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The uniting feature of combinatorial optimization and extremal graph theory is that in 
both areas one should find extrema of a function defined in most cases on a finite set. 
While in combinatorial optimization the point is in developing efficient algorithms and 
heuristics for solving specified types of problems, the extremal graph theory deals with 
finding bounds for various graph invariants under some constraints and with constructing 
extremal graphs. We analyze by examples some interconnections and interactions of the 
two theories and propose some conclusions. 

Keywords: Combinatorial optimization, extremal graph theory, variable neighborhood search, 
mathematical programming. 
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1. INTRODUCTION 

We list a few details from Mathematics Subject Classification 2000 which are 
relevant for our discussion. 

 
05 Combinatorics 
05C Graph Theory 
05C35 Extremal Problems 
05C90 Graph Algorithms 
 
90 Operations Research, Mathematical Programming 
90C Mathematical Programming 
90C27 Combinatorial Optimization 
90C35 Programming Involving Graphs and Networks 
90C22 Semidefinite Programming 
 
68 Computer Science 
68R Discrete Mathematics in Relation to Computer Science 
68R10 Graph Theory 
68W Algorithms 
68W05 Non-numerical Algorithms 
 
We shal discuss some relations between combinatoral optimization (90C27) and 

extremal problems in graph theory or extremal graph theory (05C35). Some related 
fields from Mathematic Subject Classification 2000 are given as well. 

Combinatorial optimization (90C27) deals with solving optimization problems 
of the following type 

min ( )
x S

f x
∈

 (1) 

where S  is a finite or infinite denumerable set and :f S R→ . In most cases the set of 
feasible solutions S  is a finite set. 

Extremal graph theory (05C35) deals with finding (lower and/or upper) bounds 
for various graph invariants under some constraints imposed on other graph invariants 
[3], [4]. Construction of extremal graphs, i.e. graphs meeting these bounds is a natural 
part of such investigations. 

Our key observation is that the uniting feature of these two disciplines is the fact 
that both deal with problems of finding extrema of a real function defined on a finite set. 
We shall support this assertion by several examples. 

Typical problems of combinatorial optimization are integer programming and 
optimization problems defined on weighted graphs. 

In integer programming the set S of feasible solutions is the set of points with 
integer coordinates in a convex polyhedron in nR  which is defined by some (linear) 
constraints. Usually, the set is finite and in the case that it is infinite and the task has a 
solution, one can impose some further constraints to make S  finite without changing the 
solution. 
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As an example of the second group, consider the task of finding a shortest path 
between two vertices in a (finite) weighted graph. The set of feasible solutions S  is the 
set of all paths between the specified vertices and it is infinite if we allow paths to go 
several times through a vertex. However, S  becomes finite if we consider simple paths 
(which is usually done since a shortest path is always simple). 

There are many problems in (extremal) graph theory where one looks for 
extrema of a graph invariant for graphs with the fixed number of vertices. Such a 
problem can be represented in the form (1) where S  is the set of all (or some) graphs on 
a fixed number of vertices and for a graph x S∈  the function ( )f x  is a graph invariant. 
As far as we know, such a problem is recognized as a problem of combinatorial 
optimization in [7] for the first time. 

A computer program, called AutoGraphiX (AGX), for finding extremal graphs 
with respect to some properties has been described in [7]. The paper was just the 
beginning of a series of papers in which results obtained by AGX are being presented. To 
this series belong the papers [7, 5, 11, 6, 8, 15, 9, 1, 16, 14]. 

As one of the first testing examples, the following extremal problem (with 
previously known solution) was tested by AGX (cf. [7]). Let nT  be the set of trees on n  
vertices and let 1( )Gλ  be the largest eigenvalue of the adjacency matrix of a graph G . 
Find 

1min ( ),
nT

Tλ
∈T

 1max ( ).
nT

Tλ
∈T

 (2) 

and the corresponding extremal trees. As it is well known, minimum is attained for a path 

nP  with 1( ) 2cos
1nP

n
πλ =
+

 and the maximum for a star 1, 1nK −  with 1 1, 1( ) 1nK nλ − = −  (cf. 

[18]). Obviously, problems (2) are of the form (1). 
The next example is the famous Turán problem [23], the "first" one in the 

extremal graph theory, given here for simplicity in a special case. 
Let ( )wt

nG  be the set of graphs on n  vertices without triangles and let ( )m G  be 
the number of edges of a graph G . Find 

( )
max ( )

wt
nG

m G
∈G

 (3) 

and the corresponding extremal graphs. The solution is well known: maximal number of 
edges is 2[ / 4]n  and the only extremal graph is the complete bipartite graph ,p pK  for 

2n p=  and , 1p pK −  for 2 1n p= + . Again (3) is of the form (1). 
We mention also the following two related recent results. 
Since / 2 , / 2n nK      

 contains no odd cycles, the maximal number of edges in a 

graph containing no 2 1kC +  is 2 / 4n 
   for sufficiently large n . The main aim of the paper 

[2] is to prove a considerable strenghtening of this result. Let us write 2 1( , , )kf n C +∆  for 
the maximal number of edges in a graph of order n  and maximum degree ∆  that 
contains no cycles of length 2 1k + . For / 2 1n n k≤ ∆ ≤ − −  and n  sufficiently large it is 
shown that 2 1( , , ) ( )kf n C n+∆ = ∆ − ∆ , with the unique extremal graph being a complete 
bipartite graph. 
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The 2-stability number 2( )Gα  of a graph G is the maximum order of a bipartite 
induced subgraph of G . A lower bound on ( )m E G=  is given as a function of ( )n V G=  
and 2( )k Gα= . Minimal graphs are also described as disjoint unions of balanced cliques 
and isolated vertices [13]. 

According to [4], in a typical extremal problem, given a property P  and an 
invariant Φ  for a class S  of graphs, we wish to determine the least value f  for which 
every graph G  in S  with ( )G fΦ >  has property P . The graphs in S  without property 
P  and satisfying ( )G fΦ =  are the extremal graphs for the problem. More often than 
not, S  consists of graphs of the same order n , namely { }:G G n= ∈ =S H , where H  is 
a class of graphs, and so f  is considered to be a function of n , determined by Φ  and 
H . This function ( )f n  is the extremal function for the problem. 

Obviously, this problem can be reformulated in the form (1) in the following 
way 

max ( )
G

f G
¬∈

= Φ
PS

 (4) 

where ¬PS  is the set of graphs from S  which do not have property P . 
Also, any problem of the form (1) can be converted into the above described 

form typical for extremal graph theory. For example, the second problem (2) can be 
stated as the problem of finding the least value f  such that 1( )G fλ >  implies that the 
graph G  contains a cycle (i.e. is not a tree). 

2. DIFFERENT APPROACHES AND GOALS 

The main objective in combinatorial optimization is to develop efficient 
algorithms and heuristics for solving various types of problems of the form (1). For each 
problem type we have a set of instances. No solutions are known in advance. For each 
instance a solving procedure (an algorithm or a heuristics) should be executed and a 
solution found in this way. 

Extremal graph theory deals with solving and solutions by theoretical means of 
various concrete problems of the form (1). The set S  of feasible solutions is usually a set 
of graphs with a fixed number of vertices. Typical results are: finding a bound for the 
objective function, showing that the bound is tight by constructing a graph which attains 
the bound, and constructing or characterizing extremal graphs. The algortihmic 
complexity of constructing procedures is usually not the subject of considerations. 

3. POSSIBLE INTERACTIONS BETWEEN THE TWO FIELDS 

Combinatorial optimization and extremal graph theory existed for many years 
without notable interactions. For example, books [3, 4] on extremal graph theory do not 
refer to combinatorial optimization. 

Recently, the idea built into the system AGX [7] and the application of this 
system to actual research on extremal problems in graph theory clearly indicate a 
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possibility to connect the two fields. Some general solving procedures of combinatorial 
optimization can be used via the programming systems, such as AGX, to solve the 
problems of extremal graph theory in order to give hints to theoretical considerations. 

For example, in [11] the system AGX has found extremal spanning trees of a 
complete bipartite graph ,m nK  for various m  and n  with respect to the objective 
function 1( )Tλ . Many conjectures arose and some of them have been proved in [11]. 

Posing conjectures by the aid of a system like AGX is a two step procedure. In 
the first step one estimates the values of the extremal function ( )f f n=  for a problem of 
a type (4) for several appropriate values of n  by finding an extremal or a nearly extremal 
graph. On the basis of the values obtained in the first step one tries to find a general 
expression for ( )f n . This second step can be done by the user but also the system AGX 
can do this under some circumstances in several ways [8]. It is not important that there is 
no warranty that the graphs obtained by AGX are really extremal. Anyway, the 
conjecture has to be proved by theoretical means. It is nonsignificant whether a disproved 
conjecture is false because the statements were wrong in the first or in the second step of 
the conjecture posing process. 

Although the problems of extremal graph theory are of the general type (1) 
typical for combinatorial optimization, their concrete forms are various and, as a rule, 
such that there are no known algorithms in combinatorial optimization for solving them. 
Therefore, some general heuristics, like those known as meta-heuristics, need to be 
applied. Just such an approach has been adopted in creating the system AGX. The meta-
heuristics called Variable Neighborhood Search (VNS) has been selected [21], [17]. 

An alternative to heuristic search for extremal graphs is to use exhaustive 
search. Such an approach has been used in many cases (for example, by the use of system 
GRAPH [10, 22] for modest sizes of graph sets and by Nauty for extensive searches [19, 
20]). However, due to the enormous number of graphs an extensive search over all 
graphs is (nowadays) possible for graphs up to 11 or 12 vertices. A heuristic approach 
enables, however, to find extremal or nearly extremal graphs with up to 30 vertices, 
although a warranty that they are really extremal is missing without further theoretical 
considerations. 

Other general tools of combinatorial optimization can be applied to the extremal 
graph theory at least in principle. First of all, the problems of extremal graph theory can 
be represented as integer programming problems. For example, the Turán problem (3) 
can be formulated as the problem 

1 1
max

n n
ij

i j
x

= =
∑∑  

where ij jix x= , 0,iix =  { }0,1 ( , 1,2,..., )ijx i j n∈ =  and 2ij jk kix x x+ + ≤  for distinct 
, , 1,2,...,i j k n= . Although solving extremal graph problems in this way looks 

questionable, some theorems of integer programming could perhaps give some useful 
hints as how to treat the problems. 

Semidefinite programming can be also used in some situations, especially in 
problems involving eigenvalues. 



 D. Cvetković, P. Hansen, V. Kovačević-Vujčić / On Some Interconnections  152

For a symmetric matrix X  we write 0X ≥  to denote that it is positive-
semidefinite. For a given symmetric matrix, the largest eigenvalue 1λ  can be obtained by 
a semidefinite programming task 

1

0

min
t R

tI X

tλ
∈
− ≥

=  

while the first of problems (2) can be converted to the form 

1
( , )

0

min
nx t R

tI X

tλ
∈ ×
− ≥

=
X

 

where nX  is the set of adjacency matrices of trees on n  vertices which is determined in a 
standard way: 0-1 variables, zero-diagonal, a fixed sum of entries and, to ensure the 
connectedness, the constraints similar to the well-known sub-tour elimination constraints 
in the traveling salesman problem.  

An alternative to the use of adjacency matrices, in general and in treating 
problems of extremal graph theory by semidfinite programming, is to introduce the 
Laplacian matrix. Then the graph connectedness condition, very often appearing in 
extremal graph problems, can be suitably imposed using the concept of the algebraic 
connectivity of a graph (the second smallest eigenvalue of the Laplacian matrix) as 
already used in the traveling salesman problem [9]. 

In the other direction, the influence of extremal graph theory to combinatorial 
optimization is also possible. The extremal graph theory offers a variety of combinatorial 
optimization problems of type (1) for whose solutions no specific algorithms or heuristics 
exist. It would be a challenge to develop efficient solving procedures for some of such 
problems with unknown solutions. 

Combinatorial optimization problems coming from extremal graph theory have 
a specific form regarding the set of instances. An instance is a set of graphs specified by 
the number of vertices and by other graph invariants, i.e. the set of instances is a set of 
sets of graphs. The instance is identical with the set of feasible solutions. 

We can imagine that the graphs on n  vertices forming an instance are sub-
graphs of a complete graph nK . In this artificial way the instances would be simply 
complete graphs with conditions defining the actual set of subgraphs. Now we would 
have some similarities with optimization problems defined on weighted graphs which 
appear in combinatorial optimization. 

A relaxation of such a problem would mean an extension of the instance to a 
broader class of graphs or even to objects which are not graphs. The later case occurs, for 
example, if we represent the graphs from an instance by their adjacency matrices and 
then formulate a relaxation task by looking for the extremum over all (not necessarily 0-
1) matrices. 

One can think of possibilities of constructing branch and bound algorithms for 
problems of extremal graph theory which would accelerate an exhaustive search and, of 
course, would really provide extremal graphs. A way to realize branching rules in such 
algorithms would be to introduce penalty terms for some graph invariants into the 
objective function in order to ensure the presence of the desired class of graphs in new 
relaxation tasks. 
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The strategy for solving a problem of above type depends also on the character 
of the objective function. It could be "continuous" in the sense that the set of its values 
over all graphs is everywhere dense at least in some intervals (e.g. 1( )Gλ ). This means 
that local modifications of graphs which appear, for example in VNS, can be arranged so 
that they cause small changes of the objective function. 

The other situation appears in the discrete case where, for example, the objective 
function has integer values (e.g. ( )m G ). An idea to overcome this situation is to look at 
the relaxation with general matrices and to express the objective function through matrix 
parameters (e.g. entries, eigenvalues, etc.). 

4. CONCLUSIONS 

This paper elaborates mutual connections and differences between 
combinatorial optimization and extremal graph theory. Our key observation is that the 
uniting feature of these two disciplines is the fact that both deal with problems of finding 
extrema of a real function defined on a finite set. This observation enables using general 
combinatorial optimization procedures in treating problems in extremal graph theory. In 
particular, some examples of using combinatorial optimization tools to generate 
conjectures in extremal graph theory are described. 
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