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1. INTRODUCTION

In the last three decades, several definitions extending the concept of convexity
of a function have been introduced by many researchers including Schmitendorf
[17], Vial [21], Hanson and Mond [6], Rueda and Hanson [16], Preda [14], and
Antczak [1]. A significant generalization of convex function is introduced by Han-
son [5] and Cravan [2]. In 1981, Hanson [5] generalized the Karush-Kuhn-Tucker
type sufficient optimality conditions with the help of a new class of generalized
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convex functions for differentiable real valued functions which are defined on
R". This class of functions was later named by Cravan [2] as the class of “invex”
functions due to their property of invariance under convex transformations.

Duality for nonlinear programming was studied by many researchers. Zal-
mai [22] studied nondifferentiable fractional programming containing arbitrary
norms. Husain and Jabeen [3] studied duality for a fractional programming prob-
lem involving support function. Yang [19] introduced nondifferentiable multi-
objective programming problem where the objective function contains a support
function of a compact convex set.

Higher order duality has been studied by many researchers in the last few
years, e.g., Zhang [23] obtained higher order duality in multiobjective program-
ming problem; Mangasarian [8] formulated a class of second and higher order
dual for nonlinear programming problems involving twice differentiable func-
tions; Mond and Weir [12] also estabilshed higher order duality for generalized
convexity; Mond and Zhang [13] obtained duality results for various higher order
dual programming problems under higher order invexity assumptions; Mishra
and Rueda [9, 11] estabilished duality results under higher order generalized in-
vexity; Yang et al. [20] discussed higher order duality results under generalized
convexity assumption for multiobjective programming problems involving sup-
port function. Kim and Lee [7] also studied higher order duality. Mishra and
Giorgi [10] presented several types of invexity and higher order duality in their
book Invexity and Optimization.

In this paper, motivated by the earlier works on higher order duality, we first
introduce one new generalized invex function, called higher order B—(b, p, 6, p, 7)-
invex function. Further, conditions have been obtained under which a fractional
function is higher order B — (b, p, 0, p, 7)-invex with respect to a differentiable
function G : X X R" — R, (X C R"). More precisely, this paper is an extension of
the generalized hybrid B — (b, p, 6, p, 7)-invex function, introduced by Verma [18]
to a class of higher-order duality; the sufficient optimality conditions have also
been derived and duality results have been estabilished for Schaible type dual of
a nondifferentiable multiobjective fractional programming problem.

2. NOTATIONS AND PRELIMINARIES

In this section, we discuss some important notations and definitions.
The following convention for vector inequalities will be used throughout this pa-

per.
The index set K={1,2,...,k}and M ={1,2,...,m}.

If x, y € R, then
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(dx =yifand onlyifx; = y; foralli=1,2,3,...,n;
(i)x > yifand only if x; > y; foralli =1,2,3,...,n;
(iif)x z yifand only if x; > y; foralli =1,2,3,...,n;
(iv)x > yifand only if x 2 y and x # y.

Definition 2.1. A function f is said to be higher order B — (b, p, 0, p, 7)-invex at u € X
with respect to the function G(u,p), if there exist b : X X X — [0,00), p: X X X —
Rand 6 : X x X — R", where X is a nonempty subset of R" (n- dimensional Euclidean
space) such that for y € R" and p, 7 € R, we have

b(x, 1) [% (@@-fw) _ 1)] > % (( VF(u) +V,Gu, p), ¢ — 1>)
+G(u,p) - p"V,G(u, p) + p(x, WIOCx, w1, 1

We note that

(1) b, 1) (F(x) - fw) 2 % (V£ + ,G, p), e = 1)
+G(u,p) = p"V,G(u, p) + p(x, w)l6(x, w)|[* for p # 0, # =0,

(11) b(x, M) I:%(ef(f(x)_f(u)) — 1)] > (< Vf(l/l) + VPG(M, p), y>)
+G(u,p) - pTVpG(u, p) + p(x, u)||6(x, u)||2 forp=0,7#0,

(iif) b(x, u) (F(x) = F) = (( V() +V,Glu,p), v)
+G(u,p) = p"V,G(u, p) + p(x, w)|0(x, w)|* for p = 0, 7 = 0.

Definition 2.2. A function f is said to be strictly higher order B — (b, p, 0, p, 7)-invex at
u € X with respect to the function G(u, p), if there exist b : XXX — [0,00), p : XX X —
Rand 0 : X x X — R" such that for y € R" and p,7 € R, we have

b, 1[I 1) > 2 (V£ + VGl e - 1)
+G(u,p) - pTVpG(u, p) + p(x, u)|[0(x, u)||2.

Remark 2.1. The exponentials appearing on the right hand side of the above inequalities
are understood to be taken componentwise and 1 =(1,1,...,1) € R™.

Definition 2.3. Let C be a compact convex set in R" and support s(x/C) of C is defined by
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s(x/C) = max {xTy* VA< C}.

The support function s(x/C), being convex and everywhere finite, has a subgradient [Rock-
afellar [15]] at every point x, i.e., there exists u € C such that,

s(y*/C) 2 s(x/C) + ul (y* — x).

And the subdifferential of s(x/C) is given by
ds(x/C) = {u €S:ulx= s(x/C)}.

For any set C C R", the normal cone to C at any point x € C is defined by
N¢(x) = {y* € R": y*T(u —x)£0forallu € C}.

It could be verified that for a compact convex set C, y* € N, (x) if and only if s(y*/C) =
xTy*, or equivalently, x is in the subdifferential of s at y*.

In this paper, we consider the following nondifferentiable multiobjective frac-
tional programming problem :

L /D x/D: x/D
(P) Minimize F(x) = <f1(x)g+1$(;x) 1), fz(x);':(g 2), ., fk(x);ks(gf) k))

subject to x € Xp = {x € X :hj(x) +s(x/Ej)£0,j € M}, 2)

where X denotes the set of all feasible solutions for (P).

The functions f = (fi, fa,---, fx) : X = R, g = (91,92,...,9x) : X — RF and
h = (h,hy, ... hy) @ X = R™ are differentiable on X, fi(x) + s(x/D;) =2 0 and
gi(x) > 0 (i € K) for x € X.

Let G; : XXR" — R (i € k) be differentiable functions on X, D;(i € K), and E;(j € M)
are compact convex sets in R", z = (21,2, ...,2), and w = (wq, wy, ..., Wy), where
zieDi(ieK)andwj EE]' (]EM)

It is very rare to get ideal solution in multiobjective programming problems,
i.e., a point at which all objective functions are optimised, due to conflict of objec-
tives in multiobjective programming problems, optimal solution of one objective
is different from optimal solution of another. Thus, we choose an optimal solution
from the set of the efficient solutions.

Definition 2.4. A point u € X is said to be an efficient solution of (P), if there is no
x € X such that F(x) < F(u).

3. SUFFICIENT OPTIMALITY CONDITIONS

The following result gives the conditions for a fractional function to be higher
order B — (b, p, 0, p, F)-invex. We use it to obtain Karush-Kuhn-Tucker type suffi-
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cient optimality conditions.
Theorem 3.1. Suppose that for some a, if fo(.) + ()72, and —g,(.) are higher order

B—(ba, pa, O, P, T)-invex at u € X with respect to the function G, (u, p) for same y € R",

then the fractional function Jal D) Za ot ) Ze g higher order B — ( ar Par O, P, f)-invex at u with
respect to the function G,(u,p), where

Ba(,u) = Z3ba(x, u),

1
Balx, u) = ( I UL ) Oa(x, 1),

Ja(u) g2 ()
Ga(u,p) = (m + ﬁ*(Z%Z')TZ“)Ga (u,p).
Proof
Since (L2 - Ltz ) _ LOIafl0als  UMCS (g, (2) - g, (1)

Using the definition of higher order invex, we get

o falx +xTza e (1t +11Tza
ba(x, u) [i (er(f(ﬁ)““)_f i) _ 1)]
1
Ja (x)
+Ga(1t, p) = P"V,Galtt, p) + palx, )ll0a(x, w)|?)

T

+Ga(tt, p) = P"VpGaltt, p) + pal, w)l10a(x, w)I12)

=

( (¢ Va(w) + 2o + V,Galu, p), e - 1))

Since inner product on R" is symmetric, we obtain

[ (A5 )
r
1
Ja(x)
+Ga(t, p) = PV Galtt, p) + pal, u)[|0a(x, w)|?)

faw) +uz, (1,
a0ga) (,5 € = )T (=Vga(w) + V,Ga(u, p))

+Ga(tt, p) = p"V,Galtt, p) + palx, wllOa(x, w)I)

2

(1(ew — D) (Vfaw) + 2o + V,Galu, p))
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Ga(u) |: 7y T (Vfa )+ Zq VpGDt(u/ p) fa(u) + uTza )]
=27 -1 + + —Vg,(u) + V,G,(u,
p0 | TV T T A e+ VGl p)
( 1 fa(u) +ulz,

1 fa +ulz,
ga(x) Fa(X)ga(u)

700 " ga(07a()

+palx, u)( )Hea(xr )l

_ ga(u) fa(u) +ulz, 1 fulw) + 1"z, .
7] Ol K s 2w Jyicatup -1

1 fa(”) + MTZa
+(9a<x> " %(x)ga(u) )<G“(”"’> = P'V,Ga(,p))

1 fa 2
+pa<x,u>( PEREY e )||ea<x,u>n,

which implies

faw+xTza  fawrulza
29y, (3,1 [1 (e e -i=) 1)]

Ga(u)
1 fa(u) + u'z, 1 fa(t) +uTz, i
= 5(< V( o (1) ) i (ga(u) BT )V”G“(”’p e = 1>)

1 fow)+u'z,
+(ga<u> T AW

) (Galtt,p) = p"V,Gulu, )

1 fa(u) + ulz,
i a(x'u)(ga(u) %( 1)

)Hea(xr W

it follows that,

_ 1 }7( fa@+xTzq _ fatw)+uTzq )
bUé (xl 1/[) —le Fa(x) Gar(u) _ 1
7

> 1 (( v(M) + VpGa(u,p),eﬁy _ 1))

- p ga(u)

+Ga(it,p) = p'V,Ga(u, p) + palx, w)|0a(x, u)|I*.

Therefore, AL * is higher order B — (b, pa, B4, D, 7-invex at u with respect to
a0 & p p %

function G,(u, p). |

Remark 3.1. It can also be shown that £ HE) % s higher order B— ( ar Par Oas P, 7)—invex

at u with respect to Gu(u, p), where by(x,u), Gu(u,p) are as the above and p,(x,u) =
( Ly f“(")+“TZ")pa (x, ).

Ja (1) g5 (u)
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Remark 3.2. If —g,(.) is strictly higher order B — (ba, pa, Oa, P, 7)- invex at u with
respect to Go(u,p) and fo() + () Tza > 0 or fo(.) + ()'z, is strictly higher order B —
fa(~)+(~)TZa
- guz()

B - (ba, ParOu, P, F)—invex at u with respect to function G,(u, p).

(ba, pas Oa, P, 7)- invex at u with respect to G,(u, p), then is strictly higher order

Theorem 3.2. (Karush-Kuhn-Tucker type sufficient optimality conditions) Let u be a
feasible solution of (P). Let there exist A > 0, A € R, pj 20, ueR" zeR" (i€
K), wj € R" (j € M), such that

k . T, . m
Z/\iV(%)+Z[J}‘ (th(u)+wj) =0, (3)
i=1 j=1
Zf U (hj(u) + uTw]-) =0, (4)
j=

u'z; =s(u/D;), zi€D;, i€K,

u'wj =s(u/Ej), wj€Ej, jeM.
If
() p}(x,u) 20 (i € K), p*(x,u) 2 0 for the same y € R",
(i) fi(.) + ()Tz; and —gi(.) are higher order B — (b}, pi, 01,p, f)—invex at u with respect
to Gi(u,p),i € K,

iii f hi() + ()Tw;) is higher order B — (b2, p?, 62, p, #)—invex at u with respect to
) 1#1 j i 8 p p p
]:
k _
- Zl AiGi(u, p),
i=
(iv) b; ' (x, u) > 0 for at least one i € K,

then u is an efficient solution of (P).

Proof. Suppose u is not an efficient solution of (P). Then, there exists x € X such
that

f1(x) +s(x/Dn) fr(x) + S(X/Dk)) < (fl(u) +s(u/Dy) fr(u) + s(u/Dy)
v T gk - g (1) '
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Therefore,

f(x) +xTz Fr(x) + xTz
( a T gx) )
< (f1(x) +s(x/Dy) fie(x) + S(X/Dk))
N n gi(x)
- (fl(u) + s(u/Dy) fre(u) + s(u/Dk))
B g1(u) Y gx(u)
_(fiw) +uTz Fr(u) + uTz
- ( aw) T ge(w)

From hypothesis (iv) and using A > 0, we obtain

k 1 ?( fi(x)HCTzi _ fl‘(ll)+liTZl')
Z Ab Tt u) |z eV @ T w@— 1| <.
r
i=1

In view of hypothesis (ii) and Theorem (3.1), we have

1 1 7( f (x)+,\:Tzl _f‘l (u)+uTzl )
by (x, u) 7le e aw ) —1,...,
1 ?( fk(x)+xTzk _ fk(z4)+nTzk)
b;l(x, u)|= (e 75 a1
7

1 () +u'z . )
p (( \% (%) +V,Gi(u, p), e’ — 1>)
+Gi(u,p) — p"V,Gi(u, p) + pl(x, w7 W), .. .,
1 (< v (JM
(u)
+Gi(u, p) = "V, Gr(u, p) + pj(x, w16, (x, u)

2

) + V,Gi(u,p), ¥ — 1))

2
[

or

k 1 F(/’i(x)+xTzi _ fiwruTz )
2 ATt u) [ e\ @ ) -
- r

k T
(1) + i - .
Z A (( v (f”gl(—u;"z) +V,Giu, p), &7 — 1>)

), using ulz; = s(u/D;),i e K.

k k
+ Y A (Gilw p) = pTV, G, ) + Y Aipl e, wl1607 (e, ).
i i=1

Q)

(6)
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From hypothesis (iii), it yields

¥ (s Topi—hi(1)—uT
bz(x’ u) %[erlgly](h,(x)ﬂc wj—hj(u)-u w,) Jl

m k
g%[(Zy(Vh (u) + w)) Z p),eﬁy—1>]

=1

k
= Y Ai(Gilw,p) = PTGl p) + pP(x, I 0%(x, )P @)

i=1
Adding equations (6) and (7), we get

(f,(x)+x 2; _f,(u)+u z; )
5 sl 55 1)]
1 7’): 1 (R ) +xTwj—hj(u)-uTw;)

k k
oy (A=) sy, <up>epy_1>]

- gi(u)

v

1

+1[< ui(Vh; (u)+w])—ZAV Gi(u,p), eny_1>]
j=1 i=1

h

k
+ Z Aipy (w107 (e, )l + p(x, w162 (v, )l

i=1

Using (4) and simplifying it, we get
fl(x)+x 2 fi(u)+uTzl
Z)\b '(x, u)[ ( (e 5e) 1 )] +D(x, u)[1
1 (w) +u'z; _
> - [( Z A v(f()T) + Z i (Vhi(u) + w)), P — 1)]
l ]:1

k
+ Z Aip; (e, w07 (x, )l + p(x, w162 (v, )l

i=1

( r): y](h (x)+x w]) B 1]]
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Using (3) and hypothesis (i), we get

k 1 1 7( flv(x)+xTzi _ fl(u)+uTzlv )
Z Aib7 (xqu)| < led a9 w1
r
i=1

7y (o) +xTw;
+b2(x, 1) |:1 [e = i ) - 1]

= 2 0.
P

From the primal constraint (2) and the facts that y; 2 0, xij < s(x/E)), j €
M, b*(x,u) > 0, it yields

k 1 7(ﬂ(x)+xTzi _ fI(M)HITZI )
3 Ak x| < (e o) 1) >0,
r
i=1

Which contradicts (5). Hence, we have the result. [

Remark 3.3. If we assume A > 0 in Theorem 3.2, then in hypothesis (ii) fi(.) + (.)7z
are required to be strictly higher order B — (b}, p},0},p,7) invex at u with respect to
Gi(u,p),i e K
4. DUALITY
In this section, we consider the following Schaible type dual for (P) and estabil-
ish weak, strong and strict converse duality Theorems assuming B — (b, p, 6, p, 7)-

invexity:

(SD) Maximize v = (vq, v, ..., Vk)

k m
subject to V| Y Ad(fi(w) + u'z; = vigi(w)) + Y (ki) +uTwp)| =0, (8)

i=1 j=1
fiu) +u'z; —vigi(u) 20, i € K, 9)
m
Y i) +uTw) 20, jeM, (10)
j=1
A>0,uz0,vz0, (11)
AveRF, ueR" ueX, (12)

zi € D; (l [S k), w; € E]' (] S M), (13)
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Theorem 4.1. (Weak Duality) Let x and (u, A, v, u, z, w) be feasible solutions of (P) and
(SD) respectively . Let

(i) pj(x,u) 2 0 (i € K), p*(x,u) 2 0 for the same y € R",
(i) fi(.) + (.)7z; be higher order B — (b}, p}, 6},;3, f)—invex at u with respect to G;(u, p),
and v;g;(.) be higher order B — (b}, pi, 61, P, f)—invex at u with respect to v;G;(u,p),i € K,
(i) Y i (h]-(.) + (.)Tw]-) be higher order B — (b, p?, 0%, P, )-invex at u with respect to
=1
k
- ;1 Ai(1 =v)Gi(u, p),

(iv} bi(x,u) > 0 for at least one i € K.
Then F(x) £ v.

Proof. Suppose, to the contrary, that F(x) <v,i.e, ¥ i €K,

,fi(x)‘*"s(x/Di) <,
gi(x)
Using hypothesis (iv) and A > 0, we get
: 1
Z Aibl(x, ) [_ ((ef(fi(x)+xTZi—ﬁ(u)—uTZi) 1) - (eFVi(gy(X)—gi(u)) _ 1))] <0. (14)
1\ 7
i=1

It follows from hypothesis (ii) and for i € K, that
1 5 1 .
b}(x, 1/[) (;(er(fi(X)+xTzi_fi(u)—uTZ,') _ 1)) g E« sz(“) +2z; + vai(u, p)’ epy — 1))

+Gi(u,p) = p"VpGi(u, p) + p} (x, w)l|O} (x, W) (15)

And, we have
Bl ) (€000 — 1) 2 %« viVgi(u) + vV, Gilu, p), & ~ 1)

+vi(Gi(u, p) = pVpGi(u, p) + pi (x, wl6; (x, w)|I*. (16)



260 Pankaj, B.C.Joshi / Higher Order Duality

Subtracting equations (15) and (16) and using A > 0, we get

Z Al (x, ) [ ((PTmmfiTz) _q) _ (o0 _ 1))]

>

A Vfi(u) + zi — viVgi(u), e’ — 1))

1

| =
M*

I
‘Gzl»—\ =

k
+2 Y A= v)( Y, Gilu, p), e - 1)
i=1
k
+ ) A1 = v)(Gilw, p) = p"V, Gilu, p)). (17)
i=1
It follows from hypothesis (iii),

7 Z (i) +xTwj—hj(u)—uTw;)
b2 (x, 1) [1 [e =i / - 1]]

g1

|

[<Zu(Vh @+ )Y AL —v¥,Gilw p), eW—1>]
j=1 i=1

k
= Y A =v)(Gila, p) = TV, Gilw, p)) + p2(x, w62 x, ) (18)
i=1

Adding equations (17) and (18), we get

Z A bl(x u)[ (er(f,(x +xlzi— fi(u)—uz;) -1 _( i(gi(x)—gi(w)) _ 1))]

Z wj(h; (2)+xT wj—hj(u)-u w,)

+b2(x, u)[ (e ™ -1)

> = [<v Z/\(ﬁ +u z,—v,g,(u))+2y](h (u) +u"w;) epy—1>]
+02(x, w)|6*(x, w)|>.

Using the primal constraint (2), dual constraints (8), (10), u = 0, b*(x,u) >
0, xTw; < s(x/E;) j € M, and the fact that p?(x, u) 2 0, we get

—_

Z A} (x, u [: (er(fi(X)Hcsz'fﬁ(u)fuTz,-) —-1) - (efvx'(g,(x)—g:(”)) - 1))] 2 0.

<

Which contradicts equation (14). Hence, we have the result. [J
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Theorem 4.2. (Strong Duality) Let X be an efficient solution for (P) and let the Slater’s
constraint qualification be satisfied. Then there exist 7,7 € R, i € R™,z; € R"(i € k)
and w; € R™(j € M), such that (%, 7, v, i, z, W) is feasible for (SD) and the two objectives
are equal.

Also, zf weak duality holds for all feasible solutions of the problems (P) and (SD), then

Proof. Since % is an efficient solution for (P) and the Slater’s constraint qualification
is satisfied, then there exist 0 < y € Rk, g € R™, z; € R"(i € K) and w; € R"(j € M),
such that

k m
o[ fi®) + 27z -
;‘ v ( gi(%) ) + ; gi(Vhi(x) + w;) = 0, 19

Ji (%) + 27407) = 0,
%'z =s(x/Dy), i €K,
b; =s(x/Ej), j€M,
g0,z €D;(i€K) w;€E;(jeM).

We can write Equation (19), as follows

k (D)+17Z; _ mo _ _
M( (@) +772) - (f'< e )Vg,-(x))+ L. 1(Viy(5) + 0)) = 0.
]:

Puttmg mi= (Y) and v; = ﬁ(z)iZ;TZi/i € K, we get
k m

v [Z M) + 272 - 7,gi(3) ] Z (Vhj(®) + @) = (20)
fi(®) + %72 - v:g:(%) = 0, (21)
Z 3(hi(®) + ")) = (22)
j=1

%'z =s(x/Dy), i € K, (23)
x'w; =s(x/E)), jeM, (24)
7>0, 020720, z‘ieD-(ieK) w; €E;j(jeM). (25)
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Theorem 4.3. (Strict Converse Duality) Let ¥ and (i1, A, ¥, [i, Z, @) be efficient solutions
for (P) and (SD), respectively, such that F(X) = v and let for the same y € R", we have

(1) () +() Zi—v9:(.) be strictly higher order B—(b}, pi, 61, p, f)-invex at il with respect to
Gi(#,p),i € Kand A > 0, £,(.)+()TZ,—v,g,(.) be strictly higher order B—(b}, oL, 0L, p, f)—
invex at il with respect to G,(il, p) for at least one r € k, fi(.) + ()72 — v;gi(.) be higher
order B — (b}, pi, 61, P, f)—invex at i with respect to G(1, p),i € K,,

(ii) f 1 (hj(.) + (.)Tw]-) is higher order B — (b?, p?, 62, p, F)-invex at il with respect to
j=1
ko _
- 2. AiGi(#, p), and
i=1

(i) pH(x,1) 2 0 (i € K), p*(x,u) 2 0 for the same y € R".
Then X = 1, i.e., i is an efficient solution of (P).

Proof. Suppose X # ii. From (9), (10), A > 0, b}(%, i) > 0 (i € K), and b*(%, ) > 0, it
yields

k
Y Al i) [l(e—f<ﬂ<u>+a7z:—vzyi(a)> _ 1)]
1 4 ~
- r

Y i(hj(@)+aTw))
+b2(x,ﬂ)[%(e T ’ —1)} <0. (26)

Using hypothesis (i), we get
bL(=, ) [%(e?(fr(9?)+sz7—V’ryr(f)—ﬂ(ﬁ)—ﬁTfrWr%(ﬁ)) _ 1)]
> %(( V1) + Z, — v,Vg, (1) + V,G(i1, p), &Y — 1))
+G,(@1, p) = p' V,G, (@, p) + pL(x, WO} (%, D)%,
for at least one r € K, we have
b} (%, 1) [%(ef(ﬁ(f)+fT»7~'i—V'x‘gi(f)—fr(ﬁ)—ftTZ'ingi(ﬂ)) -1
2 SVA) + 2= Vg (0) + V,Giw ) e - 1)

+Gi(1,p) — pTV,Gi(@i, p) + p; (%, )]0} (%, W)|, i € K.
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As A >0, we get

k
Z /_\lbl(x a)[ (er(ft(x +x7 Zi— 1gx(x) fl(”) 7 Zl'“’lﬁr(”)) 1)]
1

Il
—_

k
> % Z l(< Vfi(i) + z; — vV gi(it) + V,Gi(i1, p), &Y — 1>)

K k
+ Y 4G, p) - PV, Gil, p) + Y Aipl (x, 10}z, )| (27)
i=1 i=1
Using hypothesis (ii),
bZ(x u) rZ (1j(hj(®)+xTwj—h () —i w;) :
1, v ‘
> 5[< Y Ai(Vhi() + @) = Y AV, G, p), & 1>]
j=1 =1

k
=Y AGi(@, p) — BV, Gi(@, p) + p*(x, D6, DI (28)
i=1

Adding equations (27), (28) and using (8), i 2 0 and hypothesis (iii), we obtain

k
Z‘ J_C ) [ 7(f (%) +xT Z—v,;9:(%)— fi()—itT Zi+7;g: (1)) _ 1)]

1 72 gjhj@+xTw—hj(m)-a" ;)
+bA(%, u)li—[ef1 ] ] ] —1”>0.

It follows from (2), F(¥) = 7, and %'w; < s(¥/E)), j € M, we get

k
Z x ) [ (e—i(ﬁ(n)+nTz‘i—v‘igi(ﬂ)) — 1)]

i=1

-7 Z 13 (hj )+ w;)

+b2(x,11)[ (e ~ —1)l>0.

Which contradicts (26). Hence, we have ¥ = ii. |

Acknowledgments: The second author is thankful to the University Grants Com-
mision, New Delhi(India) for providing financial support. The authors are thank-
ful to Prof. S. K. Mishra for guidance and encouragement in preparation of this

paper.



264

(1]
(2]
(3]
[4]
[5]
(6]
[7]
(8]
191

[10]
[11]
[12]

(13]

[14]

[15]
[16]

[17]
(18]
[19]

[20]

[21]

[22]

[23]

Pankaj, B.C.Joshi / Higher Order Duality
REFERENCES

Antczak, T., “On (p, r)-Invexity type nonlinear programming problems”, Journal of Mathematical
Analysis and Applications, 264 (2001) 382-397.

Craven, B.D., “Invex function and constrained local minima”, Bulletin of the Australian Mathemat-
ical Society, 24 (1981) 357-366.

Husain, I., and Jabeen, Z., “Second order duality for fractional programming with support
functions”, Opsearch, 41 (2004) 121-135.

Husain, I, and Jabeen, Z., “On fractional programming containing support functions”,Journal of
Applied Mathematics and Computing, 18 (2005) 361-376.

Hanson, M.A., “On sulfficiency of the Kuhn-Tucker conditions”, Journal of Mathematical Analysis
and Applications, 80(2) (1981) 545-550.

Hanson, M.A., and Mond, B., “Necessary and sufficient conditions in constrained optimization”,
Mathematical Programming, 37 (1987) 51-58.

Kim, D.S., and Lee, Y.J., “Non-differentiable higher order duality in multiobjective programming
involving cones”,Nonlinear Analysis, 71 (2009) 2474-2480.

Mangasarian, O.L., “Second and higher-order duality in nonlinear programming”, Journal of
Mathematical Analysis and Applications. 51 (1975) 607-620.

Mishra, S.K., and Rueda, N.G., “Higher-order generalized invexity and duality in nondifferen-
tiable mathematical programming”, Journal of Mathematical Analysis and Applications, 272 (2002)
496-506.

Mishra, S. K., and Giorgi, G., Invexity and optimization, Springer Science and Business Media,
88(2008).

Mishra, S.K., and Rueda, N.G., “Higher-order generalized invexity and duality in mathematical
programming”,Journal of Mathematical Analysis and Applications. 247 (2000) 173-182.

Mond, B., Weir, T.,“Generalized convexity and higher-order duality”,Journal of Mathematical
Sciences, 16(18) (1981) 74-94.

Mond, B.,Zhang. J., “Higher order invexity and duality in mathematical programming.” Gen-
eralized Convexity, Generalized Monotonicity: Recent Results (JP Crouzeix, et al., eds.),Kluwer
Academic Publishers, printed in the Netherlands, (1998) 357-372.

Preda, V., “On efficiency and duality for multiobjective programs”,Journal of Mathematical Analysis
and Applications, 166 (1992) 365-377.

Rockafellar, R.T., Convex Analysis , Prinston University Press, Princeton, New Jersey,(1970).
Rueda N.G., Hanson, M.A., “Optimality criteria in mathematical programming involving gen-
eralized invexity” Journal of Mathematical Analysis and Applications, 130 (1988) 375-385.
Schmitendorf, W.E., “Necessary conditions and sufficient conditions for static minimax prob-
lems”,Journal of Mathematical Analysis and Applications, 57 (1977) 683-693.

Verma, R.U., “Generalized hybrid B — (b, p, 0, p, 7)-invexities and efficiency conditions for multi-
objective fractional programming”, Tbilisi Mathematical Journal, 8 (2) (2015) 159-180.

Yang, X.M., Teo, K.L., Yang, X.Q.,“Duality for a class of nondifferentiable multiobjective pro-
gramming problems”,Journal of Mathematical Analysis and Applications, 252 (2) (2000) 999-1005.
Yang, X.M., Teo, K.L., Yang, X.Q., “Higher-order generalized convexity and duality in non-
differentiable multiobjective mathematical programming”,Journal of Mathematical Analysis and
Applications, 297 (2004) 48-55 .

Vial, ].P,, “Strong and weak convexity of sets and functions”, Mathematics of Operations Research,
8 (1983) 231-259.

Zalmai, G.J., “ Generalized (1, p)-invex functions and global semiparametric sufficient effi-
ciency conditions for multiobjective fractional programming problems containing arbitrary
norms”,Journal of Global Optimization, 36 (2006) 51-85.

Zhang, ]., “Higher order convexity and duality in multiobjective programming problems,” In
Progress in Optimization,Springer US, (1999) 101-117.





