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1. INTRODUCTION

Optimization deals with the way to find the best possible solution within the feasible
region. We commonly use three types of approaches in optimization to tackle the uncer-
tainty occurring in the problem, which give rise to stochastic optimization, deterministic
optimization, and interval-valued optimization. An interval-valued optimization prob-
lem addresses the uncertainty and imprecision incurred in optimization problems during
decision-making. In interval-valued problems, uncertainty arises either in the objective
function or in constraints, or in both the objective and constraints. Interval-valued opti-
mization problems can apply in various disciplines such as finance [1], engineering [2],
energy systems [3], and stock portfolios [4] where decision-makers need to account for
uncertainties and variations in input data. Recently, many researchers have put tremen-
dous effort into the formulation of optimality and duality results for interval-valued opti-
mization problems under different generalized convexity. Wu [5] formulated the Karush-
Kuhn-Tucker (KKT) optimality criteria based on interval-valued functions. Jayswal et
al. [6] focused on the interval-valued Mond-Weir and Wolf problems and derived the
sufficient optimality criteria and appropriate duality results in order to find the connec-
tion between the efficient solution of the primal and dual problems. Bhurjee and Panda
[7] used parametric form to define an interval-valued function and demonstrated the ex-
istence of a solution. Ahmad et al. [8] derived sufficient optimality criteria along with
weak, strict converse, and strong duality theorems for interval-valued Mond-Weir and
Wolf problems under (p,r)-p-(n, 0)-invexity. Zhang et al. [9] proposed the KKT-type
optimality criteria for a class of nonconvex problems by magnifying the concept of invex-
ity and preinvexity to interval-valued programming problems. Moreover, he proposed the
relation between interval-valued problems and variational-like inequalities problems. Re-
cently, Debnath and Pokharna [10] worked on interval-valued variational problems using
B-(p, r)-invexity and established optimality and duality results.

Most of the real-life problems do not satisfy differentiability or smoothness. Nons-
moothness in the problem opens a considerably big platform for scientists. A number of
techniques have been developed over a period of time to tackle nonsmooth optimization
problems. Most of the nonsmooth optimization problems can be modeled using quasid-
ifferentiable calculus. The nonsmooth vector optimization, where each component is lo-
cally Lipschitz, was studied intensively by Clarke [11] which has given incredible results
in optimization theory. Another important approach by Demyanov and Rubinov [12] led
to the development of quasidifferential calculus, which is extended by many researchers,
including Demyanov and Rubinov [13], Gao [14], Kuntz and Scholtes [15] Luderer and
Rosiger [16], Polyakova [17], Shapiro [18], Uderzo [19], Ward [20]. In a nonsmooth
optimization problem, quasidifferential calculus played a constructive role in a variety of
problems applied in different fields such as optimal control theory, nonsmooth analysis,
engineering, mechanics, economics, and other fields. Antczak [21] derived duality results
and optimality criteria of the Slater-type constraints under r-invex function. Antczak [22]
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has also worked on an alternate approach of modified r-invex functions and derived the
duality and optimality results for a constrained programming problem that may or may
not contain differentiable functions. Later on, Antczak [23] derived the optimality and du-
ality by considering nonsmooth as well as nonconvex functions under quasidifferentiable
r-invexity.

Recently, Singh and Laha [24] examined a class of fractional multiobjective program-
ming problems characterized by quasidifferentiable functions. They extended the concept
of (F,p)-convexity to the quasidifferentiable domain and utilized it to derive the optimal-
ity conditions. Building on this work, Singh and Laha [25] further developed the theory
of quasidifferentials by formulating Minty and Stampacchia-type vector variational-like
inequalities for optimization problems with invex functions defined over convex compact
sets. These formulations were then used to establish optimality conditions in a more gen-
eralized framework. Prasad et al. [26] focused on interval-valued vector optimization
problems. By employing the concept of quasidifferentiable F-convexity in relation to
compact convex sets, they established Fritz John and Karush-Kuhn-Tucker (KKT) type
necessary optimality conditions and further provided sufficient conditions under similar
assumptions, illustrated with a numerical example. Laha ef al. [27] investigated approx-
imate solutions for interval-valued multiobjective optimization problems with inequality
constraints. Utilizing quasidifferential calculus, they derived KKT-type necessary and
sufficient optimality conditions based on approximate and generalized approximate con-
vexity defined through quasidifferentials.

Inspired by the aforementioned research, our focus lies in exploring a class of interval-
valued optimization problems that are nonsmooth in nature, addressed through the frame-
work of quasidifferentiable r-invex functions in connection with compact convex sets. We
derive necessary and sufficient optimality criteria for the formulated problem using qua-
sidifferential calculus, which is suitable for handling nonsmoothness. Furthermore, we
formulate the Mond-Weir type dual model and derive the duality theorems under r-invex
quasidifferentiable in connection with compact convex sets. The quasidifferentials of the
functions are characterized using the Minkowski sum of their subdifferentials and su-
perdifferentials, which plays a fundamental role in both the optimality and duality results.
An important theoretical insight emphasized is that the Lagrange multipliers derived in
the KKT-type conditions are nonconstant, highlighting the complexity and generality of
the proposed model. Finally, to validate the theoretical findings, a numerical example is
provided, demonstrating the applicability of the developed results.

The paper is structured as follows: Section 2 provides a review of fundamental def-
initions and outlines the necessary optimality conditions. In Section 3, we develop the
interval-valued problem and derive optimality conditions by employing r-invex quasidif-
ferentiable functions in the context of compact convex sets and 17. Finally, Section 4 con-
structs the Mond-Weir dual problem and derives relevant duality results for the considered
Mond-Weir dual problem consisting of r-invex quasidifferentiable function in connection
with compact convex sets.

2. PRELIMINARIES

This section begins with a set of interval operations that are fundamental to the devel-
opments presented in this paper. Let 3 represent the collection of all bounded and closed
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intervals in R. The symbol & = [eF, Y] stands for the bounded and closed interval with
el as lower bound and €V as upper bound. If €& = eV = ¢, then & = [¢, €] = € reduces to
a real number.

If & = [el,eY], { =[¢t,6Y] €3, then we define

(i) E+¢={e+c:ectandge} = [el+¢L eV +¢Y],
(i) & ={-e:e€l} = [-& ¢,

i) E = ={E+(-0)} = [e"—¢¥.e¥ =M,

() m+é={m+e:ec&} = m+etm+eY],

[met meY], m >0,
[meV mel), m <0,

(v) mE ={me: ek} z{

where m be an arbitrary real number. Let us denote R¥ by the k-dimensional Euclidean
space and let X C R¥ be a nonempty set. A function X : X — 3, where 3 is the set of all
closed and bounded intervals in R, is termed an interval-valued function. For any point
n = (m,m,...,m) € X, we write X(7) in the compact form X (7) = [X(x), XY (7)],
where XX XV : X — R and satisfy XE(7) < ®Y(7) forall 7 € X.

We now define a partial ordering <;;; on the set of closed and bounded intervals 3.
Given two intervals & = [e£,eY] and { = [¢f,¢Y] in 3, we say that & <;y { if both
el < ¢l and eV < ¢V hold. The strict relation & <y ¢ is defined by & <;y § and & # €.
Therefore, & <,y  is satisfied whenever at least one of the following conditions is true:
el <k, eV <Y,
or,
el <¢h, eV <¢¥
or,
el < gl eV <l
Definition 1. [23] A function f : R — R is known as directionally differentiable at & €
RK along a direction § € R~ if the limit

710 Y
exists and is finite.
If the directional derivative of the function f exists finitely for each 8 € RK, then the
function is said to be directionally differentiable or semi-differentiable at a point T.

Definition 2. [23] A function f : R¥ — R is said to be quasidifferentiable at a point
7t € RX if it is directionally differentiable at T and there exists a pair of convex, compact
ordered sets Dy () = [df(&),d f(7)] such that the following condition is fulfilled:
f(7:8) = max ®¥78+ min A7S,
veIf(T) ALEIf(R)
where the term 3 f(%) is known as the subdifferential and the term df(%) is known as

the superdifferential of the function f at a point &T. Moreover, the pair of ordered sets
Dy (%) [df(%),df(&)] is known as the quasidifferential f at a point 7.
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Note The uniqueness of the quasidifferential to the function f at some particular point 7
may not be guaranteed. This reduces the fact that D¢ (%) = [df(&), df(&)] and [d f(7) +
C, df(t) — C] both are quasidifferential of the function f at 7 for each nonempty compact
as well as convex set C.

The convex compact sets Sy(7) are equal to the Minkowski sum of subdifferentials
and superdifferentials at a point 7.

Definition 3. [23] Let S¢(7) C RK be a nonempty compact convex set and r be scalar. A
function f: RE — R is known as the r-invex at a point Tt on R in connection with S(7)
and 1 if there exists 1 : RE x R — R sarisfying
Ler/m > Lef®(1 4 roTn(n,7)], ifr#£0,
(1)
f) = @), ifr=0,

for each © € R¥ and ® € Sy(7).

Furthermore, if the inequality (1) is strict for each T € R* (1w # &), then the function f is
known as strictly r-invex at & on R* in connection with S () and M.

If the inequality (1) is satisfied for each & € X, where X is a nonempty subset of R¥, then
the function f is r-invex at T on X in connection with Sy(7) and 1.

Remark

(a) If the function f is locally Lipschitz at 7, and the compact convex set S¢(7T) as
well as Clarke subdifferential of f at 7 are equivalent, then f is said to be a locally
Lipschitz r-invex, which was introduced by Antczak [21].

(b) If we consider r = 0, in the definition of a locally Lipschitz r-invex function then it
reduces to the definition of a locally Lipschitz invex function, which was given by
Reiland [28].

(c) If f is differentiable, then S;(7) = Vf(7) and the definition of r-invex function
in connection with compact convex set reduces to the definition of differentiable
r-invex function, given by Antczak [22].

(d) If we consider r = 0, in the definition of differentiable r-invex function then it
reduces to the definition of invex function given by Hanson [29].

Definition 4. The interval-valued function X : X — 3 is known as r-invex at a point T € X
in connection with convex compact set Sx («t) and m, if both the functions -, XYV : X — R
are r-invex at a point Tt on X in connection with convex compact set Sx*(),SxY (%), re-
spectively, as well as in connection with 1, that is, if there exists a vector-valued function
N : X x X — R* and a scalar r such that the inequalities

L > LSO (b (), £,

X5(m) > ®H(7@) + (0") (7. 7), ifr=0,
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and

LR > LD (o) ()], i r £ 0,
xY(m) > ®Y(7)+ (o) (7, 7), if r=0,

hold for all & € X and for all ®* € Sy (%) and 0V € SxY (7).

Now, we recall the definition of weighted r-mean, which will be used to define r-preinvex
functions.

Definition 5. [23] Let @ > 0 and B > 0 be members of R™ and r be any real number.
If the component of B = (B1, Bz, ..., Bm) satisfies Y| Bi = 1, then a weighted r-mean is
defined by

m o/ if 0
M, (o = M,(0y,...,0n; = ( iilﬁlai) ) 1 r# )
r( B) ( 1 m ﬁ) { H;-n:lOCiBi, Fr—0

Definition 6. [22] Let Q (# 0) be an invex subset of R*. A real-valued function f: Q — R
is known as r-preinvex at p € Q in connection with 1M, if there exist real numbers r and
B1 >0, B2 > 0 satisfying B + B2 = 1, and

F(Bip+Br(n(m,p)+p)) <In(M,(e®) ™)), Vr € Q.

Similarly, a function f is known as r-preinvex on Q in connection with M if the above
inequality holds for each point p € Q.

Definition 7. An interval-valued function X : Q — 3 is known as r-preinvex at p € Q
in connection with 1 if both the functions X*, XY : Q — R are r-preinvex at p € Q
in connection with 1, i.e., if there exist real numbers r and B; > 0, B, > 0, such that

B1 + B2 = 1 satisfying

RE(Bip + B (7,p) +p)) < In (My(eX P e

K

”);[3))7 vz eQ,
and
RU(Bip+ Ba(n(m.p) +p)) < In(M,(e"'® 5 P B)) v e Q.

Note Let us consider a particular case of r-preinvex function in connection with 17. We
substitute 8, = p where p € [0,1]. The condition 8 + 8, = 1 gives ; = 1 — p, therefore,
r-preinvex function in connection with 1 can be express as
In(per™ (™ 4 (1 p)e ™ PNUr if r £0,
XA(p+pn(mp)) < ) ) .
pR=(7) + (1—p)X=(p), ifr=0,

and

In(pe”™" (™ 1 (1— p)e X (PN)r if r £ 0,

NU(erpn(ﬂ’p))S{pNU(n)—|—(l—p)NU(p), if r=0.
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Proposition 8. Let Q (# 0) be an invex subset of R w.r.t. n and R : Q — 3 be an
interval-valued function. Suppose that X, XY : Q — R are r-preinvex functions in con-
nection with M at a point p € Q on Q. Moreover, Xt and XY are quasidifferentiable
functions at p € Q. Then, both the functions X% and XY are r-invex quasidifferentiable
at p on Q in connection with 1 and in connection with the convex compact set Sx*(p) =
IR (p) + A and Sk (p) = IRV (p) + A where, A* € argmin,, 51, (A") 1 (7, p)

and AV € argminlueg}w(p)(XU)Tn(nt,p)for any € Q.
Proof. Itis given that X~ and XY are r-preinvex functions at a point p € Q on Q in con-
nection with 1. We assume r > 0 without loss of generality. Therefore, by the definition
of r-preinvex function, the following inequalities are satisfied for all 7 € Q and p € [0, 1]:
XL (p+pn(,p)) < In(pe™ ™ 4 (1—p)e ™ )",
and v Ui
XU (p+pn(m,p)) < In(pe™ ™ 4 (1 p)er™" )/
Using the logarithmic identity In(x)? = aln(x), we get

X (p+pn(w,p)) < %m (pe™® 4 (1 p)e™ P)),
and |
&V (p+pn(m.p)) < ~In(pe™ ™ 4 (1 p)er ).

Multiplying both sides of the inequalities by », we obtain

FNL(p +P77(77~',P)) < In (perxL(”) + (1 _p)erRL(p))’
and ) )
XY (p+pn(m,p)) < In(pe™ ® 4 (1 p)ers’ @),
Exponentiating both sides yields

X (en(mp) < r¥Hm) | r¥Ep) _ ppri(p)

)

and
oY (pon(p)) < pe®Um 4 or®U(p) _ porkYip),

By simplifying the inequalities, we obtain

FH (o) _ <) < (rRH) _ ritie)),
and
¥ (orpnme) _ rsU(e) < (¥ m) _ e,

Taking e” () and X" (P) as common factors from the left sides of the inequalities, we
obtain
) [erxL(pwn(mp))—rxL(p) _ 1} < p(er¥H® _ X))

)
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and

XV (p) {eruU(pwn(n,p))*er(P) _ 1} < p(er}ZU(ﬂ) _ eer(P))7
which implies
e ¥ (ptpn(mp))—rt(p) _

P

RET) _ rxhp) s riE(p)

Y]

)

and
e XV (p+pn(mp))—rxY(p) _

p

As the functions X’ and XY are quasidifferentiable at a point p € Q, therefore, it is
directionally differentiable at p. As p | 0, the following inequalities are satisfied for all
TEQ

R @ ¥Vp) 5 V()

o REm) _ r¥hp) 5 riH(p) XY (p:n(m,p)),

and U U U
XU g RE(P) > pprR <p>NU,(P;TI(7T7P))-

Since r > 0, the above inequalities yield

Lorwtm 5 Lrs o)1 1 (pim(, ),
r r

and N
1

Lot > Los o) 4 (oo, p))),
r r

for all £ € Q. Due to the fact that X~ and XY are quasidifferentiable functions, we get

X (psin(m,p)) = max (¥5)n(mp)+ min (AN n(m,p), VT EQ,
ved Rl (p) A€INRL(p)

and

X" (pin(m,p)) = max (9V)'n(mp)+ min AY)'n(zp) vVreQ,
¥edXY(p) A€aRY (p)
where d X% (p) and d %Y (p) are nonempty convex compact sets. Therefore, for e
. U .
argmmlLeng(p)(lL)Tn(ﬂ,p) and A~ ¢ argmmﬂ/eg&u(p)(PLU)Tn(n,p), we can find

the value of A. Using the above relations, the following inequalities are satisfied for all
TeEQ

X (psn(m,p)) = (05 n(m,p) + (A5 n(m,p), ¥ oL € INE(p),
and 3)

XY (psn(x,p)) > (0Y) n(m,p) + AY) n(x,p), ¥ 0¥ € axY(p).
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From (2) and (3), we can conclude that

%"’ML(”) = %erw”)[l +r(@")n(x,p)], ¥ 0" € IXE(p) + AL,

and

1 1 =
M = S r(0) (n,p)], ¥ 0 € IRV (p) 1Y,
r r

satisfied for all ¥ € Q. We say that using the definition of r-invex functions, we arrive at
the conclusion that the functions X and X U_ are r-invex quasidifferentiable at a point p on
Q in connection with SxZ(p) = d XX (p) + AL and SV (p) = XY (p) + AU respectively,
as well as in connection with 7. Hence, the proof is complete. [

Corollary 9. Let Q (# 0) be an invex subset of R w.r.t. n and X : Q — 3 be an interval-
valued function. Suppose XE, XY : Q — R are r-preinvex functions in connection with
n at a point p € Q on Q. Moreover, - and %Y both are quasidifferentiable functions at
a point p € Q. If the convex compact sets d XE(p) and dRY (p) both are singleton, then
the functions XL and RV are r-invex quasidifferentiable at p on £ in connection with 1N
as well as in connection with Sx™(p) = d R (p) +INRE(p) and SxY(p) = IRY(p) +
INRY(p) respectively.

Theorem 10. Let X : Q — 3 be an interval-valued function and p be an arbitrary point
of Q. The functions RE, XY : Q — R are r-invex quasidifferentiable at a point p €
Q in connection with Sx*(p) = AXL(p) + IRL(p) and Sy (p) = IRY (p) +IRY(p),
respectively. Then, the following inequalities are satisfied for all T € Q.

Lot > Lot o)y 4 ogt (pim(z p))], i r 20,
.

XE(m) > RE(p)+ XY (pin(x,p)), if r =0, @
L@ > Lo 01V (o (m p))], if 7 £0,
-

’Y(z) > ®Y(p)+ xY (pin(m,p)), if r=0.

Proof. Because p is an arbitrary point of Q and the functions X%, XV : Q — R are r-invex
quasidifferentiable at a point p on Q in connection with Sx’(p) = d X*(p) + I X (p) and
SxV(p)=9XRY(p)+IxY(p), respectively. By definition of r-invexity the inequalities

1 xt(m)

7 > %erw”)[l+r(wL)Tn(7r,p)], if r # 0,
X (7) > ®E(p)+ (o) n(m,p), if r=0, )
Lo > L o)1 1 (0l ) (. p)l, if r 0,
r r
X

Yp)+ (@) n(z,p), if r=0,
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satisfy for each 7 € Q and for each @* € Sy (p) = I XL (p) + I XL (p) and 0¥ € SxV(p) =
IXY(p)+dRY(p). From (5), we deduce that

L > K1 (91 (m.p) + (A () if 7 0,

1

xh(m) > ®(p)+ (") n(m,p)+ (A" n(x,p), if r=0,
LN (V) (7)) + (AYY (. p))], i r 0,
®Y(p)+ (") (7, p)+ 1Y) 'n(m,p), if r=0,

for each m € Q and for each ¥* € IR (p), ¥V € IRY(p) and AL € IRE(p),AY €
dRY(p). Therefore, for some AL (7, p) € IRL(p) and AY (7, p) € IRY(p), we have

XL |3
S > ¥R +r(6L£§§(p)(ﬁL)Tn(mp)) + (A (o)) n(7,p)|,

if r #0,
XE(m) > XE(p)+  max (99)n(z.p)+ @A (T p)) n(m,p), if r=0,
vLedxl(p)
l rRY () l XY (p) UNT U T
—Nm > e [1+r(§U€n§§>,g(p)(0 y'n(x.p)) + (Y (x.p)) n(x.p)).
if r #0,
XV(m) > ®Y(p)+ max (9V)'n(x,p)+ A" (x,p)) n(m,p), if r=0.
vUedxY(p)
Hence, we get

1 RL(E) 1 NL( .
1o > 2% ) INT INT
e e [1+r(ﬁL£§§<p)(ﬁ ) "<”’P>>+Mg§gz(p)<l ) n(n,p))],

if r #0,

®(m) > ®M(p)+ max (89)n(mp)+ min (A4 n(m,p)ifr=0,
vle IRL(p) ALeaxnL(p)

| |
Oz S (| mas (09 0(rp)) + 20 (mp) ()],
if r#0,

xY(n) > xY(p) +ﬂuég§z>[g(p)(ﬂU)Tn(mp) + @AY (= p)) n(m,p), if r=0.

Therefore, using the definition of directionally differentiable, we see that (4) is satisfied
for each 7 € Q. Hence the proof is complete. [
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3. OPTIMALITY CRITERIA

Let us construct the nonsmooth interval-valued programming problem:
(IP)  minimize X (7) = [XX(x), XY (7)]

subjectto  y;(m) <0; j€Jn=A{L,....m}; m€X,

where X is a nonempty subset of R¥. The function X : X — 3 is an interval-valued whereas
XL(7), ®Y(x) and y;(7) : X — R, Vj € J,, are quasidifferentiable functions on X.

The set Q= {m € X : y;(n) <0, j € J,} represents the set of all feasible solutions to the
problem (IP). Moreover, the set of active constraints at a feasible point 7 € Q is denoted
by I (%), that is, Ju (%) = {j € I : ¥;(T) =0}.

Definition 11. [8] A feasible point T € Q is known as an LU -optimal solution to (IP) if
there does not exist any point T € C satisfying

X (77,') <y X (ﬁ')

Theorem 12. (KKT-type necessary optimality criteria) Let the feasible point T € Q be
the an LU -optimal solution to the problem (IP). Furthermore, suppose that the functions
RLRY and yj, V € 3, are quasidifferentiable at a point &t entangled with the quasid-
ifferentials Dy" (%) = [0 XX(%),d R4(7)], DY (7) = [@ XY (%), XY (%)] and Dy, (%) =
[Qy;(7),dy;(7)], respectively. If Kuntz-Scholtes constraint qualification (given by Kuntz
and Scholtes [15]) is satisfied at a point &, then for Aol € aRE(7), AoV € IRY(7) and
Aj € oy;(&), for all jin I, there exist scalars (uWE(A), uY (1)) € R? and pj(A) € R™

in such a way that

3

0€ uh(A)(@RM(T) +20) + 1Y () (@RY(7)+ A7)+ Y. p;(A)(Qw;(7) + 4;), (6)
j=1

Pi(A) () =0, V) € Jm, ©)
(1 (2), 1% (X)) > 0, p;(R) > 0, Vj € Jm, ®)
where tE(A), uY (1), p1(A),. .., pm(A) rely on the particular selected A = (AL, AY , Av, ..., Aw).

Theorem 13. (Sufficiency) A feasible solution T becomes an LU -optimal solution to (IP)
if it fulfills the following two conditions:

(1) The point @ must satisfy the necessary optimality criteria as given by the condition

(6)-(8).

(ii) The functions XL, XY and Y, for all j in 3, () are r-invex quasidifferentiable
at @ on Q in connection with Sx* () = I RE(7) + IRE(7T), SxY (%) = IRV (%) +
IRY(7) and Sy, () = dw;(7) + dy;(7), respectively, as well as in connection
with 1.
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Proof. Since the feasible solution & € Q satisfies the conditions (6)-(8), thus, for )LOL S
IRL(7), AV € IRV (%) and A € dW;(%), Vj € I, there exists (uL(A), uV (1)) € R2,
and p(1) € ‘.Km which satisfies the conditions (6)-(8). Consequently, by KKT-type neces-
sary criteria (6), there exist 9§ € I XX (%), ¥Y € IRY(7) and ¥, € dy;(7), ¥V j € I,
such that

m

0=pu ) +2§) +pr? M) (Y +4§) + Z 2)(0 +A)). 9)

From the assumptions, the functions X% and XY are r-invex quasidifferentiable at 7 on
Q in connection with Sy (%) = I RH(7) + INRE(7), SxV(7) = ARV (7) +IRY (%), re-
spectively, as well as in connection with 1 and the functions y;, j € J,(7), are r-invex
quasidifferentiable at 7 on Q in connection with Sy, (%) = dy;(7) + Jdy;(#) and in con-
nection with 1. Then the inequalities

1 1 7

~e¥Hm > ¥ @ 1 r(0f) (7, 7)| ¥ 0 € SxH(R), (10)
r r

Lstm 5 Lyt 1+ (@) n(m,7)| ¥ of € 55V (R), (n
r r

ler%‘(ﬂ) > le””]( 7) {1 +ro)] 'n(x, 7t):|7 V @; € Sy;(7), (12)
r r

can be easily established using the definition of r-invex function, for all w € Q. Since
the above inequalities are fulfilled for any sets @} € Sx*(%), o € SxY(%) and @, €

Sy, (), for all jin Jn(7), respectlvely Therefore, by definition of Sx’(7), SxV (%) and
Sy, (), it is also satisfied for of =98+ Ak € Sxl(n), of =9V +2AY € SxY (%) and

®; =0+ A; € Sy, (%), and it gives

l{erw(n)—wm) _ 1} > (9 + A5 n(n, 7) (13)
.
l[erwf’(nHU(ﬁ)) _ 1} > (0 +A49) T (r, 7) (14)
-
1 [erwj(n)fw,«ﬁ» _ 1] > (8] + A7 )n(%,7), Vj € Iu(7). (15)
;.

Using the definition of J,,(7), and y;(xm) < y;(7T), V j € Ju(); 7, T € Q, we have
1 [erw,mw,-(ﬁ» _ 1} <0, (16)
r

which holds for all point 7 of Q. From inequalities (15) and (16) we get

(8] + A/ (7, 7) <0, j€In(). (17)

Applying conditions p;(A) >0, V j € Ju(7) and p;(1) =0, V j & Ju(7) to the above
inequalities, we have

m

Y 5" +4; ) (x,7) <0. (18)

j=1
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Using inequalities (9) and (18), we get
[KE ) (0 + 2T + 1 ()0 +28) |n(m,7) 2 0. (19)

Multiplying the inequality (13) by uZ(A) and (14) by uY (1) and summing up we get

> [ RO+ A0 + 1Y Q) (0 +28)T | n(m. 7). 20)
Combining (19) with (20) gives

1 - 1 -
;#L(;L) [erw(m—w» _ 1} I ;”U(;L) {ermL(n)—xL(m) —1] >0, Q1)

which holds for all point © € Q. Thus, we conclude that X (7) >,y X (%) for all & € Q.
Therefore, the feasible solution 7 becomes an LU -optimal solution for the problem (IP).
Hence, the proof is complete. [

Now, let us formulate an example of the nonsmooth interval-valued problem consid-
ered in this paper and interpret it using r-invex quasidifferentiable functions in connection
with compact convex sets, which are equivalent to the Minkowski sum of its subdifferen-
tials and superdifferentials as well as in connection with 7.

Example 1 Let us construct the following nondifferentiable interval-valued programming
problem:

(IP;) minimize  X(7) = [X(n), %Y (7))
:{ln(ﬂf+ﬂ22+|m\+|ﬂ2\*m*7172+1),
ln(“m|+7r2|+nf+1)},

subject to, llfl(n):1n(7r12+7r22+2|m|+7t2+1)§0; neX,

where X C R? defined by X := {(7;,m):0<m <1,0<m <1}. Theset Q = {n =
(m,m) € X : In(n? + 73 4+ 2|m | + m + 1) < 0} and & = (0,0) represents the set of
all feasible solutions and LU-optimal solution respectively to the problem (IP;). Fur-
thermore, we will show that the functions X*(7), XY (7) and v (7) are quasidifferen-
tiable at a point 7. Using definition of directional derivative, we get X.'((0,0);8) =
81|+ |82 — & — & and XU'((0,0);8) = ||81] + &| where, § = (8}, 8,) € R>. Hence,

®Y((0,0);8) = max (05T 5+ min (AbTs,
g econv{(1,1),(=1,-1)} Meconv{(—1,-1)}

where 9 X*(0,0) = conv{(1,1),(—1,—1)}, dX%(0,0) = conv{(—1,—1)} and

x?'((0,0);8) = max ()8 + min ad)Ts,
9§ econv{(0,0),(—2,2),(2,2)} Ael{(-1,-1),,-1)}
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where d XU (0,0) = conv{(0,0),(—2,2),(2,2)}, XY (0,0)={(—1,—1),(1,—1)}. There-
fore, by Definition 2, we can conclude that the functions XL and XU are quasidifferen-
tiable at a point 7 = (0,0). Moreover, in a similar way, we have y7((0,0),8) = 2|8|+ &,
and hence

[((0,0): ) = %)'8+ min (4)"3,
WI(( ’ ) ) ﬁleconV*I{l(lZE,l())(),(*zaO)}( : +xlen{l(lg’ll>}( 1)

where dy1(0,0) = conv{(2,0),(—2,0)}, dy;(0,0) = {(0,1)}.

Now, we will verify that the necessary criteria of KKT-type are satisfied at the feasible
point & with nonconstant Lagrange multipliers. It can be demonstrated that for any set
of Al € IRE(7), AV € IRY(7) and Ay € () there exists a Lagrange multipliers
(uE(A), uY(1)) >0, p1(1) > 0 which satisfies the conditions (6)-(8), such as if Al =
(=1,—-1), AY = (~=1,-1) and A; = (0,1), then by substituting u“(1) =1, u¥(1) =1,
and p;(A) = 1 we can observe that it satisfies the KKT necessary criteria. On the other
hand, if A} = (—1,-1), A/ = (1,—1) and A; = (0,1), then by substituting u“(1) =
1, uY(A) =1, and p;(A) = 2 it satisfies the KKT necessary criteria.

Since the necessary criteria of KKT-type have been satisfied at a point 7. Now, to verify
the sufficiency criteria of KKT-type, that is, to show that the feasible point 7 is an LU -
optimal solution to the problem (IPy) it is enough to show that the functions X%, X¥ and
Y are r-invex quasidifferentiable at a point 7 on Q in connection with 1 and a compact
convex set, which is equivalent to the Minkowski sum of its subdifferentials as well as
superdifferentials. B B

Let Syl () = d RE(7) + 9 RE(7), SV (%) = IRV (7)) +IRY(7T), Sy, (T) =y (7) +

Jyi(7) and the vector-valued function 1 : Q x Q — R be defined by (7, %) =

ntm
i)
a1

Using Definition 3, it can be stated that the functions X%, XY and y; are 1-invex quasid-
ifferentiable at a point 7 on Q in connection with 17 as well as in connection with compact
convex sets Sy (7), SxY (%) and Sy, (7) respectively. As all the assumptions of the suf-
ficiency criteria of KKT-type are satisfied at a point 7, one can conclude that the feasible
point 7 is an LU-optimal solution to the problem (IPy).

Now, for the constructed nonsmooth interval-valued programming problem (IP;), we
point out the fact that the Lagrange multipliers depend on the choice of A. Evidently, for
the given choice of A, sometime the necessary optimality criteria of KKT-type may not
be satisfied at a feasible point 7 for some Lagrange multipliers.

Let us demonstrate the KKT necessary conditions by taking an arbitrary value of Lagrange
multipliers. For particularly specified 2 = (A%, A/, A1) the KKT condition (6) is denoted
by

Wy, = () (@RM(T) +45) + 1Y (M) @RV (R) +A5) + 51 () (Qwi (7) + A1) (22)

(1) For A = (A8, A{, &) = ((—=1,-1),(=1,-1),(0,1)) and p*(2) =1, uY(2) = 1
p1(A) =1, we get,
Wy, = conv{(-5,2),(—1,2),(3,2),(1,0),(—1,-2),(=5,-2),(=7,0),(—3,0)}
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r

Figure 1: Here 0 € W, thus we can state that it satisfies the KKT conditions for p; (1) = 1.

(2) For A" = (A’é‘? A’éjv )‘1) = ((71771)7(17*1%(03 1)) and IJ’L(A’) =1, “U()L) = 13
pi1(A) =2, we get,
Wy = conv{(—5,3),(~3,1),(—1,3),(=7.1),(=5,—1),(3,3),(5,1),(7,3),
(1’1)’(3’_1)}

v
Figure 2: Here also 0 € W, therefore, we can state that it also satisfies the KKT conditions for

pr(A)=2.

(3) FOI‘A,”Z (A'()L7 A’(gja ll) = ((_17_1)7(_1a_1)7(0v1)) anduL()L) = 1) .u'U(A’) = la
p1(A) =4, we get,
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Wy = conv{(—11,5),(=7,5),(=9,3),(—13,3),(~11,1),(5,5),(9,5),(7,3),
(3,3),(5,1)}

]

Figure 3: Here O ¢ W, hence it does not satisfies the KKT conditions for p; (1) = 4.

Therefore, we can conclude that the Lagrange multipliers depend on the choice of A.

4. DUAL PROBLEM

Let us discuss the duality of the Mond-Weir type nonsmooth interval-valued program-
ming problem (IP).

(IDP)  maximize X(o)=[X%(0),%Y(0)]

U

subject to ,p) €

(o,
The set of all pairs (o, i*, i¥, p) is symbolized by I with & € X and /.L YR SR,
PR 5 R™ p(A) = (pi(R),...,pm(A)) satisfying for AL € IRE (o), AY € IRY (0 )
and A; € dy;(c), ¥V j € 3, the conditions are given below

Ms

0€ fH(A)(@X"(0) +4g) +AY(A) (@R (o) +2¢") + ) p;j(A)(Qwj(0) +4)), (23)

j=1

pj(A)wi(c) >0, V)€ Jm, (24)
(B"(2), Y (1)) >0, pj(A) >0, Vj € I, 0 €X, (25)

where, A = (Af,AY, A1,..., Aw). T denotes the set of all feasible solutions of dual prob-
lem (IDP). Furthermore, Y = prguI stands for the projection of the set I" on X.
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Theorem 14. (Weak duality for r-invex function quasidifferentiable) Let 7t be the feasible
point to the problem (IP) and (o, i", iV, p) be the feasible point to its Mond-Weir dual
(IDP). Furthermore, suppose that

() the functions XL and XY are r-invex quasidifferentiable at a point ¢ defined on
QUY in connection with Sx*(6) = d X () + I X:(0), and SxY (c) =RV (o) +
I XY (o), respectively, as well as in connection with 1.

(ii) The functions y;, for all j in J,n(0) are r-invex quasidifferentiable at a point ¢
defined on QUY in connection with Sy;(6) = dy;(c) +dy;(c) and .
Then, N(ﬂ) >LU N(O’)

Proof. Given & and (o, il, iV, p) are feasible solutions of the problem (IP) and its dual
(IDP), respectively. Therefore, it satisfies the conditions (23)-(25) for Af € I X (o), A €

IRY(0) and A; € Jyj(0), ¥ j € I, and p(A) = (p1(A),p2(A),..., pm(A)) € R™. On

the contrary, let us suppose that

N(?’E) <Lu N(O’), (26)
that is, XE(7) < ®E(o) or, Xi(m) < xf(o) or, Xi(m) < xf(o)
XV(m) < xY(o) xY(m) < xL(o) XE(m) < RE(0).

From the assumptions that the functions X’ and XY are r-invex quasidifferentiable at
a point ¢ on QUY in connection with Sy’(c) = dX%(0) + IR (o) and SxY (o) =
IRV (o) +d XY (o), respectively, and in connection with 17, we get

¥ [1 4 r(@h) T n(x.0)]. ¥ € S (o) @

leer(n) > leer(o') [] +r((1)(§])T11(7t, 0')}, v wé] c SNU(O'). (28)
r r

On combining inequality (26) with (27) and (28), respectively, we get

(
(

e

) n(m,0) <0,V of € Sxl(o),
) (r,0) <0, Vol €Sx¥(o).
or
(0§)'n(m,0) <0,V of € Sxl(o),
(of)Tn(m,0) <0,V o €SxY(o).
or
(0§)'n(m,0) <0, ¥V af € Sx*(0),
(0f)"n(n,0) <0, Vof €SxY(0).

S

e

OSQO ~

The above inequalities with the condition (25) give
(B2 (0f)" + B (2)(@f) [ n(x,0) <0 (29)

The functions y;, for all j in J,,(o) are r-invex quasidifferentiable at a point 6 on QUY
in connection with Sy, () = dy;(0) +dy;j(o) and 1. Therefore, using the definition of
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r-invex function, we get

Lowim > Lrvico) [1 +ra)jT77(7T,<7)}7 V @) € Sy,(0). (30)

r r

Using condition (24), and the fact that 7 € Q and ¢ € Y, we obtain
Pj(A)y;(m) < p(A)w;(0), Vj € Jm €2y
Since pj(A) > 0, for all j in J,,(0), therefore the inequality (30) can be rewritten as

1 (em(pj<x>w,~<n>—pj<x>w,-<o>> B

T
;. 1) > w;n(r,0), Vo; € Sy,(0). (32)

Combining inequality (31) and (32) yields
o] N(7,0) <0, Yo, € Sy,(0), Vj € Ju(0). (33)

Using inequality (25), we obtain

™=

pj(A)w] n(n,06) <0, Yo, € Sy,(0), Vj € - (34)

j=1

On summing the inequalities (29) and (34), we obtain
[BE ) (@) + 8 (W) (@) + Y pi(R)e] |n(x.0) <0,
j=1

for each @f € Sx"(0), @f € SxY(0), w; € Sy;(0), and of € IR (0) +Af, wf €
IRY(0)+A{, ®; € dy;(0)+A;. In the light of the the definitions of Sx*(c), SxY (o),
and Sy, (o), for all j in J,,, we find that A ednl(o), AY € IRY(c) and A; € dy;(0)
satisfying the inequality

|0+ 26)T + BV (8 +28)T + Y piA)(; +4)" [n(m0)<0, 39
=

for all 9} € IR%(0), 9 € IXY(0) and ¥; € dy;(0), for all j in J,,. The condition
(23) assurs that for the sets A} € XL (o), AV € IRY(0), and A; € dy;(0), there exist
9f e axL(o), O € IRY(0), and ¥; € dy;(0), for all j in J,, such that

m
[BE (0 +A5)T +RY (8 +A48)T + Y py()(9;+4) |n(m.0) =0,
j=1
satisfies which contradicts (35). Hence, the proof is complete. [
Theorem 15. (Weak duality for strict r-invex quasidifferentiable function) Let & be the

feasible point to the problem (IP) and (o,i", iV, p) be the feasible point to its Mond-
Weir dual (IDP). Furthermore, suppose that
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() The functions XL and RY are strict r-invex quasidifferentiable at a point ¢ de-
fined on QUY in connection with Sx*(c) = d R (0) + IRE(0), and SV (o) =
IRY(0) +dRY(0), respectively, as well as in connection with 1.

(ii) The functions y;, for all j in J,,(0) are r-invex quasidifferentiable at a point ¢
defined on QUY in connection with Sy;(0) = dy;(c) +dy;(c) and .

Then, X () >y X(0).

Theorem 16. (Direct duality) Let the feasible point T be an LU -optimal solution to the
problem (IP) and (ﬁ',uL,[.LU,ﬁ) be the feasible point of its dual problem (IDP), where
ub b R 5 R, and p : R — R™. Furthermore, suppose that

() The functions X% and XY are r-invex quasidifferentiable at a point ¢ defined on
QUY in connection with Sx*(6) = d X () + I X4 (0), and SxY (c) =RV (o) +
I XY (o), respectively, as well as in connection with 1.

(ii) The functions y;, for all j in J,,(0) are r-invex quasidifferentiable at a point ¢
defined on QUY in connection with Sy,(0) = dy;(c) + dy;(0) as well as in
connection with 1.

Then, the feasible point (%, u", uY,p) is an LU-optimal solution to its dual problem
(IDP).

Proof. Let us suppose the feasible point 7 is an LU-optimal solution of the problem (IP),
and there exist functions u’, u? : R"+2 — R and p : K2 — R™ in such a manner that
(7, ul, 1Y, p) is the feasible point of its dual problem (IDP). Moreover, as it satisfies
all the assumptions of the weak duality theorem for r-invex quasidifferentiable functions
and7 € Q, then

X (%) >u sup{X (o) : (0, 2"
Therefore, one can say that the feasible point (
the dual problem (IDP). O

o,i",nY,p)er}.
7, ut, 1uY,p) is an LU-optimal solution to

7

Theorem 17. (Converse duality) Suppose the feasible points (&,u*,u¥p) is an LU-
optimal solution to the dual problem (IDP) and & € Q. Furthermore, assume that

() The functions Rt and XY are r-invex quasidifferentiable at & defined on QU
Y in connection with Sx*(6) = dXL(6) + I RE(G), and SxV(6) = IRY(5) +
IRY(&), respectively, as well as in connection with 1.

(ii) The functions y;, for all j in J,,(G) are r-invex quasidifferentiable at a point &
defined on QUY in connection with Sy,(6) = dy;(&) +dy;(6) as well as in
connection with 1.

Then, the feasible point G is an LU -optimal solution to (IP).

Proof. Its proof is similar to that of the weak duality theorem for the r-invex quasidiffer-
entiable function. O
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Example 2: Portfolio Optimization with Interval-Valued Objective
In this example, we consider a simplified financial portfolio optimization problem under
uncertainty. An investor allocates capital into two assets with uncertain returns. The
goal is to minimize an interval-valued objective function representing a trade-off between
uncertain return and risk, where both components include nonsmooth features.

We formulate the following nonsmooth interval-valued programming problem:

(IP,) Minimize  X(x) =[X*(x), XY ()]
=[In (7} +|m|+1),In(|m| + 275 +1)]
Subjectto y (7)) =m +m—1<0
TteX 2:{(751,71'2) E]Rz 0<m<1,0<m < 1}7
where m = (7}, M) represents the proportion of capital invested in Asset 1 and Asset 2,

respectively. The set of feasible solutions to the problem (IP}) is given by Q = {7 =
(7'(1,752) eX m+m—1< 0}.

The corresponding Mond-Weir-type dual problem transforms the minimization prob-
lem into a maximization type and the constraint into a set-valued inclusion using quasid-
ifferential calculus to account for marginal contributions of return, risk, and the budget
constraint. The Mond-Weir dual model for the problem (IP;) is formulated as

(IDP,) Maximize X (o) = [XL(0), XY (0)]
= [In(of + 02|+ 1) ,In(|o1| +205 +1)]

Subject to 0 € gL (IR (o) +A8) + 1Y (IRY(0) +A¢) +p1(dwi (o) + A1),

(36)
p1yi(0) >0, 37)
pt+p¥ =1, pt>0,aY>0,p >0, ceX. (38)

Assume a feasible solution set to (IDP;) is given by
(0,85 8%p1) = ((0,0),2,2.0).
Y ) ) ) ) 2’ 2)

We now verify the quasidifferentiability of X%(c), XY (o), and y; (o) at o = (0,0).
Using directional derivatives, we have X.'((0,0);8) = |8, XV’((0,0);8) = || and
v{((0,0),8) = & + & where, § = (§;,8,) € R2. Hence

X“((0,0:8)=  max (9) 8+ min ()8,
Yy econv{(0,1),(0,—1)} A5€{(0,0)}

where 9 X(0,0) = conv{(0,1),(0,—1)}, @ X%(0,0) = conv{(0,0)},

xY'((0,0);8) = max W6+ min  (AY)78,
o econv{(1,0),(—-1,0)} 2 €{(0,0)}
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where d XY (0,0) = conv{(1,0),(—1,0)}, %Y (0,0) = {(0,0)}, and

0,0);6) = %)"5 i (4)'8,
¥1((0,0:8) = max (81)°8+ min (A1)

where dy1(0,0) = {(1,1)}, dw1(0,0) = {(0,0)}. Therefore, by Definition 2, we con-
clude that X%, XY and y; are quasidifferentiable functions at a point 7 = (0,0). For
Ay =2 =4 =(0,0), together with gX(A2) = ¥ (1) = 1/2, and p; (1) = 0 the dual
conditions (36)-(38) hold. The condition (36)

e gH(ax" (o) +25) + 1Y (IR (0) + 4 ) +p1(dwi(0) + )
by substituting A} =AY = 41 = (0,0), a%(12) = gY (1) = 1, and p; (1) =0 gives

0 € conv 11 e 11
272 )7 2°2)7 272

which can be viewed graphically as follows:

1

y

A

—~
|

9 —

B[—

~—

4
(0,0)

Figure 4: 0 € il (IR (0) +AL) + pY (9RY (o) + A ) +p1 Qi (o) + A1)

Further, we will show that the functions X, XY and y; are r-invex quasidifferen-
tiable at a point ¢ in connection with 17 and a compact convex set, which is equivalent
to the Minkowski sum of its subdifferentials as well as superdifferentials. Let S xk(o) =
IXL(0)+ IR (o), SxY(0) =aNRY(0)+IRY(0), Sy, (0) =dyi(0)+ dyi (o) and
the vector-valued function 17 : Q x Q — R? be defined by n(7, 6) = |07|+|02| — 1. Using
Definition 3, it can be stated that the functions X”, XY and y; are 1-invex quasidiffer-
entiable at a point ¢ in connection with 17 as well as in connection with compact convex
sets Sy’ (o), SxY(0) and Sy, (o) respectively. As all the assumptions of the Theorem
14 satisfied at o, therefore X (m) >,y X (o). This validates that the dual approach via
the Mond-Weir framework, under the assumption of quasidifferentiability r-invexity, suc-
cessfully identifies an optimal strategy for investment allocation in the presence of interval
uncertainty and nonsmooth behavior.
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5. CONCLUSION

In the present article, we have worked on a class of nonsmooth interval-valued op-
timization problems with inequality constraints by employing the framework of r-invex
quasidifferentiable functions in connection with compact convex sets and 717. The main
outcomes of our work include the derivation of necessary and sufficient optimality con-
ditions using quasidifferential calculus, which effectively handles the nonsmooth nature
of the problem. Furthermore, we constructed a Mond-Weir-type dual model and estab-
lished duality theorems under the assumption of r-invexity. A key aspect of our analysis is
the characterization of quasidifferentials through the Minkowski sum of subdifferentials
and superdifferentials, which underpins both the optimality and duality results. Notably,
our findings reveal that the Lagrange multipliers in the KKT-type conditions are noncon-
stant, thereby reflecting the complexity and generality of the proposed model. Finally, the
theoretical developments were supported by a numerical example.

The present study opens several avenues for further research in the field of nons-
mooth interval-valued optimization. One potential direction is the extension of the present
framework to multiobjective or vector-valued interval optimization problems, incorporat-
ing the concept of quasidifferentiable r-invexity in higher-dimensional settings. Another
potential area involves the relaxation of the convexity assumptions, such as exploring gen-
eralized forms like approximate or preinvex quasidifferentiable functions, which would
broaden the applicability of the results. We shall investigate these questions in subsequent
papers.
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