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that facilitates the transition from an initial point to an endpoint in the shortest possible
time. To address this challenge, we employ Pontryagin’s Maximum Principle, coupling it
with the shooting method to determine the initial condition of the adjoint state (p0), which
is then integrated through the iterative Picard method. The validation of our approach is
demonstrated through a numerical example utilizing real-world data, and we provide a
comparative analysis of our results against those from previous studies for comprehensive
assessment.

Keywords: Optimization, robotics, non-linear optimal control, Pontryagin’s maximum
principle, dynamic system, boundary value problems..

MSC: 34K10, 34K35, 65Kxx, 90C30, 93C10, 93C20, 93C95.

1. INTRODUCTION

Robots have made significant inroads across various domains in recent years, includ-
ing industrial, agricultural, military, aeronautical, and medical sectors. Furthermore, they
are increasingly becoming integral parts of our daily lives. The adoption of robots is
driven by their capacity to enhance human existence by tackling tasks that are either
beyond human capabilities or by simplifying those that would otherwise be arduous to
accomplish.

Robotics and optimization are intricately intertwined fields, often collaboratively em-
ployed to tackle intricate challenges. Optimization, in essence, revolves around the quest
for the most optimal solution to a given problem, achieved through the application of spe-
cialized algorithms. This discipline finds application across a broad spectrum of domains,
spanning engineering, finance, and beyond.

Optimization algorithms serve as invaluable tools in the quest to identify the most
precise parameters for governing and fine-tuning complex systems. Robotics, on the other
hand, constitutes a branch of engineering that revolves around the conception, fabrication,
and operation of robots. These multifaceted machines are proficient in executing a diverse
array of tasks.

Effectively controlling a robot necessitates the utilization of optimization algorithms
to ascertain the aptest parameters governing the robot’s motion and behaviour. One per-
tinent issue in the realm of optimization involves determining how to maximize or min-
imize the robot’s performance, trajectory, or energy consumption, often predicated upon
predefined criteria.

Typically, such optimization challenges manifest in the framework of optimal control
problems. The quest is to unearth the most effective control strategies, allowing for the
accomplishment of predefined objectives set by the robot’s operator, all the while adhering
to specific constraints governing the system’s behaviour. Optimal control theory serves
as the enabling mechanism for achieving this, involving the mathematical modelling of
system dynamics and the delineation of performance criteria.

Notably, in the 1960s and 1970s, researchers harnessed optimal control principles for
both the design and orchestration of robotic systems. This pivotal convergence laid the
foundation for the development of advanced robotic systems endowed with the capability
to execute intricate tasks across diverse environments. In the contemporary era, optimal
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control is ubiquitous in robotics, facilitating the design of control systems that optimize
performance, curtail energy consumption, and enhance precision. In essence, the fusion
of optimal control and robotics has propelled the creation of formidable and highly so-
phisticated robotic systems.

Addressing optimization problems in the realm of robotics is by no means a novel
undertaking. A significant body of work has been dedicated to this domain, each with
its unique characteristics varying across different types of robots [1, 2, 3, 4], spanning
aquatic, airborne, underwater, and more. However, the majority of optimal control prob-
lems in this field find their solutions through numerical methods, with only a handful
being amenable to analytical resolutions.

Indeed, when faced with a specific problem, there exists a plethora of techniques that
can be employed. It’s crucial to recognize that numerical methods carry both merits and
demerits, including issues pertaining to stability, sensitivity to initial conditions, preci-
sion, convergence rate, and computational complexity [5, 6]. There’s no panacea that
can proficiently address all problem types. The ultimate results and precision levels are
contingent upon the choices made during the problem-solving process. Mathematicians
often find themselves in the position of having to explore various techniques, subsequently
comparing the outcomes of each resolution algorithm. This process assists in determining
the optimal method, considering factors like precision, convergence time, etc.

This paper addresses the optimization problem concerning a car-like robot, a model
previously explored in [4, 7]. Herein, we introduce a novel approach for solving this
problem, regardless of the initial and final states, by leveraging a combination of Picard’s
method and the shooting method. Picard’s method, a numerical technique used to solve
differential equations, stands out for its intuitiveness, akin to Euler’s method. It finds its
niche in the realm of nonlinear differential equations that defy analytical solutions. The
method involves the decomposition of the problem into a series of more manageable sub-
problems, each simpler to solve than the original conundrum. In the context of optimal
control problems, Picard’s method can be employed to iteratively tackle the underlying
differential equations. During each iteration, the control input can be updated based on the
current system state and the desired performance index. This iterative process continues
until the performance index is optimized or a satisfactory solution is attained.

This study entails a comparative analysis between our findings and those presented in
[7]. The primary objective of this research is to determine an optimal control strategy for
reaching a specified destination from a given initial state in the shortest time possible.

Our approach commences with the mathematical modelling of the problem, expounded
in Section 2. This entails the computation of the system’s Hamiltonian and Euler-Lagrange
equations, culminating in the application of Pontryagin’s Maximum Principle (PMP) to
derive the optimal control. Additionally, we elucidate the transversality condition im-
posed on the system and provide an in-depth exploration of E. Picard’s iterative method,
which we subsequently apply to this control problem in Section 3. Section 4 delves into
the shooting method employed to resolve the boundary-value problems (BVP) aimed at
determining the initial condition (p0) of the differential system [1, 7, 8, 9, 10, 11, 12, 13].
The results of our numerical application are presented in Section 5, with further discus-
sions and analysis featured in Section 6. We conclude with a summary and outline of
potential future avenues in Section 7.
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Table 1: Nomenclature
Symbol Usage
Rn real n-dimensional space
x(t) state(position) of a robot at time t, x(t) ∈ R3

p(t) adjoint state, p(t) ∈ R3

=⇒ implies
∈ element inclusion
⊂ set inclusion
t0 initial time
t f final time
H Hamiltonian of the system
ḟ the first derivative of f at t
∂ f
∂x the partial derivative with respect to x
x(k) the iteration k of x
max maximum
min minimum
|.| absolute value

2. STATEMENT OF THE PROBLEM
According to [1], [3], [4] and [7], the modeling of the problem is (Figure 1):

J = t f → min (1)ẋr
ẏr
θ̇r

=

cosθr 0
sinθr 0

0 1

[v
w

]
. (2)

With the boundary conditions:

x(0) =

xr0
yr0
θr0

 , x(t f ) =

xr f
yr f
θr f

 (3)

The constraint on the control U = (v,w) is: U ∈ Ω such as Ω is a compact with:

Ω = {(v,w)/−1 ≤ v ≤+1,−1 ≤ w ≤+1}

The equality (1) can be written as follows:

J = t f =
∫ t f

0
dt → min (4)

The Hamiltonian of the system is given by:
H(t,x(t), p(t), p0,U(t)) = p1(t)vcosθr + p2(t)vsinθr + p3(t)w+ p0, (5)

x(t) =

xr(t)
yr(t)
θr(t)

 the state of the system at time t, p(t) =

p1(t)
p2(t)
p3(t)

 the adjoint state, p0 ≤ 0.

The condition of maximization (according to [14], [15], [16], [17], ) is:

H(t,x(t), p(t), p0,U(t)) = max
ω∈Ω

H(t,x(t), p(t), p0,ω), (6)
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Figure 1: Kinematics of a robot.

with:

ẋ(t) =
∂H
∂ p

(t,x(t), p(t), p0,U(t)), (7)

ṗ(t) =−∂H
∂x

(t,x(t), p(t), p0,U(t)), (8)

p(t) nontrivial adjoint vector (p(.), p0) ̸= (0,0).
According to the equations (7) and (8) the system is:

ẋr = vcosθr
ẏr = vsinθr
θ̇r = w
ṗ1 = 0
ṗ2 = 0
ṗ3 = p1vsinθr − p2vcosθr

(9)

Equation (6) is equivalent to:

H(t,x(t), p(t), p0,U(t)) = max
|w|≤1,|v|≤1

[p1(t)cosθr + p2(t)sinθr]v+ p3(t)w−1.

Let ψ(t) such as:
ψ(t) = p1(t)cosθr + p2(t)sinθr,

H(t,x(t), p(t), p0,U(t)) = max
|w|≤1,|v|≤1

ψ(t)v+ p3(t)w−1,

we deduce:

v = sign(ψ(t)),w = sign(p3(t)). (10)
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2.1. Transversality condition

The condition of transversality on the Hamiltonian is defined by the following equal-
ity:

H(t f ,x(t f ), p(t f ), p0,U(t f )) = 0. (11)

This implies that the Hamiltonian terminates at the final time. For an in-depth exploration
of the transversality condition, refer to [15] and [16].

2.2. The switching functions

From the equalities (10) we deduce:

v =

 +1 if ψ(t)> 0,
−1 if ψ(t)< 0,
∈ [−1,+1] if ψ(t) = 0.

(12)

and

w =

 +1 if p3(t)> 0,
−1 if p3(t)< 0,
∈ [−1,+1] if p3(t) = 0.

(13)

ψ(.), p3(.) are the switching functions, determine where the controls can switch, the last
case of control for linear velocity (v ∈ [−1,+1]) and the last case for angular velocity
(w ∈ [−1,+1]) indicate when the switches occur, where the control is discontinuous and
changes from one trajectory segment to another when ψ(t) = 0 for v or p3(t) = 0 for
w. These switches occur only in isolated instances and the singular controls do not exist,
the demonstration involves the Lie bracket and the Lie algebras; for more details we can
refer to [4]. It is important to note the high frequency of these switches can complicate
the integration of the Boundary-Value Problems (BVP), thereby posing challenges in the
application of the shooting method.

3. PICARD’S METHOD

This method was proposed by E. Picard in 1890 [18], [19], [20].
Let the following differential system:

dy1

dt
= f1(t,y1,y2, ...,ym)

dy2

dt
= f2(t,y1,y2, ...,ym)

.

.

.
dym

dt
= fm(t,y1,y2, ...,ym)

(14)
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We assume that the functions ( fi) are real continuous in the neighbourhood of t0,
y0

i = yi(t0) for i= 1, ...m. The functions ( fi) are defined in t ∈ [t0−α, t0+α] and yi ∈ [y0
i −

β ,y0
i +β ], α,β > 0. Let M > 0: | fi(t,y1,y2, ...,ym)|⩽ M and we assume that there exist

positive constants: γ1,γ2, ...,γm ∈ R+ such as | fi(t, ỹ1, ỹ2, ..., ỹm)− fi(t,y1,y2, ...,ym)| ⩽
γ1|ỹ1 − y1|+ γ2|ỹ2 − y2|+ ...+ γm|ỹm − ym|.

Let a sequence y(n+1)
i (i = 1, ...m) defined as follows: dy(n+1)

i (t)
dt

= fi(t,y
(n)
1 ,y(n)2 , ...,y(n)i ...,y(n)m )

y0
i = yi(t0)

(15)

The sequence (15) uniformly converges to the analytical solution yi(t) of:
dyi(t)

dt
= fi(t,y1,y2, ...yi...,ym) and:

lim
n→+∞

y(n)i (t) = yi(t)

3.1. Application of the method to the problem

The functions cos, sin are Lipschitzian, in fact:
|cos t − cos t̃|= |(−sinζ )(t − t̃)|= |−sinζ ||(t − t̃)|⩽ |t − t̃|,
|sin t − sin t̃|= |(cosη)(t − t̃)|= |cosη ||(t − t̃)|⩽ |t − t̃|.
ζ ,η ∈]t, t̃[ are given by the mean value theorem of the functions cos and sin, so any linear
combination is still lipschitzian.

From (2.2) we deduce:

U = {(+1,+1),(+1,−1),(−1,+1),(−1,−1)}.

To address the control problem described in Equation (9), we identify this various cases:

1. (v,w) = (+1,+1) i.e. (p1(t)cosθr + p2(t)sinθr > 0) and ( p3(t)> 0).
Then the system (9) becomes:

ẋr = cosθr
ẏr = sinθr
θ̇r = 1
ṗ1 = 0
ṗ2 = 0
ṗ3 = p1 sinθr − p2 cosθr

(16)

Applying Picard’s successive approximation method with the initial condition: x(0)r =

xr(t0)= xr0, y(0)r = yr(t0)= yr0, θ
(0)
r = θr(t0)= θr0, p(0)1 = p1(t0), p(0)2 = p2(t0), p(0)3 =

p3(t0).
The iteration (1) is :

x(1)r = x(0)r +
∫ t

t0 cosθ
(0)
r ds = x(0)r +

[
cosθ

(0)
r s
]s=t

s=t0
= xr0 +(t − t0)cosθr0,

y(1)r = y(0)r +
∫ t

t0 sinθ
(0)
r ds = y(0)r +

[
sinθ

(0)
r s
]s=t

s=t0
= yr0 +(t − t0)sinθr0,
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θ
(1)
r = θ

(0)
r +

∫ t
t0 1ds = θ

(0)
r +[s]s=t

s=t0 = θr0 +(t − t0),

p(1)1 = p1(t0) = c1,

p(1)2 = p2(t0) = c2,

p(1)3 = p3(t0)+c1
∫ t

t0 sinθ
(0)
r ds−c2

∫ t
t0 cosθ

(0)
r ds= p3(t0)+(c1 sinθr0−c2 cosθr0)(t−

t0).
So the iteration (n+1), (n ⩾ 1)is:
x(n+1)

r = x(0)r +
∫ t

t0 cosθ
(n)
r ds= x(0)r +

∫ t
t0 cos(θ (0)

r +(s−t0))ds= xr0+sin(θr0+(t−
t0))− sinθr0,

y(n+1)
r = y(0)r +

∫ t
t0 sinθ

(n)
r ds = y(0)r +

∫ t
t0 sin(θ (0)

r +(s− t0))ds = yr0−cos(θr0+(t−
t0))+ cosθr0,

θ
(n+1)
r = θ

(0)
r +

∫ t
t0 1ds = θr0 +(t − t0),

p(n+1)
1 = c1,

p(n+1)
2 = c2,

p(n+1)
3 = p3(t0)+ c1

∫ t
t0 sinθ

(n)
r ds− c2

∫ t
t0 cosθ

(n)
r ds = p3(t0)+ c1[−cos(θr0 +(t −

t0))+ cos(θr0)]− c2[sin(θr0 +(t − t0))− sinθr0],
this control is valid if (p1(t)cosθr + p2(t)sinθr > 0) and (p3(t)> 0), so we deter-
mine t such that both of these conditions are satisfied.

2. (v,w) = (+1,−1) i.e. (p1(t)cosθr + p2(t)sinθr > 0) and ( p3(t)< 0).
The system (9) becomes:

ẋr = cosθr
ẏr = sinθr
θ̇ =−1
ṗ1 = 0
ṗ2 = 0
ṗ3 = p1 sinθr − p2 cosθr

(17)

The iteration (n+1), (n ⩾ 0) is given by:
x(n+1)

r = x(0)r +
∫ t

t0 cosθ
(n)
r ds= x(0)r +

∫ t
t0 cos(θ (0)

r −(s−t0))ds= xr0−sin(θr0−(t−
t0))+ sinθr0,

y(n+1)
r = y(0)r +

∫ t
t0 sinθ (n)ds = y(0)r +

∫ t
t0 sin(θ (0)

r −(s− t0))ds = yr0+cos(θr0−(t−
t0))− cosθr0,

θ
(n+1)
r = θ

(0)
r +

∫ t
t0 −1ds = θr0 − (t − t0),

p(n+1)
1 = p1(t0) = c1,

p(n+1)
2 = p2(t0) = c2,

p(n+1)
3 = p3(t0)+c1

∫ t
t0 sinθ

(n)
r ds−c2

∫ t
t0 cosθ

(n)
r ds= p3(t0)+c1[cos(θr0−(t−t0))−

cosθr0]+ c2[sin(θr0 − (t − t0))− sinθr0].
In this case, we also determine t such that the condition mentioned earlier is satis-
fied.

3. (v,w) = (−1,+1) i.e. (p1(t)cosθr + p2(t)sinθr < 0) and ( p3(t)> 0).
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The system (9) becomes:

ẋr =−cosθr
ẏr =−sinθr
θ̇r =+1
ṗ1 = 0
ṗ2 = 0
ṗ3 =−p1 sinθr + p2 cosθr

(18)

The (n+1)th iteration (n ⩾ 0) is:
x(n+1)

r = x(0)r −
∫ t

t0 cosθ
(n)
r ds= x(0)r −

∫ t
t0 cos(θ (0)

r +(s−t0))ds= xr0−sin(θr0+(t−
t0))+ sinθr0,

y(n+1)
r = y(0)r −

∫ t
t0 sinθ

(n)
r ds = y(0)r −

∫ t
t0 sin(θ (0)

r +(s− t0))ds = yr0+cos(θr0+(t−
t0))− cos(θr0),

θ
(n+1)
r = θ

(0)
r +

∫ t
t0 1ds = θr0 +(t − t0),

p(n+1)
1 = p1(t0) = c1,

p(n+1)
2 = p2(t0) = c2,

p(n+1)
3 = p3(t0)−c1

∫ t
t0 sinθ

(n)
r ds+c2

∫ t
t0 cosθ

(n)
r ds= p3(t0)+c1[cos(θr0+(t−t0))−

cosθr0]+ c2[sin(θr0 +(t − t0))− sinθr0].
We determine t such that the condition (p1(t)cosθr+ p2(t)sinθr < 0) and ( p3(t)>
0) is verified.

4. (v,w) = (−1,−1) i.e. (p1(t)cosθr + p2(t)sinθr < 0) and ( p3(t)< 0)
In this case, the system (9) is:

ẋr =−cosθr
ẏr =−sinθr
θ̇r =−1
ṗ1 = 0
ṗ2 = 0
ṗ3 =−p1 sinθr + p2 cosθr

(19)

The (n+1)th iteration (n ⩾ 0) is:
x(n+1)

r = x(0)r −
∫ t

t0 cosθ
(n)
r ds= x(0)r −

∫ t
t0 cos(θ (0)

r −(s−t0))ds= xr0+sin(θr0−(t−
t0))− sinθr0,

y(n+1)
r = y(0)r −

∫ t
t0 sinθ

(n)
r ds = y(0)r −

∫ t
t0 sin(θ (0)

r −(s− t0))ds = yr0−cos(θr0−(t−
t0))+ cos(θr0),

θ
(n+1)
r = θ

(0)
r +

∫ t
t0 −1ds = θr0 − (t − t0),

p(n+1)
1 = p1(t0) = c1,

p(n+1)
2 = p2(t0) = c2,

p(n+1)
3 = p3(t0)−c1

∫ t
t0 sinθ

(n)
r ds+c2

∫ t
t0 cosθ

(n)
r ds= p3(t0)−c1[cos(θr0−(t−t0))−

cos(θr0)]+ c2[−sin(θr0 − (t − t0))+ sinθr0].
In this context, we also determine t such that the condition mentioned earlier is
satisfied.
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Based on the analysis provided above, we deduce that the robot’s optimal trajectory
consists of a series of circles. In fact, for the command (+1,+1), we have:

x(n+1)
r = x(0)r + sin

(
θ
(0)
r +(t − t0)

)
− sinθ

(0)
r

y(n+1)
r = y(0)r − cos

(
θ
(0)
r +(t − t0)

)
+ cosθ

(0)
r

=⇒


x(n+1)

r − x(0)r + sinθ
(0)
r = sin

(
θ
(0)
r +(t − t0)

)
y(n+1)

r − y(0)r − cosθ
(0)
r =−cos

(
θ
(0)
r +(t − t0)

)

so:


[
x(n+1)

r − (x(0)r − sinθ
(0)
r )
]2

=
[
sin(θ (0)

r +(t − t0))
]2[

y(n+1)
r − (y(0)r + cosθ

(0)
r )
]2

=
[
−cos(θ (0)

r +(t − t0))
]2

(
x(n+1)

r − (x(0)r − sinθ
(0)
r )

)2

+

(
y(n+1)

r − (y(0)r +cosθ
(0)
r )

)2

= 1, and this is an equation

of a circle with radius 1 and center O, O(xr0 − sinθr0 ; yr0 + cosθr0). We proceed in the
same way as the other commands.

4. SHOOTING METHOD

To utilize the outcomes of the preceding section, we employ the shooting method
for solving boundary-value problems. This technique enables us to determine the initial
condition of the adjoint state, denoted as p(t0). For a comprehensive resource on the
shooting method, you can refer to the classic book [21].
The boundary-value problems (BVP) are:

ẋr = vcosθr
ẏr = vsinθr
θ̇ = w
ṗ1 = 0
ṗ2 = 0
ṗ3 = p1vsinθr − p2vcosθr
v = sign(p1 cosθr + p2 sinθr)
w = sign(p3)
x0 = x(0), x(t f ) = x f

(20)

We define the shooting function S as follows:
let p0,x0,x f ∈ R3 such as :

S : R3 −→ R3

p0 7−→ S(p0) = x(t f ,x0, p0)− x f , p0 = p(0), x0 = x(0), x(t f ) = x f .

S(p0) =

xr(t f ,x0, p0)− xr f
yr(t f ,x0, p0)− yr f
θr(t f ,x0, p0)−θr f

 (21)
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To solve problem (20), we must find p0 such as :

S(p0) = 0, p0 ∈ R3 (22)

The solution of equation (22) is the initial state of the adjoint vector p(t) to reach
the desired final state x(t f ). We apply Newton’s method to solve this equation, Newton’s
methods are known for their sensitivity to the initial conditions. The challenge lies in
providing an appropriate initial value of p0, denoted as p(0)0 , to guarantee the convergence
of the method.

Let JS(p0) represent the Jacobian matrix associated with the shooting function S:(
JS(p0)

)
i j
=

(
∂Si

∂ p0 j

)
, i, j = 1,3.

To solve the equation (22), we follow this procedure:
We start with an initial value p(0)0 ∈R3 for the variable p0 and then iterate for k = 0,1, . . .
until convergence is achieved.
Find δ p(k)0 solution of the linear equation:

JS(p(k)0 )δ p(k)0 =−S(p(k)0 ),

set:
p(k+1)

0 = p(k)0 +δ p(k)0 .

At each iteration k, we are required to solve a linear system involving the Jacobian matrix
JS(p(k)0 ).

The steps to solve the boundary-value problems (BVP) (20) are:
• Establish the initial and final states of the robot;
• The differential system (20) is integrated using the Picard method;
• Solve equation (22) by a Newton-type method.

5. NUMERICAL APPLICATION

In our numerical application, we will provide specific examples by specifying the
initial state and the final state of the system. We will then employ the previously outlined
algorithm to compute the optimal control, the trajectory, and the final time, and generate
the associated graphical representations.

• Example 1: x(0) =

0
0
0

, x(t f ) =

4.87
0.85
0.30

, the trajectory consists of a sequence of

interconnected circles and the final time is set to t f = 7.33s.
The robot’s trajectory and switching times are detailed in Table 2, and you can refer
to Figures (2), (3), (4), (5), (6), and (7) for graphical representations.
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Table 2: Example 1
xr yr θr switching time t
0 0 0 0
1 1 1.571 1.571
2 2 0 3.131
3 3 01.571 4.71
4 4 0 6.28

4.87 4.0001 1.0552 7.33

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

X(t)

0

1

2

3

4

5

Y
(t

)

Example 1

Figure 2: Trajectory optimization (example1)

0 1 2 3 4 5 6 7 8

Time (s)

0

1

2

3

4

5

x
r(t

)

Figure 3: State evolution: xr analysis

• Example 2: x(142.9) =

−3.85
0.74
5.28

, x(t f ) =

−0.38
0.26
6.25

 .

The trajectory consists of a sequence of interconnected circles, and the final time
is defined as t f = 148.7s. You can find detailed information in Table 3 and refer to
Figure 8 for a visual representation.

Table 3: Example 2
xr yr θr switching time t

−3.85 0.74 5.28 142.9
−2.0095 1.2037 7.7800 145.4
−2.0122 1.1338 7.8500 145.47
−2.0212 1.0042 07.7200 145.6
−0.0345 0.7783 4.62 148.7
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Figure 4: State evolution: yr analysis
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Figure 5: State evolution: θr analysis
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Figure 6: Optimal control: linear velocity v analysis

6. DISCUSSION

Our article addresses the optimal control problem for a car-like mobile robot. Our
study demonstrates superior results when compared to the research conducted in [7].
Specifically, in Example 1, our approach achieves a significantly reduced time of 7.33s
compared to the previous result of 14.2s, while in Example 2, the final time is reduced
to 148.7s from the previous value of 158.6s. Additionally, our robot’s trajectory closely
approximates the analytical (exact) solution. This outcome is attributed to the uniform
convergence of the Picard method employed in our study.
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Figure 7: Optimal control: angular velocity w analysis
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Figure 8: Trajectory optimization (example 2)

This study presents two significant challenges. The first is associated with the Newton
method, which is notably sensitive to the initial conditions. The primary concern revolves
around selecting the appropriate initial value of p0, denoted as p(0)0 , p(0)0 must be suffi-
ciently close to the unknown solution p0 to ensure convergence of the Newton method,
this means that this method requires prior knowledge of the robot’s optimal trajectory. A
poor choice of p(0)0 runs the risk of divergence, meaning the solution may deviate from
the final state of the system. In our examples, we managed to achieve convergence of
the method, but we were unable to precisely reach the final state, although we came very
close to it (as observed in example 1 and example 2). This limitation represents a notable
drawback of the Newton method. The second challenge pertains to the number of switch-
ings. A high number of switches complicates the application of the method, leading to
increased complexity, particularly in terms of execution time.

It’s noticed that this study does not account for constraints on the state of the system,
denoted as x(t), i.e. in this study we did not impose a path to follow by the robot to
avoid, for example, obstacles, disturbances during its trajectory, which we propose as
future directions in order to generalize this optimization problem, mathematically we add
the constraint x(t) ∈ X ⊂ R3 to the problem, in this case we can distinguish two types of
constraints: holonomic and nonholonomic. Adding constraints on state x(t) is our current
research focus.

This article is an investigation conducted under the absence of state constraints. The
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key distinction between this optimal control problem and one with state constraints is
that the presence of state constraints can lead to discontinuities in the adjoint vector. To
address this, junction points are introduced [17, 22, 23]. Despite these challenges and
limitations, our approach yields superior results when compared to the study in [7]. Fur-
thermore, the results obtained in our study closely approximate the exact solutions of the
boundary-value problems (BVP).

7. CONCLUSION AND PERSPECTIVES

The primary objective of this work is to address the challenge of achieving optimal
control for a Car-Like mobile robot, enabling it to transition from any initial state to any
final state within the minimum time. To accomplish this, we applied Pontryagin’s Max-
imum Principle (PMP) to derive the optimal control strategy. Our proposed approach,
incorporating Picard’s method and Newton’s method to tackle the associated differential
problem, outperforms the methods presented in [7], despite the challenges we encoun-
tered.

It is important to note that this study does not consider constraints on the state of the
system, denoted as x(t). The potential future research directions include:

• The extension of this study by introducing state constraints (x(t) ∈ X ⊂ R3), these
constraints can be holonomic or nonholonomic, we investigate the applicability and
efficiency of the proposed method on this type of constraints, and when the robot is
confronted during its trajectory to obstacles and disturbances. Integration of state
constraints improves the versatility of the method.

• Applying the proposed method to other robots, such as underwater robots (ROVs,
AUVs), flying robots, multi-robot systems to extend the applicability of the method
in the field of robotics.

• Exploration for the practical implementation of the proposed control method on a
real car-like mobile robot, this leads to conducting experiments in a real controlled
environment to test and validate the effectiveness of the approach.

• Combining optimal control theory with path planning algorithms.
• Improve the precision of trajectory tracking by minimizing the difference between

the followed trajectory and the desired trajectory especially when the robot is sub-
ject to environmental disturbances.

These avenues pave the way for further advancements in the field of optimal control
for Car-Like mobile robots and related domains in robotics and control theory.
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[18] E. Picard, Traité d’Analyse Tome II. Gauthier-Villars et Fils, 1893.
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