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submatrix of the Jacobian is nonsingular on some compact set. 
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1. INTRODUCTION 

The nonlinear complementarity problem (NCP), as described in the next 
section, is a framework which can be applied to many important mathematical 
programming problems. The Karush-Kuhn-Tucker (KKT) system for the convex 
optimization problems is a monotone NCP. Also, the variational inequality problem can 
be formulated as a mixed NCP (see Farris and Pang [6]). The linear complementarity 
problem (LCP), a special case of NCP, has been studied extensively. For a 
comprehensive treatment of LCP see the monograph of Cottle et al. [4]. 

                                                           
* Some results contained in this paper were first published in the author's Ph.D. thesis. Further 
research on this topic was supported in part by Georgia Southern Faculty Research Subcommittee 
Faculty Research Grant. AMS subject classification: 90C05, 65K05. 
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The interior-point methods, originally developed for the linear programming 
problem (LP), have been successfully extended to LCP, NCP, and the semidefinite 
programming problems (SDP). A number of papers dealing with LP and LCP, is 
extensive. Many topics, like the existence of the central path, global and local 
convergence and implementation issues have been studied extensively. Fewer papers 
are devoted to NCP. Among the earliest are the important works of Dikin [5], 
McLinden [19], and Nesterov and Nemirovskii [24]. 

In the series of papers Kojima et al. [14, 15, 13, 16, 17, 11] studied different 
classes of NCP when the function was 0P -function, uniform P -function, or monotone 

function. They analyzed the central paths of these problems and proposed the 
continuation, or interior-point methods to solve them. No polynomial global and/or 
local convergence result were given. 

A number of other interior-point algorithms for monotone NCP has been 
developed, among them Potra and Ye [30], Andersen and Ye [1], Guller [7], Nesterov 
[23], Monteiro et al. [21], Sun and Zhao [31], Tseng [33, 32], Wright and Ralph [35]. 
Polynomial global convergence for many of the algorithms has been proven when the 
function is monotone and satisfies certain smoothness condition. The most general one 
is a self-concordant condition of Nesterov and Nemirovskii [24]. Other conditions 
include the relative Lipschitz condition of Jarre [9], and the scaled Lipschitz condition 
of Potra and Ye [30]. 

In the linear case, that is for LCP, the above mentioned smoothness conditions 
are unnecessary to prove polynomial global and local convergence of the various 
interior-point methods. Moreover, the convergence results have been proven for more 
general classes of functions than monotone functions. Among others is a *P -LCP 

introduced by Kojima et al. [12]. See also Miao [20], Ji et al. [10], Potra and Sheng [28], 
Anitescu et al. [3, 2]. 

In this paper we study the *P -NCP that generalizes monotone NCP in the 

similar way in which *P -LCP generalizes monotone LCP. This class was introduced 

independently by the authors [18] and Jansen et al. [8]. There are few papers that 
study the class of *P -NCP. Recently Peng et al. [26] analyzed interior-point method for 

*P -NCP using self-regular proximities that they initially introduced for LP and LCP. 

In Jansen et al. [8] the definition of the *P -functions is indirect, it is based on the *P -

property of the Jacobian matrix, while our definition deals directly with the function. 
We also provide the equivalency proof between the two definitions (Lemma 2.1). A 
similar approach is adopted by Peng et al. [26]. 

The second objective of the paper is to prove linear global and quadratic 
convergence of the interior-point method for the *P -NCP. We use a long-step version of 

the homogeneous, self-dual, interior-point algorithm of [1]. In [1] polynomial global 
convergence of the short-step version of the algorithm was analyzed but no local 
convergence result was established. Based on the analysis in [31] and [37], we prove 
that iteration sequence converges to the strictly complementary solution with R-order 
at least 2, while primal-dual gap converges to zero with R-order and Q-order at least 2 
under the following list of assumptions described later in the text: the existence of a 
strictly complementary solution (ESCS), the modified scaled Lipschitz condition of 
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Potra and Ye (SLC), and the nonsingularity of the Jacobian submatrix (NJS). This set 
of assumptions is weaker than the one in [31]. We show that Assumption 3 in [31] is a 
consequence of the scaled Lipschitz condition (Lemma 5.6). 

One more comment is in order. Since most of the smoothness conditions were 
introduced for monotone functions, we have chosen to modify the scaled Lipschitz 
condition of Potra and Ye [30] to be able to handle *P -functions. For the same purpose 

in [8] a different modification of scaled Lipschitz condition has been introduced 
(Condition 3.2) and its relation to some known conditions has been discussed. On the 
other hand, Peng et al. [26] used a generalization of Jarre's relative Lipschitz condition. 

The paper is organized as follows: In Section 2 we formulate *P -NCP. In 

Section 3 we discuss a homogeneous model for *P -NCP and introduce a long-step 

infeasible interior-point algorithm for this model. Global convergence is analyzed in 
Section 4. We end the paper with analysis of a local convergence contained in Section 5. 

2. PROBLEM 

We consider a nonlinear complementarity problem (NCP) of the form 

( ) ( ), ,= ≥ =0 0TNCP s f x x x s , 

where , ∈ nx s R  and f  is a 1C  function : + →n nf R R . 

Denote a feasible set of NCP by 

{( , ) : ( )}+= ∈ =2nx s R s f xFFFF , 

and its solution set by 

* * * * *{( , ) : }= ∈ = 0Tx s x sF FF FF FF F . 

For any given ε > 0  we define the set of ε -approximate solutions of NCP as 

{( , ) : , || ( ) || }ε ε ε+= ∈ < − <2n Tx s R x s s f xFFFF . 

If f  is a linear function 

( ) = +f x Mx q , 

where ×∈ n nM R  and ∈ nq R , then the problem reduces to LCP. The LCP has been 
studied for many different classes of matrices M  (see [4, 12]). We list some: 

• Skew-symmetric matrices (SS): 

( )( )∀ ∈ = 0n Tx R x Mx . (2.1) 

• Positive semidefinite matrices (PSD): 

( )( )∀ ∈ ≥ 0n Tx R x Mx . (2.2) 
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• P -matrices: Matrices with all principal minors positive or equivalently: 

( , ) ( )( ( ) )∀ ∈ ≠ ∃ ∈ >0 0n
i ix R x i I x Mx . (2.3) 

• 0P -matrices: Matrices with all principal minors nonnegative or equivalently 

( , ) ( )( ( ) )∀ ∈ ≠ ∃ ∈ ≠ ≥0 0 and 0n
i i ix R x i I x x Mx . (2.4) 

• Sufficient matrices (SU): Matrices which are column and row sufficient 
− Column sufficient matrices (CSU) 

( ) ( )( ( ) ( ) )∀ ∈ ∀ ∈ ≤ ⇒ =0 0n
i i i ix R i I x Mx x Mx . (2.5) 

− Row sufficient matrices (RSU): M  is row sufficient if TM  is column 
sufficient. 

• *( )κP : Matrices such that 

( ) ( )
( ) ( ) ( ) ,κ

+ −∈ ∈
+ + ≥ ∀ ∈∑ ∑1 4 0 n

i i i i
i x i x

x Mx x Mx x R
T T

 

where 

( ) { : ( ) }, ( ) { : ( ) }+ −= > = <0 0i i i ix i x Mx x i x MxT T , 

or equivalently 

( )
( ) ,κ

+∈
≥ − ∀ ∈∑4T n

i i
i x

x Mx x Mx x R
T

, (2.6) 

and 

* *( )
κ

κ
≥

= ∪
0

P P . (2.7) 

The relationship between some of the above classes is as follows 

* *, ,⊂ ⊂ = ⊂ ⊂ ⊂ = ∅∩0SS PSD P SU CS P P P P SS . (2.8) 

Some of these relations are obvious, like * *( )= ⊂0PSD P P  or *⊂P P , while others 

require a proof which can be found in [12, 4, 34]. 
The above classes can be generalized for nonlinear functions as follows: 

• Monotone functions 

( , ) (( ) ( ( ) ( )) )∀ ∈ − − ≥1 2 1 2 1 2 0n Tx x R x x f x f x , (2.9) 

are a generalization of positive semidefinite matrices (PSD). 

• P -functions 

( , , ) ( ) (( )( ( ) ( )) )∀ ∈ ≠ ∃ ∈ − − >1 2 1 2 1 2 1 2 0n
i i i ix x R x x i I x x f x f x , (2.10) 

are a generalization of P -matrices. A special case of P -function is uniform P -
function with parameter γ > 0  

( , , ) ( ) (( )( ( ) ( )) || || )γ∀ ∈ ≠ ∃ ∈ − − ≥ −1 2 1 2 1 2 1 2 1 2 2n
i i i ix x R x x i I x x f x f x x x . (2.11) 
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• 0P -functions 

( , , ) ( ) ( , ( )( ( ) ( )) )∀ ∈ ≠ ∃ ∈ − ≠ − − ≥1 2 1 2 1 2 1 2 1 20 0n
i i i i i ix x R x x i I x x x x f x f x , (2.12) 

are a generalization of 0P -matrices. 

Below we give a definition of *( )κP -functions generalizing the definition of *( )κP -

matrices. 

• *( )κP -functions 

A function f  belongs to the class of *( )κP -functions if for each , ∈1 2 nx x R  the 

following inequality holds 

( ) ( ( ) ( )) ( )( ( ) ( ))κ
+∈

− − ≥ − − −∑2 1 1 2 2 1 1 24
f

T
i i i i

i
x x f x f x x x f x f x

T
, 

where 

{ { ,..., }: ( )( ( ) ( )) }+ = ∈ − − >2 1 1 21 0f i i i ii n x x f x f xT , 

and κ ≥ 0  is a constant. 

• *P -functions 

A function f  is a *P -function if there exists κ ≥ 0  such that f  is a *( )κP -function. 

This is equivalent to 

* *( )
κ

κ
≥

= ∪
0

P P . 

The classes of *( )κP -functions and *P -functions were introduced independently in 

Jansen et al. [8] and first in the author's Ph. D. thesis [18]. Note that the class of 
monotone functions, considered in the most papers about NCP, is included as a special 
case for κ = 0 , i.e. as *( )0P  case. Throughout the paper we assume that the function f  

is a *P -function. 

The following lemma establishes a relationship between *( )κP -property of the 

function f  and its Jacobian matrix ∇f . 

Lemma 2.1.Lemma 2.1.Lemma 2.1.Lemma 2.1. The function f  is a *( )κP -function iff ∇f  is a *( )κP -matrix. 

Proof:Proof:Proof:Proof: Suppose first that f  is a *( )κP -function, 

( ) ( ( ) ( )) ( )( ( ) ( ))κ
+∈

− − ≥ − − −∑2 1 1 2 2 1 1 24T
i i i i

i
x x f x f x x x f x f x

T
. 

Since f  is a 1C  function, the following equations hold 

( ) ( ) ( ) ( ),

( ) ( ) ( ( )) ( ).
=

+ − = ∇ +

+ − = ∇ +∑
1

n

i i ij j
j

f x h f x f x h o h

f x h f x f x h o h
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If we denote = −2 1h x x  and if we use the above equations, then the left hand side of 
the above inequality becomes 

( ) ( ( ) ( )) ( ( ) ( ))

( ) ( ),

− − = + −

= ∇ +

2 1 1 2

2

T T

T

x x f x f x h f x h f x

h f x h o h
 

while the right hand side can be written as 

( )( ( ) ( )) ( ( ) ( ))

( ( )) ( )

( ( ) ) ( ).

κ κ

κ

κ

+ +

+

+

∈ ∈

=∈

∈

− − − = − + −

= − ∇ +

= − ∇ +

∑ ∑

∑ ∑

∑

2 1 2

2

1

2

4 4

4

4

i
i i i i i i i

i i
n

ij j i
ji

i i
i

x x f x f x h f x h f x

f x h h o h

h f x h o h

T T

T

T

 

We get 

( ) ( ( ) ) ( )κ
+∈

∇ ≥ − ∇ +∑ 24T
i i

i
h f x h h f x h o h

T
. 

Given u  take ε=h u . The above inequality transforms to 

( ) ( ( ) ) ( )ε ε κ ε
+∈

∇ ≥ − ∇ +∑2 2 24T
i i

i
u f x u u f x u o

T
. 

Dividing the above inequality by ε 2  and taking the limit as ε → 0  we have 

( ) ( ( ) )κ
+∈

∇ ≥ − ∇∑4T
i i

i
h f x h h f x h

T
. 

Hence ( )∇f x  is a *( )κP - matrix. 

To prove the other implication, suppose that ( )∇f x  is a *( )κP -matrix, i.e., the 

above inequality holds. Using the mean value theorem for the function f  we have 

( ( ) ( )) ( )

( )

( ( ) )

( ( ) )

( ( ) ( )).

κ

κ

κ

+

+

+

∈

∈

∈

+ − = ∇ +

= ∇ +

 
≥ − ∇ +   

= − ∇ +

= − + −

∫

∫

∑∫

∑ ∫

∑

1

0
1

0
1

0

1

0

4

4

4

T T

T

i i
i

i i
i

i i i
i

h f x h f x h f x th hdt

h f x th hdt

h f x th h dt

h f x th h dt

h f x h f x

T

T

T

 

Hence ( )∇f x  is a *( )κP - function. 
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In [22] it was shown that the existence of a strictly complementary solution is 
necessary and sufficient to prove quadratic local convergence of an interior-point 
algorithm for the monotone LCP (see also [37]). This implies that we need to make the 
same assumption for the *P -NCP. 

Existence of a strict complementary solution (ESCS)Existence of a strict complementary solution (ESCS)Existence of a strict complementary solution (ESCS)Existence of a strict complementary solution (ESCS)    

NCP has a strictly complementary solution, i.e., there exists a point *( , ) ∈x s FFFF  such 
that 

+ > 0x s . 

Unfortunately, even in the case of the monotone NCP the above assumptions are not 
sufficient to prove linear global and quadratic local convergence of the interior-point 
algorithm, thus additional assumptions are necessary. Therefore, additional 
assumptions are necessary for *P -NCP as well. They will be introduced as they are 

needed later in the text. 

3. ALGORITHM 

In the development of the interior-point methods we can indicate two main 
approaches. The first is the application of the interior-point method to the original 
problem. In this case it is sometimes hard to deal with issues such as finding a feasible 
starting point detecting infeasibility or, more generally, determining nonexistence of 
the solution (it is known that monotone NCP may be feasible but still may not have a 
solution, which is not the case for the monotone LCP). Numerous procedures have been 
developed to overcome this difficulty ("big M" method, phase I - phase II methods, etc.). 
but none of them was completely satisfactory. It has been shown that a successful way 
to handle the problem is to build an augmented homogeneous self-dual model which is 
always feasible and then apply the interior-point method to that model. The "price" to 
pay is not that high (the dimension of the problem increases only by one) while on the 
other side benefits are numerous and important (the analysis is simplified, the size of 
the initial point or solutions is irrelevant due to the homogeneity, detection of 
infeasibility is solved in a natural way, etc.) This second approach originated in [38], 
and was successfully extended to LCP in [36], monotone NCP in [1], and SDP in [29]. 

Motivated by the above discussion in this paper we consider the augmented 
homogeneous self-dual model of [1] to accompany the original NCP. 

( ) ( / ),

( / ),

,
( , , , ) .

τ τ

σ τ

τσ
τ σ

=

= −

+ =
≥
0

0

T

T

HNCP s f x

x f x

x s

x s

 

Lemma 3.1.Lemma 3.1.Lemma 3.1.Lemma 3.1. HNCP is feasible and every feasible point is a solution point. 

The solutions of HNCP is related to the solutions of the original NCP as 
follows. 
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Lemma 3.2.Lemma 3.2.Lemma 3.2.Lemma 3.2. 

(i) If * * * *( , , , )τ σx s  is a solution for HNCP and *τ > 0 , then * * * *( / , / )τ σx s  is a 
solution for NCP. 

(ii) If * *( , )x s  is a solution for NCP, then * *( , , , )1 0x s  is a solution for HNCP. 

The immediate consequence of the above lemma is the existence of a strict 

complementary solution for HNCP with *τ > 0  since in the previous section we 
assumed the existence of a strict complementary solution for NCP. 

Using the first two equations in HNCP we can define an augmented 
transformation 

( / )
( , ) :

( / )

τ τ
ψ τ

τ
+ +

++
 

= →  − 
1 1n n

T

f x
x R R

x f x
. (3.1) 

The augmented transformation has several important properties stated in the following 
lemma. 

Lemma 3.3.Lemma 3.3.Lemma 3.3.Lemma 3.3.    

(i) ψ  is a 1C  homogeneous function with degree 1 satisfying 

( , ) ( , )τ ψ τ = 0Tx x . (3.2) 

(ii) The Jacobian matrix ( , )ψ τ∇ x  of the augmented transformation (3.1) is given by 

( / ) ( / ) ( / )( / )
( , )

( / ) ( / ) ( / ) ( / ) ( / )( / )

τ τ τ τ
ψ τ

τ τ τ τ τ τ

∇ − ∇ 
∇ =  

− − ∇ ∇  
T T T T

f x f x f x x
x

f x x f x x f x x
 (3.3) 

and following equality holds 

( / ) ( / ) ( / )τ ψ τ ψ τ∇ = −T Tx x x . (3.4) 

The proofs of the Lemma 3.1-3.3 can be found in [1]. Now we prove that if the 
augmented transformation ψ  is a *( )κP -function then f  is a *( )κP -function too. 

Lemma 3.4. Lemma 3.4. Lemma 3.4. Lemma 3.4. If ψ  is a *( )κP -function, then f  is also a *( )κP -function. 

Proof:Proof:Proof:Proof: Using Lemma 2.1 we conclude that ψ∇  is *( )κP -matrix. From (3.3) and the 

fact that every principal submatrix of *( )κP -matrix is also a *( )κP -matrix (see [12]), it 
follows that ∇f  is a *( )κP -matrix. Using again Lemma 2.1 we conclude that f  is a 

*( )κP -function. ♦ 

It would be very desirable if the reverse implication is true as it is the case for 
monotone NCP. Unfortunately, that is not generally the case even for *( )κP -LCPs as 

shown by Peng et al. [25]. Thus, in what follows we will assume that ψ  is a *( )κP -

function. 
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Note that not all of the nice properties of the homogeneous model for 
monotone NCP could have been preserved for *( )κP  NCP. However, the homogeneous 

model still has a merit primarily because of its feasibility. In addition, the analysis that 
we provide in this paper holds if an interior-point method is used on the original 
problem rather than on the augmented homogeneous model. 

The objective is to find ε -approximate solution of HNCP. We will do so by 
using a long-step primal-dual infeasible-interior-point algorithm. To simplify the 
analysis in the remainder of this paper we let 

,
τ σ

   
= =   

   

x s
x s . (3.5) 

A long-step algorithm produces the iterates ( , ) +
++∈ 2 2k k nx s R  belonging to 

( ) ( , ) : , ,β βµ µ β−
∞

  = ≥ ≥ = < < +  
0 0 1

1

Tx s
x s Xs e

n
NNNN , 

which is the widest neighborhood of the central path 

( ) {( , ) : , ( ) },ψ= ≥ = − = < ≤C 00 0 1t x s Xs te s x tr t , 

where ( , ) >0 0 0x s  is an initial point on the central path, r  denotes a residual of the 
point ( , )x s  

( )ψ= −r s x , (3.6) 

so that ( )ψ= −0 0 0r s x , and X  denotes a diagonal matrix corresponding to the vector 

x . If β = 0 , then ( )β−
∞NNNN  is the entire nonnegative orthant, and if β = 1 , then ( )β−

∞NNNN  

shrinks to the central path C . 
Now we state the algorithm. 

Algorithm 3.5Algorithm 3.5Algorithm 3.5Algorithm 3.5    

IIII (Initialization) 

Let ε > 0  be a given tolerance, and let , , ( , )β η γ ∈ 0 1  be the given constants. 

Suppose a starting point ( , ) ( )β−
∞∈0 0x s NNNN  is available. Calculate ( ) /( )µ = +0 0

0 1Tx s n  

and set = 0k . 

SSSS (Step) 

Given ( , ) ( )β−
∞∈k kx s NNNN  solve the system 

( )ψ η∇ ∆ − ∆ =k kx x s r , (3.7) 

γµ∆ + ∆ = −k k k k
kS x X s e X s . (3.8) 

Let 

( ) , ( ) ( ( )) ( )θ θ θ ψ θ ηθ= + ∆ = + −1k kx x x s x r , (3.9) 
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and perform a line search to determine the maximal stepsize θ< <0 1k  such that 

( ( ), ( )) ( )θ θ β−
∞∈k kx s NNNN  (3.10) 

and ( )µ θk  minimizes ( )µ θ . Set 

( ), ( )θ θ+ += =1 1k k
k kx x s s . (3.11) 

TTTT (Termination) 

If  

( , ) {( , ) : , || ( ) || }ε ε ψ ε+ + ∈ Ψ = ≥ ≤ − ≤1 1 0k k Tx s x s x s s x , (3.12) 

then stop, otherwise set := + 1k k  and go to (S). 

In the next two sections we will prove that there exist the values of the 
parameters for which the algorithm has polynomial global convergence and quadratic 
local convergence, provided that some additional assumptions, stated later in the text, 
are satisfied. 

Now we give some basic properties of the direction ( , )∆ ∆x s  and update 
( ( ), ( ))θ θx s  calculated in the Algorithm 3.5. 

Lemma 3.6.Lemma 3.6.Lemma 3.6.Lemma 3.6. Let ( , )∆ ∆x s  be a solution of the system (3.7)-(3.8). Then 

( ) ( ) ( ) ( )( )ψ η η γ µ∆ ∆ = ∆ ∆ ∆ + − − +1 1T T k
kx s x x x n . 

The proof of the above lemma can be found in [1]. 
The update (3.9) for ( )θs  is obtained by approximating the residual 
( )ψ= −r s x  with its first order Taylor polynomial 

( ) ( ( )) ( ) ( ( ) )θ ψ θ ψ θ ψ− ≈ − + ∆ − ∇ ∆k k ks x s x s x x , (3.13) 

or by virtue of (3.7) 

( ) ( ( ))θ ψ θ θη≈ + −k ks x r r . 

Thus we set 

( ) : ( ( )) ( )θ ψ θ θη= + −1 ks x r , 

as stated in (3.9). Using (3.13) we have 

( ) ( ) ( )( ( ( )) ( ) ( ) )

( )( ) ( )( ( ( )) ( ) ( ) )

( ) ( )( ( ( )) ( ) ( ) ).

θ θ θ θ ψ θ ψ θ ψ

θ θ θ ψ θ ψ θ ψ

θ θ θ ψ θ ψ θ ψ

= + ∆ + − − ∇ ∆

= + ∆ + ∆ + − − ∇ ∆

= + ∆ + ∆ + ∆ ∆ + + ∆ − − ∇ ∆2

k k k

k k k k

k k k k k k k

X s X s s x x x x

X X s s X x x x x

X s S x X s X s X X x x x x

 

If we denote the second order term in the above expression by 
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( ) ( )

( )( ( ( )) ( ) ( ) ),

θ θ θ

θ ψ θ ψ θ ψ

= + ∆ + ∆ + ∆ ∆

+ + ∆ − − ∇ ∆

2k k k k

k k k

h X s S x X s X s

X X x x x x
 (3.14) 

then by virtue of (3.8) we obtain 

( ) ( ) ( ) ( )θ θ θ θγµ θ= − + +1 k k
kX s X s e h . (3.15) 

Now the following lemma can easily be proved. 

Lemma 3.7.Lemma 3.7.Lemma 3.7.Lemma 3.7. Consider the update ( ( ), ( ))θ θx s  given by (3.9). Then 

(i) ( ) ( )θ θη= −1 kr r , 

(ii) ( ) ( ( ) ( ))µ θ θ γ θ η η γ µ= − − + − −21 1 1 k . 

 
4. GLOBAL CONVERGENCE 

In this section we prove polynomial global convergence of the Algorithm 3.5. If 
the function f  is linear, i.e. if we have LCP, global convergence has been proven 
without any additional assumptions when f  belongs to the *P -class [20, 28, 10, 3]. 
This is not the case for f  nonlinear. Global convergence has been proven for the 
monotone nonlinear function f  under certain smoothness condition. The most general 
one is a self-concordant condition of Nesterov and Nemirovskii [24]. Other conditions 
include the relative Lipschitz condition of Jarre [9] and the scaled Lipschitz condition 
of Potra and Ye [30]. 

We adopt the following modification of the scaled Lipschitz condition. 

Scaled Lipschitz condition (SLC)Scaled Lipschitz condition (SLC)Scaled Lipschitz condition (SLC)Scaled Lipschitz condition (SLC)    

There exists a monotone increasing function ( ) : ( , ) ( , )α → ∞0 1 1v  such that 

|| ( ( ) ( ) ( ) ) || ( ) | ( ) |α∞+ ∆ − − ∇ ∇ ≤ ∆ ∇ ∆TX f x x f x f x x v x f x x  

whenever 

, : { : }, || || α−
++ ∞∆ ∈ ∈ = ∈ > ∆ ≤ <10 1n n nx R x R x R x X x . ♦ 

Other types of SLC have been used in the literature [1, 30, 31] with either A1  

or A2  norm instead of ∞A , and the constant has been used instead of the function v . 

Also the absolute value on the right-hand-side was not necessary because SLC was used 

for monotone functions for which ( )∆ ∇ ∆ ≥ 0Tx f x x . 
In [8] SLC was replaced with the new smoothness condition (Condition 3.2) to 

enable handling of the nonmonotone functions. Basically, under certain assumptions, 
Condition 3.2 requires the following inequality to hold 

|| ( ( ) ( ) ( ) ) || || ( ) ||+ ∆ − − ∇ ∆ ≤ ∇ ∆D f x x f x f x x L D f x x , 
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where D  is a certain diagonal matrix and L  is a constant. The new condition 
essentially bounds the norm of the scaled second order remainder of the Taylor 
expansion of the function f  by the norm of the first order term in that expansion, 
while SLC bounds it by the norm of the second order term. A condition similar to 
Condition 3.2 was recently introduced in [26] (Condition A.3). 

The following lemma establishes the relation between SLC of the original 
function f  and the augmented function ψ . Its proof is a trivial modification of the 
corresponding proof in [1]. 

Lemma 4.1.Lemma 4.1.Lemma 4.1.Lemma 4.1. If f  satisfies SLC with = fv v , then ψ  satisfies SLC with 

( /( ))
( )ψ

α α
α

α α
+  = = +  − −  

2 2 1 1
1

1 1
fv

v v . 

To simplify the analysis, in what follows we assume that 

η γ= −1 . (4.1) 

Then from Lemma 3.6 and Lemma 3.7 we obtain 

( ) ( ) ( )ψ∆ ∆ = ∆ ∇ ∆T T kx s x x x , (4.2) 

( ) ( ) ( )( ) ( ) ( )θ θµ θ ηθ ηθ µ= = − = −
+ +

1 1
1 1

T k T k

k
x s x s

n n
, (4.3) 

( ) ( )θ ηθ= −1 kr r , (4.4) 

which means that the infeasibility residual and the complementarity gap are reduced at 
the exactly same rate. The immediate consequence of (4.3) and (4.4) is that the issue of 
proving polynomial global convergence reduces to the problem of finding a positive 
lower bound θ̂  for the stepsize θk  in the Algorithm 3.5 such that 

ˆηθ =
q

C

n
, 

where q  is a rational number and C  is a constant. For long-step algorithms 

(neighborhood ( )β−
∞NNNN ) the best possible q  is = 1q , while for short-step algorithms 

(neighborhoods ( )β2222NNNN ) q  can be reduced to /= 1 2q . 

We start the analysis by considering the main requirement in the algorithm 

3.5 and that is, given the iterate ( , ) ( )β−
∞∈k kx s NNNN , the new iterate ( ( ), ( ))θ θx s  must also 

belong to ( )β−
∞NNNN . Using (3.15) and (4.3) we have 

( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( )
( ( ) ) || ( ) ||
( ) || ( ) || .

θ θ βµ θ θ θγµ θ β ηθ µ
θ βµ θγµ θ β ηθ µ

β θ ηθ θγ µ θ
β γθµ θ

∞

∞

− = − + + − −
≥ − + + − −
≥ − − + + −
= − −

1 1

1 1

1 1

1

k k
k k

k k k

k

k

X s e X s e h e

e e h e

e h e

e h e

 (4.5) 
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Hence, if 

|| ( ) || ( )θ β γθµ∞ ≤ −1 kh , 

then 

( ( ), ( )) ( )θ θ β−
∞∈x s NNNN . 

The above discussion can be summarized in the following lemma. 

Lemma 4.2.Lemma 4.2.Lemma 4.2.Lemma 4.2. Let ( , ) ( )β−
∞∈k kx s NNNN  be the k-th iterate of the Algorithm 3.5. If 

|| ( ) || ( )θ β γθµ∞ ≤ −1 kh , (4.6) 

then 

( ( ), ( )) ( )θ θ β−
∞∈x s NNNN . 

In order to find a lower bound for stepsize θk  we need to derive another upper 

bound for || ( ) ||θ ∞h  different from the one given in (4.6). We use the modified scaled 

Lipschitz condition (SLC). 

Lemma 4.3.Lemma 4.3.Lemma 4.3.Lemma 4.3. If 

|| ( ) ||θ α−
∞∆ ≤ <1 1kX x , 

then 

|| ( ) || ( ) || ( ) || || ||ψθ α θ −
∞ ≤ ∆ ∆2 1k kh v D x D s , (4.7) 

where 
/ /( ) ( ( ) ( )), ( ) ( )ψ ψα α α −= + + = 1 2 1 21 1 k k kv v D X S . (4.8) 

Proof: Proof: Proof: Proof: Recall the definition (3.14) of ( )θh  

( ) ( )( ( ( )) ( ) ( ) )θ θ θ ψ θ ψ θ ψ= ∆ ∆ + + ∆ − − ∇ ∆2 k k kh X s X X x x x x . 

Since ψ  satisfied SLC, and ( , )θ ∈ 0 1  we conclude that if 

|| ( ) ||θ α−
∞∆ ≤ <1 1kX x , 

then 

| | ( ) , ,...,θ α+ ∆ ≤ + < = +1 2 1 1k k k
i i i ix x x x i n , 

and using also (4.2) 

|| ( ) || || || || ( )( ( ( )) ( ) ( ) ) ||

|| || ( ) || ( ( ( )) ( ) ( ) ) ||

|| || ( ) ( ) | ( ) |

|| || ( ) ( ) | ( ) |

|| ( ) |

ψ

ψ

θ θ θ ψ θ ψ θ ψ

θ α ψ θ ψ θ ψ

θ α α θ ψ

θ α α θ

θ

∞ ∞ ∞

∞ ∞

∞

∞

−

≤ ∆ ∆ + + ∆ − − ∇ ∆

≤ ∆ ∆ + + − − ∇ ∆

≤ ∆ ∆ + + ∆ ∇ ∆

≤ ∆ ∆ + + ∆ ∆

= ∆ ∆

2

2

2 2

2 2

2 1

1

1

1

k k k

k k k

T k

T

k k

h X s X X x x x x

X s X x x x x

X s v x x s

X s v x s

X D D s | ( ) ( ) | ( ) ( ) |

|| ( ) || || || ( ) ( ) || ( ) || || ||

ψ

ψ

α α θ

θ α α θ

−
∞

− −

+ + ∆ ∆

≤ ∆ ∆ + + ∆ ∆

2 1

2 1 2 1

1

1

T k k

k k k k

v x D D s

D x D s v D x D s

 

( ( ) ( )) || ( ) || || || .ψα α θ −= + + ∆ ∆2 11 1 k kv D x D s  ♦ 
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From the above lemma we conclude that the problem of finding upper bound 

on || ( ) ||θ ∞h  is reduced to the problem of finding upper bounds on || ( ) ||− ∆1kD x  and 

|| ||∆kD s . In order to do so we need several technical lemmas. The first one is 
proposition 2.2 of Ji et al. [10] which gives error bounds for a system of the type (3.7)-
(3.8). 

Lemma 4.4.Lemma 4.4.Lemma 4.4.Lemma 4.4. Let , , ,x s a b  be four vectors of the same dimension with ( , ) > 0x s , and let 
M  be a *( )κP -matrix. The solution ( , )u v  of the linear system 

 + =Su Xv a , (4.9) 

− =Mu v b , (4.10) 

satisfies the following inequalities 

|| || || || || || || || || ||κ− ≤ + + +1 2 2 22D u b a b c , (4.11) 

|| || || || || || || ||κ≤ + +2 2 22Dv a b c , (4.12) 

|| || || || || || || || || || || || || || || || || ||κ κ χ− + ≤ + + + + + =1 2 2 2 2 2 2 2 2 22 2 2 2D u Dv a b c b a b c , (4.13) 

|| || || || ( || || )χ χ≤ + −4 2 2 21 1
8 4

Uv a a , (4.14) 

where  

/ / /, ( ) , ,− −= = = = +1 2 1 2 1 2D X S a XS a b Db c a b . (4.15) 

In particular, for the system (3.7)-(3.8) we have 

/( ) ( ),γµ η−= − =1 2k k k k k k
ka X S e X s b D r . (4.16) 

Hence the problem of finding upper bounds on || ( ) ||− ∆1kD x  and || ||∆kD s  is further 
reduced to the problem of finding upper bounds on || ||a  and || ||b  defined above. In 
order to find them we need to establish the boundedness of the iteration sequence 

( , )k kx s  produced by the Algorithm 3.5. 

Lemma 4.5.Lemma 4.5.Lemma 4.5.Lemma 4.5. Let ( , ) >0 0 0x s  be the initial point and let ( , ) > 0k kx s  be the k-th iterate of 
the Algorithm 3.5. Then 

( ) ( ) ( )( )κ+ ≤ +0 0 0 02 1 4k T k T Tx s s x x s . (4.17) 

Proof:Proof:Proof:Proof: In what follows we denote 

( )ηθ
−

=
Θ = −∏

1

0
1

k

k i
i

. (4.18) 

Then from (4.3) and (4.4) we have 

,µ µ= Θ = Θ 0
0

k
k k kr r . (4.19) 
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Using (3.6) we obtain 

( ) ( ) ( ) ( ( )) ( ) ( ( ))

( ) ( ) ( ) ( ) ( ) ( ).

ψ ψ

ψ ψ

+ = + + +

= + + +

0 0 0 0 0

0 0 0 0

k T k T k T T k k

k T T k k T T k

x s s x x r x x r x

x r x r x x x x
 (4.20) 

First we estimate the term ( ) ( )+0 0k T T kx r x r  in (4.20). From (4.19), (3.6) and 
(3.2) we have 

( ) ( ) ( ) ( ( )) ( )ψΘ = = − =0k T k T k k T k k k T k
k x r x r x s x x s . (4.21) 

So 

( ) ( ) ( )( )+ = + Θ0 0 0 01k T T k T
kx r x r x s . (4.22) 

Next we need to estimate the second term in (4.20), i.e. ( ) ( ) ( ) ( )ψ ψ+0 0k T T kx x x x . 
Using (3.2) and the fact that ψ  is a homogeneous function of order 1 we conclude 

(( ) ( ) ( ) ( ))

( ) ( ) ( ) ( ) (( ) ( ) ( ) ( ))

( ) ( ( ) ( )).

ψ ψ

ψ ψ ψ ψ

ψ ψ

−Θ +

= + Θ Θ − Θ +

= − Θ − Θ

0 0

0 0 0 0

0 0

k T T k
k
k T k T k T T k

k k k
k T k

k k

x x x x

x x x x x x x x

x x x x

 (4.23) 

On the other hand, from (3.6) and (4.19) we have 

( ) ( ) ( ) ( )ψ ψ− Θ = − − Θ − = − Θ0 0 0 0k k k k
k k kx x s r s r s s . (4.24) 

Using (4.19), (4.24), positivity of ( , )k kx s  and the fact that ψ  is a *P -function, we 

obtain 

( ) ( ( ) ( )) ( )( ( ) ( ))

( )( )

( ( ))

( )

(( ) ( ) )

(

ψ

ψ

ψ

ψ

ψ ψ κ ψ ψ

κ

κ

κ

κ

κ

+

+

+

+

∈

∈

∈

∈

− Θ − Θ ≥ − − Θ − Θ

= − − Θ − Θ

= − + Θ − Θ +

≥ − + Θ

≥ − + Θ

= − Θ

∑

∑

∑

∑

0 0 0 0

0 0

2 0 0 0 0

2 0 0

2 0 0

4

4

4

4

4

4

k T k k k
k k i k i i i k

i

k k
i k i i k i

i

k k k k
i i k i i k i i i i

i

k k
i i k i i

i

k T k T
k

k

x x x x x x x x

x x s s

x s x s x s x s

x s x s

x s x s

T

T

T

T

)( ) .+ Θ1 k T k
k x s

 (4.25) 

From (4.23) and (4.25) we derive 

( ) ( ) ( ) ( ) ( )( )ψ ψ κ+ ≥ + Θ0 0 4 1T k k T k T k
kx x x x x s . (4.26) 

Substituting (4.22) and (4.26) into (4.20) we obtain 
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( ) ( ) ( )( )( ) ( )( ) .κ κ+ ≤ + + Θ ≤ +0 0 0 01 4 1 2 1 4k T k T k T k T
kx s s x x s x s  

The last inequality above is due to the fact that ( , )Θ ∈ 0 1k . ♦ 

Now we are able to obtain upper bounds for || ||a  and || ||b  defined by (4.16). 

Lemma 4.6.Lemma 4.6.Lemma 4.6.Lemma 4.6. Let ( , ) > 0k kx s  be the k-th iterate of the Algorithm 3.5. We set the constants 
in the algorithm as follows 

, ,ργ β η ρ≤ = < < +
+

2 0 1
1

n
n

. (4.27) 

Then for || ||a  and || ||b  defined by (4.16) we have 

|| || ( )µ≤ + 1 ka n , (4.28) 

|| || ( ) ( )δ κ µ≤ + +1 4 1 kb n , (4.29) 

where 

|| ( ) ||ρδ
β

−
∞= 0 1 02 S r . (4.30) 

Proof:Proof:Proof:Proof: The proof of the (4.28) is the same as the proof of Lemma 3.4 in [31]. The proof 
of (4.29) is as follows. We have 

/ /|| || || || || ( ) || || ( ) || || ||η η η− −= = ≤1 2 1 2k k k k k k k k k kb D r X S X r X S X r . 

Using (4.19) and the fact that ( , ) ( )β−
∞∈k kx s NNNN  we obtain 

|| || || ||

|| ||

|| ( ) || || ||

|| ( ) || ( ) .

η
βµ

η
βµ

η
βµ

η
βµ

−
∞

−
∞

Θ≤

Θ≤

Θ≤

Θ=

0

0
1

0 1 0 0
1

0 1 0 0

kk

k

kk

k

kk

k

k Tk

k

b X r

X r

S r X s

S r x s

 

By virtue of Lemma 4.5 we obtain 

|| || || ( ) || ( )( )

|| ( ) || ( )( )

|| ( ) || ( ) ( ) .

η κ
βµ
η κ µ
β

ρ κ µ
β

−
∞

−
∞

−
∞

Θ≤ +

= + +

= + +

0 1 0 0 0

0 1 0

0 1 0

2 1 4

2 1 4 1

2 1 4 1

Tk

k

k

k

b S r x s

S r n

S r n

 

 ♦ 
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Observe that, since γ η= −1 , the requirements (4.30) in the above lemma lead to the 
conclusion 

β ρ− ≤ < +1 2 1n . (4.31) 

From the above lemma and Lemma 4.4 the upper bounds for || ( ) ||− ∆1kD x  and 

|| ||∆kD s  follow easily. 

Corollary 4.7.Corollary 4.7.Corollary 4.7.Corollary 4.7. Let ( , )∆ ∆x s  be the direction calculated in Algorithm 3.5 and let the 
constants in the algorithm be chosen as in (4.27). Then 

/|| ( ) || ( ) ( )δ κ µ− ∆ ≤ + +1 3 2
1 1 4 1k

kD x n , (4.32) 

/|| || ( ) ( )δ κ µ∆ ≤ + +3 2
2 1 4 1k

kD s n , (4.33) 

where 

,δ δ δ δ δ= + + = +2 2
1 21 1 . (4.34) 

Proof:Proof:Proof:Proof: We have 

/

|| ( ) || || || || || || || || ||

|| || || || || ||

( ( ) ( ( )) ) ( )

( )( ) ( ) .

κ

κ

δ κ κ δ κ µ

δ δ κ µ

− ∆ ≤ + + +

≤ + + +

≤ + + + + + +

≤ + + + +

1 2 2 2

2 2

2

2 3 2

2

1 2

1 4 1 2 1 1 4 1

1 1 4 1

k

k

k

D x b a b c

b a b

n

n

 

Similarly 

/

|| || || || || || || ||

|| || || ||

( ( )) ( )

( ) ( ) .

κ

κ

κ δ κ µ

δ κ µ

∆ ≤ + +

≤ + +

≤ + + + +

≤ + + +

2 2 2

2 2

2

2 3 2

2

1 2

1 2 1 1 4 1

1 1 4 1

k

k

k

D s a b c

a b

n

n

 

 ♦ 

Now we have all the ingredients to prove linear global convergence of the 
iteration sequence produced by Algorithm 3.5. 

Theorem 4.8.Theorem 4.8.Theorem 4.8.Theorem 4.8. Algorithm 3.5 with the following choice of parameters 

, , ,ρβ α β ρ η γ≤ < − ≤ < + = = −
+

2 1 1 2 1 1
1

n n
n

, (4.35) 

finds ε -approximate solution of HNCP in at most 
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( ) | |( ) ( ) ( ) max ln ,lnψ α δ κ
ε ε

    + +      

0 0 0
31 1 4

Tx s r
O n v  

iterations, where ( )ψ αv  is defined by (4.8), and δ δ δ= 1 2 , where ,δ δ1 2  are defined by 

(4.34). 

Proof:Proof:Proof:Proof: Substituting (4.32) and (4.33) into (4.7) we obtain 

|| ( ) || ( ) ( ) ( )ψθ α θ δ κ µ∞ ≤ + +2 31 4 1 kh v n , (4.36) 

where δ δ δ= 1 2 . Comparing (4.6) and (4.36) we derive 

( )ˆ
( ) ( ) ( )ψ

β γθ
α δ κ

−=
+ +3

1

1 4 1v n
, (4.37) 

provided that 

ˆ || ( ) ||θ α−
∞∆ ≤1kX x  (4.38) 

holds. To assure (4.38) we use (4.32) and the fact that ( , ) ( )β−
∞∈k kx s NNNN , 

|| ( ) || || ( ) ||− −
∞∆ ≤ ∆1 1k kX x X x  (4.39) 
/|| ( ) ( ) ||− −= ∆1 2 1k k kX S D x  (4.40) 

|| ( ) ||
βµ

−≤ ∆11 k

k
D x  (4.41) 

( )δ κ
β

≤ + +31 1 4 1n . (4.42) 

Substituting (4.42) into (4.38) we obtain 

( )
( ) ( )ψ

β γ α
δ κ β

− ≤
+ +3

2

1

1 4 1v n
. 

Since , , ,ψ δ δ β> > > <1 21 1 1 1v  and γ β≤ 2 , the above inequality implies 

β α≤ <2 1 . (4.43) 

Choosing parameters as in (4.43) will guarantee that (4.38) holds, and therefore by 
Lemma 4.3 the inequality (4.36) will hold for θ  defined in (4.37), i.e. 

ˆ ˆ ˆ|| ( ) || ( ) ( ) ( ) ( )ψθ α θ δ κ µ β γθµ∞ ≤ + + = −2 31 4 1 1k kh v n . 

From Lemma 4.2 then follows 

ˆ ˆ( ( ), ( )) ( )θ θ β−
∞∈x s NNNN . 
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The selection of the stepsize, as described in the Algorithm 3.5, together with (4.3), 
implies 

ˆ ˆ ˆ( ) ( ) ( ) ( )µ µ θ µ θ ηθ µ ηθ µ+
+ = ≤ = − ≤ − 1

1 01 1 k
k k k , 

and similarly 

ˆ( )ηθ+ +≤ −1 1 01k kr r . 

Hence Algorithm 3.5 requires 

( ) | |( ) ( ) ( ) max ln ,lnψ α δ κ
ε ε

    + +      

0 0 0
31 1 4

Tx s r
O n v  

iterations to obtain ε -approximate solution for HNCP. 

5. LOCAL CONVERGENCE 

In this section we prove that a sequence { }µk , generated by a modified 

Algorithm 3.5, converge to zero with R-order and Q-order at least 2, while sequence 

{( , )}k kx s  converges to a strictly complementary solution (we made assumption that it 
exists) with R-order at least 2. Below we recall the definitions of Q-order and R-order 
convergence. For more details see Potra [27]. 

A positive sequence { }ka  is said to converge to zero with Q-order at least > 1t  

if there exists a constant ≥ 0c  such that 

,+ ≤ ∀1
t

k ka ca k . (5.1) 

The above sequence converges to zero with Q-order exactly t  if 

sup{ :{ } }=   converges with Q-order at least  kt t a t , (5.2) 

or equivalently iff 

logliminf
log

+
→∞

= 1k
k k

a
t

a
. (5.3) 

A positive sequence { }ka  is said to converge to zero with R-order at least > 1t  

if there exists a constant ≥ 0c  and a constant ( , )∈ 0 1b  such that 

,+ ≤ ∀1
kt

ka cb k . (5.4) 

The key part in proving the local convergence result is relating the 

components of the iteration sequence ( , )k kx s  generated by Algorithm 3.5 to the 

primal-dual gap ( )k T kx s . We have the following lemma. 



36 G. Le{aja / Long-Step Homogeneous Interior-Point Algorithm 

Lemma 5.1.Lemma 5.1.Lemma 5.1.Lemma 5.1. Let * *( , )x s  be a strictly complementary solution of HNCP, and let ( , )k kx s  
be the k-th iterate of the Algorithm 3.5. Then 

* *( ) ( ) ( )ϕ+ ≤T k T k k T kx s s x x s , (5.5) 

where ϕ  is defined by (5.6). 

Proof:Proof:Proof:Proof: Using (4.18), (4.19), (4.21), positivity of the initial point ( , ) >0 0 0x s , *P -

property of ψ , and the fact that * * * * * *( ), ( ) , ( , )ψ= = ≥0 0Ts x x s x s  we derive 

* *

* *

* * *

* * *

* * *

( ) ( )

( ) ( ) ( )

( ) ( ( ) ( )) ( ) ( ) ( )

( )( ( ) ( )) ( ) ( ) ( )

( )( ) ( ) ( ) ( )

ψ

ψ

ψ ψ

κ ψ ψ

κ

+

+

∈

∈

+ =

= − − − +

= − − − − − +

≤ − − − + +

= − − − − + Θ +

=

∑

∑ 0

4

4

T k T k

k T k k T k

k T k k T k k T k

k k k T k k T k T k
i i i i

i

k k k k T k T k T k
i i i i i k

i

x s s x

x x s s x s

x x x x r x x x s

x x x x r x r x x s

x x s r s x s r x x s

T

T

* * * *

*
* * * * *

* *

( )( ) ( )

( ) ( )

( ) ( ) || ( ) ||

ψ ψ

ψ ψ

ψ

κ κ

κ κ

κ κ

+ +

+ +

+

+

=∈ ∈

+

=∈ ∈

−
∞

=∈

− − − − + Θ

= − − + − − + Θ

≤ − − + Θ

∑ ∑ ∑

∑ ∑ ∑

∑

1
0

1

1
0 0

0
1

0 1 0 0

1

4 4

4 4

4 4

n
k k k k
i i i i i i i k i i

ii i

n
k k k k k k i
i i i i i i i i i i i k i i

ii i i

k T k k k
i i i k i i

ii

x x s s r x x r x

x
x s x s x s x s r x x r x
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x s r x x X x x s

x s r x x X x x s

x s r x

T

T

T

T

*

* *
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∞
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∞
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∞
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*

*

* *

( ) || || ( ) || ( ) || ( )( )

|| ( ) || ( )

|| ( ) || || || ( ) || ( ) || ( ) .

κ κ κ κ
µ

κ κ
µ

−
∞ ∞

−
∞

− −
∞ ∞ ∞

≤ + + Θ +

+

  
= + + + +     

0 0 1 0 0 0

0
0 1

0 1 0 0 1 0

0

1
4 4 4 2 1 4

1
4 1 2 1 4

k T k k T k T
k

k T k

k T k

x s X r x s S r x s

X x x s

X x X r S r x s

 

If we denote 

*

*

|| ( ) || ,

|| || ,

|| ( ) || ,

( ( ) ),

ζ

ρ
µ

ν

ϕ ζ κ ρ κ ν

−
∞

∞

−
∞

=

=

=

= + + + +

0 1

0

0
0 1 0

1

4 1 2 1 4

X x

X r

S r

 (5.6) 

then we obtain (5.5). ♦ 

It has been shown that for LP a unique partition { , }B N  of the set { ,..., }1 n  
exists such that 

(i) there exists a solution * *( , )x s  with 

* *,> >0 0B Nx s , (5.7) 

(ii) for each solution ( , )x s  

,= =0 0N Bx s . (5.8) 

The result has been generalized for LCP with the assumption that a strict 
complementarity solution exists (even for *P  case). Potra and Ye [30] showed that the 

same is true for NCP. 
Suppose that NCP has a strictly complementary solution and let { , }f fB N  be 

the above mentioned partition. Then by virtue of Lemma 3.2 (i) 

*{ }τ= ∪ index for fB B , (5.9) 

*{ }σ= ∪ index for fN N  (5.10) 

is a partition for HNCP. Now we are ready to prove the following important lemma 

Lemma 5.2.Lemma 5.2.Lemma 5.2.Lemma 5.2. Suppose that HNCP has a strictly complementary solution * *( , )x s . Let 

( , )k kx s  be the k-th iterate of the Algorithm 3.5. There exist three positive constants 

* *
( )

min{min ,min }
ϕξ

∈ ∈

+= 1

i B i i N i

n

x s
, (5.11) 

βφ
ξ

= , (5.12) 
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( )( )
min{min ,min }

κϑ
∈ ∈

+=
0 0

0 0
2 1 4 T

i B i i N i

x s

x s
, (5.13) 

such that 

,φ ϑ ξµ≤ ≤ ≤ ∀ ∈k k
i i kx s i B , (5.14) 

,φ ϑ ξµ≤ ≤ ≤ ∀ ∈k k
i i ks x i N . (5.15) 

Proof:Proof:Proof:Proof: Using Lemma 5.1 and partition { , }B N  we obtain 

* * ( )ϕ
∈ ∈

+ ≤∑ ∑k k k T k
i i i i

i B i N
x s s x x s . 

Since ( , ) ( )β−
∞∈k kx s NNNN , from the above inequality we deduce for each ∈i B  

( )βµ β β φ
ξ

= ≥ = ≥ =
+ 1

k k k T k
k i i k
i k k k

i i i

x s x s
x

ns s s
, 

and 

*
( )ϕ ξµ≤ ≤

k T k
k
i k

i

x s
s

x
. 

Also, an immediate consequence of Lemma 4.5 is 

( )( ) , { ,..., }κ ϑ+≤ ≤ ∀ ∈ +
0 0

0
2 1 4

1 1
T

k
i

i

x s
x i n

s
. 

Thus (5.14) is proved. Similarly we prove (5.15). 
An immediate consequence of the above lemma is the following corollary: 

Corollary 5.3.Corollary 5.3.Corollary 5.3.Corollary 5.3. Any accumulation point * *( )x s  of the sequence obtained by Algorithm 
3.5 is a strictly complementary solution of HNCP. 

The above corollary together with (5.9), (5.10) assures that a strictly complementary 
solution of HNCP will be of the type as in Lemma 3.2 (ii), thus enabling us to find a 
strictly complementary solution of NCP. 

To prove the local convergence result we modify Algorithm 3.5 in such a way 
that for a sufficiently large k , say K , we set γ = 0 , i.e. centering part of the direction 
is omitted and only an affine-scaling direction is calculated. Hence the algorithm 
becomes an affine-scaling algorithm or, in other words, a damped Newton method. The 
existence of the treshold value K  will be established later in the text. For now, without 
the loss of generality, we can assume = 0K . 

In addition, instead of keeping a fixed neighborhood of the central path we 
enlarge it at each iteration. Let 

, ,β β β β π+= = − ∀0 1k k k k , (5.16) 



 G. Le{aja / Long-Step Homogeneous Interior-Point Algorithm 39 
 
  

where 

, ,π π
∞

=
< ∞ > ∀∑

0
0k k

k
k . (5.17) 

A particular choice of π k  is as in [31] 

βπ +=
13

k k
. (5.18) 

Thus 

β β β β β+< < < < < =" "1 02 k k , 

and 

( ) ( ) ( ) ( / )β β β β− − − −
∞ ∞ ∞ + ∞⊆ ⊆ ⊆" "1 2k kN N N NN N N NN N N NN N N N . (5.19) 

With the above modifications Algorithm 3.5 is reduced to the following affine-
scaling algorithm. 

Algorithm 5.4Algorithm 5.4Algorithm 5.4Algorithm 5.4    

IIII (Initialization) 
Let ε > 0  be a given tolerance, and let ( , )β ∈ 0 1  be the given constant. Set β β=0 . 

Suppose starting point ( , ) ( )β−
∞∈0 0

0x s NNNN  is available. Calculate ( ) /( )µ = +0 0
0 1Tx s n  

and set = 0k . 

SSSS (Step) 

Given ( , ) ( )β−
∞∈k k

kx s NNNN  solve the system 

( )ψ∇ ∆ − ∆ =k kx x s r , (5.20) 

∆ + ∆ = −k k k kS x X s X s . (5.21) 

Let 

( ) , ( ) ( ( )) ( )θ θ θ ψ θ θ= + ∆ = + −1k kx x x s x r , (5.22) 

and perform a line search to determine the maximal stepsize θ< <0 1k  such that 

( ( ), ( )) ( )θ θ β−
∞ +∈ 1k k kx s NNNN , (5.23) 

and ( )µ θk  minimizes ( )µ θ . Set 

( ), ( )θ θ+ += =1 1k k
k kx x s s , (5.24) 

and 

ββ β+ += −1 13
k k k

. (5.25) 
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TTTT (Termination) 

If  

( , ) {( , ) : , || ( ) || }ε ε ψ ε+ + ∈ Ψ = ≥ ≤ − ≤1 1 0k k Tx s x s x s s x , (5.26) 

then stop, otherwise set := + 1k k  and go to (S). 

A similar modification was employed in [37] on the predictor-corrector 
algorithm for the monotone LCP, in [30] on the potential reduction algorithm for 
monotone NCP and in [31] on the path following algorithm for monotone NCP. In the 
linear case, i.e. for LCP, the above modifications, together with the existence of a strict 
complementary solution, were necessary and sufficient to prove the local convergence. 
In the nonlinear case certain additional assumption on the nonsingularity of the 
Jacobian submatrix is necessary. We adopt Assumption 2 from [31]. 

Nonsingularity of the Jacobian submatrix (NJS)Nonsingularity of the Jacobian submatrix (NJS)Nonsingularity of the Jacobian submatrix (NJS)Nonsingularity of the Jacobian submatrix (NJS)    

Let the Jacobian matrix ψ∇ be partitioned as follows 

( ) ( )
( )

( ) ( )
ψ ψ

ψ
ψ ψ

∇ ∇ 
∇ =  ∇ ∇ 

BB BN

NB NN

x x
x

x x
, (5.27) 

where { , }B N  is partition of HNCP described by (5.7)-(5.10). We assume that matrix 
ψ∇ BB  is nonsingular on the following compact set 

{ : , }φ ϑΓ = ≥ ≥ ≤0 B Bx x e x e , (5.28) 

where φ  and ϑ  are defined in Lemma 5.2. ♦ 

So far we have made the following assumptions: 

− function ψ  is a *P -function, 

− function ψ  satisfies the scaled Lipsschitz condition (SLC), 

− the existence of the a strict complementary solution (ESCS), 
− nonsingularity of the Jacobian submatrix (NJS), 

and we assume they hold throughout this section. 
Since in this section γ = 0 , i.e. η = 1 , equations (4.3) and (4.4) are reduced to 

( ) , ( )µ θ µ θ+
+ = − = −1

1 1 1k k
k k k kr r . (5.29) 

If we are able to prove 

( )θ µ− =1 k kO , 

the local convergence result would follow. In order to do so we need to revisit the 
analysis performed for the global convergence and adjust it according to the 
modification and assumptions made above. 
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Note first that the lemmas proved so far in this section remain valid for 
Algorithm 5.4. Next we show that the direction calculated in the algorithm is bounded 
from above by µk . 

Lemma 5.5.Lemma 5.5.Lemma 5.5.Lemma 5.5. Let ( , )∆ ∆x s  be a solution of the system (5.20)-(5.21). Then 

|| || , || ||µ µ∆ ≤ ∆ ≤0 0k kx c s c , (5.30) 

where 0c  is a constant independent of k . 

Proof:Proof:Proof:Proof: First we show that 

|| ( ) || , || ( ) || ,µ µ′ ′∆ ≤ ∆ ≤0 0N k B kx c s c  (5.31) 

for some constant ′0c  independent of k . We have 

/

|| ( ) || || ( ) ( ) ||

|| || || ( ) ( ) ||

|| || ( ) .δ κ µ

−

−

∆ = ∆

≤ ∆

≤ + +

1

1

3 2
1 1 4 1

k k
N N N N

k k
N N N
k
N k

x D D x

D D x

D n

 

The last inequality above is due to (4.32). Next, we need to estimate || ||k
ND . Using 

(5.15) we obtain 

|| || max ξµ
φ∈

= ≤
k

k i k
N ki N i

x
D

s
. 

Hencey 

/|| ( ) || ( )ξ δ κ µ
φ

 
∆ ≤ + +   

3 2
1 1 4 1N kx n . 

Similarly, by virtue of (4.33) and (5.14) we have 

/|| ( ) || ( )ξ δ κ µ
φ

 
∆ ≤ + +   

3 2
2 1 4 1B ks n . 

Since by (4.34) δ δ≥1 2  we can set 

/( )ξ δ κ
φ

′ = + +3 2
0 1 1 4 1c n , 

and (5.31) is proved. 
We still need to prove 

|| ( ) || , || ( ) ||µ µ∆ ≤ ∆ ≤0 0B k N kx c s c , (5.32) 

for some constant 0c  independent of k . Using (5.27) equation (5.20) can be partitioned 

into system 
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( )( ) ( )( ) ( )ψ ψ∇ ∆ + ∇ ∆ − ∆ = −k k k
BB B BN N B Bx x x x s r , (5.33) 

( )( ) ( )( ) ( )ψ ψ∇ ∆ + ∇ ∆ − ∆ = −k k k
NB B NN N N Nx x x x s r , (5.34) 

Hence 

|| ( ) || || ( ( )) || (|| ( ) || || ( ) || || ( ) || || ||)ψ ψ−∆ ≤ ∇ ∆ + ∇ ∆ +1k k k
B BB B BN N Bx x s x x r , (5.35) 

|| ( ) || || ( ) || || ( ) || || ( ) || || ( ) || || ||ψ ψ∆ ≤ ∇ ∆ + ∇ ∆ +k k k
N NB B NN N Ns x x x x r . (5.36) 

From Lemma 5.2 it follows that the iterates ( , )k kx s  of the Algorithm 5.4 belong to the 

set Γ  defined by (5.28). By (NJS) assumption ( )ψ∇ k
BB x  is nonsingular on Γ . Thus, 

since Γ  is compact, all matrices above are uniformly bounded. Also from (5.29) we have 

µ µ
= 0

0

1 1k

k
r r  

or 

|| |||| || µ
µ

=
0

0

k
k

r
r . (5.37) 

Using the uniform boundedness of the matrices and substituting (5.31) and (5.37) into 
(5.35) and (5.36) we obtain (5.32) completing the proof of the lemma. ♦ 

Lemma 5.6.Lemma 5.6.Lemma 5.6.Lemma 5.6. There exists a constant 1c , independent of k , such that 

|| ( ) ||θ µ∞ ≤ 2
1 kh c , (5.38) 

where ( )θh  is defined by (3.14). 

Proof:Proof:Proof:Proof: From the definition (3.14) of ( )θh  we obtain for each { ,..., }∈ +1 1i n  the 
following inequality  

| ( ) | | ( ) ( ) | | ( ) | | ( ) ( ) ( ) |θ θ θ ψ θ ψ θ ψ≤ ∆ ∆ + + ∆ + ∆ − − ∇ ∆2 k k k k
i i i i i i i ih x s x x x x x x x . (5.39) 

Recall that ψ  satisfies the scaled Lipschitz condition (SLC), i.e. if 

|| ( ) ||θ α−
∞∆ ≤1kX x , (5.40) 

then 

|| ( ( ) ( ) ( ) ) || ( ) | ( ) |ψ θ ψ θ ψ α θ ψ∞+ ∆ − − ∇ ∆ ≤ ∆ ∇ ∆2k k k k T kX x x x x x v x x x . (5.41) 

Substituting (5.40) and (5.41) into (5.39) we obtain 

| ( ) | || || || || ( ) ( ) | ( ) |θ θ α α θ ψ≤ ∆ ∆ + + ∆ ∇ ∆2 21 T k
ih x s v x x x . 

From Lemma 5.2 it follows that ( , ) ∈ Γk kx s , where Γ  is a compact set defined by 
(5.28). Therefore ψ∇  is uniformly bounded on Γ , i.e. there exists a constant M  such 
that 
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| ( ) | || || || || ( ) ( ) || ||θ θ α α θ≤ ∆ ∆ + + ∆2 2 21ih x s v M x . (5.42) 

Using (5.30) and the fact that θ < 1 , from (5.42) we derive 

| ( ) | ( ( ) ( ))θ α α µ≤ + +2 2
0 1 1i kh c M v , (5.43) 

providing that (5.40) holds. 

To ensure (5.40) we take an index k  sufficiently large, i.e. k  is the first index, 
say 1K , such that 

κµ αφ≤
10c , (5.44) 

where φ  is defined in Lemma 5.2. Using (5.44), (5.30), the fact that θ < 1 , and Lemma 
5.2 we have for ≥ 1k K  

| ( ) | | ( ) | || || ,θ µ αφ α∆ ≤ ∆ ≤ ∆ ≤ ≤ ≤ ∀ ∈0
k

i i k ix x x c x i B . 

Thus, (5.40) holds for sufficiently large k . Hence, we have proved (5.43) but only for 
∈i B . 

We still need to prove (5.43) for ∈i N . Since ψ∇  is uniformly bounded on Γ , 
we have 

| ( ) ( ) ( ) | ( ) ( )

|| || .

θ
ψ θ ψ θ ψ ψ θ ψ

θ µ

+ ∆ − − ∇ ∆ = ∇ + ∆ ∆ − ∇ ∆

≤ ∆ ≤

∫
0

02 2

k k k k k
i i i i i

k

x x x x x x t x x dt x x

M x Mc

 (5.45) 

Also, using (5.15), (5.30), and the fact that θ < 1 , we obtain 

| ( ) | ( )θ ξ µ+ ∆ ≤ + 0
k
i i kx x c . (5.46) 

Substituting (5.45) and (5.46) into (5.39) we get 

| ( ) | ( ( )) ,θ ξ µ≤ + + ∀ ∈2 2
0 0 02i kh c c M c i N . (5.47) 

From (5.43) and (5.47) we derive (5.38). ♦ 

Lemma 5.7.Lemma 5.7.Lemma 5.7.Lemma 5.7. Let ( , )k kx s  be the k-th iterate of the Algorithm 5.4. Define 

ˆ µθ
π

= − 11 k
k

k
c , (5.48) 

where 1c  is defined in Lemma 5.6 and π k  is defined by (5.18). Then 

ˆ ˆ( ( ), ( )) ( )θ θ β−
∞ +∈ 1k k kx s NNNN . (5.49) 

ProofProofProofProof:::: From (4.5), (5.16), (5.29) and (5.38) we obtain 

( ) ( ) ( ) ( ) ( ) ( )
( ) ( )( ) ( )

( ) .

θ θ β µ θ θ θ β θ µ
θ β µ β π θ µ θ

π θ µ µ

+ +− = − + − −
≥ − − − − +

≥ − −

1 1

2
1

1 1

1 1

1

k k
k k k

k k k k k

k k k

X s e X s h e

e e h

e c e
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If we take θ  as in (5.48), then the above inequality implies (5.49). 

Note that an immediate consequence of the above lemma is θ̂ → 1k , which means that 

Algorithm 5.4 is approaching the pure Newton method. 
Now we have all the ingredients to prove the following local convergence 

result. 

Theorem 5.8.Theorem 5.8.Theorem 5.8.Theorem 5.8. Let {( , )}k kx s  be a sequence generated by the Algorithm 5.4. Then 

(i) µ → 0k  with Q-order and R-order at least 2. 

(ii) * *( , ) ( , )→k kx s x s  with R-order at least 2. 

Proof: Proof: Proof: Proof:     

(i) Using the rule for selecting stepsize in Algorithm 5.4 and from Lemma 5.7 we have 

( )
ˆ( )

ˆ( )

.

µ µ θ

µ θ

θ µ
µ µ
π

µ
β

µ
β

µ
β

+

+

+

+

=

≤

= −

=

=

 
 =
  

 
≤    

1

1

1

1
2

1

2
1

1

2
1

0

1

3

3

3

k

k k

k

k k

k
k

k
k

k

k

k

c

c

c

c

 (5.50) 

Let = 2k K  be such that 

µ
β

<
2

13 1K
c

. (5.51) 

Now, using (5.44) and (5.51) we can define 

max{ , }= 1 2K K K , (5.52) 

and set 

,µ µ µ
β

= = 1
0 03K

c
b . (5.53) 

Hence, from (5.50) we have 

,µ ≤ ≥2k

k b k K . (5.54) 



 G. Le{aja / Long-Step Homogeneous Interior-Point Algorithm 45 
 
  

Next, observe that from (5.50) we obtain 

log log ( )log log( / )µ µ β+ ≤ + + +1 12 1 3k k k c , (5.55) 

and from (5.53) we obtain 

log logµ ≤ <2 0k
k b , (5.56) 

i.e. 

| log | | log |µ ≥ 2k
k b . (5.57) 

Thus, using (5.57) we derive 

( ) log log( / ) | ( ) log log( / ) |lim lim
log | log |

β β
µ→∞ →∞

+ + + +≤ =1 11 3 1 3
0

2kk kk

k c k c

b
. (5.58) 

Hence, taking into account (5.57) and (5.58), we obtain from (5.55) 

logliminf
log

µ
µ

+
→∞

≥1 2k
k k

. (5.59) 

Using definitions (5.3) and (5.4) we conclude from (5.54) and (5.59) that 
µ → 0k  with Q-order and R-order at least 2. 

(ii) First we show that {( , )}k kx s  is a Cauchy sequence. Take any > ≥m k K . 
Then 

|| || || || || ||
− ∞

+ + + + + +

= =
− ≤ − ≤ −∑ ∑

1
1 1

0 0

m
m k k i k i k i k i

i i
x x x x x x . (5.60) 

Using (5.30) and (5.54) we have 

|| || || ||θ µ
++ + +

+ +− = ∆ ≤ ≤1 2
0 0

k ik i k i
k i k ix x x c c b . (5.61) 

Substituting (5.61) into (5.60) we obtain 

|| ||
∞

=
− ≤ ≤

−∑2 2 20
0

0 1

k i km k

i

c
x x c b b b

b
. (5.62) 

We have a similar estimate for ks  proving that {( , )}k kx s  is a Cauchy 
sequence. Hence the sequence must be convergent, and by (5.9), (5.10) and Corollary 

5.3 it converges to such a strict complementary solution * *( , )x s  of HNCP from which 
we can derive a strict complementary solution of NCP using Lemma 3.2. 

If we let → ∞m , then from (5.62) we obtain 

*|| ||− ≤
−

20

1

kk c
x x b

b
, (5.63) 

and similarly for ks . Thus, * *( , ) ( , )→k kx s x s  with R-order at least 2. ♦ 
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We have proved that if ≥k K , where K  is the treshold value defined by 
(5.52), then it is not necessary to calculate the centering part of the direction in the 
Algorithm 3.5 because the algorithm will produce iterates which are not only centered 
but also converge to a strictly complementary solution R-quadraticaly. The treshold 
value K  is a theoretical one because some constants used in its calculation may not be 
known in advance. In practice, as discussed in [37, 31], various heuristic procedures can 
be developed to determine when to switch from Algorithm 3.5 to Algorithm 5.4. Thus, 
practical implementation of the algorithm would be a hybrid algorithm which starts 
with Algorithm 3.5 and then use heuristic "switch time check" procedure to switch to 
Algorithm 5.4 when suitable. 
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