. 537-555, 2011.

[2] D. Grosu and A. T. Chronopoulos, “Noncooperative static load balancing for distributed sys-
tems,” Journal of Parallel and Distributed Computing, vol. 65(9), pp. 1022—-1034, 2005.

[3] M. Y. Leung et al., “Load balancing in distributed systems: An approach using cooperative
games,” IEEE 16th International Parallel and Distributed Processing Symposium (IPDPS
2002), Fort Lauderdale, Florida, pp. 8-11, 15-19 April 2002.

[4] D. Grosu and A. T. Chronopoulos, “A game-theoritic model and algorithm for load balancing
in distributed systems,” IEEE 16th International Parallel and Distributed Processing Sympo-
sium (IPDPS 2002), Fort Lauderdale, Florida, pp. 146-153, 2002.

[5] 1. Bilbao, Cooperative games on combinatorial structures. ~Springer Science+Business Me-
dia, 2012, vol. 26.

[6] M. Van der Merwe, Non-cooperative games on networks. Ph.D dissertation, Stellenbosch
University, 2012.



(7]
(8]
(9]
(10]
(1]
(12]

(13]

(14]
[15]

(16]

Rubono Setiawan and N.A. Kurdhi / Complete Lattice Using Lexicographical Order... 9

E. R. Csori, Structural and computational aspects of simple and influence games.  Tesis,
Universitat Politecnica de Catalunya, 2014.

D. M. Topkis, “Minimizing a submodular function on a lattice,” Operations Research, vol.
26(2), pp. 305-321, 1978.

P. Milgrom and C. Shannon, “Monotone comparative statics,” Econometrica, vol. 62(1), pp.
157-180, 1994.

G. Cachon, “Stock wars: Inventory competition in a two-echelon supply chain with multiple
retailers,” Oper. Res., vol. 49(5), pp. 658-674, 2001. doi: 10.1287/opre.49.5.658.10611

D. M. Topkis, Supermodularity and Complementary. Princeton University Press, 1998.

G. Cachon and S. Netessine, Game Theory in Supply Chain Analysis, Handbook of Quantita-
tive Supply Chain Analysis: Modelling in the E-Business Era.  Springer Science+Business
Media, 2024.

R. Setiawan, Salmah., I. Endrayanto, and Indarsih., “Analysis of the n-person noncoopera-
tive supermodular multiobjective games,” Oper. Res. Lett., vol. 51, pp. 278-284, 2023. doi:
10.1016/j.0r1.2023.03.007

X. Vives, “Nash equilibrium with strategic complementarities,” J.Math.Econ., vol. 19, pp.
305-321, 1990.

G. Rota-Graziosi, “The supermodularity of the tax competition game,” J.Math.Econ., vol. 83,
pp. 25-35, 2019.

G. Koshevoy, T. Suzuki, and D. Talman, “Supermodular ntu-games,” Oper. Res. Lett., vol. 44,
pp. 446-450, 2016. doi: 10.1016/j.011.2016.04.007



10 Rubono Setiawan and N.A. Kurdhi / Complete Lattice Using Lexicographical Order...

APPENDIX

Algorithm 1 Determine Nash Equilibrium for a Supermodular Game using Lexicograph-
ical Order
1: Function GetPayoffFunction(player)
2:  Print ”Enter the payoff function for player”, player, ”in LaTeX format”
3 payoff_function_latex <— User input
4:  Return payoff_function_latex
5: End Function
6: Function PayoffFunctionWrapper(function_str, q1, 2)
7
8
9

Evaluate function_str with q1 and q2 using sympy
Return Result of evaluation as float
: End Function
10: Function FindNashEquilibrium(payoff_A _str, payoff_B_str)
11:  strategies < [1, 2]
12:  nash_equilibria < []
13:  for each gA in strategies do

14: for each gB in strategies do

15: A _best_response «<— True

16: B_best_response < True

17: for each gA_prime in strategies do

18: if PayoffFunctionWrapper(payoff_A_str, A _prime, gB) > PayoffFunction-
Wrapper(payoff_A_str, A, qB) then

19: A _best_response <— False

20: end if

21: end for

22: for each B _prime in strategies do

23: if PayoffFunctionWrapper(payoff_B _str, B _prime, qA) > PayoffFunction-
Wrapper(payoff_B_str, B, qA) then

24: B_best_response <— False

25: end if

26: end for

27: if A_best_response and B_best_response then

28: nash_equilibria.append((qA, qB))

29: end if

30: end for

31:  end for

32 Return nash_equilibria

33: End Function

34: payoff_A_str <— GetPayoffFunction("A’)

35: payoft_B_str <— GetPayoffFunction(’B’)

36: nash_equilibria <— FindNashEquilibrium(payoff_A_str, payoff_B _str)
37: Print ”Nash Equilibria:”, nash_equilibria




