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Abstract: Berth Allocation Problem incorporates some of the most important decisions
that have to be made in order to achieve maximum efficiency in a port. Terminal man-
ager of a port has to assign incoming vessels to the available berths, which need to be
loaded/unloaded in such a way that some objective function is optimized. It is well known
that even simpler variants of Berth Allocation Problem are NP-hard, and thus, metaheuris-
tic approaches are more convenient than exact methods since they provide high quality
solutions in reasonable computational time. Metaheuristics are general frameworks used
to build heuristic algorithms for hard optimization problems. In this paper, an overview
of promising and widely used metaheuristic methods in solving different variants of Berth
Allocation Problem is presented.
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1. INTRODUCTION

In global optimization problems, an emphasis is given to finding global op-
timum over all input variables for some set of functions under a given set of
constraints. Combinatorial optimization is a branch of global optimization where
the examined set of objects is finite. Let D denote the set of feasible solutions,
defined by the constraints, for some optimization problem. Then, the global
optimization problem can be expressed as:

min{ f (s) : s ∈ D} (1)
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where f (s) is a function to be minimized and s is a feasible solution of the
optimization problem. A solution s∗ ∈ D is optimal if

(∀s ∈ D)( f (s∗) ≤ f (s)). (2)

Maximization problem can be defined in analogous way. Unlike the exact
algorithm which finds the optimal solution s∗, a heuristic algorithm finds s′ ∈ D,
a solution that is near to the optimal one in short processing time. Metaheuristics
are general techniques used for developing heuristic algorithms to solve real
life problems. Metaheuristic algorithms started to be the point of interest in
operational research at the time when simulated annealing was developed [48]
and proposed as a technique that allowed to escape local minima trap. Detailed
overview of metaheuristics and their classification can be found in [7, 79].

There are very few exact approaches for solving BAP, are mostly based on
mixed-integer programming, using mainly CPLEX as solver [37, 39, 83]. Combi-
natorial model implemented in [49, 50] is based on branch-and-bound and looka-
head techniques; exact branch-and-price algorithms are implemented in [86, 70];
combinatorial benders’ cuts algorithm is developed in [9]. In general case, exact
solvers can handle instances with 5-40 vessels [9, 83, 86] allocated to 3-30 berths
[83, 86]. Generated test instances may become too complicated for exact solvers
even for smaller dimensions, and especially when many vessels are to be allo-
cated to the same berth and/or at the same time unit. These cases may yield the
inefficiency of exact solver, which may require huge CPU time, or may not be able
even to find the first feasible solution.

Having in mind the limitations of exact methods when solving large dimen-
sion instances, metaheuristic methods are natural choice as solution approaches
for BAP. The main goal of this paper is to survey metaheuristic approaches to
different variants of BAP in recent literature. This survey may not be exhaustive,
even though several databases were searched, such as ScienceDirect, Springer-
Link, IEEE Explorer, Web of Science, GoogleScholar, etc. The rest of this paper
is organized as follows. The definition and classification of Berth Allocation
Problems is given in Section 2. Metaheuristics applied to BAPs are reviewed in
Section 3 and classified in Section 4. Future trends and perspectives are indicated
in Section 5, while Section 6 contains concluding remarks.

2. BERTH ALLOCATION PROBLEM

The Berth Allocation Problem (BAP) assumes that berth layout of a port is
given, along with a set of vessels that are to be served within a considered planned
horizon (Fig. 1). Each berth in a given port is identified by its unique number,
called berth index. Vessels are represented by a set of data, such as: expected arrival
time, the size, anticipated handling time, preferred berth in the port, and many
others, depending on considered variant of BAP. The goal of BAP is to allocate
each vessel to a berth index and a time interval so that the given objective function
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value is optimized. Objective function can be defined as minimization of the total
cost of the allocation, minimization of vessels’ waiting times (time that vessels
must wait for a berth due to port congestion) and handling times (time used for
loading/unloading vessels), minimization of earliness and tardiness (lateness of
vessels against their desired departure time), minimization of fuel consumption,
maximization of profit, maximization of quay cranes (QC) utilization, etc. BAP is
proved to be NP-hard by Lim [61].

Detailed classification scheme for BAP formulations is given in Bierwirth and
Meisel [5] and is summarized here in Table 1. This table describes attributes
and their abbreviations used in BAP classification. Four attributes influence
the classification of BAPs: spatial, temporal, handling time, and performance
measure.

According to the spatial attribute, BAPs can be discrete, continuous, hybrid or
draft. In the discrete case, a quay is partitioned into a number of sections - berths,
whereas each berth can serve one vessel at a time. In addition, a given time horizon
could also be partitioned into discrete units, which enables integer arithmetic for
calculating the objective function value. In the continuous case, a calling vessel
can be placed at any position if it does not overlap with other vessels’ possiton.
Different combinations of discrete and continuous layout in the BAP formulation
lead to various types of hybrid layouts [5, 6]. Discrete, continuous, and hybrid
layouts, as well as the special case, named indented berth, when quay cranes are
enabled to unload and load containers from both sides of the vessel, are illustrated
in Fig. 1. BAP can be classified as draft if vessels’ berthing positions are influenced
with their draft.

Figure 1: Variants of port layouts

The most common BAP models with respect to the temporal attribute are
static and dynamic. In the static BAP, the arrival times are either not specified, or
they impose soft constraints on the berthing times. The first case assumes that
vessels are already waiting at the port and can berth immediately. The second
case means that a vessel can be speeded up or slowed down at a certain cost. If



268 N. Kovač / Metaheuristic Approaches for BAP

the arrival times of the vessels are fixed and the vessel cannot berth before the
expected arrival time, the corresponding BAP is classified as dynamic. In the
case of cyclic BAP, vessels have to be served at terminals repeatedly in fixed time
intervals. When vessels arrival times are defined by stochastic parameters and
random distribution, BAP is described as stoch. Temporal attribute due is used
when the departure of a vessel is influenced by its due date or if a maximum
waiting time for the vessel is predetermined before the service starts.

Based on the handling time attribute, BAPs are classified in five categories:
BAPs with fixed handling times, with handling times depending on the berthing
position, on the assignment of QCs, on a QC operation schedule, or on stochastic
parameters. The last attribute (performance measure) actually corresponds to the
objective function of a considered BAP. The value of the objective function can
depend on waiting time of a vessel, handling time of a vessel, completion time
of a vessel, speedup of a vessel to reach the terminal before the expected arrival
time, tardiness of a vessel against the given due date, berthing of a vessel apart
from its desired berthing position, and some other factors.

Table 1: Notations for different type of BAP

Spatial attribute Temporal attribute Handling time attribute

Abbreviation Attribute Abbreviation Attribute Abbreviation Attribute

disc discrete stat static fix fixed times
cont continuous dyn dynamic pos position dependent
hybr hybrid cycl cyclic QCAP QC assignment
draft vessel draft stoch stochastic QCSP QC scheduling

due due dates stoch stochastic

3. METAHEURISTICS IN BAP

In practice, it is important to have a powerful decision support system that
helps the container terminal manager to efficiently balance between quick ser-
vice of vessels and economic use of allocated berths. Having in mind that both
container vessels and port resources are very expensive, it is desirable to utilize
them as efficiently as possible. Container terminal is highly dynamic system
and usually terminal manager has to make the decision in short time periods
[32, 45, 85]. Situation in the port is sometimes changing on a minute basis, and
therefore, seconds can be crucial in making the right decision. For this reason,
it is important to develop an efficient optimization algorithm that will provide
terminal manager with necessary data. In the following subsections, we give an
overview of metaheuristic methods proposed to BAP in the literature.

3.1. Tabu Search
Tabu Search (TS) is a metaheuristic that guides a heuristic local search proce-

dure in such a way that local optimum can be escaped. TS is originally proposed
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by Glover [25]. It is usually used in solving combinatorial optimization problems.
TS is based on the idea of incorporating adaptive memory and responsive explo-
ration. The algorithm overview and some recent trends in its applications can be
found in [23].

In Cordeau et al. [14], TS is used to solve dynamic discrete case of BAP and is
extended to continuous BAP. In their model objective function minimizes the sum
of the service times for vessels, i.e., the difference between the completion time and
the arrival time for each vessel. In order to generate initial solution, authors use
Random Greedy and First Come-First Serve procedures. The initial solution is then
modified by the reallocation of the vessel from current berth to the newly selected
one. These reallocations produce the neighborhood of the current solution. After
a vessel is removed from the current berth, its reinsertion in that berth is forbidden
in the next iterations by assigning a tabu status to the attribute. Their study is
extended in the paper of Lalla-Ruiz et al. [54], where an elite set of solutions is
created with an idea to improve the effectiveness and efficiency of the tabu search.
Also, an additional neighborhood (based on swapping) is developed, according
to which vessels allocated to either the same or different berths can exchange
their temporal and/or spatial position. New starting point for TS is generated by
path relinking algorithm. Procedure based on path relinking is iteratively used
to bring initially generated solution closer to the elite solution. The elite set of
solutions is updated if new best solution is found.

The Tactical Berth Allocation Problem (TBAP) aims to allocate incoming ships
to berthing positions and to assign quay crane profiles to them. Quay crane
profiles represent the number of quay cranes operating on the vessel during the
working shifts associated to the allocated handling time. Housekeeping incor-
porates containers movement before the arrival of the outgoing vessel from their
current yard positions to the new ones, which are closer to the outgoing berth.
Giallombardo et al. [24] solve discrete TBAP with the aim to minimize the house-
keeping costs generated by transshipment flows between ships and to maximize
the total value of chosen quay crane profiles. The problem is solved in two phases:
identification of QC profiles of the vessels followed by berth allocation based on a
given QC assignment. Authors also adapt TS presented in Cordeau et al. [14] by
forming a new procedure where the yard-related housekeeping costs, generated
by the flows of containers exchanged between vessels, have to be minimized. TS
presented in paper by Lee et al. [58] is applied to large container transshipment
hub with multiple terminals where the aim is to minimize total intra-terminal and
inter-terminal container flow handling cost. Authors provide hierarchial solution
of the terminal and yard allocation problem. TS is integrated in the heuristic
procedure used to determine container flow in storage yards. Storage area is
observed as a two dimensional network with limited capacity. The TS algorithm
determines an appropriate loading sequence onto the network. The disruption
management problem of berth allocation is also successfully solved by TS. Some
unforseen problems can make impact on planned schedules and thus, the initial
plan becomes infeasible and needs to be modified. Zeng et al. [90] combined TS
with local rescheduling method to solve problems locally where unwanted ef-
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fect occurred, first in small time and space window, and afterwards, in extended
windows until the entire planning horizon was considered.

3.2. Greedy Randomized Adaptive Search Procedure
Greedy Randomized Adaptive Search Procedure (GRASP) is a metaheuristic

algorithm that consists of two phases: Greedy Randomized Adaptive phase where
solution is generated and local search used to improve generated solution. Those
two phases alternate until stopping condition is fulfilled. GRASP is introduced
by Feo and Resende [21]. In the first phase, greedy algorithm is used to make the
decision about the next step in solution construction. Algorithm always chooses
actions that look best at the moment, resulting in solution close to the optimal
one. Detailed algorithm description, its extensions and applications can be found
in Resende and Ribeiro [69].

Two versions of GRASP are developed in Lee et al. [56] for dynamic contin-
uous BAP, aiming to minimize the total weighted flow time, i.e. to minimize
the sum of weighted turnaround times for each incoming vessel, where weight
indicates the degree of vessel’s importance. The first one constructs the initial
solution based on first-come-first-pack rule, while the second has no limitations.
In the first version of GRASP, two local search procedures are implemented, the
first, based on swapping adjacent vessels in the list, and the second, involves A∗

like tree search procedure. The second version of GRASP exploits the same idea,
but allows that any two vessels can be swaped. The authors of Salido et al. [74]
developed an integrated approach based on GRASP for container stacking prob-
lem and BAP independently, in which objective function minimizes waiting time
of vessels. In Salido et al. [75], authors proposed a decision support system for
container terminals. They additionally considered the Quay Crane Assignment
Problem (QCAP) by integrating it with BAP, and proposed a GRASP technique as
a solution approach. BAP and QCAP that minimize total waiting time of vessels
is considered in Rodriguez-Molins et al. [72]. A dispatching rule prioritizes all the
jobs (vessels) that are awaiting for processing on a machine (berth). The authors
designed GRASP that constructs initial valid solution by randomly choosing ves-
sels from the restricted candidate list (obtained by taking into account greedy
function value and random degree parameter value). Local search procedure is
guided by dispatching rule based on the order of the vessels according to their
berthing times. The neighbor of current schedule is obtained by interchanging
two randomly selected vessels in the dispatching rule.

3.3. Squeaky Wheel Optimization
Squeaky Wheel Optimization (SWO) was proposed in Joslin and Clements

[43] as a nonsystematic search technique for solving a wide range of optimization
problems. SWO uses greedy techniques to construct an initial solution. This
phase is followed by inspection of produced solution for promising points where
the initial solution can be possibly improved, such that objective function value is
improved. Detected points are used to define priorities and order of constructive
moves for the next step of the greedy algorithm.
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Simultaneous optimization of tactical BAP and QCAP for transshipment hubs
is presented in Zhen et al. [92]. Authors use SWO to solve large-scale realistic
instances. Since SWO obtains new solution from the previous one by swapping
only adjacent vessels and thus, moving high-cost value vessels to the front of
the lists, the idea of Zhen et al. [92] is to combine SWO with critical-shaking
neighborhood search. This method chose predefined number of vessels with the
highest cost value and randomly shakes the priority of them to help sequences
escape from the local optimum. Following earlier study on integrated BAP [63],
the QCAP and the Quay Crane Scheduling Problem (QCSP) are considered in
Meisel and Bierwirth [64]. The authors incorporate SWO in the phase of berth
allocation and crane capacity assignment since it gave better results than TS.

SWO is also used to tackle dynamic hybrid BAP [84]. The initial solution for
berthing assignment is obtained by the first come-first served ordering of the calling
vessels. At the end of iteration, new priority is calculated based on current service
time of vessels. The vessel with particular priority is allocated to the berths that
minimize total service and waiting time of vessels after all vessels with higher
priority have already been allocated. Algorithm moves vessels with larger total
service and waiting time to the start of priority list enabling improvement of their
service. Extensive experiments based on real bulk port data showed that heuristic
method used in [84] can find near optimal solutions for larger problem instances.

3.4. Variable Neighborhood Search
Variable Neighborhood Search (VNS) is a simple and effective metaheuristic

method based on local search procedure [35, 65]. The basic idea of VNS is the sys-
tematic change of neighborhoods within a descent phase to find a local optimum,
and also in the perturbation phase to escape from the corresponding valley. VNS
has been widely used to address combinatorial and global optimization problems
[35].

VNS has been applied to minimum cost discrete BAP in Hansen et al. [36].
The deterministic variant of VNS, called Variable Neighborhood Descent (VND),
is used as a local search, and it uses three neighborhoods. Or opt neighborhood
selects one, two or three vessels and inserts them between any two other vessels
handled at the same berth. The second neighborhood exchanges the schedule of
two ships served at different berths, while the third removes the selected vessel
from the berth and tries to insert it somewhere else. Two nested neighborhoods
are used in shaking phase. In the first one, for two randomly selected vessels, their
berths and order of arrival are interchanged. In the second, a randomly selected
vessel is removed from the set of handling vessels on current berth, and it is added
to the set of vessels of the randomly selected berth in the most appropriate order.
VNS from Hansen et al. [36] showed good results on all test instances and almost
always reached optimum. It also outperformed genetic algorithm and memetic
algorithm on the given set of instances.

Minimum cost hybrid BAP is considered in Davidović et al. [16] and solved
by VND. Three types of neighborhoods, based on sequence pair solution repre-
sentation, are used in VND environment. Sequence pair involves two types
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of permutations to describe vessels positions in space-time diagram. Based on
the obtained initial solution, algorithm identifies a group of vessels that are not
allocated to preferred berthing positions, and tries to find better allocation for
each vessel from that group. In this phase, three neighborhoods are examined:
changing position of the vessel in the first permutation, changing position of the
vessel in the second permutation and finally, all possible rearrangements in both
permutations.

3.5. Simulated Annealing
Annealing of solids is a natural process that occurs when solids are heated

and then slowly cooled. Simulated Annealing (SA) algorithm developed by
Kirkpatrick et al. [48] simulates small movement of atoms with resulting energy
change. SA efficiency depends on a few parameters such as initial temperature,
cooling rate and temperature length which usually represents the size of neighbor-
hood of a solution. A comprehensive review of SA-based optimization algorithms
is given in Suman and Kumar [77].

Kim and Moon [47] studied continuous BAP where cost of the non-optimal
berthing location and cost of tardiness have to be minimized. They use so called
x-clusters and y-clusters (set of vessels-rectangles whose vertical or horizontal sides
are in contact) and define them as stable if the cluster can not be moved along x-axis
or y-axis. Stability of the cluster is used to improve the quality of the generated
solution. Dynamic discrete BAP is solved in de Oliveira et al. [18] by combining
clustering search method and SA for solutions generation, where the objective
function minimizes the weighted sum of service times. At each temperature,
current solution is sent to the clustering search. Three different rearrangements
of vessels are used to define the neighborhood of the solution: the reorder ships,
reallocate ships, and change ships. In order to ensure good diversity among the
generated consecutive solutions, vessels are chosen randomly, and one of the
three reallocation types is applied. The uncertainty of vessel arrival delay (due to
weather conditions, adverse sea, delays at previous port, etc.) and handling time
is taken into account in the paper of Xu et al. [87], resulting in so-called continuous
robust BAP. Authors described useful properties of the optimal solution and used
them to reduce the solution space. The solution space is divided in subsets and
each one is represented by a sequence of vessels. In each subset, branch & bound
technique is applied to decode the optimal solution of the subset, while SA is
used to efficiently explore the sequence space. Zhen et al. [93] studied deviation
of vessels’ arrival time and operation time as uncertainty factors. The objective
is to minimize the cost of the tactical BAP and the expected value of the recovery
costs. Integrated dynamic continuous BAP with water dept constraints and QCSP
is solved in Elwany et al. [20]. Authors define vessels priority list to determine the
order in which they should be allocated. Higher priority is given to large vessels
and to those with larger expected finishing time values. SA is used to explore the
space of priority lists where the neighborhood is created by interchanging two
randomly chosen adjacent vessels in the priority list. When feasible solution is
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constructed, spatial and temporal shifts are applied with the aim to produce better
quality solutions.

3.6. Particle Swarm Optimization
Kennedy and Eberhart [46] proposed Particle Swarm Optimization (PSO) as

a global optimization technique, based on bird flocking phenomenon. PSO starts
with an initial pool of particles which are distributed over some search space.
Each particle calculates objective function value at its current position, and has
to choose a new position in the search space, based on the current position and
on its previous best positions. The movement is also influenced by positions of
one or more members of a pool, and may undergone some random perturbations.
Detailed survey on modifications, hybridizations, and applications of PSO can be
found in Zhang et al. [91].

PSO was used for the first time as a solution approach to BAP in Ting et al.
[82]. Authors investigated dynamic discrete BAP and treated it as vehicle rout-
ing problem with time windows. In their representation, berths are considered
as vehicles, vessels are observed as customers, while a berthing sequence at a
particular berth corresponds to a vehicle route. PSO is used to search through
the solution space and after each PSO iteration, local search procedure is applied
only to the best found particle, due to the time complexity of the LS procedure.
Solution of BAP is represented as array of cells, with the length that is equal to the
number of vessels. Each cell contains real number from a uniform distribution in
the interval of (0,NumberO f Berths) which guarantees that the decision variables
are in the feasible region.

3.7. Bee Colony Optimization
Bee Colony Optimization (BCO) is a population based optimization technique

inspired by the foraging principles of honey bees. Detailed description of the BCO
algorithm steps can be found in Davidović et al. [17]. BCO is capable to efficiently
solve hard combinatorial optimization problems and it has been applied to the
variety of transportation, location and scheduling problems [80].

The only study in the literature that applies BCO to BAP is Kovač [51]. The
author considers static Minimum Cost Hybrid BAP with the aim to minimize
costs of positioning, speeding up or waiting, and tardiness of completion for
all vessels. To enhance the performance of the constructive variant of the BCO
algorithm, three improvement techniques are proposed. The first is applied to
each complete solution obtained after an iteration of the algorithm is completed.
The second and the third improvement techniques are applied several times
through the algorithm’s run only on the current global best solution. The results
presented in Kovač [51] showed that the developed improvement techniques have
huge impact on the performance of the proposed algorithm.

3.8. Ant Colony Optimization
Ant Colony Optimization (ACO) is a metaheuristic technique proposed by

Colorni et al. [13] and it follows the behavior of ants in their attempt to find
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optimal path from nest to food source. The probability that ant chooses one path
depends on pheromone level laid on that path. To increase search randomness
and exploration of new regions it is assumed that pheromone is evaporating over
time. Algorithm overview and the recent advances can be found in [19].

A multi-objective multi-colony ant algorithm is used in Cheong and Tan [11]
to solve BAP, where total service time of vessels and total delay in the departure
of vessels are minimized. Groups of ants are used to search for a single solution
and each ant is responsible for the schedule of one berth in the solution. ACO
minimizes total service time and total tardiness of vessels. Elitist strategy is em-
ployed in this ACO to intensify search around best found solutions. In addition,
algorithm use more heterogenous ant colonies which differs in pheromone matrix
and in some other ACO parameters.

3.9. Evolutionary Algorithms
Evolutionary algorithms (EA) are generic population-based metaheuristic op-

timization algorithms based on some nature phenomenons, such as recombina-
tion, selection, mutation, and reproduction [2]. Each EA solution is mapped onto
a chromosome which consists of genes. Chromosomes quality is evaluated and
the fittest are selected to survive in the next generation. More details about EA
can be found in [89].

Cheong et al. [10] develop multi-objective EA (MOEA) to solve variant of
multi-objective BAP with the aim to fulfill both interests of port and ship operators
by concurrently minimizing three conflicting objectives of makespan, number of
crossings and waiting time. Waiting time is reduced for each ship in such a way
that it is as closest as possible to the first-come-first-serve policy. MOEA uses
fixed length individuals and crossover as well as mutation operator. Decoding
scheme is based on assignment order instead of mostly used berth order, in cases
when ships can berth only at the same time or later than preceding ships. Authors
showed effectiveness of assignment order (ships are placed in the feasible leftmost
berthing space with earliest berthing time) in optimizing the usage of berth space.

In Cheong et al. [12], a multi-objective EA that incorporates the concept of
Pareto optimality is applied to the multi-objective BAP. Minimization of the port
makespan, the total waiting time incurred by vessels and degree of deviation
from a predetermined priority schedule are considered. To solve this problem,
the EA incorporates local search, a hybrid solution decoding scheme, and an
optimal berth insertion procedure. A fixed-length chromosome representation
with length equal to the number of berths is used. A list of served vessels on
berth is associated to each berth. Local search involves sorting of vessels on
randomly selected berth based on vessels’ priority. The set of obtained solutions
is decoded and ranked based on the Pareto ranking scheme, and the poorly
ranked solutions are removed from the population. To decode a solution, authors
used two different decoding schemes: berthing order and assignment order, and
examined their impact on solution quality. Crossover operation randomly selects
berths in both parents and exchanges their associated vessel lists. In that process,
some vessels can be missing, and thus, they have to be inserted on randomly
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chosen berth. The probability that a ship is inserted into a particular berth is
inversely proportional to the handling time of the ship at the berth.

Karafa et al. [44] treated dynamic discrete BAP with stochastic vessel handling
times and known probability distributions. The objective is to minimize risk and
total service time. Authors proposed calculation of risk measure for a given berth
schedule based on probability distributions. They adopt a multi-population EA
with integer chromosome representation and four mutation operators: insert,
swap, scramble, and inversion. EA is combined with Post-Pareto simulation
used to select one non-dominated solution from the Pareto front solutions. The
selected solution represents the schedule to be implemented. Applied Post-Pareto
simulation is based on simple Monte Carlo procedure.

In Kovač et al. [52], an EA-based optimization method is developed for solving
the static Minimum Cost Hybrid Berth Allocation Problem (MCHBAP) with fixed
handling times of vessels. The main problem one faces when dealing with the
MCHBAP is a large number of infeasible solutions. In order to overcome this
problem, the EA implementation proposed in Kovač et al. [52] is adapted to the
problem and involves four types of mutation operator but no crossover operator.
Two different optimizations where developed for the chosen individuals: the first
one allows changing the associated berth of a vessel, while the second performs
local search within berth and allows only perturbations of the vessels’ order within
the chosen berth.

3.10. Genetic Algorithms
GA is an adaptive, global search technique that utilizes concepts of natural

adaptation and selective breeding of organisms [38]. GA works with a population
of individuals, each representing a possible solution to a given problem. Each
individual is represented by a genetic code, a string of characters (genes) from
some alphabet. After decoding, a fitness value is assigned to each individual,
which measures the individual’s quality in the population. Genetic operators:
selection, crossover, and mutation are iteratively applied until a certain stopping
criterion is satisfied and the best individual of the last generation is reported as
the final solution to the considered problem. An overview of basic and advanced
GA techniques for solving various NP-hard optimization problems can be found
in Bäck et al. [3, 4], Reeves [68], Talbi [79].

Golias et al. [26] use the concept of time windows to solve dynamic discrete
BAP by GA. The objective is to simultaneously minimize the cost from late vessels
departure and maximize the benefits from vessels departure before and within
the requested time window. To make problem more realistic, handling time
is influenced by the berthing position. Theofanis et al. [81] proposed GA for
medium to large instances of dynamic discrete BAP that is independent from the
objective function. They applied the proposed GA to minimize the total weighted
service time when vessels may have various service priorities. GA from Theofanis
et al. [81] does not use crossover because of large number of produced infeasible
individuals. Before selecting the next generation, internal optimization phase is
applied to the randomly selected number of feasible individuals. Branch and
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bound algorithm reassigns ships allocated to each berth while minimizing the
total weighted service time for each ship. However, optimization phase is time
consuming if the number of berths is larger than 5.

Imai et al. [42] showed that genetic algorithm outperforms the implemented
subgradient optimization in the case of two-objective BAP that minimizes weighted
delay in ships departure and total service time. These two objectives are conflict-
ing, and GA is used to identify non-inferior solutions. GA showed dominance
especially in congested terminal situations with a frequent ship calling and long
ship handling time.

Multi-user container terminal with indented berths for fast handling of mega-
container ships is addressed in the paper of Imai et al. [41]. It is assumed, that
several small ships can be served simultaneously at a berth. Authors showed
that the indented terminal serves the mega-ship faster than the conventional
terminal. On the other hand, the total service time for all ships was longer than
the one in the conventional terminal. In the developed GA, each chromosome is
represented as a string of characters with the short string representation equal to
the number of vessels enlarged by the number of berths minus 1. A chromosome
representation simply defines the relationship among berth-ship-service order.
The considered model minimizes total service time, but instead of classical fitness
function, defined as the reciprocal of the objective function, authors use sigmoidal
function and experimentally confirm that it gives better results.

Han et al. [33] considered a variant of BAP with the aim to minimize the total
turnaround time (i.e. the time it takes between the arrival of a vessel and its de-
parture from a port) and to improve the terminal operation efficiency. Metropolis
sampling process is incorporated in GA instead of mutation operator, and it is
applied to each individual. The role of Metropolis sampling process is to avoid
local optimum trap and to enlarge search space. It avoids the difficulty of selecting
mutating probability and results in better search behavior. One-point crossover
is applied to randomly selected individual and on the current best individual. In-
feasible offspring may be produced, which implies that adjustment of produced
new offspring has to be performed.

In Arango et al. [1], GA is combined with simulation technique and applied
to discrete BAP in the case of Seville port. The proposed hybrid system uses
first-come-first-served allocation strategy for vessels. GA is used to minimize
the total service time of vessels. 20% of individuals in current population is
affected by mutation while the rest of 80% is influenced by crossover operator.
The results of the case study showed that the proposed hybrid system improved
performance of the Seville port and reduced averige handling times by 14%,
while the maximum handling times are reduced by 21%. The minimization of
the berthing location deviation, total penalty and energy consumption of quay
cranes is studied in Chang et al. [8]. Combination of BAP and QCAP is presented
and solved by hybrid parallel GA. Initial population is generated by heuristic
algorithm, while GA is used to find sub-optimal solution for BAP and QCAP.
Liang et al. [59] introduced quay crane dynamic assignment in BAP and proposed
a multi-objective hybrid GA approach with a priority-based encoding method.
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Objective functions minimize waiting and delay time of vessels, handling time
of containers and crane movements. GA is performed in four stages: creating
a ship sequence (based on vessels priority), allocating ships to berths, assigning
quay cranes to ships, and designing berth and quay cranes scheduling. A hybrid
multistage operation-based GA with a priority-based encoding method is studied
in Liang et al. [60]. The proposed GA is dealing with ship-to-ship transshipment
and tries to minimize the sum of the handling and waiting time of ships, tardiness,
and the waiting time of transshipment (it occurs when the arrival interval between
the two ships is too long). Algorithm starts with procedure that decides whether
or not direct transshipment service should be made between ship pairs, and it is
followed by the four-stage algorithm presented in Liang et al. [59].

Golias et al. [27] formulated discrete and dynamic BAP as a multi-objective
mixed integer optimization problem. The length of individual is equal to the
product of the number of berths and the number of vessels. To preserve a diversity
of different solutions in the Pareto Front, a multi-population multi-selection GA
approach is used. Mutated population is copied into two sets at each iteration.
Based on the Pareto Front optimal set, first duplicate is used to select parents for the
next generation. Second duplicate represents elitist set used to obtain improved
values of each objective function within the Pareto Front. Next generation of
individuals is obtained by combining both obtained sets.

In the case of dynamic discrete BAP, Golias and Haralambides [29] concur-
rently minimize vessels’ tardiness and waiting time and maximize the premium
from vessels’ early departure. To solve this model, authors used GA previously
presented in Golias et al. [31]. Integer representation of individuals with two
layers is used. First layer consists of arrival times, while the second one describes
service order of vessels at each berth. In each iteration, all four mutation opera-
tors (insert, swap, scramble, invert) are applied, but in later generations, weight
is shifted from the invert and scramble to the insert and swap mutations. By this
strategy, large jumps are allowed in the initial iterations, followed by intensive
search of smaller regions.

Hierarchial optimization approach for dynamic discrete BAP is studied in
Saharidis et al. [73]. Two conflicting objective functions are used to define two
levels of hierarchy and the set of the decision variables is split in two subsets. To
solve this problem, authors designed GA based on the k-th best algorithm for the
case where multi-objective functions are considered in the upper level. Upper
level of hierarchy is solved only once by GA, instead of sequentially together
with lower level in each algorithm iteration. Obtained GA solutions are sorted
according to their quality, and sent to the lower level one by one, without solving
the upper level problem again. Similar approach is studied in Song et al. [76] by
bi-level programming model. BAP is solved by GA, as upper level, while QCAP
is resolved to the optimality by branch & bound method in the lower level.

Zhou et al. [95] and Zhou and Kang [94] deal with dynamic discrete BAP,
which minimizes total waiting time of calling vessels, in which arrival times and
handling times of vessels are considered as stochastic parameters that follow nor-
mal distribution. Based on the characteristics of the optimal solution, reduced
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search space GA is developed. Individual is represented with two sub-strings. The
number of considered vessels determines the length of sub-strings. The first sub-
string holds information about the assigned berth while the second one defines
orders for each ship at each berth. Individuals are encoded based on vessels’
arrival time and an Order Limit Number. By this encoding method, reduced
search space is obtained. A lamda-optimal based heuristic for dynamic discrete
BAP is used to guarantee local optimality at a predefined neighborhood in paper
of Golias et al. [28]. The authors propose GA for solving medium to large scale
instances in order to reduce CPU time. The quality of GA solution is examined on
two often-used berthing demands: the minimum service time and the minimum
weighted service time. Fitness function value is inversely proportional to the cal-
culated objective function value of the produced chromosome. Authors combine
elitism and semi-greedy strategy by incorporating roulette wheel selection.

Nested loop-based evolutionary algorithm is developed in Yang et al. [88] with
the aim to investigate interaction between BAP and the QCAP and the feedback of
both sub-problems. Two inner loops and one outer loop are used in the algorithm.
Inner loops are implemented as GAs and they produce feasible BAP solutions and
corresponding QCAP, respectively. Transfer of values of interfering variables is
implemented through outer loop. Outer loop returns produced output as a new
input for the first inner loop.

Simultaneous robust BAP and QCSP is studied in Han et al. [34]. Opposite
to study of Zhou and Kang [94], authors used probability density distribution to
describe stochastic feature of the problem. GA is used to find robust solutions
to the problem. A simulation based procedure with Monte Carlo sampling is
evaluating the quality of each chromosome. Bi-objective optimization model for
robust BAP is defined in Golias et al. [30], in the case of uncertain vessel arrival
and handling times. Two objective functions are minimized: average total vessel
service time and the range of the total service time. Initial population is created
by first come first served with early start and first come first served with early finish
strategies. Objective function of each individual is calculated with minimum
search and maximum search heuristics. On each chromosome from the current
Pareto front, four mutation operators are applied, producing four offspring. One
point crossover operator is also applied to a randomly chosen chromosome from
the current Pareto front. All produced offspring is used to create a new Pareto
front.

Robust dynamic continuous BAP and QCSP are studied in Rodriguez-Molins
et al. [71]. To introduce robustness within BAP, authors use buffer times, that are
maximized to absorb possible incidences or breakdowns, while the total service
time of the incoming vessels is minimized.

Tactical BAP is studied in Lalla-Ruiz et al. [53] and a biased random key GA is
proposed as solution approach. Chromosomes are vectors whose length is twice
the number of vessels. Vessels’ berthing order is defined by the first part of the
chromosome. Second part holds information on assignment of quay crane profiles
to the vessels. Random keys are integrated in GA to cope with infeasibility of
the offspring. Random key is a real number from the interval [0,1) and each gene
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in chromosome consists of one random key value. By using biased random key,
GA population is divided in two sub-sets: elite set and non-elite set. Crossover
operator selects one parent from each subset and they exchange genetic material.
Offspring will have greater probability of inheriting the keys from its elite parent.

Continuous BAP is efficiently solved by GA in [22]. Authors used integer
representation of individuals with the length of chromosome equal twice the
number of vessels. The first half of a chromosome represents handling times
while the second half shows vessels’ berthing locations. One point crossover
operator is applied to randomly chosen parent individuals until the number of
generated offspring is 90% of the current population. Mutation is used on 9% of
individuals of the current population.

3.11. Memetic Algorithms
Premature convergence is inherent characteristic of GA. Memetic Algorithm

(MA) is designed in such a way to avoid that unwanted property. It is presented
by Moscato and Norman [66] and it applies operators such as combinations and
local improvements on a set of initial solutions to create new solutions. Basically,
MA explores the neighborhood of a given solution. Each MA generation consist
of four sequential steps: selection of parents, combination of parents for offspring
generation, local improvement of offspring, and the update of the population.
Various aspects of MA, algorithm description and detailed overview can be found
in [67].

Continuous BAP is solved in Mauri et al. [62] by MA, while SA is used as a local
search technique. Mutation operator in proposed MA is based on three proce-
dures: Re-order vessel (swap two randomly selected vessels from the same berth),
Re-allocate vessel (randomly selected vessel from a berth is inserted on random
position at another berth), and Swap vessels (two randomly selected vessels from
randomly selected berths swap their positions). One randomly selected mutation
procedure is also used in SA. Computational results show that MA produced so-
lutions with small gaps from the best-known values in low computational times.

In Lee and Jin [57], MA is successfully applied to BAP for cyclically visiting
feeders, and allocating storage yard space to the transshipment flows between
mother vessels and feeders. The aim is to minimize the total moving distance of
all flows between the quayside and storage yard and to minimize the gap between
the highest and the lowest workload. The authors proposed MA as a combination
of GA and TS. The offspring is created by genetic operators on randomly generated
initial population. TS procedure is used to optimize offspring generated by GA
operators. Based on the solution quality, selection operator chooses individuals
from the current population and the post-optimized offspring to enter the next
generation.

3.12. Partial Optimization Metaheuristic Under Special Intensification Conditions
Partial Optimization Metaheuristic Under Special Intensification Conditions

(POPMUSIC) is based on the idea that problem can be divided into smaller sub-
problems which can be solved to the local optimum. That is why the POPMUSIC
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can be seen as a local search algorithm used in the specific large neighborhood.
It is proposed by Taillard and Voss [78] as a method suitable for solving large
combinatorial problems.

Lalla-Ruiz and Voß [55] use POPMUSIC in the environment of dynamic dis-
crete BAP aiming to minimize the sum of service times. Random-greedy method
is applied to obtain an initial solution, which is divided into number of parts
equal to the number of berths. A sub-problem is constructed based on randomly
chosen part and its nearest parts. The obtained sub-problems are modelled as a
Generalized Set-Partitioning Problem and solved by using CPLEX.

4. SOLUTION APPROACHES SUMMARY AND DISCUSSION

BAP and its variants are recognized as one of the most investigated themes
related to the marine transportation. This paper classifies 53 relevant papers from
recent literature, published after 2003. From Fig. 2, it can be seen that BAP is
constantly in the focus of the researchers, and that there is emerging trend in the
number of published papers per year.

Figure 2: Number of BAP related papers per year of publication

Table 2 summarizes the examined BAP papers, their classification and some
of the most relevant BAP parameters. In the first column, the variants of BAPs
studied in the papers, labelled in Meisel’s notation, are given. Although, this
notation includes performance measure as the fourth parameter, it is omitted
from Table 2. This is due to the fact that objective functions are described in
previous sections. In addition, in this way, better visibility of groups with similar
papers is achieved. The second column shows the reference to the investigated
paper, while metaheuristic algorithm used as a solution approach to BAP is listed
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in the third column. The last three columns describe BAP dimensions in term
of the number of vessels, number of berths, and the length of the time horizon,
respectively. Some entries related to the number of vessels are denoted by ”inter
arrival time”, which means that the group of vessels is arriving during the unit
of time and their number is usually determined by exponential distribution. In
the case of continuous BAP, the number of berths is not defined, and therefore,
the data in the corresponding column of Table 2 (represented in meters) denote
the length of quays. If some of the BAP’s parameter is not clearly stated in the
corresponding paper, it is marked with * in Table 2.

A variety of BAP versions may be noticed from Table 2. In general, BAP is hard
to solve and very often even metaheuristics may struggle to find a good solution
in acceptable CPU time. Objective function plays significant role in defining
complexity of the BAP, as well as the classification parameters listed in the first
column. For example, it is hard to compare complexity of discrete and hybrid BAP.
Discrete BAP may have some symmetries because vessels can occupy only one
berth, and thus, vessels may be easily reallocated from one berth to another. Also,
already scheduled vessels may be exchanged between two neighboring berths,
while it is not likely to be possible in hybrid BAP. That is the reason for diversity in
the number of considered vessels, berths and length of the time horizon, as it can
be seen from Table 2. As the number of vessels grows and other port dimensions
stay fixed, the density of allocated vessels also grows, which results in the huge
number of infeasible solutions. Therefore, when defining the parameter domain
sets, the authors have to negotiate between the requirements of real-life instances
and good algorithm’s performance.

Many different models are used in the literature to present practical features of
BAP. As it is already mentioned, models can be classified and described by spatial,
temporal, and handling time attributes [5]. Distribution of these parameters based
on the frequency of occurrence in the recent relevant papers is presented in Fig. 3.

Spatial attribute Temporal attribute Handling time attribute

Figure 3: Frequency of BAP variants in the recent literature

Regarding spatial attribute, majority of used models are discrete (44%), fol-
lowed by continuous layouts (26%), while hybrid and draft layouts are considered
in remaining 30% of the examined literature. Even greater difference occurs in
temporal attribute, where 73% of papers are concentrated on dynamic vessel
arrival, while only 8% of models incorporate static vessel arrival. The latest liter-
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Table 2: Metaheursitic solution algorithms for BAP
Problem dimension

Problem Article Solution algorithm # of vessels # of berths Time horizon

disc | stat | pos,QCSP Arango et al. [1] GA 52 2 1 month
Song et al. [76] GA 6 3 *

disc | dyn | QCAP Liang et al. [59] GA 11 4 24 h
Liang et al. [60] GA 11 4 *
Lalla-Ruiz et al. [53] GA 10 to 50 3 to 8 56 h to 108 h
Giallombardo et al. [24] TS 10 to 60 3 to 13 1 to 2 weeks

disc | dyn | pos Golias et al. [27] GA 40 to 80 5 to 10 1 to 2 weeks
Golias and Haralambides [29] GA inter arrival time 5 1 week
Saharidis et al. [73] GA 50 5 to 10 1 to 2 weeks
Golias et al. [30] GA inter arrival time 4 to 5 1 week
Ting et al. [82] PSO 25 to 60 5 to 13 *
[54] TS 25 to 60 5 to 13 600 time units
Golias et al. [28] GA 40 to 80 5 1 to 2 weeks
Golias et al. [31] GA inter arrival time 5 *
Hansen et al. [36] VNS 10 to 200 10 to 20 *
Theofanis et al. [81] GA 20-25 per week 5 1 to 2 weeks
Golias et al. [26] GA 9 2 *
Imai et al. [42] GA 24 4 1 week

disc | dyn | pos, stoch Karafa et al. [44] EA inter arrival time 5 1 week
disc | dyn,due | pos Lalla-Ruiz and Voß [55] POPMUSIC 40 to 55 5 to 7 600 time units

Cordeau et al. [14] TS 25 to 35 5 to 10 *
disc | dyn, due | pos de Oliveira et al. [18] SA 60 13 *
disc | dyn, due | f ix Lee and Jin [57] MA 15 to 40 3 to 8 *
disc, draft | stoch | QCAP, stoch Han et al. [34] GA 34 to 88 4 to 5 *
disc, draft | stoch, due | QCAP, stoch Zhou and Kang [94] GA 25 to 100 4 *
disc, draft | dyn | pos Han et al. [33] GA 7 2 *
disc, draft | dyn, due | pos Zhou et al. [95] GA 25, 50, 75, 100 5 to 8 *
cont | dyn | QCAP Chang et al. [8] GA 40 4 *

Yang et al. [88] GA inter arrival time 800 m to 1600 m 1 week
Rodriguez-Molins et al. [71] GA 5 to 20 700 m *
Salido et al. [74] GRASP 20 * *
Salido et al. [75] GRASP 5 to 20 * *
Zeng et al. [90] TS 26 1202 m 7 days

cont | dyn | pos Ganji et al. [22] GA 3 to 30 250 m to 3500 m *
cont | dyn | pos,QCAP Meisel and Bierwirth [63] SWO 20 to 40 1000 m 1 week

Meisel and Bierwirth [64] SWO 40 1000 m 168 h
cont | dyn | QCAP,QCSP Rodriguez-Molins et al. [72] GRASP 5 to 20 700 m *
cont | dyn | fix Kim and Moon [47] SA 7 to 40 1200 m 72 h

Xu et al. [87] SA 16 to 30 1200 m 2016 time units
Lee et al. [56] GRASP 5 to 200 80 m to 100 m *

cont | stoch | stoch Zhen et al. [93] SA 8 to 40 * *
cont, draft | dyn | pos,QCAP Elwany et al. [20] SA 20 to 40 1000 m 168 h
cont | cycl, due | QCAP Zhen et al. [92] SWO 15 to 60 500 m to 2000 m 1 week
hybr | stat | fix Kovač et al. [52] EA 21 to 35 8 112 h

Kovač [51] BCO 21 to 35 8 112 h
Davidović et al. [16] VNS 21 to 35 8 112 h

hybr | dyn | pos Mauri et al. [62] MA 60 13 *
Lee et al. [58] TS 15 to 40 3 to 4 6 to 21 time units
Imai et al. [41] GA * 2 *

hybr, draft | dyn | pos Cheong et al. [12] EA 100 to 200 5 to 10 *
Cheong and Tan [11] ACO 100 5 *
Umang et al. [84] SWO 10 to 40 10 to 30 150 h
Cheong et al. [10] EA 100 5 *

ature introduced cyclic and stochastic arrival of vessels. Cyclic arrival assumes
that vessels are coming in the port periodically, in fixed time intervals, while in the
stochastic case, arrival times are based on some stochastic parameter. Handling
time is mainly shaped by the assigned berthing position (60%). On the other hand,
quay crane resources (QCAP+QCSP) influence vessels’ handling times in 28% of
the examined papers. Stochastic attribute in handling time is newly introduced
and appears in 6% in recent papers. The simplest case involving fixed handling
times is considered only in 6% of models.

Since BAP is proven to be NP-hard problem, it is expected that algorithms
based on metaheuristic approaches dominate in the literature. The left side of
Fig. 4 shows metaheuristics that are applied most frequently to BAP and its vari-
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ants. On the right side of Fig. 4, those metaheuristics are grouped based on their
main characteristic. Genetic algorithms take part in 43% of BAP related papers,
followed by 8% of evolutionary algorithms. Tabu search and simulated annealing
are included in 18% of solution approaches. Surprisingly, swarm intelligence is
rarely used, i.e., in only 6% of algorithms. Evolutionary algorithms dominate
with more than 55%. Approaches based on local search are proposed in 32% of
BAP related papers.

Figure 4: Metaheuristic methods for solving BAP

5. FUTURE TRENDS AND PERSPECTIVE

There are many topics that could be addressed by future research mainly
arising from the variety of BAP models. Metaheutistic algorithms are promising
tools as they can handle various features of the problem with a great degree
of flexibility. On the other hand, it is difficult to make a systematic evaluation
of these algorithms due to the strong heterogeneity of BAP models. However,
a comparative analysis of algorithms is needed to assess general suitability of
different approaches to BAP. To make this process easier, it is necessary to create
commonly accepted BAP benchmark instances that will enable authors to evaluate
their approaches. Unfortunately, the current benchmarks are either too general,
or they are only used in small segments of research field. Defining benchmark
instances for general berth allocation problems, that will meet all required criteria
for good benchmark set is one of the many open topics in this research area.

The literature overview revealed diversity in mathematical models and for-
mulations for different variants of BAP, thus the comparison of these models with
each other becomes indispensable. Models assessment is necessary to identify the
most convenient features to be addressed in the forthcoming literature. Majority
of the models applied to BAP related literature consider deterministic parameters,
while stochastic and uncertain cases are more realistic. Future research should
incorporate stochastic parameters in solution methods and robust optimization
models.

Even if it is obvious that metaheuristic approaches are necessary when solving
BAP, exact methods, especially those based on combinatorial optimization and on
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sophisticated optimization techniques, are fruitful field for research. It seems to
be the promising direction to integrate some bounding techniques in the existing
exact and relaxation methods into integer programming. BAP is a highly dynamic
system that has influence on other stages of loading/unloading containers and
other weights in the port. That is why even small deviations from optimal vessel
allocation can dramatically raise transportation cost and negatively affect port
economy, implying that developing of exact methods is still important.

Metaheuristics may fail in producing good quality solutions or solutions in
acceptable CPU time in the cases of large-size BAP instances. Therefore, hybrid
techniques, especially hybrid metaheuristics can provide solution for these in-
stances. Also, hybridization of metaheuristics with exact solvers can still attract
more interest. One hybridization strategy is that metaheuristic is used to quickly
give good starting solution for the exact method. On the other hand, an exact
method may be used as a tool to accurately solve some parts of complex BAP
problem, especially in the case when a problem can be decomposed into smaller
subproblems.

The literature overview made it clear that GA is a dominating metaheuristic
with good results in various BAP cases. Swarm intelligence based algorithms were
not in focus of researchers until now, but it seems that they can be easily adapted
to efficiently solve BAP, particularly due to their property to be better controlled
than GA. Implementation of the solution approaches to BAP can be naturally
parallelized, especially in the case of the discrete layout, because berths serve
vessels independently to each other. Also, in many cases, BAP can be decomposed
into smaller problems, which may be solved concurrently. In this light and due
to the previously described BAP characteristics, it is evident that parallelization
of metaheuristics could be a promising direction for future research.

6. CONCLUSION

The speed of finding high-quality solution is of crucial importance in designing
an efficient and reliable decision support system in container terminal. Berth
allocation problem (BAP), the Quay Crane Assignment Problem (QCAP), and the
Quay Crane Scheduling Problem (QCSP) are highly interrelated and have the
largest impact on container terminal efficiency [15, 22, 40]. Due to this fact, BAP
is one of the most treated optimization problem in operations and transportation
research literature. In the last decade, the number of scientific papers from this
field has evidently been increasing.

This paper gives an overview of the most prominent literature related to the
BAP emphasizing papers that propose metaheuristic approaches to BAP. There
are very few exact solution methods to BAP, and they can deal only with small
size instances. Due to the fact that BAP is proven to be NP-hard, it is reasonable to
use metaheuristic methods to solve BAP to near optimality in short computational
time. Variety of metaheuristic techniques are applied to different types of BAP, but
the majority of authors prefers genetic algorithm. GA gives good results in almost
all cases of BAP. Its popularity and advantage over other methods probably come
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from the fact that GA is easy to implement and can be competently applied to the
container terminal optimization problems.

The absence of objective method for comparing solutions quality of meta-
heuristic techniques is apparent, and thus, benchmark instances that cover differ-
ent types of BAP are needed. For further enhancement of metaheuristic methods,
their parallelization, hybridization, and combination with exact methods seem to
give encouraging signs.
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