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Abstract: Production scheduling, especially in intricate sectors like aerospace, is essential.
This study presents a Mixed Integer Linear Programming (MILP) model to optimize
production in the surface treatment area of an aerospace company. The complex task
involves several constraints, including raw material alloy type, tank capacity, and fixture
design for parts. The goal is to find the optimal combination to maximize production,
efficiency, and safety. Unique to this problem is the integration of factors such as different
tanks, fixtures, scheduling, and geometric constraints. Technical requirements have been
integrated as constraints to satisfy aircraft manufacturing certifications. Experiments with
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thirty real and thirty simulated scenarios showed that the proposed model significantly
outperformed the company's existing methods. In the best case, it demonstrated the
potential to more than double the production with the same resources. The results
underscore the existing capacity to take on new products and clients, highlighting the
potential for increased efficiency. Spatial optimization allows for processing more parts
per cycle, thus reducing time, costs, and environmental impact. This study adds value to
optimization literature, offering a novel approach to a real and multifaceted problem in the
surface treatment industry, with applications extending to other industrial contexts where
spatial optimization and efficient scheduling are key.

Keywords: Optimization, lot sizing, surface treatment, mixed integer linear programming,
aerospace industry.
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1. INTRODUCTION

The aerospace industry is a prominent sector in the global marketplace, distinguished
by advanced technological innovation and highly specialized products with significant
value-added components. It operates predominantly within the broader capital-goods
segment, characterized by Engineer-to-Order (ETO) and Make-to-Order (MTO) strategies
that entail low production volumes, high levels of customization, long lead times, and tight
integration between engineering design and shop-floor control [1,2]. Recent studies
reinforce how these inherent conditions amplify the complexity of planning and
scheduling. Neumann et al. [3], for instance, highlight ongoing challenges optimization
techniques face when addressing product variability and resource constraints inherent to
ETO manufacturing. Additionally, Love et al. [4] emphasize the operational risks arising
from rigorous certification requirements and customer-specific demands prevalent in
aerospace-related ETO production environments. These complexities reduce the feasibility
of maintaining inventory buffers, escalate the potential costs associated with rework, and
consequently necessitate the development of advanced scheduling tools, such as the one
proposed in this study.

Organizationally, the aerospace supply chain adopts a multi-tier hierarchy, culminating
in Original Equipment Manufacturers (OEMs), such as Boeing, Airbus, and Embraer, that
execute the final assembly of aircraft. Within this structure, suppliers are classified
according to the complexity and criticality of their supplied components: Tier-1 firms
produce primary systems and modules directly for OEMs; Tier-2 and Tier-3 companies
supply subsystems, individual components, and specialized services; and Tier-4 suppliers
primarily handle raw materials [5].

This research specifically addresses a complex production-planning challenge in the
surface-treatment division of a Tier-1 aerospace supplier based in Guaratingueta, Sdo
Paulo, Brazil. This facility manufactures sophisticated aeronautical systems, including
landing gears, pressurization systems, flight controls, and avionics components. To
guarantee that only confirmed customer orders proceed to galvanoplasty operations, the
firm employs a robust backlog management system. Effective production planning must
therefore consider the alloys of raw materials, specialized surface-treatment protocols, and
the capacity limitations of two chromic anodizing tanks, each capable of processing up to
40 lots daily.
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Surface treatment operations within aerospace manufacturing represent substantial
financial commitments, primarily driven by high electricity consumption and strict process
control standards. Nevertheless, improvements in operational efficiency promise
significant economic returns, enabling the treatment of more components per production
cycle while simultaneously reducing environmental impacts.

Considering this context, the central research question guiding our study is: "What
configuration of products and quantities per lot and per tank, respecting all technical and
operational constraints, maximizes daily productivity?" To answer this, we develop and
implement a customized Mixed-Integer Linear Programming (MILP) model explicitly
designed to optimize the scheduling of chromic-anodizing tanks in the analyzed Tier-1
aerospace plant.

The proposed MILP model was implemented within the GAMS IDE and solved using
the CPLEX optimization solver. Real-world production scenarios from the company were
utilized for validation purposes, allowing direct comparisons between current scheduling
practices and solutions derived from our optimization approach. Additionally,
supplementary experiments involving simulated demand conditions were carried out to
assess the robustness and adaptability of the proposed scheduling method.

The decision problems tackled by this study align closely with classical optimization
frameworks such as Lot Sizing Problems, which are recognized in the literature as NP-
hard [6,7]. Additional theoretical insights were drawn from related Knapsack-type problem
formulations [8,9].

Although the broader context and general motivation for this research are presented
here, the specific gaps in existing knowledge that justify our study’s contributions are
detailed comprehensively in Section 2.4.

The remainder of the article is structured as follows: Section 2 provides an in-depth
review of foundational concepts, existing optimization methods, and analytical tools
pertinent to our approach. Section 3 introduces the industrial context, describing the
production steps and operational constraints of the surface-treatment process, followed by
a detailed presentation of our MILP formulation. Section 4 presents the computational
results obtained from analyzing thirty actual production days and an additional thirty
simulated scenarios, contrasting the effectiveness of the firm's current scheduling methods
with the proposed MILP-generated schedules. Finally, Section 5 summarizes the study’s
key findings, discusses managerial implications, and outlines potential avenues for future
research.

2. LITERATURE REVIEW
2.1. Production Scheduling and PPC in the Capital-Goods Industry

Production scheduling is a critical function within Production Planning and Control
(PPC), particularly in capital-goods industries such as aerospace, heavy machinery, and
power-generation equipment. These industries typically employ production strategies such
as Make-to-Order (MTO) or Engineer-to-Order (ETO), characterized by low production
volumes, high customization, long lead times, and close integration between engineering
activities and manufacturing operations [10,11].

Unlike the standardized environments typical of consumer-goods manufacturing,
capital-goods production commonly occurs within complex job-shop or project-based
settings, involving deep bills-of-materials and multi-level assemblies. These environments
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require precise coordination across various manufacturing and assembly processes,
frequently complicated by stringent precedence constraints. Such constraints include
concurrent production modes within the same facility, extended processing sequences, and
finite-capacity limitations [12,13].

ETO environments further intensify these complexities. Each order represents a unique,
customized project with minimal repetition, requiring specialized planning and scheduling
approaches. Standard enterprise systems such as Enterprise Resource Planning (ERP) and
Material Requirements Planning (MRP) often prove insufficient in addressing dynamic
and non-repetitive demands inherent in ETO production. Additionally, logistical
constraints, such as spatial packing restrictions for oversized components and alloy
compatibility requirements in surface-treatment operations, frequently demand dynamic
adjustments to schedules due to evolving design specifications or unforeseen supply
disruptions [14,15].

Historically, production scheduling in capital-goods manufacturing has predominantly
relied on human expertise combined with simple heuristic rules. Formal scheduling
methods have seen limited practical application, contributing to suboptimal performance
outcomes, including delays in delivery and excess inventory [16]. Even today, production
planners face significant workloads, frequently required to adapt and re-plan schedules in
response to unexpected disruptions. Contemporary research thus emphasizes the growing
necessity of robust decision-support systems capable of enabling rapid and effective
rescheduling within these highly dynamic production environments [11].

In summary, Production Planning and Control (PPC) in capital-goods industries
involves the complex task of coordinating diverse, customized production processes under
stringent technical and operational constraints. Effective PPC strategies must therefore
remain flexible, responsive, and capable of integrating detailed scheduling tools adapted
to the unique realities of MTO and ETO production contexts.

2.2. Historical and Contemporary Optimization Approaches

Historically, production scheduling in complex industrial environments has relied
predominantly on heuristic and dispatching rules due to their simplicity, ease of
implementation, and rapid decision-making capabilities. Common examples include the
Earliest Due Date (EDD) and Critical Ratio (CR) rules. However, despite their practical
advantages, these approaches generally lack robustness in dynamic environments,
particularly in scenarios subject to stochastic disruptions or uncertainties [16].

To overcome these limitations, researchers in the late twentieth and early twenty-first
centuries began exploring advanced heuristic approaches known as metaheuristics.
Techniques such as Genetic Algorithms (GA), Simulated Annealing (SA), and Tabu
Search were introduced and gained prominence due to their powerful search capabilities,
which significantly improved scheduling outcomes compared to traditional heuristic
methods [17]. Subsequent developments in metaheuristics further incorporated algorithms
such as Particle Swarm Optimization (PSO), Artificial Bee Colony (ABC), and Grey Wolf
Optimizer (GWO). These methods were particularly suitable for -capital-goods
manufacturing scenarios characterized by sequence-dependent setups, multiple resource
constraints, and highly customized production requirements [18].

Parallel to these developments, MILP emerged as a rigorous mathematical approach
for optimizing production scheduling. Historically, MILP models were seldom applied at
industrial scale due to computational limitations. However, recent advancements in solver
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technologies and computational power have significantly improved their viability,
enabling the formulation and practical resolution of more realistic and detailed scheduling
problems. Modern MILP formulations now routinely integrate complex constraints,
including preventive maintenance schedules, sequence-dependent setups, and resource
limitations, effectively addressing the detailed scheduling needs of capital-goods
manufacturers [19].

This modeling approach aligns with previous applications of MILP and structured
decision-support models in various domains, including production [20], urban mobility
[21], innovation management [22], and logistics and healthcare systems [23,24]. These
applications demonstrate the versatility and robustness of MILP frameworks for solving
complex problems involving capacity constraints, resource compatibility, and operational
efficiency.

Despite these advancements, purely mathematical (exact) approaches can still face
challenges related to computational scalability in real-world industrial contexts.
Consequently, contemporary research increasingly advocates hybrid optimization methods
that combine strengths from both heuristic/metaheuristic and exact MILP techniques.
Hybrid approaches often utilize heuristic or metaheuristic algorithms to generate initial
solutions, which subsequently inform MILP models, reducing the computational burden
and improving convergence times. For example, hybrid methods that integrate
metaheuristic algorithms such as Genetic Algorithms or Grey Wolf Optimization with
MILP models have demonstrated superior performance, particularly in minimizing
makespan and tardiness in complex, customized scheduling scenarios [19].

Additionally, hybrid approaches that integrate simulation techniques alongside
optimization models have proven effective in evaluating the robustness of production
schedules under realistic disruptive conditions. Such simulation-based hybrid methods
enable schedulers to better understand how schedule performance degrades under
operational disruptions, providing critical insights into the resilience and adaptability of
scheduling solutions typical in capital-goods production environments [25].

2.3. Classical Exact Formulations

Classical exact formulations for production planning and scheduling have their roots in
early inventory management theory, beginning with the Economic Order Quantity (EOQ)
model, originally proposed by Harris [26] and subsequently applied in practice by Wilson
[27]. EOQ provided a foundational framework but was limited by its restrictive
assumptions, particularly the absence of capacity constraints and the simplification to
single-level production scenarios.

To address some of these limitations, Rogers [28] introduced the Economic Lot
Scheduling Problem (ELSP), extending inventory optimization to multi-product contexts
with explicit capacity constraints [29]. Further advancements in this area culminated in the
Dynamic Lot Sizing Problem (DLSP) by Wagner and Whitin [30], which incorporated
dynamic, time-variable demand into inventory optimization models, significantly
broadening the practical applicability of lot-sizing formulations [31].

Building upon these foundations, contemporary lot-sizing models often adopt MILP
formulations. Among them, the Capacitated Lot-Sizing Problem (CLSP) stands out as a
widely applied approach. The CLSP considers multiple items, discrete time periods,
capacity limits, setup requirements, and inventory holding costs. It is particularly suitable
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for MTO and ETO environments where resource allocation and production eligibility,
rather than sequencing, are the primary concerns.

The CLSP formulation explicitly incorporates inventory costs, setup costs, and capacity
constraints without explicitly modeling product sequencing within each period. A typical
CLSP formulation [32,33,34] can be summarized as follows:

Decision Variables:

xj  Quantity of product j produced in period ¢.
Yje Binary variable equal to 1 if product j is produced in period ¢, 0 otherwise.
I;;  Inventory level of product j at the end of period t.

Parameters:

D;,  Demand for productj in period z.

s;  Setup cost for product ;.

h;j  Unit inventory holding cost for product ;.
C, Available production capacity in period z.

CLSP Formulation:

Minimize Z = ¥i_y ¥1_, (5;yje + jl;e) (1)
Subject to:

Liemry Y Xje = Dje + L, Vji t )
Yo pxe S C, Vit (3)
Xje < My, V j t 4)
Li,xje =20,V t (5)
yie €{0,1}, V. ¢ (6)

The objective function (1) minimizes the total cost, which consists of setup costs and
inventory holding costs incurred over the planning horizon. Constraint (2) ensures
inventory balance by requiring that the sum of the previous period’s ending inventory and
the current period’s production equals the current period’s demand plus ending inventory.
Constraint (3) imposes capacity restrictions: the total production workload in each period
must not exceed the available capacity. Constraint (4) is a big-M constraint that enforces
setup logic, allowing production of a given product only when the corresponding setup
variable is activated. Constraints (5) define non-negativity for the production and inventory
variables, while constraint (6) ensures the binary nature of the setup variables.

This classical CLSP structure is particularly appropriate for industrial environments
where capacity constraints and production eligibility are the dominant factors, but
sequencing decisions can be abstracted or predetermined. In the context of this study, the
CLSP formulation provides a solid foundation for modeling lot-sizing and capacity
allocation in a constrained surface-treatment environment, enabling the representation of
real operational requirements without the additional complexity of sequencing logic.

Despite their modeling rigor, exact MILP formulations often face computational
scalability challenges when applied to large-scale, highly customized industrial settings
such as those found in ETO and MTO contexts. Solving real-world scheduling problems
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with pure MILP models may demand advanced solution strategies, such as decomposition
methods, heuristics, or solver-specific enhancements, to remain tractable within acceptable
computational timeframes [11]. In the context of this study, however, the problem structure
and scale are such that a classical CLSP-based MILP formulation remains both feasible
and effective. This justifies the choice of a pure MILP model in this study, as it offers
sufficient modeling power to address the operational complexity of the industrial problem
without incurring prohibitive computational costs.

2.4. Research Gaps and Contributions of the Present Study

Although classical MILP models such as CLSP provide robust formulations, they often
fall short in representing the full operational reality of capital-goods production,
particularly in aerospace settings. The literature review highlights two key gaps that this
study addresses:

First, comprehensive optimization models that fully capture the intricate realities of
ETO and Make-to-Order (MTO) scheduling environments remain relatively scarce. The
majority of existing formulations in the literature simplify the complexity of real-world
industrial operations, neglecting detailed multi-stage manufacturing processes, spatial
constraints inherent to large and customized components, and operational specifics such as
alloy compatibility in surface-treatment processes. Such simplifications severely limit the
practical applicability and accuracy of these scheduling solutions in actual industrial
scenarios [15,35].

Second, despite the growing body of theoretical literature on advanced scheduling
optimization, empirical validation and real-world applicability remain significantly
underrepresented. Few studies provide comprehensive empirical evidence demonstrating
the effectiveness and practical feasibility of proposed methods within actual industrial
environments, particularly in capital-intensive industries such as aerospace. The scarcity
of detailed industrial case studies limits the potential for generalizing theoretical results,
thereby creating uncertainty regarding the robustness, adaptability, and practical impact of
these advanced scheduling methods [36].

Addressing precisely these identified gaps, the present study makes several important
contributions. First, it develops a tailored MILP model explicitly designed for the
scheduling challenges faced by a Tier-1 aerospace manufacturer. This MILP model
integrates critical real-world operational constraints, including finite capacities, spatial
packing limitations, alloy compatibility constraints associated with chromic anodizing
surface treatments.

Second, the study provides extensive empirical validation, leveraging authentic
production data obtained directly from the aerospace company's surface-treatment area. By
systematically comparing current scheduling practices employed by the company with
optimized schedules produced by the proposed MILP approach, the research delivers
concrete evidence of substantial efficiency gains, improved resource utilization, and
enhanced responsiveness to demand fluctuations and operational disruptions.

Furthermore, the methodological rigor of this empirical validation extends through
computational experiments involving both actual historical production scenarios and
realistic simulated demand conditions. These additional tests validate the robustness and
adaptability of the proposed model, demonstrating its potential for broader application
across similar ETO and MTO manufacturing contexts.
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Finally, from a theoretical and practical standpoint, this research offers significant
insights into the challenges associated with implementing advanced optimization methods
in industrial settings, particularly regarding solver performance, computational feasibility,
and operational integration within the context of highly customized aerospace
manufacturing.

3. DESCRIPTION AND MATHEMATICAL FORMULATION OF THE
PROBLEM

This section outlines the problem identified in the surface treatment area of the
company under study. The goal is to maximize the utilization of available resources,
avoiding bottlenecks and underutilization throughout the day.

3.1. Preparatory Stages

Before chromic anodizing, there are eight preparatory stages focused on cleaning and
activating the product's surface. Figure 1 is a schematic representation of the entire process
in the surface treatment area.

Perform steam

Steam
degreasing

Liquid penetrant
testing

) S

Alicaline Double rinsing Adld deaning b
degreasing in in Ta”xs CJ and o 9
Tank C2 Tank C5
Double rinsing Brightening in Double rinsing Chromic o s
in Tam(s C6and RENNg in Ta~<s C: and anodizing in End of the chromic
Tenk C10 Tank K1 or K2 anodizing process

Figure 1: Process steps in the surface treatment area

Surface treatment

The first phase involves receiving items released by the Machining process, executed
by a material movement route at predefined times. The second stage, optional and
dependent on the process defined by the customer, may involve a liquid penetrant test to
detect mechanical or material defects.

The degreasing (tank C2), double rinse (tanks C3 and C4) until (tanks C7 and C8)
stages refer to the cleaning and activation process of the surface to be anodized. These
phases are crucial, as inefficient cleaning can lead to quality issues. However, these stages
are not considered in the model's elaboration.

3.2. Production Process

Scheduling in the electroplating sector is complex and burdensome, conducted based
on items delivered by the machining area and ready for treatment. The scheduling aims to
optimize the use of chromic anodizing tanks, the sector's bottleneck.
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Assembly of Parts: Parts are mounted on hooks or specific devices, with dimensions
determining the quantity and manner of attachment (Figure 2).

(b)

Figure 2: Fixing devices with assembled products, 8 items (a) and 3 items (b)

Treatment in the Tank: Fixing devices are fitted into the busbar of the chromic
anodizing tank, adjusted according to the geometry of each piece to occupy the maximum
available space (Figure. 3).

Busbar Constraints: The busbar is fixed, and its position cannot be altered.
Optimization must explore the tank's depth, width, and thickness dimensions.

Figure 3: Fixing devices fitted into the busbar of the chromic anodizing tank

Spatial optimization is vital for the efficiency of the treatment, allowing more pieces to
be processed per cycle and minimizing environmental impact. Overloading or improper
placement can compromise quality and safety, requiring experienced professionals.

3.3. Production Details

Each scenario represents a production day, with up to 40 subperiods (starts), and 56
different products recorded over two months. The company has two chromic anodizing
tanks (K1 and K2), with different capacities and limitations on fixing devices (Tables 1
and 2).
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Table 1: Maximum quantity of fixation devices with the item in Tank ‘K1’

Quantity of fixation devices

for the item in the tank ITEMS

4 1964A2200
830D0100  829D0100  1320_0101 1312_0101 4774_0002
4775_0002 810A0400 786A0700 926 0102  3957A0600
4778 0102 3958A0600 1386A2200 6896A0100 1556A0200

5 1559A0200 1555A0200 1553A0200 1554A0200 4781A0100
S4_9504612 S4_9504622 918 0102  920A0100 1394 0101
1568 0101 6884_2011 6885_2011 6886_2011 6887_2011
6898A0100 6882 2011 6883 2011 6888 2011 962A0100
70069 23 2434A2200 798 0184

6 1806_041 1806_5051 1806A0200 6864_0280 1642A0400
787A0100  1806A0800 786A0600 341_0250  60091_011

7 6774 _01030 6754_0481 3470_085  6753_02011 5450A0000
6724 0941 3470_028

8 1567A0100 3445A1800 60078_0900 S4_9704300 6724_0271

9 831A0600 786A0900 342 0460  S4_9704411

10 1806D0900

Table 2: Maximum quantity of fixation devices with the item in Tank ‘K2’

Quantity of fixation devices

for the item in the tank ITEMS

1 1964A2200
830D0100  829D0100  1320_0101 1312 0101 4774_0002
4775_0002 810A0400 786A0700 926 0102 3957A0600
4778 0102 3958A0600 1386A2200 6896A0100 1556A0200

2 1559A0200 1555A0200 1553A0200 1554A0200 4781A0100
S4 9504612 S4 9504622 918 0102  920A0100 1394 0101
1568 0101 6884 2011 68852011 6886 _2011 6887_2011
6898A0100 6882 2011 6883_2011 6888_2011 962A0100
70069 23 2434A2200 1806_041  786A0600 6864_0280
787A0100  1806A0800 1806_5051 1806A0200 1567A0100

3 341_0250  60091_011 6774_01030 6754_0481 3470_085
6753_02011 S4_9704411 5450A0000 6724_0941 798_0184
S4_9704300 1642A0400 6724_0271 3470_028

4 831A0600 1806D0900 786A0900 3445A1800 60078_0900
3420460
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Fr each fixing device (all identical), there is a maximum quantity of parts defined by
the dimensions (Table 3).

Table 3: Maximum quantity of the item in the fixation device

Quantity of items in the
fixation device

ITEMS

2

3
4
6

10
12

15
21
24

60

1806 041
787A0100
6864 0280
1567A0100
2434A2200
798 0184
786A0700
6884 2011
6882 2011
831A0600
830D0100
810A0400
1559A0200
60091 011
5450A0000
918 0102
S4 9504612
1320 0101
1568 0101
1806D0900

1806A0200
786A0600

786A0900  3445A1800
3470_028  962A0100

4778 0102  1554A0200
6885 2011 6886 2011

6883 2011 6888 2011

1806 5051

829D0100  1806A0800
926 0102  1386A2200
1555A0200 60078 0900
342 0460 6754 0481

6898A0100 6724 0941

S4 9504622
1312 0101 3957A0600

3470 085
S4 9704300

4781A0100
6887_2011

4774_0002
6896A0100
1553A0200
6753_02011
70069_23

3958A0600

S4_9704411
1642A0400

920A0100
1964A2200

47750002
1556A0200
341 0250
677401030
6724 0271

1394 _0101

Note the requirement that all items in the tank must belong to the same raw material
group. As an example, in Table 4, the items 'S4 9704300 and '1642A0400' belong to the
same group (B6). Therefore, in the tank, only fixation devices assembled with these
specific products can exist.

3.4. Model Assumptions

To support the formulation of the proposed MILP model and ensure alignment with the
real production environment, the following assumptions were established:

1. The model considers a single production day, divided into 40 subperiods (starts).
All demand data are known in advance.
2. Each chromic anodizing tank (K1 and K2) has a maximum number of fixation
devices, depending on geometric restrictions.
3. All devices allocated to a tank in the same period are processed simultaneously.
Therefore, no sequencing is required within the tank.
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6.
7.
These assumptions were validated with the engineering and production teams of the
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Each fixing device contains only one type of item with standardized surface-
treatment parameters.
Each tank can only process items from one raw material group (e.g., B1, B2, B6,

LTS30) in each period. Groups are mutually exclusive.
For each item, there are known limits on the quantity of items per fixation device.
All items are considered available at the start of the planning horizon.

case company and reflect operational practices within the surface-treatment division.

Table 4: Raw material group of the item

Raw material

ITEMS

1806A0200 1567A0100 786A0600 786A0700 926_0102
Bt S4 9504612  S4 9504622 918 0102

830D0100 810A0400 1559A0200 920A0100 6898A0100

829D0100 787A0100 831A0600 4774_0002 4775_0002
B2 786A0900 4778_0102 1386A2200 6896A0100 1556A0200

1555A0200 1553A0200 1554A0200 4781A0100 S4_9704411

5450A0000 6884_2011 6885_2011 6886_2011 6887_2011

1964A2200 6882 2011 6883_2011 6888 2011 2434A2200
B6 S4 9704300  1642A0400

1320_0101 3445A1800 342_0460 6864_0280 6724_0271

1806_041 1806D0900 1806A0800 1312_0101 1806_5051

LTS30 3957A0600 3958A0600 60078_0900  341_0250 60091_011

6774_01030  6754_0481 3470_085 6753_02011 1394 0101

1568 0101 6724_0941 798 _0184 962A0100 70069_23

3470_028

3.5. Mathematical formulation of the MILP problem

In this context, a MILP model is presented to optimize daily scheduling, considering
specific constraints such as the need for products of the same alloy and anodizing process.

For the proposed model, the indices, parameters, and decision variables are:

Indices

TQXRN S

Item: 71..56

Production Period: 7..40 (a production day)
Tank: ‘K1°, ‘K2’
Group (type of process) by raw material: ‘B1’, ‘B2’, ‘B6’, ‘LTS30’
Index of the fixing device in the tank: 1..70
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Parameters

D; Available quantity of the item j

JF; Maximum quantity of item j in a device

FKjy Maximum quantity of devices with item j per tank &
GM; Group of raw material g to which item j belongs

Decision Variables

Xtkfj Quantity of product j in device f allocated in tank & during period ¢
(positive integer variables).
Veksj Yekgj = 1if productjis in device fin tank & during period ¢, or Yy = 0

otherwise. These variables play a role similar to that of setup (whether
the device is prepared or not to produce that item). They are auxiliary
binary variables that facilitate modeling.

Wekg Wiy = 1if the raw material g is used in tank k during period ¢, or e, =
0 otherwise.

L Available unproduced quantity of item j (positive integer variables).
Minimizez = Y11 Yk Y51 Z§=1 t Vs + M- X, L @)
Subject to:

Yte1 Xk=1 Xfe1 Xeps + L = Dj, V) 3
B s B Yoy () < 1.V 1kO)

Xerrj < IF; * Yegrj, ¥V Lk f) (10)
Yoy Yoy S L,V kS (11)
Yo i Wiy <1,V 1k (12)
Yierj < =1 WergGMjg, ¥V Lk fj 13)
Z§:1 Yirsj = Z§:1 Yiepe1j> V LS (14)
Xerj 2 Yerj> V Lk S 15)

The optimization of the first term in the objective function (7) aims to ensure that
production occurs as early as possible within the planning horizon, thereby maximizing the
utilization of tank capacity. Without this term, and assuming the tanks are capable of
completing all production within a day, the solution might result in underutilized capacity,
with more starts (periods) being used than necessary. The parameter 'M' is a sufficiently
large number that ensures the second term, related to the unproduced quantity of each item,
takes precedence over the first.

Constraints (8) governs daily production based on the availability of each item. The
variable L; represents the quantity of item j that remains unproduced at the end of the
planning horizon.

The number of fixing devices per tank is determined by the geometries of the items,
provided that all items assigned to the same tank share the same raw material alloy and
anodizing process.
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Constraint (9) addresses tank occupancy. Each item has a maximum allowable number
of devices that can be installed in a tank. Since different items can share the same tank, the
occupancy ratio for each device must be computed, and the total occupancy cannot exceed
the tank's capacity.

Constraint (10) ensures that the quantity of items assigned to each device does not
exceed the maximum allowed for that item and device type within the tank.

Constraint (11) stipulates that each fixing device can hold only one type of item,
regardless of the quantity.

Constraints (12) ensures that only one alloy group is assigned per tank in each period.

Constraints (13) guarantees that each item assigned to a fixing device belongs to the
raw material group specified for the tank in that period.

Constraint (14) organizes the utilization of fixing devices within each tank, enforcing
a sequential order starting from device index 1. While not strictly required for feasibility,
this constraint improves the interpretability of the model's output.

Finally, constraint (15) ensures that production occurs for all configurations where
Yiks; = 1, meaning whenever a device is activated for a given item.

4. COMPUTATIONAL EXPERIMENTS

This section presents and analyzes the results obtained from computational experiments
using the proposed MILP model, compared with the company's current scheduling
practices. The optimization model was implemented in GAMS IDE version 23.6 and
solved using IBM ILOG CPLEX version 12, ensuring numerical consistency across all test
instances.

The use of the parallelized CPLEX solver enhances computational efficiency and
reduces solution times. By leveraging multicore processing, multiple threads run
simultaneously, accelerating the resolution of complex optimization problems [37].

A total ofthirty scenarios were solved, each representing one day of real operations
during the months of July and August/2022. All experiments were performed on a
computer equipped with an Intel i7 3.1 GHz processor, 8GB of RAM, and an solid-state
drive (SSD), running Windows 10.

4.1 Results with the company’s real demand

The results (Table 5) reveal significant improvements compared to the company’s
existing scheduling approach. In all scenarios, the proposed MILP model generated
considerably more efficient production plans, with the total number of scheduled items
nearly four times higher than those achieved by the company's manual scheduling.

It is noteworthy that no production incidents or equipment downtime occurred during
the observed period that could have influenced these results.

The maximum computation time per scenario was limited to 600 seconds, within which
the generated feasible solutions that scheduled the production of all available items in every
instance.

As shown in Table 5, the optimality gap, defined as the difference between the best
integer solution and the best relaxed solution, is primarily attributed to the first term in the
objective function (7), which encourages early utilization of production periods, rather than
the total number of items produced. It is important to note that computational time tends to
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increase with the number of items to be scheduled, as larger problem sizes lead to more
complex tank-loading combinations and batching configurations. Table 5 Comparison of
the MILP model performance and the company’s actual scheduling across production days.

Table 5: MILP Model vs. Actual Scheduling Performance.

Da Available Actual GAP (% A (%
(DD/I\ZM) items Scheduling LR LS 600sec(0n()1$ Improsler)nent
7/10 1,737 321 1,737 1.37 541
7/11 1,759 278 1,759 1.09 633
7/12 1,814 235 1,814 1.77 772
7/15 1,582 247 1,582 1.84 640
7/16 1,649 357 1,649 2.68 462
7117 1,446 298 1,446 4.30 485
7/18 961 264 961 2.56 364
7/19 1,329 272 1,329 0.79 489
7/22 1,789 237 1,789 1.09 755
7/23 1,940 245 1,940 1.64 792
7/24 1,039 261 1,039 0.41 398
7/25 933 328 933 2.70 284
7/26 1,397 246 1,397 2.81 568
7/29 1,175 224 1,175 2.98 525
7/30 945 249 945 1.52 380
8/1 697 284 697 2.78 245
8/2 803 279 803 2.26 288
8/5 772 311 772 2.56 248
8/6 754 299 754 2.35 252
8/7 852 267 852 1.08 319
8/8 419 242 419 0 (172s) 173
8/9 566 229 566 2.22 247
8/12 1,065 271 1,065 1.59 393
8/13 937 290 937 2.23 323
8/14 495 310 495 0 (33s) 160
8/15 324 273 324 0 (133s) 119
8/16 323 198 323 0.75 163
8/19 480 226 480 0 (59s) 212
8/20 918 224 918 1.69 410
TOTALS 30,900 7,765 30,900 1.66 398

Analysis of the 30 daily scenarios shows that four instances with fewer than 500 items
were solved in 33s — 172s, whereas all remaining runs reached the 600s cut-off. Fitting a
simple linear regression between problem size (items) and elapsed solver time (n = 30,
assigning 600s when the limit was hit) yields a slope of 0.29s per item and an adjusted
R"2=0.88. This confirms an almost linear growth of solution time with problem size within
the 10-minute planning window.

To facilitate visual interpretation, the line graph presented in Figure 4 compares the
number of items scheduled by the company’s current method and by the proposed MILP
model across different days. This graphical representation highlights the contrast between
the company’s actual scheduling and the optimized schedules generated by the model. The
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X-axis represents the production days (from July 10 to August 20), while the Y-axis
indicates the total number of scheduled items. The blue line corresponds to the company's
actual scheduling, whereas the orange line represents the scheduling results obtained with
the proposed MILP model.
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Figure 4: Number of scheduling items per day: Comparison between the MILP model
and the company’s current scheduling

The bar graph presented in Figure 5 provides a clear visual comparison of both the
optimality gap (%) and the improvement percentage (A) for each production day within the
analyzed period. The X-axis represents the production days (from July10 to August 20),
while the Y-axis indicates the percentage values. In the graph, blue bars represent
optimality gap, whereas green bars indicate the corresponding improvement percentage (A)
achieved by the proposed MILP model compared to the company's current scheduling. This
visualization facilitates an intuitive understanding of the model’s performance relative to
the company's existing approach illustrates how closely the model approaches the optimal
solution across different days.

GAP and Improvement Over Days
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Figure 5: GAP and improvement over days
4.2. Results with accumulated demand simulation

To further evaluate the robustness and scalability of the proposed model, and to provide
strategic insights for the company’s management, an additional set of scenarios with
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accumulated demand was developed. These simulations were designed to assess how the
model performs when faced with higher workloads resulting from the aggregation of
demand over two consecutive months. This analysis is particularly relevant given the
significant improvements observed in the baseline experiments, which could support the
company’s commercial decisions to onboard new clients or expand its product portfolio.

A total of thirty new scenarios were created by combining the demand of two
consecutive days from the company's historical production data used in the previous
experiments. Each scenario was executed twice, with maximum computation times set at
600 seconds and 3,600 seconds, respectively.

The results of each scenario, including the demand volume, number of production
periods utilized, scheduled items, optimality gaps, and the impact of extended solution
times, are summarized in Table 6.

Table 6: Results for simulated scenarios with accumulated demand
Scenario  Available items  Items 600s  GAP (%) 600s  Items 3,600s  GAP (%) 3,600s

01 3,496 3,136 0.28 3,136 0.27
02 3,573 3,262 4.41 3,272 1.32
03 3,396 3,180 8.04 3,194 1.90
04 3,231 3,043 11.16 3,062 1.58
05 3,095 3,005 23.54 3,023 0.60
06 2,407 2,399 64.61 2,407* 0.83
07 2,290 2,283 53.35 2,290% 0.72
08 3,118 2,938 5.11 2,943 231
09 3,729 3,445 13.13 3,479 1.63
10 2,979 2,950 53.63 2,963 26.99
11 1,972 1,972 0.69 1,972 0.64
12 2,330 2,314 81.89 2,330% 1.07
13 2,572 2,555 77.12 2,572% 0.96
14 2,120 2,120 1.25 2,120 1.00
15 1,493 1,493 1.73 1,493 1.60
16 1,245 1,245 2.02 1,245 1.34
17 1,500 1,500 2.70 1,500 1.49
18 1,575 1,575 1.49 1,575 1.36
19 1,526 1,526 1.98 1,526 0.13
20 1,606 1,606 3.28 1,606 0.99
21 1,271 1,271 1.10 1,271 0.94
22 985 985 2.35 985 2.13
23 1,631 1,609 91.95 1,631* 2.04
24 2,002 2,000 41.33 2,002% 0.97
25 1,432 1,432 1.51 1,432 1.05
26 819 819 3.50 819 1.75
27 647 647 1.20 647 0.38
28 803 803 2.79 803 1.79
29 1,398 1,398 1.00 1,398 0.62
30 918 918 3.54 918 0.87

TOTALS 61,159 59,429 18.72 59,614 2.04
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A critical observation from the thirty tested scenarios is that when the input demand is
particularly high, it becomes infeasible to schedule the production of all items due to spatial
constraints in the surface-treatment area. Notably, the average optimality gap when the
solver was limited to 600 seconds was 18.72%. When the maximum computational time
was extended to 3,600 seconds, this gap dropped significantly to 2.04%, resulting in
increased production in 13 out of the 14 scenarios where full production had previously
been infeasible.

No improvement was observed in Scenario 1, indicating that the optimal solution was
likely reached within the initial 600 second time limit. All other scenarios, except for
Scenario 10, exhibited low optimality gaps after the extended execution, suggesting that
the solver was close to or achieved optimal solutions, requiring only additional time for
confirmation.

In Table 6, bold values in the fifth column indicate improvement in the number of items
produced compared to the results in the third column. Asterisks (*) mark scenarios in which
the model succeeded in producing the total quantity of available items when additional
computational time was allocated.

In the 30 daily scenarios (Table 5) the model reached the 600s time limit; in four of
those cases the solver proved optimality earlier (33s—172s), indicating that smaller
instances close quickly. For the 30 accumulated-demand scenarios (Table 6), extending the
limit to 3600s reduced the average optimality gap from 18.7 % to 2.0 %. Consequently, for
routine daily loads the MILP provides results within < 10 min, and for demand peaks a 60-
min window is sufficient to obtain near-optimal solutions.

The line graph presented in Figure 6 illustrates the optimality gap (%) at two distinct
computational time limits: 600 seconds (blue line) and 3,600 seconds (orange line) across
all tested scenarios. This visual comparison provides a clear understanding of the model’s
behavior under varying time constraints. It is evident that the optimality gap decreases
substantially in most scenarios when the solver is allowed more time, highlighting the
model's responsiveness to increased computational effort and its ability to approach near-
optimal solutions in larger, more complex instances.
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Figure 6: Optimality gap (%) at 600 and 3,600 seconds for each simulated scenario
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The bar chart presented in Figure 7 compares the number of scheduled items at two
distinct computational time limits, 600 seconds and 3,600 seconds, for each accumulated
demand scenario. In each pair of bars representing a scenario, the blue bar indicates the
number of items scheduled within 600 seconds, while the orange bar represents the number
achieved with the extended time of 3,600 seconds. A visual inspection reveals that the total
number of scheduled items changes only marginally between these two-time limits in most
scenarios, highlighting the model’s stability and the consistency of its performance across
the analyzed cases.

Comparison of Number of Items at 600s and 3,600s

3500 A N 600s

s 3,600s

3000 A

2500 A

2000 A

1500 A

Number of Items

1000 -

500 +

AHNMTNONOIIOANM T IN O VOO —ANMTINONOINO
A A AAAA HeEANNANNNNNNNNM

o 17

Instanc

Figure 7: Comparison of the number of scheduled items at 600 and 3,600 seconds for
each accumulated demand scenario

Table 7 offers a decision guideline for production schedulers: daily loads under 2,000
items are solved within the regular 10-minute window, whereas exceptionally high loads
(> 2,000 items) should be submitted to the MILP with an overnight limit of 3,600 s to
ensure gaps below 5 %.

Table 7: Solver runtime and recommended MILP configuration by problem size

Problem size (items per Observed runtime Typical
day or scenario) (Intel i7 / 8 GB) gap Recommended approach
<500 items <3 min 0% MILPf 180s limit
(near-instant run)
500 — 2000 items 3—10 min 0-3% MILP, 600s limit
(daily routine)
2000 — 3 00 items 10 — 60 min 2-5% MILP, 3,600s limit

(overnight run)
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Although sensitivity analysis is a valuable technique for assessing model robustness
under parameter uncertainty, its application was deemed unnecessary in this study due to
the deterministic nature of the production environment under investigation. The entire
production process operates on a strict Engineer-to-Order (ETO) basis, where all demand
is confirmed in advance through customer orders, and no production occurs without a
validated request.

The MILP model formulation incorporates all relevant operational constraints,
including tank capacity, fixture-device limitations, geometric fit, and alloy compatibility.
These are not subject to daily variation and reflect standardized practices validated with
the company’s engineering team. As such, uncertainty in parameter estimates is minimal
to nonexistent within the model's operational scope.

5. CONCLUSION

This research addressed a critical operational challenge faced by companies in the
aerospace supply chain, particularly within the electroplating sector, which was identified
as a major bottleneck in the company under study. To overcome this challenge, a MILP
model was developed to optimize production scheduling in the chromic anodizing process.

The results fully achieved both the general and specific research objectives by
determining the optimal combination of products and quantities per tank, while respecting
all technical and operational constraints, with the overarching goal of maximizing
productivity.

When applied to real operational data, the proposed MILP model consistently
outperformed the company’s existing scheduling practices. In several scenarios, it enabled
the complete scheduling of all available items for production, demonstrating substantial
improvements in efficiency.

Beyond improving operational outcomes, the model also offers the potential to
automate the scheduling process, reducing the need for manual intervention by production
managers. This not only enhances the reliability and consistency of the scheduling process
but also allows managers to focus on higher-value tasks.

Additionally, the simulation results revealed that the current anodizing capacity is
sufficient to accommodate additional business demands, such as onboarding new clients
or expanding the product portfolio. This available capacity has the potential to support cost
reduction strategies and contribute positively to the company’s financial performance.

In summary, the findings of this study provide both practical and managerial insights
that can support decision-making in the surface treatment area. Furthermore, the modeling
approach presented here can be extended to other operational areas within the company or
adapted to similar industries facing complex production scheduling challenges. The
demonstrated success of the model suggests that optimization-based solutions hold
significant promise for improving operational efficiency across various organizational
contexts.

Building on the present findings, three avenues merit further investigation: (i) robust
optimization to explicitly hedge against demand volatility, tank-capacity deviations, and
fixture-geometry tolerances; (ii) hybrid meta-heuristics, combining GRASP or genetic
algorithms with MILP-based large-neighborhood search, to handle instances exceeding
5,000 items or multi-day horizons with real-time responsiveness; and (iii) integration with
cyber-physical production systems, coupling the MILP scheduler with digital twins and
IoT sensors to enable 15-minute rescheduling cycles and to incorporate additional
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objectives such as energy consumption and chemical waste reduction. These extensions
would enhance the model’s applicability in highly dynamic or sustainability-driven
manufacturing environments.

5.1. Data Availability

The datasets generated and analyzed during the current study are publicly available in
the Mendeley Data repository under the title “Dataset for Scheduling and Capacity
Planning in Aerospace Surface Treatment: Real and Simulated Scenarios”, DOI:
https://doi.org/10.17632/p7g96yvvgb.1 . The repository includes both real production data
(30 daily scenarios) and simulated scenarios generated by aggregating the demand from
two consecutive production days (30 accumulated-demand scenarios). Additionally, the
repository contains text files for each scenario and a metadata file detailing the constraints
and characteristics of each item.

Funding: The present paper has received no funding.
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