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Abstract: Production scheduling, especially in intricate sectors like aerospace, is essential. 
This study presents a Mixed Integer Linear Programming (MILP) model to optimize 
production in the surface treatment area of an aerospace company. The complex task 
involves several constraints, including raw material alloy type, tank capacity, and fixture 
design for parts. The goal is to find the optimal combination to maximize production, 
efficiency, and safety. Unique to this problem is the integration of factors such as different 
tanks, fixtures, scheduling, and geometric constraints. Technical requirements have been 
integrated as constraints to satisfy aircraft manufacturing certifications. Experiments with 
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thirty real and thirty simulated scenarios showed that the proposed model significantly 
outperformed the company's existing methods. In the best case, it demonstrated the 
potential to more than double the production with the same resources. The results 
underscore the existing capacity to take on new products and clients, highlighting the 
potential for increased efficiency. Spatial optimization allows for processing more parts 
per cycle, thus reducing time, costs, and environmental impact. This study adds value to 
optimization literature, offering a novel approach to a real and multifaceted problem in the 
surface treatment industry, with applications extending to other industrial contexts where 
spatial optimization and efficient scheduling are key. 

Keywords: Optimization, lot sizing, surface treatment, mixed integer linear programming, 
aerospace industry. 
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1. INTRODUCTION 

The aerospace industry is a prominent sector in the global marketplace, distinguished 
by advanced technological innovation and highly specialized products with significant 
value-added components. It operates predominantly within the broader capital-goods 
segment, characterized by Engineer-to-Order (ETO) and Make-to-Order (MTO) strategies 
that entail low production volumes, high levels of customization, long lead times, and tight 
integration between engineering design and shop-floor control [1,2]. Recent studies 
reinforce how these inherent conditions amplify the complexity of planning and 
scheduling. Neumann et al. [3], for instance, highlight ongoing challenges optimization 
techniques face when addressing product variability and resource constraints inherent to 
ETO manufacturing. Additionally, Love et al. [4] emphasize the operational risks arising 
from rigorous certification requirements and customer-specific demands prevalent in 
aerospace-related ETO production environments. These complexities reduce the feasibility 
of maintaining inventory buffers, escalate the potential costs associated with rework, and 
consequently necessitate the development of advanced scheduling tools, such as the one 
proposed in this study. 

Organizationally, the aerospace supply chain adopts a multi-tier hierarchy, culminating 
in Original Equipment Manufacturers (OEMs), such as Boeing, Airbus, and Embraer, that 
execute the final assembly of aircraft. Within this structure, suppliers are classified 
according to the complexity and criticality of their supplied components: Tier-1 firms 
produce primary systems and modules directly for OEMs; Tier-2 and Tier-3 companies 
supply subsystems, individual components, and specialized services; and Tier-4 suppliers 
primarily handle raw materials [5].  

This research specifically addresses a complex production-planning challenge in the 
surface-treatment division of a Tier-1 aerospace supplier based in Guaratinguetá, São 
Paulo, Brazil. This facility manufactures sophisticated aeronautical systems, including 
landing gears, pressurization systems, flight controls, and avionics components. To 
guarantee that only confirmed customer orders proceed to galvanoplasty operations, the 
firm employs a robust backlog management system. Effective production planning must 
therefore consider the alloys of raw materials, specialized surface-treatment protocols, and 
the capacity limitations of two chromic anodizing tanks, each capable of processing up to 
40 lots daily. 
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Surface treatment operations within aerospace manufacturing represent substantial 
financial commitments, primarily driven by high electricity consumption and strict process 
control standards. Nevertheless, improvements in operational efficiency promise 
significant economic returns, enabling the treatment of more components per production 
cycle while simultaneously reducing environmental impacts. 

Considering this context, the central research question guiding our study is: "What 
configuration of products and quantities per lot and per tank, respecting all technical and 
operational constraints, maximizes daily productivity?" To answer this, we develop and 
implement a customized Mixed-Integer Linear Programming (MILP) model explicitly 
designed to optimize the scheduling of chromic-anodizing tanks in the analyzed Tier-1 
aerospace plant. 

The proposed MILP model was implemented within the GAMS IDE and solved using 
the CPLEX optimization solver. Real-world production scenarios from the company were 
utilized for validation purposes, allowing direct comparisons between current scheduling 
practices and solutions derived from our optimization approach. Additionally, 
supplementary experiments involving simulated demand conditions were carried out to 
assess the robustness and adaptability of the proposed scheduling method. 

The decision problems tackled by this study align closely with classical optimization 
frameworks such as Lot Sizing Problems, which are recognized in the literature as NP-
hard [6,7]. Additional theoretical insights were drawn from related Knapsack-type problem 
formulations [8,9]. 

Although the broader context and general motivation for this research are presented 
here, the specific gaps in existing knowledge that justify our study’s contributions are 
detailed comprehensively in Section 2.4. 

The remainder of the article is structured as follows: Section 2 provides an in-depth 
review of foundational concepts, existing optimization methods, and analytical tools 
pertinent to our approach. Section 3 introduces the industrial context, describing the 
production steps and operational constraints of the surface-treatment process, followed by 
a detailed presentation of our MILP formulation. Section 4 presents the computational 
results obtained from analyzing thirty actual production days and an additional thirty 
simulated scenarios, contrasting the effectiveness of the firm's current scheduling methods 
with the proposed MILP-generated schedules. Finally, Section 5 summarizes the study’s 
key findings, discusses managerial implications, and outlines potential avenues for future 
research. 

2. LITERATURE REVIEW 

2.1. Production Scheduling and PPC in the Capital-Goods Industry 

Production scheduling is a critical function within Production Planning and Control 
(PPC), particularly in capital-goods industries such as aerospace, heavy machinery, and 
power-generation equipment. These industries typically employ production strategies such 
as Make-to-Order (MTO) or Engineer-to-Order (ETO), characterized by low production 
volumes, high customization, long lead times, and close integration between engineering 
activities and manufacturing operations [10,11]. 

Unlike the standardized environments typical of consumer-goods manufacturing, 
capital-goods production commonly occurs within complex job-shop or project-based 
settings, involving deep bills-of-materials and multi-level assemblies. These environments 
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require precise coordination across various manufacturing and assembly processes, 
frequently complicated by stringent precedence constraints. Such constraints include 
concurrent production modes within the same facility, extended processing sequences, and 
finite-capacity limitations [12,13]. 

ETO environments further intensify these complexities. Each order represents a unique, 
customized project with minimal repetition, requiring specialized planning and scheduling 
approaches. Standard enterprise systems such as Enterprise Resource Planning (ERP) and 
Material Requirements Planning (MRP) often prove insufficient in addressing dynamic 
and non-repetitive demands inherent in ETO production. Additionally, logistical 
constraints, such as spatial packing restrictions for oversized components and alloy 
compatibility requirements in surface-treatment operations, frequently demand dynamic 
adjustments to schedules due to evolving design specifications or unforeseen supply 
disruptions [14,15]. 

Historically, production scheduling in capital-goods manufacturing has predominantly 
relied on human expertise combined with simple heuristic rules. Formal scheduling 
methods have seen limited practical application, contributing to suboptimal performance 
outcomes, including delays in delivery and excess inventory [16]. Even today, production 
planners face significant workloads, frequently required to adapt and re-plan schedules in 
response to unexpected disruptions. Contemporary research thus emphasizes the growing 
necessity of robust decision-support systems capable of enabling rapid and effective 
rescheduling within these highly dynamic production environments [11]. 

In summary, Production Planning and Control (PPC) in capital-goods industries 
involves the complex task of coordinating diverse, customized production processes under 
stringent technical and operational constraints. Effective PPC strategies must therefore 
remain flexible, responsive, and capable of integrating detailed scheduling tools adapted 
to the unique realities of MTO and ETO production contexts. 

2.2. Historical and Contemporary Optimization Approaches 

Historically, production scheduling in complex industrial environments has relied 
predominantly on heuristic and dispatching rules due to their simplicity, ease of 
implementation, and rapid decision-making capabilities. Common examples include the 
Earliest Due Date (EDD) and Critical Ratio (CR) rules. However, despite their practical 
advantages, these approaches generally lack robustness in dynamic environments, 
particularly in scenarios subject to stochastic disruptions or uncertainties [16]. 

To overcome these limitations, researchers in the late twentieth and early twenty-first 
centuries began exploring advanced heuristic approaches known as metaheuristics. 
Techniques such as Genetic Algorithms (GA), Simulated Annealing (SA), and Tabu 
Search were introduced and gained prominence due to their powerful search capabilities, 
which significantly improved scheduling outcomes compared to traditional heuristic 
methods [17]. Subsequent developments in metaheuristics further incorporated algorithms 
such as Particle Swarm Optimization (PSO), Artificial Bee Colony (ABC), and Grey Wolf 
Optimizer (GWO). These methods were particularly suitable for capital-goods 
manufacturing scenarios characterized by sequence-dependent setups, multiple resource 
constraints, and highly customized production requirements [18]. 

Parallel to these developments, MILP emerged as a rigorous mathematical approach 
for optimizing production scheduling. Historically, MILP models were seldom applied at 
industrial scale due to computational limitations. However, recent advancements in solver 



 J. R. D. Luche et al. / MILP Approach To Aerospace Production Optimization 5

technologies and computational power have significantly improved their viability, 
enabling the formulation and practical resolution of more realistic and detailed scheduling 
problems. Modern MILP formulations now routinely integrate complex constraints, 
including preventive maintenance schedules, sequence-dependent setups, and resource 
limitations, effectively addressing the detailed scheduling needs of capital-goods 
manufacturers [19]. 

This modeling approach aligns with previous applications of MILP and structured 
decision-support models in various domains, including production [20], urban mobility 
[21], innovation management [22], and logistics and healthcare systems [23,24]. These 
applications demonstrate the versatility and robustness of MILP frameworks for solving 
complex problems involving capacity constraints, resource compatibility, and operational 
efficiency. 

Despite these advancements, purely mathematical (exact) approaches can still face 
challenges related to computational scalability in real-world industrial contexts. 
Consequently, contemporary research increasingly advocates hybrid optimization methods 
that combine strengths from both heuristic/metaheuristic and exact MILP techniques. 
Hybrid approaches often utilize heuristic or metaheuristic algorithms to generate initial 
solutions, which subsequently inform MILP models, reducing the computational burden 
and improving convergence times. For example, hybrid methods that integrate 
metaheuristic algorithms such as Genetic Algorithms or Grey Wolf Optimization with 
MILP models have demonstrated superior performance, particularly in minimizing 
makespan and tardiness in complex, customized scheduling scenarios [19].  

Additionally, hybrid approaches that integrate simulation techniques alongside 
optimization models have proven effective in evaluating the robustness of production 
schedules under realistic disruptive conditions. Such simulation-based hybrid methods 
enable schedulers to better understand how schedule performance degrades under 
operational disruptions, providing critical insights into the resilience and adaptability of 
scheduling solutions typical in capital-goods production environments [25]. 

2.3. Classical Exact Formulations 

Classical exact formulations for production planning and scheduling have their roots in 
early inventory management theory, beginning with the Economic Order Quantity (EOQ) 
model, originally proposed by Harris [26] and subsequently applied in practice by Wilson 
[27]. EOQ provided a foundational framework but was limited by its restrictive 
assumptions, particularly the absence of capacity constraints and the simplification to 
single-level production scenarios. 

To address some of these limitations, Rogers [28] introduced the Economic Lot 
Scheduling Problem (ELSP), extending inventory optimization to multi-product contexts 
with explicit capacity constraints [29]. Further advancements in this area culminated in the 
Dynamic Lot Sizing Problem (DLSP) by Wagner and Whitin [30], which incorporated 
dynamic, time-variable demand into inventory optimization models, significantly 
broadening the practical applicability of lot-sizing formulations [31]. 

Building upon these foundations, contemporary lot-sizing models often adopt MILP 
formulations. Among them, the Capacitated Lot-Sizing Problem (CLSP) stands out as a 
widely applied approach. The CLSP considers multiple items, discrete time periods, 
capacity limits, setup requirements, and inventory holding costs. It is particularly suitable 
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for MTO and ETO environments where resource allocation and production eligibility, 
rather than sequencing, are the primary concerns. 

The CLSP formulation explicitly incorporates inventory costs, setup costs, and capacity 
constraints without explicitly modeling product sequencing within each period. A typical 
CLSP formulation [32,33,34] can be summarized as follows: 

Decision Variables: 

𝑥௝௧  Quantity of product 𝑗 produced in period 𝑡. 

𝑦௝௧ Binary variable equal to 1 if product 𝑗 is produced in period 𝑡, 0 otherwise. 

𝐼௝௧  Inventory level of product 𝑗 at the end of period 𝑡. 

Parameters: 

𝐷௝௧  Demand for product j in period t. 

𝑠௝ Setup cost for product j. 

ℎ௝ Unit inventory holding cost for product j. 

𝐶௧ Available production capacity in period t. 

CLSP Formulation: 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑍 = ∑ ∑ (𝑠௝𝑦௝௧ + ℎ௝𝐼௝௧)௃
௝ୀଵ

்
௧ୀଵ  (1) 

Subject to: 

𝐼௝(௧ିଵ) + 𝑥௝௧ = 𝐷௝௧ +  𝐼௝௧ ,  j, t  (2) 

∑ 𝑝௝𝑥௝௧ ≤ 𝐶௧
௃
௝ୀଵ ,  t (3) 

𝑥௝௧ ≤ 𝑀𝑦௝௧ ,  j, t (4) 

𝐼௝௧ , 𝑥௝௧  ≥ 0 ,  j, t (5) 

𝑦௝௧ ∈ {0,1},  j, t (6) 

The objective function (1) minimizes the total cost, which consists of setup costs and 
inventory holding costs incurred over the planning horizon. Constraint (2) ensures 
inventory balance by requiring that the sum of the previous period’s ending inventory and 
the current period’s production equals the current period’s demand plus ending inventory. 
Constraint (3) imposes capacity restrictions: the total production workload in each period 
must not exceed the available capacity. Constraint (4) is a big-M constraint that enforces 
setup logic, allowing production of a given product only when the corresponding setup 
variable is activated. Constraints (5) define non-negativity for the production and inventory 
variables, while constraint (6) ensures the binary nature of the setup variables. 

This classical CLSP structure is particularly appropriate for industrial environments 
where capacity constraints and production eligibility are the dominant factors, but 
sequencing decisions can be abstracted or predetermined. In the context of this study, the 
CLSP formulation provides a solid foundation for modeling lot-sizing and capacity 
allocation in a constrained surface-treatment environment, enabling the representation of 
real operational requirements without the additional complexity of sequencing logic. 

Despite their modeling rigor, exact MILP formulations often face computational 
scalability challenges when applied to large-scale, highly customized industrial settings 
such as those found in ETO and MTO contexts. Solving real-world scheduling problems 
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with pure MILP models may demand advanced solution strategies, such as decomposition 
methods, heuristics, or solver-specific enhancements, to remain tractable within acceptable 
computational timeframes [11]. In the context of this study, however, the problem structure 
and scale are such that a classical CLSP-based MILP formulation remains both feasible 
and effective. This justifies the choice of a pure MILP model in this study, as it offers 
sufficient modeling power to address the operational complexity of the industrial problem 
without incurring prohibitive computational costs. 

2.4. Research Gaps and Contributions of the Present Study 

Although classical MILP models such as CLSP provide robust formulations, they often 
fall short in representing the full operational reality of capital-goods production, 
particularly in aerospace settings. The literature review highlights two key gaps that this 
study addresses: 

First, comprehensive optimization models that fully capture the intricate realities of 
ETO and Make-to-Order (MTO) scheduling environments remain relatively scarce. The 
majority of existing formulations in the literature simplify the complexity of real-world 
industrial operations, neglecting detailed multi-stage manufacturing processes, spatial 
constraints inherent to large and customized components, and operational specifics such as 
alloy compatibility in surface-treatment processes. Such simplifications severely limit the 
practical applicability and accuracy of these scheduling solutions in actual industrial 
scenarios [15,35]. 

Second, despite the growing body of theoretical literature on advanced scheduling 
optimization, empirical validation and real-world applicability remain significantly 
underrepresented. Few studies provide comprehensive empirical evidence demonstrating 
the effectiveness and practical feasibility of proposed methods within actual industrial 
environments, particularly in capital-intensive industries such as aerospace. The scarcity 
of detailed industrial case studies limits the potential for generalizing theoretical results, 
thereby creating uncertainty regarding the robustness, adaptability, and practical impact of 
these advanced scheduling methods [36]. 

Addressing precisely these identified gaps, the present study makes several important 
contributions. First, it develops a tailored MILP model explicitly designed for the 
scheduling challenges faced by a Tier-1 aerospace manufacturer. This MILP model 
integrates critical real-world operational constraints, including finite capacities, spatial 
packing limitations, alloy compatibility constraints associated with chromic anodizing 
surface treatments. 

Second, the study provides extensive empirical validation, leveraging authentic 
production data obtained directly from the aerospace company's surface-treatment area. By 
systematically comparing current scheduling practices employed by the company with 
optimized schedules produced by the proposed MILP approach, the research delivers 
concrete evidence of substantial efficiency gains, improved resource utilization, and 
enhanced responsiveness to demand fluctuations and operational disruptions. 

Furthermore, the methodological rigor of this empirical validation extends through 
computational experiments involving both actual historical production scenarios and 
realistic simulated demand conditions. These additional tests validate the robustness and 
adaptability of the proposed model, demonstrating its potential for broader application 
across similar ETO and MTO manufacturing contexts. 
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Finally, from a theoretical and practical standpoint, this research offers significant 
insights into the challenges associated with implementing advanced optimization methods 
in industrial settings, particularly regarding solver performance, computational feasibility, 
and operational integration within the context of highly customized aerospace 
manufacturing. 

3. DESCRIPTION AND MATHEMATICAL FORMULATION OF THE 
PROBLEM 

This section outlines the problem identified in the surface treatment area of the 
company under study. The goal is to maximize the utilization of available resources, 
avoiding bottlenecks and underutilization throughout the day. 

3.1. Preparatory Stages 

Before chromic anodizing, there are eight preparatory stages focused on cleaning and 
activating the product's surface. Figure 1 is a schematic representation of the entire process 
in the surface treatment area. 

 
Figure 1: Process steps in the surface treatment area 

The first phase involves receiving items released by the Machining process, executed 
by a material movement route at predefined times. The second stage, optional and 
dependent on the process defined by the customer, may involve a liquid penetrant test to 
detect mechanical or material defects. 

The degreasing (tank C2), double rinse (tanks C3 and C4) until (tanks C7 and C8) 
stages refer to the cleaning and activation process of the surface to be anodized. These 
phases are crucial, as inefficient cleaning can lead to quality issues. However, these stages 
are not considered in the model's elaboration. 

3.2. Production Process 

Scheduling in the electroplating sector is complex and burdensome, conducted based 
on items delivered by the machining area and ready for treatment. The scheduling aims to 
optimize the use of chromic anodizing tanks, the sector's bottleneck. 
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Assembly of Parts: Parts are mounted on hooks or specific devices, with dimensions 
determining the quantity and manner of attachment (Figure 2). 

 
(a)                                 (b) 

Figure 2: Fixing devices with assembled products, 8 items (a) and 3 items (b) 

Treatment in the Tank: Fixing devices are fitted into the busbar of the chromic 
anodizing tank, adjusted according to the geometry of each piece to occupy the maximum 
available space (Figure. 3). 

Busbar Constraints: The busbar is fixed, and its position cannot be altered. 
Optimization must explore the tank's depth, width, and thickness dimensions. 

 
Figure 3: Fixing devices fitted into the busbar of the chromic anodizing tank 

Spatial optimization is vital for the efficiency of the treatment, allowing more pieces to 
be processed per cycle and minimizing environmental impact. Overloading or improper 
placement can compromise quality and safety, requiring experienced professionals. 

3.3. Production Details 

Each scenario represents a production day, with up to 40 subperiods (starts), and 56 
different products recorded over two months. The company has two chromic anodizing 
tanks (K1 and K2), with different capacities and limitations on fixing devices (Tables 1 
and 2). 
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Table 1: Maximum quantity of fixation devices with the item in Tank ‘K1’ 

Quantity of fixation devices 
for the item in the tank 

  ITEMS   

4 1964A2200     

 830D0100 829D0100 1320_0101 1312_0101 4774_0002 

 4775_0002 810A0400 786A0700 926_0102 3957A0600 

 4778_0102 3958A0600 1386A2200 6896A0100 1556A0200 

5 1559A0200 1555A0200 1553A0200 1554A0200 4781A0100 

 S4_9504612 S4_9504622 918_0102 920A0100 1394_0101 

 1568_0101 6884_2011 6885_2011 6886_2011 6887_2011 

 6898A0100 6882_2011 6883_2011 6888_2011 962A0100 

 70069_23 2434A2200 798_0184   

6 1806_041 1806_5051 1806A0200 6864_0280 1642A0400 

 787A0100 1806A0800 786A0600 341_0250 60091_011 

7 6774_01030 6754_0481 3470_085 6753_02011 5450A0000 

 6724_0941 3470_028    

8 1567A0100 3445A1800 60078_0900 S4_9704300 6724_0271 

9 831A0600 786A0900 342_0460 S4_9704411  

10 1806D0900     

Table 2: Maximum quantity of fixation devices with the item in Tank ‘K2’ 

Quantity of fixation devices 
for the item in the tank   

ITEMS 
  

1 1964A2200     

 830D0100 829D0100 1320_0101 1312_0101 4774_0002 

 4775_0002 810A0400 786A0700 926_0102 3957A0600 

 4778_0102 3958A0600 1386A2200 6896A0100 1556A0200 

2 1559A0200 1555A0200 1553A0200 1554A0200 4781A0100 

 S4_9504612 S4_9504622 918_0102 920A0100 1394_0101 

 1568_0101 6884_2011 6885_2011 6886_2011 6887_2011 

 6898A0100 6882_2011 6883_2011 6888_2011 962A0100 

 70069_23 2434A2200 1806_041 786A0600 6864_0280 

 787A0100 1806A0800 1806_5051 1806A0200 1567A0100 

3 341_0250 60091_011 6774_01030 6754_0481 3470_085 

 6753_02011 S4_9704411 5450A0000 6724_0941 798_0184 

 S4_9704300 1642A0400 6724_0271 3470_028  

4 831A0600 1806D0900 786A0900 3445A1800 60078_0900 

 342_0460     
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Fr each fixing device (all identical), there is a maximum quantity of parts defined by 
the dimensions (Table 3). 

Table 3: Maximum quantity of the item in the fixation device 

Quantity of items in the 
fixation device  

 ITEMS 
  

2 1806_041 1806A0200    

3 787A0100 786A0600    

4 6864_0280     

6 1567A0100 786A0900 3445A1800 3470_085 S4_9704411 

 2434A2200 3470_028 962A0100 S4_9704300 1642A0400 

5 798_0184     

 786A0700 4778_0102 1554A0200 4781A0100 920A0100 

8 6884_2011 6885_2011 6886_2011 6887_2011 1964A2200 

 6882_2011 6883_2011 6888_2011   

10 831A0600 1806_5051    

 830D0100 829D0100 1806A0800 4774_0002 4775_0002 

 810A0400 926_0102 1386A2200 6896A0100 1556A0200 

12 1559A0200 1555A0200 60078_0900 1553A0200 341_0250 

 60091_011 342_0460 6754_0481 6753_02011 6774_01030 

 5450A0000 6898A0100 6724_0941 70069_23 6724_0271 

15 918_0102     

21 S4_9504612 S4_9504622    

24 1320_0101 1312_0101 3957A0600 3958A0600 1394_0101 

 1568_0101     

60 1806D0900     

Note the requirement that all items in the tank must belong to the same raw material 
group. As an example, in Table 4, the items 'S4_9704300' and '1642A0400' belong to the 
same group (B6). Therefore, in the tank, only fixation devices assembled with these 
specific products can exist. 

3.4. Model Assumptions 

To support the formulation of the proposed MILP model and ensure alignment with the 
real production environment, the following assumptions were established: 

1. The model considers a single production day, divided into 40 subperiods (starts). 
All demand data are known in advance. 

2. Each chromic anodizing tank (K1 and K2) has a maximum number of fixation 
devices, depending on geometric restrictions. 

3. All devices allocated to a tank in the same period are processed simultaneously. 
Therefore, no sequencing is required within the tank. 
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4. Each fixing device contains only one type of item with standardized surface-
treatment parameters. 

5. Each tank can only process items from one raw material group (e.g., B1, B2, B6, 
LTS30) in each period. Groups are mutually exclusive. 

6. For each item, there are known limits on the quantity of items per fixation device. 
7. All items are considered available at the start of the planning horizon. 
These assumptions were validated with the engineering and production teams of the 

case company and reflect operational practices within the surface-treatment division. 

Table 4: Raw material group of the item 

Raw material   ITEMS   

B1 
1806A0200 1567A0100 786A0600 786A0700 926_0102 

S4_9504612 S4_9504622 918_0102   

 830D0100 810A0400 1559A0200 920A0100 6898A0100 

 829D0100 787A0100 831A0600 4774_0002 4775_0002 

B2 786A0900 4778_0102 1386A2200 6896A0100 1556A0200 

 1555A0200 1553A0200 1554A0200 4781A0100 S4_9704411 

 5450A0000 6884_2011 6885_2011 6886_2011 6887_2011 

 1964A2200 6882_2011 6883_2011 6888_2011 2434A2200 

B6 S4_9704300 1642A0400    

 1320_0101 3445A1800 342_0460 6864_0280 6724_0271 

 1806_041 1806D0900 1806A0800 1312_0101 1806_5051 

LTS30 3957A0600 3958A0600 60078_0900 341_0250 60091_011 

 6774_01030 6754_0481 3470_085 6753_02011 1394_0101 

 1568_0101 6724_0941 798_0184 962A0100 70069_23 

 3470_028     

 

3.5. Mathematical formulation of the MILP problem 

In this context, a MILP model is presented to optimize daily scheduling, considering 
specific constraints such as the need for products of the same alloy and anodizing process.  

For the proposed model, the indices, parameters, and decision variables are: 

Indices  

J     Item: 1..56 
T     Production Period: 1..40 (a production day) 
K     Tank: ‘K1’, ‘K2’ 
G           Group (type of process) by raw material: ‘B1’, ‘B2’, ‘B6’, ‘LTS30’ 
F   Index of the fixing device in the tank: 1..10 
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Parameters 

𝐷௝   Available quantity of the item j 

𝐽𝐹௝    Maximum quantity of item j in a device 

𝐹𝐾௝௞  Maximum quantity of devices with item j per tank k 

𝐺𝑀௝௚   Group of raw material g to which item j belongs 

Decision Variables 

𝑥௧௞௙௝  Quantity of product j in device f allocated in tank k during period t 
(positive integer variables). 

𝑦௧௞௙௝   𝑦௧௞௙௝ = 1 if product j is in device f in tank k during period t, or 𝑦௧௞௙୨ = 0 
otherwise. These variables play a role similar to that of setup (whether 
the device is prepared or not to produce that item). They are auxiliary 
binary variables that facilitate modeling. 

𝑤௧௞௚    𝑤௧௞௚ = 1 if the raw material g is used in tank k during period t, or 𝑤௧௞௚ =

0 otherwise. 
𝐿௝            Available unproduced quantity of item j (positive integer variables). 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑧 = ∑ ∑ ∑ ∑ 𝑡 ∙ 𝑦௧௞௙௝
௃
௝ୀଵ

ி
௙ୀଵ

௄
௞ୀଵ

்
௧ୀଵ + 𝑀 ∙ ∑ 𝐿௝

ூ
௝ୀଵ  (7) 

Subject to: 

∑ ∑ ∑ 𝑋௧௞௙௝
ி
௙ୀଵ

௄
௞ୀଵ

்
௧ୀଵ + 𝐿௝ = 𝐷௝,  j  (8) 

∑ ∑ 𝑌௧௞௙௝ ൬
ଵ

ி௄ೕೖ
൰ ≤ 1௃

௝ୀଵ
ி
௙ୀଵ ,  t,k(9) 

𝑋௧௞௙௝ ≤ 𝐼𝐹௝ ∗ 𝑌௧௞௙௝,  t,k,f,j  (10) 

∑ 𝑌௧௞௙௝ ≤ 1
௃
௝ୀଵ ,  t,k,f  (11) 

∑ 𝑊௧௞௚ ≤ீ
௚ୀଵ 1,  t,k  (12) 

𝑌௧௞௙௝ ≤ ∑ 𝑊௧௞௚𝐺𝑀௝௚
ீ
௚ୀଵ ,  t,k,f,j  (13) 

∑ 𝑌௧௞௙௝
௃
௝ୀଵ ≥ ∑ 𝑌௧௞௙ାଵ௝

௃
௝ୀଵ ,  t,k,f (14) 

𝑋௧௞௙௝ ≥ 𝑌௧௞௙௝,  t,k,f,j  (15) 

The optimization of the first term in the objective function (7) aims to ensure that 
production occurs as early as possible within the planning horizon, thereby maximizing the 
utilization of tank capacity. Without this term, and assuming the tanks are capable of 
completing all production within a day, the solution might result in underutilized capacity, 
with more starts (periods) being used than necessary. The parameter 'M' is a sufficiently 
large number that ensures the second term, related to the unproduced quantity of each item, 
takes precedence over the first. 

Constraints (8) governs daily production based on the availability of each item. The 
variable Lj represents the quantity of item j that remains unproduced at the end of the 
planning horizon. 

The number of fixing devices per tank is determined by the geometries of the items, 
provided that all items assigned to the same tank share the same raw material alloy and 
anodizing process. 
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Constraint (9) addresses tank occupancy. Each item has a maximum allowable number 
of devices that can be installed in a tank. Since different items can share the same tank, the 
occupancy ratio for each device must be computed, and the total occupancy cannot exceed 
the tank's capacity. 

Constraint (10) ensures that the quantity of items assigned to each device does not 
exceed the maximum allowed for that item and device type within the tank. 

Constraint (11) stipulates that each fixing device can hold only one type of item, 
regardless of the quantity. 

Constraints (12) ensures that only one alloy group is assigned per tank in each period. 
Constraints (13) guarantees that each item assigned to a fixing device belongs to the 

raw material group specified for the tank in that period. 
Constraint (14) organizes the utilization of fixing devices within each tank, enforcing 

a sequential order starting from device index 1. While not strictly required for feasibility, 
this constraint improves the interpretability of the model's output. 

Finally, constraint (15) ensures that production occurs for all configurations where 
𝑌௧௞௙௝ = 1, meaning whenever a device is activated for a given item. 

4. COMPUTATIONAL EXPERIMENTS 

This section presents and analyzes the results obtained from computational experiments 
using the proposed MILP model, compared with the company's current scheduling 
practices. The optimization model was implemented in GAMS IDE version 23.6 and 
solved using IBM ILOG CPLEX version 12, ensuring numerical consistency across all test 
instances. 

The use of the parallelized CPLEX solver enhances computational efficiency and 
reduces solution times. By leveraging multicore processing, multiple threads run 
simultaneously, accelerating the resolution of complex optimization problems [37]. 

A total ofthirty scenarios were solved, each representing one day of real operations 
during the months of July and August/2022. All experiments were performed on a 
computer equipped with an Intel i7 3.1 GHz processor, 8GB of RAM, and an solid-state 
drive (SSD), running Windows 10. 

 
4.1 Results with the company’s real demand 

The results (Table 5) reveal significant improvements compared to the company’s 
existing scheduling approach. In all scenarios, the proposed MILP model generated 
considerably more efficient production plans, with the total number of scheduled items 
nearly four times higher than those achieved by the company's manual scheduling. 

It is noteworthy that no production incidents or equipment downtime occurred during 
the observed period that could have influenced these results. 

The maximum computation time per scenario was limited to 600 seconds, within which 
the generated feasible solutions that scheduled the production of all available items in every 
instance. 

As shown in Table 5, the optimality gap, defined as the difference between the best 
integer solution and the best relaxed solution, is primarily attributed to the first term in the 
objective function (7), which encourages early utilization of production periods, rather than 
the total number of items produced. It is important to note that computational time tends to 
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increase with the number of items to be scheduled, as larger problem sizes lead to more 
complex tank-loading combinations and batching configurations. Table 5 Comparison of 
the MILP model performance and the company’s actual scheduling across production days. 

Table 5: MILP Model vs. Actual Scheduling Performance. 

Day 
(DD/MM) 

Available 
items 

Actual 
Scheduling 

MILP Model 
GAP (%) 

600seconds 
Δ (%) 

Improvement 
7/10 1,737 321 1,737 1.37 541 
7/11 1,759 278 1,759 1.09 633 
7/12 1,814 235 1,814 1.77 772 
7/15 1,582 247 1,582 1.84 640 
7/16 1,649 357 1,649 2.68 462 
7/17 1,446 298 1,446 4.30 485 
7/18 961 264 961 2.56 364 
7/19 1,329 272 1,329 0.79 489 
7/22 1,789 237 1,789 1.09 755 
7/23 1,940 245 1,940 1.64 792 
7/24 1,039 261 1,039 0.41 398 
7/25 933 328 933 2.70 284 
7/26 1,397 246 1,397 2.81 568 
7/29 1,175 224 1,175 2.98 525 
7/30 945 249 945 1.52 380 
8/1 697 284 697 2.78 245 
8/2 803 279 803 2.26 288 
8/5 772 311 772 2.56 248 
8/6 754 299 754 2.35 252 
8/7 852 267 852 1.08 319 
8/8 419 242 419 0 (172s) 173 
8/9 566 229 566 2.22 247 
8/12 1,065 271 1,065 1.59 393 
8/13 937 290 937 2.23 323 
8/14 495 310 495 0 (33s) 160 
8/15 324 273 324 0 (133s) 119 
8/16 323 198 323 0.75 163 
8/19 480 226 480 0 (59s) 212 
8/20 918 224 918 1.69 410 

TOTALS 30,900 7,765 30,900 1.66 398 

 
Analysis of the 30 daily scenarios shows that four instances with fewer than 500 items 

were solved in 33s – 172s, whereas all remaining runs reached the 600s cut-off. Fitting a 
simple linear regression between problem size (items) and elapsed solver time (n = 30, 
assigning 600s when the limit was hit) yields a slope of 0.29s per item and an adjusted 
R^2=0.88. This confirms an almost linear growth of solution time with problem size within 
the 10-minute planning window. 

To facilitate visual interpretation, the line graph presented in Figure 4 compares the 
number of items scheduled by the company’s current method and by the proposed MILP 
model across different days. This graphical representation highlights the contrast between 
the company’s actual scheduling and the optimized schedules generated by the model. The 
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X-axis represents the production days (from July 10 to August 20), while the Y-axis 
indicates the total number of scheduled items. The blue line corresponds to the company's 
actual scheduling, whereas the orange line represents the scheduling results obtained with 
the proposed MILP model. 

 

Figure 4: Number of scheduling items per day: Comparison between the MILP model 
and the company’s current scheduling 

The bar graph presented in Figure 5 provides a clear visual comparison of both the 
optimality gap (%) and the improvement percentage (Δ) for each production day within the 
analyzed period. The X-axis represents the production days (from July10 to August 20), 
while the Y-axis indicates the percentage values. In the graph, blue bars represent 
optimality gap, whereas green bars indicate the corresponding improvement percentage (Δ) 
achieved by the proposed MILP model compared to the company's current scheduling. This 
visualization facilitates an intuitive understanding of the model’s performance relative to 
the company's existing approach illustrates how closely the model approaches the optimal 
solution across different days. 

 
Figure 5: GAP and improvement over days 

4.2. Results with accumulated demand simulation 

To further evaluate the robustness and scalability of the proposed model, and to provide 
strategic insights for the company’s management, an additional set of scenarios with 
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accumulated demand was developed. These simulations were designed to assess how the 
model performs when faced with higher workloads resulting from the aggregation of 
demand over two consecutive months. This analysis is particularly relevant given the 
significant improvements observed in the baseline experiments, which could support the 
company’s commercial decisions to onboard new clients or expand its product portfolio. 

A total of thirty new scenarios were created by combining the demand of two 
consecutive days from the company's historical production data used in the previous 
experiments. Each scenario was executed twice, with maximum computation times set at 
600 seconds and 3,600 seconds, respectively. 

The results of each scenario, including the demand volume, number of production 
periods utilized, scheduled items, optimality gaps, and the impact of extended solution 
times, are summarized in Table 6.  

Table 6: Results for simulated scenarios with accumulated demand 

Scenario Available items Items 600s GAP (%) 600s Items 3,600s GAP (%) 3,600s 
01 3,496 3,136 0.28 3,136 0.27 
02 3,573 3,262 4.41 3,272 1.32 
03 3,396 3,180 8.04 3,194 1.90 
04 3,231 3,043 11.16 3,062 1.58 
05 3,095 3,005 23.54 3,023 0.60 
06 2,407 2,399 64.61 2,407* 0.83 
07 2,290 2,283 53.35 2,290* 0.72 
08 3,118 2,938 5.11 2,943 2.31 
09 3,729 3,445 13.13 3,479 1.63 
10 2,979 2,950 53.63 2,963 26.99 
11 1,972 1,972 0.69 1,972 0.64 
12 2,330 2,314 81.89 2,330* 1.07 
13 2,572 2,555 77.12 2,572* 0.96 
14 2,120 2,120 1.25 2,120 1.00 
15 1,493 1,493 1.73 1,493 1.60 
16 1,245 1,245 2.02 1,245 1.34 
17 1,500 1,500 2.70 1,500 1.49 
18 1,575 1,575 1.49 1,575 1.36 
19 1,526 1,526 1.98 1,526 0.13 
20 1,606 1,606 3.28 1,606 0.99 
21 1,271 1,271 1.10 1,271 0.94 
22 985 985 2.35 985 2.13 
23 1,631 1,609 91.95 1,631* 2.04 
24 2,002 2,000 41.33 2,002* 0.97 
25 1,432 1,432 1.51 1,432 1.05 
26 819 819 3.50 819 1.75 
27 647 647 1.20 647 0.38 
28 803 803 2.79 803 1.79 
29 1,398 1,398 1.00 1,398 0.62 
30 918 918 3.54 918 0.87 

TOTALS 61,159 59,429 18.72 59,614 2.04 
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A critical observation from the thirty tested scenarios is that when the input demand is 
particularly high, it becomes infeasible to schedule the production of all items due to spatial 
constraints in the surface-treatment area. Notably, the average optimality gap when the 
solver was limited to 600 seconds was 18.72%. When the maximum computational time 
was extended to 3,600 seconds, this gap dropped significantly to 2.04%, resulting in 
increased production in 13 out of the 14 scenarios where full production had previously 
been infeasible. 

No improvement was observed in Scenario 1, indicating that the optimal solution was 
likely reached within the initial 600 second time limit. All other scenarios, except for 
Scenario 10, exhibited low optimality gaps after the extended execution, suggesting that 
the solver was close to or achieved optimal solutions, requiring only additional time for 
confirmation. 

In Table 6, bold values in the fifth column indicate improvement in the number of items 
produced compared to the results in the third column. Asterisks (*) mark scenarios in which 
the model succeeded in producing the total quantity of available items when additional 
computational time was allocated. 

In the 30 daily scenarios (Table 5) the model reached the 600s time limit; in four of 
those cases the solver proved optimality earlier (33s–172s), indicating that smaller 
instances close quickly. For the 30 accumulated-demand scenarios (Table 6), extending the 
limit to 3600s reduced the average optimality gap from 18.7 % to 2.0 %. Consequently, for 
routine daily loads the MILP provides results within ≤ 10 min, and for demand peaks a 60-
min window is sufficient to obtain near-optimal solutions. 

The line graph presented in Figure 6 illustrates the optimality gap (%) at two distinct 
computational time limits: 600 seconds (blue line) and 3,600 seconds (orange line) across 
all tested scenarios. This visual comparison provides a clear understanding of the model’s 
behavior under varying time constraints. It is evident that the optimality gap decreases 
substantially in most scenarios when the solver is allowed more time, highlighting the 
model's responsiveness to increased computational effort and its ability to approach near-
optimal solutions in larger, more complex instances. 

 
Figure 6: Optimality gap (%) at 600 and 3,600 seconds for each simulated scenario 
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The bar chart presented in Figure 7 compares the number of scheduled items at two 
distinct computational time limits, 600 seconds and 3,600 seconds, for each accumulated 
demand scenario. In each pair of bars representing a scenario, the blue bar indicates the 
number of items scheduled within 600 seconds, while the orange bar represents the number 
achieved with the extended time of 3,600 seconds. A visual inspection reveals that the total 
number of scheduled items changes only marginally between these two-time limits in most 
scenarios, highlighting the model’s stability and the consistency of its performance across 
the analyzed cases. 

 
Figure 7: Comparison of the number of scheduled items at 600 and 3,600 seconds for 

each accumulated demand scenario 

Table 7 offers a decision guideline for production schedulers: daily loads under 2,000 
items are solved within the regular 10-minute window, whereas exceptionally high loads 
(≥ 2,000 items) should be submitted to the MILP with an overnight limit of 3,600 s to 
ensure gaps below 5 %. 

Table 7: Solver runtime and recommended MILP configuration by problem size 

Problem size (items per 
day or scenario) 

 

Observed runtime 
(Intel i7 / 8 GB) 

 

Typical 
gap 

 

Recommended approach 
 

≤ 500 items ≤ 3 min 0 % 
MILP, 180s limit 
(near-instant run) 

500 – 2000 items 3 – 10 min 0 – 3 % 
MILP, 600s limit 

(daily routine) 

2000 – 3 00 items 10 – 60 min 2 – 5 % 
MILP, 3,600s limit 

(overnight run) 
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Although sensitivity analysis is a valuable technique for assessing model robustness 
under parameter uncertainty, its application was deemed unnecessary in this study due to 
the deterministic nature of the production environment under investigation. The entire 
production process operates on a strict Engineer-to-Order (ETO) basis, where all demand 
is confirmed in advance through customer orders, and no production occurs without a 
validated request. 

The MILP model formulation incorporates all relevant operational constraints, 
including tank capacity, fixture-device limitations, geometric fit, and alloy compatibility. 
These are not subject to daily variation and reflect standardized practices validated with 
the company’s engineering team. As such, uncertainty in parameter estimates is minimal 
to nonexistent within the model's operational scope. 

5. CONCLUSION 

This research addressed a critical operational challenge faced by companies in the 
aerospace supply chain, particularly within the electroplating sector, which was identified 
as a major bottleneck in the company under study. To overcome this challenge, a MILP 
model was developed to optimize production scheduling in the chromic anodizing process. 

The results fully achieved both the general and specific research objectives by 
determining the optimal combination of products and quantities per tank, while respecting 
all technical and operational constraints, with the overarching goal of maximizing 
productivity. 

When applied to real operational data, the proposed MILP model consistently 
outperformed the company’s existing scheduling practices. In several scenarios, it enabled 
the complete scheduling of all available items for production, demonstrating substantial 
improvements in efficiency. 

Beyond improving operational outcomes, the model also offers the potential to 
automate the scheduling process, reducing the need for manual intervention by production 
managers. This not only enhances the reliability and consistency of the scheduling process 
but also allows managers to focus on higher-value tasks. 

Additionally, the simulation results revealed that the current anodizing capacity is 
sufficient to accommodate additional business demands, such as onboarding new clients 
or expanding the product portfolio. This available capacity has the potential to support cost 
reduction strategies and contribute positively to the company’s financial performance. 

In summary, the findings of this study provide both practical and managerial insights 
that can support decision-making in the surface treatment area. Furthermore, the modeling 
approach presented here can be extended to other operational areas within the company or 
adapted to similar industries facing complex production scheduling challenges. The 
demonstrated success of the model suggests that optimization-based solutions hold 
significant promise for improving operational efficiency across various organizational 
contexts. 

Building on the present findings, three avenues merit further investigation: (i) robust 
optimization to explicitly hedge against demand volatility, tank-capacity deviations, and 
fixture-geometry tolerances; (ii) hybrid meta-heuristics, combining GRASP or genetic 
algorithms with MILP-based large-neighborhood search, to handle instances exceeding 
5,000 items or multi-day horizons with real-time responsiveness; and (iii) integration with 
cyber-physical production systems, coupling the MILP scheduler with digital twins and 
IoT sensors to enable 15-minute rescheduling cycles and to incorporate additional 
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objectives such as energy consumption and chemical waste reduction. These extensions 
would enhance the model’s applicability in highly dynamic or sustainability-driven 
manufacturing environments. 

5.1. Data Availability 

The datasets generated and analyzed during the current study are publicly available in 
the Mendeley Data repository under the title “Dataset for Scheduling and Capacity 
Planning in Aerospace Surface Treatment: Real and Simulated Scenarios”, DOI: 
https://doi.org/10.17632/p7g96yvvgb.1 . The repository includes both real production data 
(30 daily scenarios) and simulated scenarios generated by aggregating the demand from 
two consecutive production days (30 accumulated-demand scenarios). Additionally, the 
repository contains text files for each scenario and a metadata file detailing the constraints 
and characteristics of each item. 

 
Funding: The present paper has received no funding. 
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