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Abstract: In this article, we explore the concept of interval-valued nonsmooth opti-
mization problems using r-invexity in relation to convex compact sets. For the selected
nonsmooth interval-valued problem (IP), we derive necessary and sufficient optimality
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their subdifferentials and superdifferentials. We draft a numerical example to support the
results obtained in this paper. It is important to note that the Lagrange multipliers are
nonconstant for the considered problem.
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1. INTRODUCTION

Optimization deals with the way to find the best possible solution within the feasible
region. We commonly use three types of approaches in optimization to tackle the uncer-
tainty occurring in the problem, which give rise to stochastic optimization, deterministic
optimization, and interval-valued optimization. An interval-valued optimization prob-
lem addresses the uncertainty and imprecision incurred in optimization problems during
decision-making. In interval-valued problems, uncertainty arises either in the objective
function or in constraints, or in both the objective and constraints. Interval-valued opti-
mization problems can apply in various disciplines such as finance [1], engineering [2],
energy systems [3], and stock portfolios [4] where decision-makers need to account for
uncertainties and variations in input data. Recently, many researchers have put tremen-
dous effort into the formulation of optimality and duality results for interval-valued opti-
mization problems under different generalized convexity. Wu [5] formulated the Karush-
Kuhn-Tucker (KKT) optimality criteria based on interval-valued functions. Jayswal et
al. [6] focused on the interval-valued Mond-Weir and Wolf problems and derived the
sufficient optimality criteria and appropriate duality results in order to find the connec-
tion between the efficient solution of the primal and dual problems. Bhurjee and Panda
[7] used parametric form to define an interval-valued function and demonstrated the ex-
istence of a solution. Ahmad et al. [8] derived sufficient optimality criteria along with
weak, strict converse, and strong duality theorems for interval-valued Mond-Weir and
Wolf problems under (p,r)-ρ-(η ,θ)-invexity. Zhang et al. [9] proposed the KKT-type
optimality criteria for a class of nonconvex problems by magnifying the concept of invex-
ity and preinvexity to interval-valued programming problems. Moreover, he proposed the
relation between interval-valued problems and variational-like inequalities problems. Re-
cently, Debnath and Pokharna [10] worked on interval-valued variational problems using
B-(p,r)-invexity and established optimality and duality results.

Most of the real-life problems do not satisfy differentiability or smoothness. Nons-
moothness in the problem opens a considerably big platform for scientists. A number of
techniques have been developed over a period of time to tackle nonsmooth optimization
problems. Most of the nonsmooth optimization problems can be modeled using quasid-
ifferentiable calculus. The nonsmooth vector optimization, where each component is lo-
cally Lipschitz, was studied intensively by Clarke [11] which has given incredible results
in optimization theory. Another important approach by Demyanov and Rubinov [12] led
to the development of quasidifferential calculus, which is extended by many researchers,
including Demyanov and Rubinov [13], Gao [14], Kuntz and Scholtes [15] Luderer and
Rösiger [16], Polyakova [17], Shapiro [18], Uderzo [19], Ward [20]. In a nonsmooth
optimization problem, quasidifferential calculus played a constructive role in a variety of
problems applied in different fields such as optimal control theory, nonsmooth analysis,
engineering, mechanics, economics, and other fields. Antczak [21] derived duality results
and optimality criteria of the Slater-type constraints under r-invex function. Antczak [22]



A.K. Prasad et al. / Duality and Optimality for Interval-Valued Problems 3

has also worked on an alternate approach of modified r-invex functions and derived the
duality and optimality results for a constrained programming problem that may or may
not contain differentiable functions. Later on, Antczak [23] derived the optimality and du-
ality by considering nonsmooth as well as nonconvex functions under quasidifferentiable
r-invexity.

Recently, Singh and Laha [24] examined a class of fractional multiobjective program-
ming problems characterized by quasidifferentiable functions. They extended the concept
of (F,ρ)-convexity to the quasidifferentiable domain and utilized it to derive the optimal-
ity conditions. Building on this work, Singh and Laha [25] further developed the theory
of quasidifferentials by formulating Minty and Stampacchia-type vector variational-like
inequalities for optimization problems with invex functions defined over convex compact
sets. These formulations were then used to establish optimality conditions in a more gen-
eralized framework. Prasad et al. [26] focused on interval-valued vector optimization
problems. By employing the concept of quasidifferentiable F-convexity in relation to
compact convex sets, they established Fritz John and Karush-Kuhn-Tucker (KKT) type
necessary optimality conditions and further provided sufficient conditions under similar
assumptions, illustrated with a numerical example. Laha et al. [27] investigated approx-
imate solutions for interval-valued multiobjective optimization problems with inequality
constraints. Utilizing quasidifferential calculus, they derived KKT-type necessary and
sufficient optimality conditions based on approximate and generalized approximate con-
vexity defined through quasidifferentials.

Inspired by the aforementioned research, our focus lies in exploring a class of interval-
valued optimization problems that are nonsmooth in nature, addressed through the frame-
work of quasidifferentiable r-invex functions in connection with compact convex sets. We
derive necessary and sufficient optimality criteria for the formulated problem using qua-
sidifferential calculus, which is suitable for handling nonsmoothness. Furthermore, we
formulate the Mond-Weir type dual model and derive the duality theorems under r-invex
quasidifferentiable in connection with compact convex sets. The quasidifferentials of the
functions are characterized using the Minkowski sum of their subdifferentials and su-
perdifferentials, which plays a fundamental role in both the optimality and duality results.
An important theoretical insight emphasized is that the Lagrange multipliers derived in
the KKT-type conditions are nonconstant, highlighting the complexity and generality of
the proposed model. Finally, to validate the theoretical findings, a numerical example is
provided, demonstrating the applicability of the developed results.

The paper is structured as follows: Section 2 provides a review of fundamental def-
initions and outlines the necessary optimality conditions. In Section 3, we develop the
interval-valued problem and derive optimality conditions by employing r-invex quasidif-
ferentiable functions in the context of compact convex sets and η . Finally, Section 4 con-
structs the Mond-Weir dual problem and derives relevant duality results for the considered
Mond-Weir dual problem consisting of r-invex quasidifferentiable function in connection
with compact convex sets.

2. PRELIMINARIES

This section begins with a set of interval operations that are fundamental to the devel-
opments presented in this paper. Let ℑ represent the collection of all bounded and closed
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intervals in ℜ. The symbol ξ = [εL,εU ] stands for the bounded and closed interval with
εL as lower bound and εU as upper bound. If εL = εU = ε , then ξ = [ε,ε] = ε reduces to
a real number.
If ξ = [εL,εU ], ζ = [ςL,ςU ] ∈ ℑ, then we define

(i) ξ +ζ = {ε + ς : ε ∈ ξ and ς ∈ ζ} = [εL + ςL,εU + ςU ],

(ii) −ξ = {−ε : ε ∈ ξ} = [−εU ,−εL],

(iii) ξ −ζ = {ξ +(−ζ )} = [εL − ςU ,εU − ςL],

(iv) m+ξ = {m+ ε : ε ∈ ξ} = [m+ εL,m+ εU ],

(v) mξ = {mε : ε ∈ ξ} =

{
[mεL,mεU ], m ≥ 0,
[mεU ,mεL], m < 0,

where m be an arbitrary real number. Let us denote ℜk by the k-dimensional Euclidean
space and let X ⊆ ℜk be a nonempty set. A function ℵ : X → ℑ, where ℑ is the set of all
closed and bounded intervals in ℜ, is termed an interval-valued function. For any point
π = (π1,π2, . . . ,πk) ∈ X, we write ℵ(π) in the compact form ℵ(π) = [ℵL(π),ℵU (π)],
where ℵL,ℵU : X → ℜ and satisfy ℵL(π)≤ ℵU (π) for all π ∈ X.

We now define a partial ordering ≤LU on the set of closed and bounded intervals ℑ.
Given two intervals ξ = [εL,εU ] and ζ = [ςL,ςU ] in ℑ, we say that ξ ≤LU ζ if both
εL ≤ ςL and εU ≤ ςU hold. The strict relation ξ <LU ζ is defined by ξ ≤LU ζ and ξ ̸= ζ .
Therefore, ξ <LU ζ is satisfied whenever at least one of the following conditions is true:
εL < ςL, εU < ςU ,
or,
εL ≤ ςL, εU < ςU ,
or,
εL < ςL, εU ≤ ςU .

Definition 1. [23] A function f : ℜk → ℜ is known as directionally differentiable at π̄ ∈
ℜk along a direction δ ∈ ℜk if the limit

f ′(π̄;δ ) = lim
γ↓0

f (π̄ + γδ )− f (π̄)
γ

,

exists and is finite.
If the directional derivative of the function f exists finitely for each δ ∈ ℜk, then the
function is said to be directionally differentiable or semi-differentiable at a point π̄.

Definition 2. [23] A function f : ℜk → ℜ is said to be quasidifferentiable at a point
π̄ ∈ ℜk if it is directionally differentiable at π̄ and there exists a pair of convex, compact
ordered sets D f (π̄) = [∂ f (π̄),∂ f (π̄)] such that the following condition is fulfilled:

f ′(π̄;δ ) = max
ϑ∈∂ f (π̄)

ϑ
T

δ + min
λ∈∂ f (π̄)

λ
T

δ ,

where the term ∂ f (π̄) is known as the subdifferential and the term ∂ f (π̄) is known as
the superdifferential of the function f at a point π̄ . Moreover, the pair of ordered sets
D f (π̄) [∂ f (π̄),∂ f (π̄)] is known as the quasidifferential f at a point π̄ .
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Note The uniqueness of the quasidifferential to the function f at some particular point π̄

may not be guaranteed. This reduces the fact that D f (π̄) = [∂ f (π̄), ∂ f (π̄)] and [∂ f (π̄)+
C, ∂ f (π̄)−C] both are quasidifferential of the function f at π̄ for each nonempty compact
as well as convex set C.

The convex compact sets S f (π̄) are equal to the Minkowski sum of subdifferentials
and superdifferentials at a point π̄.

Definition 3. [23] Let S f (π̄)⊆ ℜk be a nonempty compact convex set and r be scalar. A
function f : ℜk → ℜ is known as the r-invex at a point π̄ on ℜk in connection with S f (π̄)
and η if there exists η : ℜk ×ℜk → ℜk satisfying

1
r er f (π) ≥ 1

r er f (π̄)[1+ rωT η(π, π̄)], if r ̸= 0,

f (π) ≥ f (π̄)+ωT η(π, π̄), if r = 0,

 (1)

for each π ∈ ℜk and ω ∈ S f (π̄).
Furthermore, if the inequality (1) is strict for each π ∈ ℜk (π ̸= π̄), then the function f is
known as strictly r-invex at π̄ on ℜk in connection with S f (π̄) and η .
If the inequality (1) is satisfied for each π ∈ X, where X is a nonempty subset of ℜk, then
the function f is r-invex at π̄ on X in connection with S f (π̄) and η .

Remark

(a) If the function f is locally Lipschitz at π̄, and the compact convex set S f (π̄) as
well as Clarke subdifferential of f at π̄ are equivalent, then f is said to be a locally
Lipschitz r-invex, which was introduced by Antczak [21].

(b) If we consider r = 0, in the definition of a locally Lipschitz r-invex function then it
reduces to the definition of a locally Lipschitz invex function, which was given by
Reiland [28].

(c) If f is differentiable, then S f (π̄) = ∇ f (π̄) and the definition of r-invex function
in connection with compact convex set reduces to the definition of differentiable
r-invex function, given by Antczak [22].

(d) If we consider r = 0, in the definition of differentiable r-invex function then it
reduces to the definition of invex function given by Hanson [29].

Definition 4. The interval-valued function ℵ : X →ℑ is known as r-invex at a point π̄ ∈X
in connection with convex compact set Sℵ(π̄) and η , if both the functions ℵL, ℵU : X →ℜ

are r-invex at a point π̄ on X in connection with convex compact set Sℵ
L(π̄),Sℵ

U (π̄), re-
spectively, as well as in connection with η , that is, if there exists a vector-valued function
η : X×X → ℜk and a scalar r such that the inequalities

1
r

erℵL(π) ≥ 1
r

erℵL(π̄)[1+ r(ωL)T
η(π, π̄)], if r ̸= 0,

ℵ
L(π)≥ ℵ

L(π̄)+(ωL)T
η(π, π̄), if r = 0,
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and

1
r

erℵU (π) ≥ 1
r

erℵU (π̄)[1+ r(ωU )T
η(π, π̄)], if r ̸= 0,

ℵ
U (π)≥ ℵ

U (π̄)+(ωU )T
η(π, π̄), if r = 0,

hold for all π ∈ X and for all ωL ∈ Sℵ
L(π̄) and ωU ∈ Sℵ

U (π̄).

Now, we recall the definition of weighted r-mean, which will be used to define r-preinvex
functions.

Definition 5. [23] Let α > 0 and β ≥ 0 be members of ℜm and r be any real number.
If the component of β = (β1,β2, . . . ,βm) satisfies ∑

m
i=1 βi = 1, then a weighted r-mean is

defined by

Mr(α;β ) = Mr(α1, . . . ,αm;β ) :=

{(
∑

m
i=1 βiα

r
i
)1/r

, if r ̸= 0,
Πm

i=1αi
βi , if r = 0.

Definition 6. [22] Let Ω (̸= /0) be an invex subset of ℜk. A real-valued function f : Ω→ℜ

is known as r-preinvex at ρ ∈ Ω in connection with η , if there exist real numbers r and
β1 ≥ 0, β2 ≥ 0 satisfying β1 +β2 = 1, and

f (β1ρ +β2(η(π,ρ)+ρ))≤ ln
(
Mr(e f (ρ),e f (π);β )

)
, ∀π ∈ Ω.

Similarly, a function f is known as r-preinvex on Ω in connection with η if the above
inequality holds for each point ρ ∈ Ω.

Definition 7. An interval-valued function ℵ : Ω → ℑ is known as r-preinvex at ρ ∈ Ω

in connection with η if both the functions ℵL, ℵU : Ω → ℜ are r-preinvex at ρ ∈ Ω

in connection with η , i.e., if there exist real numbers r and β1 ≥ 0, β2 ≥ 0, such that
β1 +β2 = 1 satisfying

ℵ
L(β1ρ +β2(η(π,ρ)+ρ)) ≤ ln

(
Mr(eℵL(ρ),eℵL(π);β )

)
, ∀π ∈ Ω,

and

ℵ
U (β1ρ +β2(η(π,ρ)+ρ)) ≤ ln

(
Mr(eℵU (ρ),eℵU (π);β )

)
, ∀π ∈ Ω.

Note Let us consider a particular case of r-preinvex function in connection with η . We
substitute β2 = ρ where ρ ∈ [0,1]. The condition β1+β2 = 1 gives β1 = 1−ρ , therefore,
r-preinvex function in connection with η can be express as

ℵ
L(ρ +ρη(π,ρ))≤

{
ln(ρerℵL(π)+(1−ρ)erℵL(ρ))1/r, if r ̸= 0,
ρℵL(π)+(1−ρ)ℵL(ρ), if r = 0,

and

ℵ
U (ρ +ρη(π,ρ))≤

{
ln(ρerℵU (π)+(1−ρ)erℵU (ρ))1/r, if r ̸= 0,
ρℵU (π)+(1−ρ)ℵU (ρ), if r = 0.
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Proposition 8. Let Ω (̸= /0) be an invex subset of ℜk w.r.t. η and ℵ : Ω → ℑ be an
interval-valued function. Suppose that ℵL, ℵU : Ω → ℜ are r-preinvex functions in con-
nection with η at a point ρ ∈ Ω on Ω. Moreover, ℵL and ℵU are quasidifferentiable
functions at ρ ∈ Ω. Then, both the functions ℵL and ℵU are r-invex quasidifferentiable
at ρ on Ω in connection with η and in connection with the convex compact set Sℵ

L(ρ) =
∂ℵL(ρ)+ λ̄ L and Sℵ

U (ρ) = ∂ℵU (ρ)+ λ̄U where, λ̄ L ∈ argmin
λ L∈∂ℵL(ρ)(λ

L)T η(π,ρ)

and λ̄U ∈ argmin
λU∈∂ℵU (ρ)(λ

U )T η(π,ρ) for any π ∈ Ω.

Proof. It is given that ℵL and ℵU are r-preinvex functions at a point ρ ∈ Ω on Ω in con-
nection with η . We assume r > 0 without loss of generality. Therefore, by the definition
of r-preinvex function, the following inequalities are satisfied for all π ∈ Ω and ρ ∈ [0,1]:

ℵ
L(

ρ +ρη(π,ρ)
)
≤ ln

(
ρerℵL(π)+(1−ρ)erℵL(ρ)

)1/r
,

and
ℵ

U(
ρ +ρη(π,ρ)

)
≤ ln

(
ρerℵU (π)+(1−ρ)erℵU (ρ)

)1/r

Using the logarithmic identity ln(x)a = a ln(x), we get

ℵ
L(

ρ +ρη(π,ρ)
)
≤ 1

r
ln
(
ρerℵL(π)+(1−ρ)erℵL(ρ)

)
,

and
ℵ

U(
ρ +ρη(π,ρ)

)
≤ 1

r
ln
(
ρerℵU (π)+(1−ρ)erℵU (ρ)

)
.

Multiplying both sides of the inequalities by r, we obtain

rℵ
L(

ρ +ρη(π,ρ)
)
≤ ln

(
ρerℵL(π)+(1−ρ)erℵL(ρ)

)
,

and
rℵ

U(
ρ +ρη(π,ρ)

)
≤ ln

(
ρerℵU (π)+(1−ρ)erℵU (ρ)

)
.

Exponentiating both sides yields

erℵL
(

ρ+ρη(π,ρ)
)
≤ ρerℵL(π)+ erℵL(ρ)−ρerℵL(ρ),

and
erℵU

(
ρ+ρη(π,ρ)

)
≤ ρerℵU (π)+ erℵU (ρ)−ρerℵU (ρ).

By simplifying the inequalities, we obtain

erℵL
(

ρ+ρη(π,ρ)
)
− erℵL(ρ) ≤ ρ

(
erℵL(π)− erℵL(ρ)

)
,

and
erℵU

(
ρ+ρη(π,ρ)

)
− erℵU (ρ) ≤ ρ

(
erℵU (π)− erℵU (ρ)

)
.

Taking erℵL(ρ) and erℵU (ρ) as common factors from the left sides of the inequalities, we
obtain

erℵL(ρ)
[
erℵL

(
ρ+ρη(π,ρ)

)
−rℵL(ρ)−1

]
≤ ρ

(
erℵL(π)− erℵL(ρ)

)
,
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and
erℵU (ρ)

[
erℵU

(
ρ+ρη(π,ρ)

)
−rℵU (ρ)−1

]
≤ ρ

(
erℵU (π)− erℵU (ρ)

)
,

which implies

erℵL(π)− erℵL(ρ) ≥ erℵL(ρ) erℵL(ρ+ρη(π,ρ))−rℵL(ρ)−1
ρ

,

and

erℵU (π)− erℵU (ρ) ≥ erℵU (ρ) erℵU (ρ+ρη(π,ρ))−rℵU (ρ)−1
ρ

.

As the functions ℵL and ℵU are quasidifferentiable at a point ρ ∈ Ω, therefore, it is
directionally differentiable at ρ . As ρ ↓ 0, the following inequalities are satisfied for all
π ∈ Ω

erℵL(π)− erℵL(ρ) ≥ rerℵL(ρ)
ℵ

L′(ρ;η(π,ρ)),

and
erℵU (π)− erℵU (ρ) ≥ rerℵU (ρ)

ℵ
U ′
(ρ;η(π,ρ)).

Since r > 0, the above inequalities yield

1
r

erℵL(π) ≥ 1
r

erℵL(ρ)[1+ rℵ
L′(ρ;η(π,ρ))],

and
1
r

erℵU (π) ≥ 1
r

erℵU (ρ)[1+ rℵ
U ′
(ρ;η(π,ρ))],

 (2)

for all π ∈ Ω. Due to the fact that ℵL and ℵU are quasidifferentiable functions, we get

ℵ
L′(ρ;η(π,ρ)) = max

ϑ∈∂ℵL(ρ)
(ϑ L)T

η(π,ρ)+ min
λ∈∂ℵL(ρ)

(λ L)T
η(π,ρ), ∀π ∈ Ω,

and

ℵ
U ′
(ρ;η(π,ρ)) = max

ϑ∈∂ℵU (ρ)
(ϑU )T

η(π,ρ)+ min
λ∈∂ℵU (ρ)

(λU )T
η(π,ρ), ∀π ∈ Ω,

where ∂ℵL(ρ) and ∂ℵU (ρ) are nonempty convex compact sets. Therefore, for λ
L ∈

argmin
λ L∈∂ℵL(ρ)(λ

L)T η(π,ρ) and λ
U ∈ argmin

λU∈∂ℵU (ρ)(λ
U )T η(π,ρ), we can find

the value of λ̄ . Using the above relations, the following inequalities are satisfied for all
π ∈ Ω

ℵ
L′(ρ;η(π,ρ))≥ (ϑ L)T

η(π,ρ)+(λ̄ L)T
η(π,ρ), ∀ ϑ

L ∈ ∂ℵ
L(ρ),

and

ℵ
U ′
(ρ;η(π,ρ))≥ (ϑU )T

η(π,ρ)+(λ̄U )T
η(π,ρ), ∀ ϑ

U ∈ ∂ℵ
U (ρ).

 (3)
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From (2) and (3), we can conclude that

1
r

erℵL(π) ≥ 1
r

erℵL(ρ)[1+ r(ωL)T
η(π,ρ)], ∀ ω

L ∈ ∂ℵ
L(ρ)+ λ̄

L,

and

1
r

erℵU (π) ≥ 1
r

erℵU (ρ)[1+ r(ωU )T
η(π,ρ)], ∀ ω

U ∈ ∂ℵ
U (ρ)+ λ̄

U ,

satisfied for all π ∈ Ω. We say that using the definition of r-invex functions, we arrive at
the conclusion that the functions ℵL and ℵU are r-invex quasidifferentiable at a point ρ on
Ω in connection with Sℵ

L(ρ) = ∂ℵL(ρ)+ λ̄ L and Sℵ
U (ρ) = ∂ℵU (ρ)+ λ̄U respectively,

as well as in connection with η . Hence, the proof is complete.

Corollary 9. Let Ω (̸= /0) be an invex subset of ℜk w.r.t. η and ℵ : Ω → ℑ be an interval-
valued function. Suppose ℵL, ℵU : Ω → ℜ are r-preinvex functions in connection with
η at a point ρ ∈ Ω on Ω. Moreover, ℵL and ℵU both are quasidifferentiable functions at
a point ρ ∈ Ω. If the convex compact sets ∂ℵL(ρ) and ∂ℵU (ρ) both are singleton, then
the functions ℵL and ℵU are r-invex quasidifferentiable at ρ on Ω in connection with η

as well as in connection with Sℵ
L(ρ) = ∂ℵL(ρ)+ ∂ℵL(ρ) and Sℵ

U (ρ) = ∂ℵU (ρ)+
∂ℵU (ρ) respectively.

Theorem 10. Let ℵ : Ω → ℑ be an interval-valued function and ρ be an arbitrary point
of Ω. The functions ℵL, ℵU : Ω → ℜ are r-invex quasidifferentiable at a point ρ ∈
Ω in connection with Sℵ

L(ρ) = ∂ℵL(ρ)+ ∂ℵL(ρ) and Sℵ
U (ρ) = ∂ℵU (ρ)+ ∂ℵU (ρ),

respectively. Then, the following inequalities are satisfied for all π ∈ Ω:

1
r

erℵL(π) ≥ 1
r

erℵL(ρ)[1+ rℵ
L′(ρ;η(π,ρ))], if r ̸= 0,

ℵ
L(π)≥ ℵ

L(ρ)+ℵ
L′(ρ;η(π,ρ)), if r = 0,

1
r

erℵU (π) ≥ 1
r

erℵU (ρ)[1+ rℵ
U ′
(ρ;η(π,ρ))], if r ̸= 0,

ℵ
U (π)≥ ℵ

U (ρ)+ℵ
U ′
(ρ;η(π,ρ)), if r = 0.


(4)

Proof. Because ρ is an arbitrary point of Ω and the functions ℵL, ℵU : Ω→ℜ are r-invex
quasidifferentiable at a point ρ on Ω in connection with Sℵ

L(ρ) = ∂ℵL(ρ)+∂ℵL(ρ) and
Sℵ

U (ρ) = ∂ℵU (ρ)+∂ℵU (ρ), respectively. By definition of r-invexity the inequalities

1
r

erℵL(π) ≥ 1
r

erℵL(ρ)[1+ r(ωL)T
η(π,ρ)], if r ̸= 0,

ℵ
L(π)≥ ℵ

L(ρ)+(ωL)T
η(π,ρ), if r = 0,

1
r

erℵU (π) ≥ 1
r

erℵU (ρ)[1+ r(ωU )T
η(π,ρ)], if r ̸= 0,

ℵ
U (π)≥ ℵ

U (ρ)+(ωU )T
η(π,ρ), if r = 0,


(5)
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satisfy for each π ∈Ω and for each ωL ∈ Sℵ
L(ρ)= ∂ℵL(ρ)+∂ℵL(ρ) and ωU ∈ Sℵ

U (ρ)=
∂ℵU (ρ)+∂ℵU (ρ). From (5), we deduce that

1
r

erℵL(π) ≥ 1
r

erℵL(ρ)[1+ r
(
(ϑ L)T

η(π,ρ)
)
+(λ L)T

η(π,ρ))], if r ̸= 0,

ℵ
L(π)≥ ℵ

L(ρ)+(ϑ L)T
η(π,ρ)+(λ L)T

η(π,ρ), if r = 0,
1
r

erℵU (π) ≥ 1
r

erℵU (ρ)[1+ r
(
(ϑU )T

η(π,ρ)
)
+(λU )T

η(π,ρ))], if r ̸= 0,

ℵ
U (π)≥ ℵ

U (ρ)+(ϑU )T
η(π,ρ)+(λU )T

η(π,ρ), if r = 0,

for each π ∈ Ω and for each ϑ L ∈ ∂ℵL(ρ),ϑU ∈ ∂ℵU (ρ) and λ L ∈ ∂ℵL(ρ),λU ∈
∂ℵU (ρ). Therefore, for some λ L(π,ρ) ∈ ∂ℵL(ρ) and λU (π,ρ) ∈ ∂ℵU (ρ), we have

1
r

erℵL(π) ≥ 1
r

erℵL(ρ)
[
1+ r

(
max

ϑ L∈∂ℵL(ρ)
(ϑ L)T

η(π,ρ)
)
+(λ L(π,ρ))T

η(π,ρ))
]
,

if r ̸= 0,

ℵ
L(π)≥ ℵ

L(ρ)+ max
ϑ L∈∂ℵL(ρ)

(ϑ L)T
η(π,ρ)+(λ L(π,ρ))T

η(π,ρ), if r = 0,

1
r

erℵU (π) ≥ 1
r

erℵU (ρ)
[
1+ r

(
max

ϑU∈∂ℵU (ρ)
(ϑU )T

η(π,ρ)
)
+(λU (π,ρ))T

η(π,ρ))
]
,

if r ̸= 0,

ℵ
U (π)≥ ℵ

U (ρ)+ max
ϑU∈∂ℵU (ρ)

(ϑU )T
η(π,ρ)+(λU (π,ρ))T

η(π,ρ), if r = 0.

Hence, we get

1
r

erℵL(π) ≥ 1
r

erℵL(ρ)
[
1+ r

(
max

ϑ L∈∂ℵL(ρ)
(ϑ L)T

η(π,ρ))+ min
λ L∈∂ℵL(ρ)

(λ L)T
η(π,ρ)

)]
,

if r ̸= 0,

ℵ
L(π)≥ ℵ

L(ρ)+ max
ϑ L∈ ∂ℵL(ρ)

(ϑ L)T
η(π,ρ)+ min

λ L∈∂ℵL(ρ)
(λ L)T

η(π,ρ) if r = 0,

1
r

erℵU (π) ≥ 1
r

erℵU (ρ)
[
1+ r

(
max

ϑU∈∂ℵU (ρ)
(ϑU )T

η(π,ρ)
)
+(λU (π,ρ))T

η(π,ρ))
]
,

if r ̸= 0,

ℵ
U (π)≥ ℵ

U (ρ)+ max
ϑU∈∂ℵU (ρ)

(ϑU )T
η(π,ρ)+(λU (π,ρ))T

η(π,ρ), if r = 0.

Therefore, using the definition of directionally differentiable, we see that (4) is satisfied
for each π ∈ Ω. Hence the proof is complete.
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3. OPTIMALITY CRITERIA

Let us construct the nonsmooth interval-valued programming problem:

(IP) minimize ℵ(π) = [ℵL(π),ℵU (π)]

subject to ψ j(π)≤ 0; j ∈ Jm = {1, . . . ,m}; π ∈ X,

where X is a nonempty subset of ℜk. The function ℵ : X →ℑ is an interval-valued whereas
ℵL(π),ℵU (π) and ψ j(π) : X → ℜ, ∀ j ∈ Jm are quasidifferentiable functions on X.
The set Ω = {π ∈ X : ψ j(π)≤ 0, j ∈ Jm} represents the set of all feasible solutions to the
problem (IP). Moreover, the set of active constraints at a feasible point π̄ ∈ Ω is denoted
by Jm(π̄), that is, Jm(π̄) = { j ∈ Jm : ψ j(π̄) = 0}.

Definition 11. [8] A feasible point π̄ ∈ Ω is known as an LU-optimal solution to (IP) if
there does not exist any point π ∈ Ω satisfying

ℵ(π)<LU ℵ(π̄).

Theorem 12. (KKT-type necessary optimality criteria) Let the feasible point π̄ ∈ Ω be
the an LU-optimal solution to the problem (IP). Furthermore, suppose that the functions
ℵL, ℵU and ψ j, ∀ ∈ Jm are quasidifferentiable at a point π̄ entangled with the quasid-
ifferentials Dℵ

L(π̄) = [∂ℵL(π̄),∂ℵL(π̄)], Dℵ
U (π̄) = [∂ℵU (π̄),∂ℵU (π̄)] and Dψ j(π̄) =

[∂ψ j(π̄),∂ψ j(π̄)], respectively. If Kuntz-Scholtes constraint qualification (given by Kuntz
and Scholtes [15]) is satisfied at a point π̄, then for λ 0

L ∈ ∂ℵL(π̄), λ 0
U ∈ ∂ℵU (π̄) and

λ j ∈ ∂ψ j(π̄), for all j in Jm, there exist scalars (µL(λ ),µU (λ )) ∈ ℜ2 and ρ̄ j(λ ) ∈ ℜm

in such a way that

0 ∈ µ
L(λ )(∂ℵ

L(π̄)+λ
L
0 )+µ

U (λ )(∂ℵ
U (π̄)+λ

U
0 )+

m

∑
j=1

ρ̄ j(λ )(∂ψ j(π̄)+λ j), (6)

ρ̄ j(λ )ψ j(π̄) = 0, ∀ j ∈ Jm, (7)

(µL(λ ),µU (λ ))> 0, ρ̄ j(λ )≥ 0, ∀ j ∈ Jm, (8)

where µL(λ ),µU (λ ), ρ̄1(λ ), . . . , ρ̄m(λ ) rely on the particular selected λ =(λ L
0 ,λ

U
0 , λ1, . . . ,λm).

Theorem 13. (Sufficiency) A feasible solution π̄ becomes an LU-optimal solution to (IP)
if it fulfills the following two conditions:

(i) The point π̄ must satisfy the necessary optimality criteria as given by the condition
(6)-(8).

(ii) The functions ℵL, ℵU and ψ j, for all j in Jm(π̄) are r-invex quasidifferentiable
at π̄ on Ω in connection with Sℵ

L(π̄) = ∂ℵL(π̄)+∂ℵL(π̄), Sℵ
U (π̄) = ∂ℵU (π̄)+

∂ℵU (π̄) and Sψ j(π̄) = ∂ψ j(π̄) + ∂ψ j(π̄), respectively, as well as in connection
with η .
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Proof. Since the feasible solution π̄ ∈ Ω satisfies the conditions (6)-(8), thus, for λ L
0 ∈

∂ℵL(π̄), λU
0 ∈ ∂ℵU (π̄) and λ j ∈ ∂ψ j(π̄), ∀ j ∈ Jm, there exists (µL(λ ),µU (λ )) ∈ ℜ2,

and ρ̄(λ ) ∈ ℜm which satisfies the conditions (6)-(8). Consequently, by KKT-type neces-
sary criteria (6), there exist ϑ L

0 ∈ ∂ℵL(π̄), ϑU
0 ∈ ∂ℵU (π̄) and ϑ j ∈ ∂ψ j(π̄), ∀ j ∈ Jm,

such that

0 = µ
L(λ )(ϑ L

0 +λ
L
0 )+µ

U (λ )(ϑU
0 +λ

U
0 )+

m

∑
j=1

ρ̄ j(λ )(ϑ j +λ j). (9)

From the assumptions, the functions ℵL and ℵU are r-invex quasidifferentiable at π̄ on
Ω in connection with Sℵ

L(π̄) = ∂ℵL(π̄)+∂ℵL(π̄), Sℵ
U (π̄) = ∂ℵU (π̄)+∂ℵU (π̄), re-

spectively, as well as in connection with η and the functions ψ j, j ∈ Jm(π̄), are r-invex
quasidifferentiable at π̄ on Ω in connection with Sψ j(π̄) = ∂ψ j(π̄)+∂ψ j(π̄) and in con-
nection with η . Then the inequalities

1
r

erℵL(π) ≥ 1
r

erℵL(π̄)
[
1+ r(ωL

0 )
T

η(π, π̄)
]
∀ ω

L
0 ∈ Sℵ

L(π̄), (10)

1
r

erℵU (π) ≥ 1
r

erℵU (π̄)
[
1+ r(ωU

0 )T
η(π, π̄)

]
∀ ω

U
0 ∈ Sℵ

U (π̄), (11)

1
r

erψ j(π) ≥ 1
r

erψ j(π̄)
[
1+ rω

T
j η(π, π̄)

]
, ∀ ω j ∈ Sψ j(π̄), (12)

can be easily established using the definition of r-invex function, for all π ∈ Ω. Since
the above inequalities are fulfilled for any sets ωL

0 ∈ Sℵ
L(π̄), ωU

0 ∈ Sℵ
U (π̄) and ω j ∈

Sψ j(π̄), for all j in Jm(π̄), respectively. Therefore, by definition of Sℵ
L(π̄), Sℵ

U (π̄) and
Sψ j(π̄), it is also satisfied for ωL

0 = ϑ L
0 +λ L

0 ∈ Sℵ
L(π̄), ωU

0 = ϑU
0 +λU

0 ∈ Sℵ
U (π̄) and

ω j = ϑ j +λ j ∈ Sψ j(π̄), and it gives

1
r

[
er(ℵL(π)−ℵL(π̄))−1

]
≥ (ϑ L

0 +λ
L
0 )

T
η(π, π̄) (13)

1
r

[
er(ℵU (π)−ℵU (π̄))−1

]
≥ (ϑU

0 +λ
U
0 )T

η(π, π̄) (14)

1
r

[
er(ψ j(π)−ψ j(π̄))−1

]
≥ (ϑ T

j +λ
T
j )η(π, π̄), ∀ j ∈ Jm(π̄). (15)

Using the definition of Jm(π̄), and ψ j(π)≤ ψ j(π̄), ∀ j ∈ Jm(π̄); π, π̄ ∈ Ω, we have

1
r

[
er(ψ j(π)−ψ j(π̄))−1

]
≤ 0, (16)

which holds for all point π of Ω. From inequalities (15) and (16) we get

(ϑ T
j +λ

T
j )η(π, π̄)≤ 0, j ∈ Jm(π̄). (17)

Applying conditions ρ̄ j(λ ) > 0, ∀ j ∈ Jm(π̄) and ρ̄ j(λ ) = 0, ∀ j /∈ Jm(π̄) to the above
inequalities, we have

m

∑
j=1

ρ̄ j(λ )(ϑ j
T +λ j

T )η(π, π̄)≤ 0. (18)
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Using inequalities (9) and (18), we get[
µ

L(λ )(ϑ L
0 +λ

L
0 )

T +µ
U (λ )(ϑU

0 +λ
U
0 )T

]
η(π, π̄)≥ 0. (19)

Multiplying the inequality (13) by µL(λ ) and (14) by µU (λ ) and summing up we get

1
r

µ
L(λ )

[
er(ℵL(π)−ℵL(π̄))−1

]
+

1
r

µ
U (λ )

[
er(ℵU (π)−ℵU (π̄))−1

]
≥
[
µ

L(λ )(ϑ L
0 +λ

L
0 )

T +µ
U (λ )(ϑU

0 +λ
U
0 )T

]
η(π, π̄). (20)

Combining (19) with (20) gives

1
r

µ
L(λ )

[
er(ℵL(π)−ℵL(π̄))−1

]
+

1
r

µ
U (λ )

[
er(ℵL(π)−ℵL(π̄))−1

]
≥ 0, (21)

which holds for all point π ∈ Ω. Thus, we conclude that ℵ(π) ≥LU ℵ(π̄) for all π ∈ Ω.
Therefore, the feasible solution π̄ becomes an LU-optimal solution for the problem (IP).
Hence, the proof is complete.

Now, let us formulate an example of the nonsmooth interval-valued problem consid-
ered in this paper and interpret it using r-invex quasidifferentiable functions in connection
with compact convex sets, which are equivalent to the Minkowski sum of its subdifferen-
tials and superdifferentials as well as in connection with η .
Example 1 Let us construct the following nondifferentiable interval-valued programming
problem:

(IP1) minimize ℵ(π) = [ℵL(π),ℵU (π)]

=
[

ln
(

π
4
1 +π

2
2 + |π1|+ |π2|−π1 −π2 +1

)
,

ln
(∣∣|π1|+π2

∣∣+π
4
1 +1

)]
,

subject to, ψ1(π) = ln
(

π
2
1 +π

2
2 +2|π1|+π2 +1

)
≤ 0; π ∈ X,

where X ⊂ ℜ2 defined by X := {(π1,π2) : 0 ≤ π1 ≤ 1, 0 ≤ π2 ≤ 1}. The set Ω = {π =
(π1,π2) ∈ X : ln(π2

1 + π2
2 + 2|π1|+ π2 + 1) ≤ 0} and π̄ = (0,0) represents the set of

all feasible solutions and LU-optimal solution respectively to the problem (IP1). Fur-
thermore, we will show that the functions ℵL(π), ℵU (π) and ψ1(π) are quasidifferen-
tiable at a point π̄. Using definition of directional derivative, we get ℵL′((0,0);δ ) =

|δ1|+ |δ2|−δ1 −δ2 and ℵU ′
((0,0);δ ) =

∣∣|δ1|+δ2
∣∣ where, δ = (δ1,δ2) ∈ ℜ2. Hence,

ℵ
L′((0,0);δ ) = max

ϑ L
0 ∈conv{(1,1),(−1,−1)}

(ϑ L
0 )

T
δ + min

λ L
0 ∈conv{(−1,−1)}

(λ L
0 )

T
δ ,

where ∂ℵL(0,0) = conv{(1,1),(−1,−1)}, ∂ℵL(0,0) = conv{(−1,−1)} and

ℵ
U ′
((0,0);δ ) = max

ϑU
0 ∈conv{(0,0),(−2,2),(2,2)}

(ϑU
0 )T

δ + min
λU

0 ∈{(−1,−1),(1,−1)}
(λU

0 )T
δ ,
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where ∂ℵU (0,0)= conv{(0,0),(−2,2),(2,2)}, ∂ℵU (0,0)= {(−1,−1),(1,−1)}. There-
fore, by Definition 2, we can conclude that the functions ℵL and ℵU are quasidifferen-
tiable at a point π̄ = (0,0). Moreover, in a similar way, we have ψ ′

1((0,0),δ ) = 2|δ1|+δ2
and hence

ψ
′
1((0,0);δ ) = max

ϑ1∈conv{(2,0),(−2,0)}
(ϑ1)

T
δ + min

λ1∈{(0,1)}
(λ1)

T
δ ,

where ∂ψ1(0,0) = conv{(2,0),(−2,0)}, ∂ψ1(0,0) = {(0,1)}.
Now, we will verify that the necessary criteria of KKT-type are satisfied at the feasible
point π̄ with nonconstant Lagrange multipliers. It can be demonstrated that for any set
of λ L

0 ∈ ∂ℵL(π̄), λU
0 ∈ ∂ℵU (π̄) and λ1 ∈ ∂ψ1(π̄) there exists a Lagrange multipliers

(µL(λ ), µU (λ )) > 0, ρ̄1(λ ) > 0 which satisfies the conditions (6)-(8), such as if λ L
0 =

(−1,−1), λU
0 = (−1,−1) and λ1 = (0,1), then by substituting µL(λ ) = 1, µU (λ ) = 1,

and ρ̄1(λ ) = 1 we can observe that it satisfies the KKT necessary criteria. On the other
hand, if λ L

0 = (−1,−1), λU
0 = (1,−1) and λ1 = (0,1), then by substituting µL(λ ) =

1, µU (λ ) = 1, and ρ̄1(λ ) = 2 it satisfies the KKT necessary criteria.
Since the necessary criteria of KKT-type have been satisfied at a point π̄. Now, to verify
the sufficiency criteria of KKT-type, that is, to show that the feasible point π̄ is an LU-
optimal solution to the problem (IP1) it is enough to show that the functions ℵL, ℵU and
ψ1 are r-invex quasidifferentiable at a point π̄ on Ω in connection with η and a compact
convex set, which is equivalent to the Minkowski sum of its subdifferentials as well as
superdifferentials.

Let Sℵ
L(π̄)= ∂ℵL(π̄)+∂ℵL(π̄), Sℵ

U (π̄)= ∂ℵU (π̄)+∂ℵU (π̄), Sψ1(π̄)= ∂ψ1(π̄)+

∂ψ1(π̄) and the vector-valued function η : Ω×Ω → ℜ2 be defined by η(π, π̄) =[
π1+π2

4
π1+π2

4

]
.

Using Definition 3, it can be stated that the functions ℵL, ℵU and ψ1 are 1-invex quasid-
ifferentiable at a point π̄ on Ω in connection with η as well as in connection with compact
convex sets Sℵ

L(π̄), Sℵ
U (π̄) and Sψ1(π̄) respectively. As all the assumptions of the suf-

ficiency criteria of KKT-type are satisfied at a point π̄ , one can conclude that the feasible
point π̄ is an LU-optimal solution to the problem (IP1).

Now, for the constructed nonsmooth interval-valued programming problem (IP1), we
point out the fact that the Lagrange multipliers depend on the choice of λ . Evidently, for
the given choice of λ , sometime the necessary optimality criteria of KKT-type may not
be satisfied at a feasible point π̄ for some Lagrange multipliers.
Let us demonstrate the KKT necessary conditions by taking an arbitrary value of Lagrange
multipliers. For particularly specified λ = (λ L

0 , λU
0 , λ1) the KKT condition (6) is denoted

by

Wλ = µ
L(λ )(∂ℵ

L(π̄)+λ
L
0 )+µ

U (λ )(∂ℵ
U (π̄)+λ

U
0 )+ ρ̄1(λ )

(
∂ψ1(π̄)+λ1

)
. (22)

(1) For λ ′ = (λ L
0 , λU

0 , λ1) =
(
(−1,−1),(−1,−1),(0,1)

)
and µL(λ ) = 1, µU (λ ) = 1

ρ̄1(λ ) = 1, we get,
Wλ ′ = conv{(−5,2),(−1,2),(3,2),(1,0),(−1,−2),(−5,−2),(−7,0),(−3,0)}
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Figure 1: Here 0 ∈Wλ ′ , thus we can state that it satisfies the KKT conditions for ρ̄1(λ ) = 1.

(2) For λ ′′ = (λ L
0 , λU

0 , λ1) =
(
(−1,−1),(1,−1),(0,1)

)
and µL(λ ) = 1, µU (λ ) = 1,

ρ̄1(λ ) = 2, we get,
Wλ ′′ = conv{(−5,3),(−3,1),(−1,3),(−7,1),(−5,−1),(3,3),(5,1),(7,3),
(1,1),(3,−1)}

Figure 2: Here also 0 ∈Wλ ′′ , therefore, we can state that it also satisfies the KKT conditions for
ρ̄1(λ ) = 2.

(3) For λ ′′ = (λ L
0 , λU

0 , λ1) =
(
(−1,−1),(−1,−1),(0,1)

)
and µL(λ ) = 1, µU (λ ) = 1,

ρ̄1(λ ) = 4, we get,
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Wλ ′′ = conv{(−11,5),(−7,5),(−9,3),(−13,3),(−11,1),(5,5),(9,5),(7,3),
(3,3),(5,1)}

Figure 3: Here 0 /∈Wλ ′′ , hence it does not satisfies the KKT conditions for ρ̄1(λ ) = 4.

Therefore, we can conclude that the Lagrange multipliers depend on the choice of λ .

4. DUAL PROBLEM

Let us discuss the duality of the Mond-Weir type nonsmooth interval-valued program-
ming problem (IP).

(IDP) maximize ℵ(σ) = [ℵL(σ),ℵU (σ)]

subject to (σ , µ̄L, µ̄U ,ρ) ∈ Γ.

The set of all pairs (σ , µ̄L, µ̄U ,ρ) is symbolized by Γ with σ ∈X and µ̄L, µ̄U : ℜm+2 →ℜ,
ρ : ℜm+2 → ℜm, ρ(λ ) = (ρ1(λ ), . . . ,ρm(λ )) satisfying for λ L

0 ∈ ∂ℵL(σ), λU
0 ∈ ∂ℵU (σ)

and λ j ∈ ∂ψ j(σ), ∀ j ∈ Jm the conditions are given below

0 ∈ µ̄
L(λ )(∂ℵ

L(σ)+λ
L
0 )+ µ̄

U (λ )(∂ℵ
U (σ)+λ

U
0 )+

m

∑
j=1

ρ̄ j(λ )(∂ψ j(σ)+λ j), (23)

ρ̄ j(λ )ψ j(σ)≥ 0, ∀ j ∈ Jm, (24)

(µ̄L(λ ), µ̄
U (λ ))> 0, ρ̄ j(λ )≥ 0, ∀ j ∈ Jm, σ ∈ X, (25)

where, λ = (λ L
0 ,λ

U
0 ,λ1, . . . ,λm). Γ denotes the set of all feasible solutions of dual prob-

lem (IDP). Furthermore, Y = pr
ℜk Γ stands for the projection of the set Γ on X.
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Theorem 14. (Weak duality for r-invex function quasidifferentiable) Let π be the feasible
point to the problem (IP) and (σ , µ̄L, µ̄U ,ρ) be the feasible point to its Mond-Weir dual
(IDP). Furthermore, suppose that

(i) the functions ℵL and ℵU are r-invex quasidifferentiable at a point σ defined on
Ω∪Y in connection with Sℵ

L(σ) = ∂ℵL(σ)+∂ℵL(σ), and Sℵ
U (σ) = ∂ℵU (σ)+

∂ℵU (σ), respectively, as well as in connection with η .

(ii) The functions ψ j, for all j in Jm(σ) are r-invex quasidifferentiable at a point σ

defined on Ω∪Y in connection with Sψ j(σ) = ∂ψ j(σ)+∂ψ j(σ) and η .

Then, ℵ(π)≥LU ℵ(σ).

Proof. Given π and (σ , µ̄L, µ̄U ,ρ) are feasible solutions of the problem (IP) and its dual
(IDP), respectively. Therefore, it satisfies the conditions (23)-(25) for λ L

0 ∈ ∂ℵL(σ), λU
0 ∈

∂ℵU (σ) and λ j ∈ ∂ψ j(σ), ∀ j ∈ Jm, and ρ(λ ) = (ρ1(λ ),ρ2(λ ), . . . , ρm(λ )) ∈ ℜm. On
the contrary, let us suppose that

ℵ(π)<LU ℵ(σ), (26)

that is, ℵL(π) < ℵL(σ) or, ℵL(π) ≤ ℵL(σ) or, ℵL(π) < ℵL(σ)
ℵU (π)< ℵU (σ) ℵU (π)< ℵL(σ) ℵL(π)≤ ℵL(σ).
From the assumptions that the functions ℵL and ℵU are r-invex quasidifferentiable at
a point σ on Ω∪Y in connection with Sℵ

L(σ) = ∂ℵL(σ) + ∂ℵL(σ) and Sℵ
U (σ) =

∂ℵU (σ)+∂ℵU (σ), respectively, and in connection with η , we get

1
r

erℵL(π) ≥ 1
r

erℵL(σ)
[
1+ r(ωL

0 )
T

η(π,σ)
]
, ∀ ω

L
0 ∈ Sℵ

L(σ), (27)

1
r

erℵU (π) ≥ 1
r

erℵU (σ)
[
1+ r(ωU

0 )T
η(π,σ)

]
, ∀ ω

U
0 ∈ Sℵ

U (σ). (28)

On combining inequality (26) with (27) and (28), respectively, we get

(ωL
0 )

T η(π,σ)< 0, ∀ ωL
0 ∈ Sℵ

L(σ),
(ωU

0 )T η(π,σ)< 0, ∀ ωU
0 ∈ Sℵ

U (σ).
or

(ωL
0 )

T η(π,σ)≤ 0, ∀ ωL
0 ∈ Sℵ

L(σ),
(ωU

0 )T η(π,σ)< 0, ∀ ωU
0 ∈ Sℵ

U (σ).
or

(ωL
0 )

T η(π,σ)< 0, ∀ ωL
0 ∈ Sℵ

L(σ),
(ωU

0 )T η(π,σ)≤ 0, ∀ ωU
0 ∈ Sℵ

U (σ).

The above inequalities with the condition (25) give[
µ̄

L(λ )(ωL
0 )

T + µ̄
U (λ )(ωU

0 )T
]
η(π,σ)< 0 (29)

The functions ψ j, for all j in Jm(σ) are r-invex quasidifferentiable at a point σ on Ω∪Y
in connection with Sψ j(σ) = ∂ψ j(σ)+∂ψ j(σ) and η . Therefore, using the definition of
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r-invex function, we get

1
r

erψ j(π) ≥ 1
r

erψ j(σ)
[
1+ rω

T
j η(π,σ)

]
, ∀ ω j ∈ Sψ j(σ). (30)

Using condition (24), and the fact that π ∈ Ω and σ ∈ Y, we obtain

ρ j(λ )ψ j(π)≤ ρ j(λ )ψ j(σ), ∀ j ∈ Jm. (31)

Since ρ j(λ )> 0, for all j in Jm(σ), therefore the inequality (30) can be rewritten as

1
r

(
e

r
ρ j(λ )

(ρ j(λ )ψ j(π)−ρ j(λ )ψ j(σ))
−1

)
≥ ω

T
j η(π,σ), ∀ω j ∈ Sψ j(σ). (32)

Combining inequality (31) and (32) yields

ω
T
j η(π,σ)≤ 0, ∀ω j ∈ Sψ j(σ), ∀ j ∈ Jm(σ). (33)

Using inequality (25), we obtain

m

∑
j=1

ρ j(λ )ω
T
j η(π,σ)≤ 0, ∀ω j ∈ Sψ j(σ), ∀ j ∈ Jm. (34)

On summing the inequalities (29) and (34), we obtain[
µ̄

L(λ )(ωL
0 )

T + µ̄
U (λ )(ωU

0 )T +
m

∑
j=1

ρ j(λ )ω
T
j

]
η(π,σ)< 0,

for each ωL
0 ∈ Sℵ

L(σ), ωU
0 ∈ Sℵ

U (σ), ω j ∈ Sψ j(σ), and ωL
0 ∈ ∂ℵL(σ) + λ L

0 , ωU
0 ∈

∂ℵU (σ)+λU
0 , ω j ∈ ∂ψ j(σ)+λ j. In the light of the the definitions of Sℵ

L(σ), Sℵ
U (σ),

and Sψ j(σ), for all j in Jm, we find that λ L
0 ∈ ∂ℵL(σ), λU

0 ∈ ∂ℵU (σ) and λ j ∈ ∂ψ j(σ)
satisfying the inequality[

µ̄
L(ϑ L

0 +λ
L
0 )

T + µ̄
U (ϑU

0 +λ
U
0 )T +

m

∑
j=1

ρ j(λ )(ϑ j +λ j)
T
]
η(π,σ)< 0, (35)

for all ϑ L
0 ∈ ∂ℵL(σ), ϑU

0 ∈ ∂ℵU (σ) and ϑ j ∈ ∂ψ j(σ), for all j in Jm. The condition
(23) assurs that for the sets λ L

0 ∈ ∂ℵL(σ), λU
0 ∈ ∂ℵU (σ), and λ j ∈ ∂ψ j(σ), there exist

ϑ L
0 ∈ ∂ℵL(σ), ϑU

0 ∈ ∂ℵU (σ), and ϑ j ∈ ∂ψ j(σ), for all j in Jm such that[
µ̄

L(ϑ L
0 +λ

L
0 )

T + µ̄
U (ϑU

0 +λ
U
0 )T +

m

∑
j=1

ρ j(λ )(ϑ j +λ j)
T
]
η(π,σ) = 0,

satisfies which contradicts (35). Hence, the proof is complete.

Theorem 15. (Weak duality for strict r-invex quasidifferentiable function) Let π be the
feasible point to the problem (IP) and (σ , µ̄L, µ̄U ,ρ) be the feasible point to its Mond-
Weir dual (IDP). Furthermore, suppose that
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(i) The functions ℵL and ℵU are strict r-invex quasidifferentiable at a point σ de-
fined on Ω∪Y in connection with Sℵ

L(σ) = ∂ℵL(σ)+ ∂ℵL(σ), and Sℵ
U (σ) =

∂ℵU (σ)+∂ℵU (σ), respectively, as well as in connection with η .

(ii) The functions ψ j, for all j in Jm(σ) are r-invex quasidifferentiable at a point σ

defined on Ω∪Y in connection with Sψ j(σ) = ∂ψ j(σ)+∂ψ j(σ) and η .

Then, ℵ(π)>LU ℵ(σ).

Theorem 16. (Direct duality) Let the feasible point π̄ be an LU-optimal solution to the
problem (IP) and (π̄,µL,µU , ρ̄) be the feasible point of its dual problem (IDP), where
µL,µU : ℜm+2 → ℜ, and ρ̄ : ℜm+2 → ℜm. Furthermore, suppose that

(i) The functions ℵL and ℵU are r-invex quasidifferentiable at a point σ defined on
Ω∪Y in connection with Sℵ

L(σ) = ∂ℵL(σ)+∂ℵL(σ), and Sℵ
U (σ) = ∂ℵU (σ)+

∂ℵU (σ), respectively, as well as in connection with η .

(ii) The functions ψ j, for all j in Jm(σ) are r-invex quasidifferentiable at a point σ

defined on Ω ∪Y in connection with Sψ j(σ) = ∂ψ j(σ) + ∂ψ j(σ) as well as in
connection with η .

Then, the feasible point (π̄,µL,µU , ρ̄) is an LU-optimal solution to its dual problem
(IDP).

Proof. Let us suppose the feasible point π̄ is an LU-optimal solution of the problem (IP),
and there exist functions µL,µU : ℜm+2 → ℜ and ρ̄ : ℜm+2 → ℜm in such a manner that
(π̄,µL,µU , ρ̄) is the feasible point of its dual problem (IDP). Moreover, as it satisfies
all the assumptions of the weak duality theorem for r-invex quasidifferentiable functions
andπ̄ ∈ Ω, then

ℵ(π̄)≥LU sup{ℵ(σ) : (σ , µ̄L, µ̄U ,ρ) ∈ Γ}.

Therefore, one can say that the feasible point (π̄,µL,µU , ρ̄) is an LU-optimal solution to
the dual problem (IDP).

Theorem 17. (Converse duality) Suppose the feasible points (σ̄ ,µL,µU ρ̄) is an LU-
optimal solution to the dual problem (IDP) and σ̄ ∈ Ω. Furthermore, assume that

(i) The functions ℵL and ℵU are r-invex quasidifferentiable at σ̄ defined on Ω ∪
Y in connection with Sℵ

L(σ̄) = ∂ℵL(σ̄) + ∂ℵL(σ̄), and Sℵ
U (σ̄) = ∂ℵU (σ̄) +

∂ℵU (σ̄), respectively, as well as in connection with η .

(ii) The functions ψ j, for all j in Jm(σ̄) are r-invex quasidifferentiable at a point σ̄

defined on Ω ∪Y in connection with Sψ j(σ̄) = ∂ψ j(σ̄) + ∂ψ j(σ̄) as well as in
connection with η .

Then, the feasible point σ̄ is an LU-optimal solution to (IP).

Proof. Its proof is similar to that of the weak duality theorem for the r-invex quasidiffer-
entiable function.
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Example 2: Portfolio Optimization with Interval-Valued Objective
In this example, we consider a simplified financial portfolio optimization problem under
uncertainty. An investor allocates capital into two assets with uncertain returns. The
goal is to minimize an interval-valued objective function representing a trade-off between
uncertain return and risk, where both components include nonsmooth features.

We formulate the following nonsmooth interval-valued programming problem:

(IP2) Minimize ℵ(π) =[ℵL(π),ℵU (π)]

=
[
ln
(
π

2
1 + |π2|+1

)
, ln

(
|π1|+2π

2
2 +1

)]
Subject to ψ1(π) =π1 +π2 −1 ≤ 0

π ∈ X :={(π1,π2) ∈ R2 : 0 ≤ π1 ≤ 1,0 ≤ π2 ≤ 1},

where π = (π1,π2) represents the proportion of capital invested in Asset 1 and Asset 2,
respectively. The set of feasible solutions to the problem (IP1) is given by Ω = {π =
(π1,π2) ∈ X : π1 +π2 −1 ≤ 0}.

The corresponding Mond-Weir-type dual problem transforms the minimization prob-
lem into a maximization type and the constraint into a set-valued inclusion using quasid-
ifferential calculus to account for marginal contributions of return, risk, and the budget
constraint. The Mond-Weir dual model for the problem (IP2) is formulated as

(IDP2) Maximize ℵ(σ) = [ℵL(σ),ℵU (σ)]

=
[
ln
(
σ

2
1 + |σ2|+1

)
, ln

(
|σ1|+2σ

2
2 +1

)]
Subject to 0 ∈ µ̄

L(∂ℵ
L(σ)+λ

L
0 )+ µ̄

U (∂ℵ
U (σ)+λ

U
0 )+ρ1(∂ψ1(σ)+λ1),

(36)

ρ1ψ1(σ)≥ 0, (37)

µ̄
L + µ̄

U = 1, µ̄
L > 0, µ̄

U > 0, ρ1 ≥ 0, σ ∈ X . (38)

Assume a feasible solution set to (IDP2) is given by

(σ , µ̄L, µ̄U ,ρ1) =

(
(0,0),

1
2
,

1
2
,0
)
.

We now verify the quasidifferentiability of ℵL(σ), ℵU (σ), and ψ1(σ) at σ = (0,0).
Using directional derivatives, we have ℵL′((0,0);δ ) = |δ2|, ℵU ′

((0,0);δ ) = |δ1| and
ψ ′

1((0,0),δ ) = δ1 +δ2 where, δ = (δ1,δ2) ∈ ℜ2. Hence

ℵ
L′((0,0);δ ) = max

ϑ L
0 ∈conv{(0,1),(0,−1)}

(ϑ L
0 )

T
δ + min

λ L
0 ∈{(0,0)}

(λ L
0 )

T
δ ,

where ∂ℵL(0,0) = conv{(0,1),(0,−1)}, ∂ℵL(0,0) = conv{(0,0)},

ℵ
U ′
((0,0);δ ) = max

ϑU
0 ∈conv{(1,0),(−1,0)}

(ϑU
0 )T

δ + min
λU

0 ∈{(0,0)}
(λU

0 )T
δ ,
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where ∂ℵU (0,0) = conv{(1,0),(−1,0)}, ∂ℵU (0,0) = {(0,0)}, and

ψ
′
1((0,0);δ ) = max

ϑ1∈{(1,1)}
(ϑ1)

T
δ + min

λ1∈{(0,0)}
(λ1)

T
δ ,

where ∂ψ1(0,0) = {(1,1)}, ∂ψ1(0,0) = {(0,0)}. Therefore, by Definition 2, we con-
clude that ℵL, ℵU and ψ1 are quasidifferentiable functions at a point π̄ = (0,0). For
λ L

0 = λU
0 = λ1 = (0,0), together with µ̄L(λ ) = µ̄U (λ ) = 1/2, and ρ1(λ ) = 0 the dual

conditions (36)-(38) hold. The condition (36)

0 ∈ µ̄
L(∂ℵ

L(σ)+λ
L
0 )+ µ̄

U (∂ℵ
U (σ)+λ

U
0 )+ρ1(∂ψ1(σ)+λ1)

by substituting λ L
0 = λU

0 = λ1 = (0,0), µ̄L(λ ) = µ̄U (λ ) = 1
2 , and ρ1(λ ) = 0 gives

0 ∈ conv
{(

1
2
,

1
2

)
,

(
− 1

2
,

1
2

)
,

(
− 1

2
,

1
2

)
,

(
− 1

2
,−1

2

)}
,

which can be viewed graphically as follows:

x

y

(− 1
2 ,

1
2 )

(− 1
2 ,−

1
2 )

( 1
2 ,

1
2 )

( 1
2 ,−

1
2 )

(0,0)

Figure 4: 0 ∈ µ̄L(∂ℵL(σ)+λ L
0 )+ µ̄U (∂ℵU (σ)+λU

0 )+ρ1(∂ψ1(σ)+λ1)

Further, we will show that the functions ℵL, ℵU and ψ1 are r-invex quasidifferen-
tiable at a point σ in connection with η and a compact convex set, which is equivalent
to the Minkowski sum of its subdifferentials as well as superdifferentials. Let Sℵ

L(σ) =
∂ℵL(σ)+ ∂ℵL(σ), Sℵ

U (σ) = ∂ℵU (σ)+ ∂ℵU (σ), Sψ1(σ) = ∂ψ1(σ)+ ∂ψ1(σ) and
the vector-valued function η : Ω×Ω→ℜ2 be defined by η(π,σ) = |σ1|+ |σ2|−1. Using
Definition 3, it can be stated that the functions ℵL, ℵU and ψ1 are 1-invex quasidiffer-
entiable at a point σ in connection with η as well as in connection with compact convex
sets Sℵ

L(σ), Sℵ
U (σ) and Sψ1(σ) respectively. As all the assumptions of the Theorem

14 satisfied at σ , therefore ℵ(π) ≥LU ℵ(σ). This validates that the dual approach via
the Mond-Weir framework, under the assumption of quasidifferentiability r-invexity, suc-
cessfully identifies an optimal strategy for investment allocation in the presence of interval
uncertainty and nonsmooth behavior.
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5. CONCLUSION

In the present article, we have worked on a class of nonsmooth interval-valued op-
timization problems with inequality constraints by employing the framework of r-invex
quasidifferentiable functions in connection with compact convex sets and η . The main
outcomes of our work include the derivation of necessary and sufficient optimality con-
ditions using quasidifferential calculus, which effectively handles the nonsmooth nature
of the problem. Furthermore, we constructed a Mond-Weir-type dual model and estab-
lished duality theorems under the assumption of r-invexity. A key aspect of our analysis is
the characterization of quasidifferentials through the Minkowski sum of subdifferentials
and superdifferentials, which underpins both the optimality and duality results. Notably,
our findings reveal that the Lagrange multipliers in the KKT-type conditions are noncon-
stant, thereby reflecting the complexity and generality of the proposed model. Finally, the
theoretical developments were supported by a numerical example.

The present study opens several avenues for further research in the field of nons-
mooth interval-valued optimization. One potential direction is the extension of the present
framework to multiobjective or vector-valued interval optimization problems, incorporat-
ing the concept of quasidifferentiable r-invexity in higher-dimensional settings. Another
potential area involves the relaxation of the convexity assumptions, such as exploring gen-
eralized forms like approximate or preinvex quasidifferentiable functions, which would
broaden the applicability of the results. We shall investigate these questions in subsequent
papers.
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