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Abstract: Starting from the defined network topology and the timetable assigned 
beforehand, the paper considers a train rescheduling in respond to disturbances that have 
occurred. Assuming that the train trips are jobs, which require the elements of 
infrastructure – resources, it was done by the mapping of the initial problem into a special 
case of job shop scheduling problem. In order to solve the given problem, a constraint 
programming approach has been used. A support to fast finding “enough good” 
schedules is offered by original separation, bound and search heuristic algorithms. In 
addition, to improve the time performance, instead of the actual objective function with a 
large domain, a surrogate objective function is used with a smaller domain, if there is 
such. 
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1. INTRODUCTION 

The train scheduling problem belongs to a category of NP-hard problems of 
combinatorial optimization [1, 2], and hence is complex for both modeling and solving. 
The train scheduling problem considered for a larger fragment of railway network, a 
longer planning period, and hence the higher number of trains is a part of designing the 
timetable carried out at the level of tactical planning. The assignment of train 
rescheduling is that on a smaller fragment of railway network, over a shorter planning 
period an operational reconstruction of timetable is made, in respond to disturbances that 
have arisen. The rescheduling may be considered to be a more difficult problem than an 
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initial scheduling because additional requirements are imposed to it [4]: to find a solution 
in a given real time; to have a recovered schedule which will deviate from the initial one 
as little as possible; the solution if not optimal, to be at least “enough good” with respect 
to the assigned objective function, but also to other performances, etc. 

However, only a few published papers deal with train rescheduling in real time. 
In fact, the current rescheduling systems test mostly if the solution proposed by the user 
is a feasible one, and not doing full schedule regeneration [3]. It can also be noted that 
authors simplify the scheduling problem in two ways: by simplification of the network 
structure and omitting and/or approximating constraints that govern the train movement 
[7, 10]. The basic aim of the research is to formulate the most realistic model and develop 
original heuristic algorithms, which in conjunction with constraint programming 
mechanisms in a suitable way are able to find an “good enough” solution of the train 
rescheduling problem within the limited time. 

The rest of the paper is arranged as follows: Section 2 defines in a concise and 
exact way the railway network topology. As a case study because of its complexity, a 
single-track line scheduling problem was chosen. Namely, the train scheduling on a 
double-track line can be assumed as a relaxed problem of scheduling on a single-track 
line, there being no train crossing. In section 3, the problem of train scheduling on a 
single-track network is modeled as a job shop scheduling problem. Assuming that the 
train trips are jobs, which require the elements of infrastructure – resources, it was done 
by the mapping of the initial problem into a special case of job shop scheduling problem. 
The fourth, key section, deals with solving the problem by constraint programming 
approach. After the train scheduling problem defined as a constraint satisfaction 
optimization problem, a set of constraints, the corresponding optimization criteria, 
heuristics for accelerating reaching good solutions and concept of the surrogate objective 
function are discussed. For the purpose of an experimental test of the described heuristic 
methods, the first prototype of software system for train rescheduling has been 
constructed. In the fifth section, using the train rescheduling software, the proposed 
method is evaluated on the selected real examples. The final considerations and possible 
directions of further research are presented in the last, sixth section. 

2. RAILWAY NETWORK TOPOLOGY 

The railway network elements are integral parts of lines and stations – facilities, 
resources; we shall denote them as set R . According to the properties concerning the 
possible numbers of simultaneously present trains on a facility (i.e. its capacity), numbers 
of entry and exit points of the facility and possibility of connection, we can distinguish 
three disjunctive subsets: block sections – set P  (Type( r )=bs, Capacity ( ) 1=r , if 

∈r P ), entry-exit facilities – set U  (Type( r )=ee, Capacity ( ) 1=r , if ∈r U ), and 
station tracks – set S  (Type( r )=st, Capacity ( ) 1>r , if ∈r S ). Such a classification is 
close to the real one, and it is suitable for an exact formulation of constraints concerning 
the occupying and making available each of the resource classes. 

On railway lines with two-way traffic the train movement directions are 
traditionally designated as odd and even. In further presentation, we shall assume that the 
train moves in odd direction if it runs from the entry to the exit points of the facility, or in 
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even direction from the exit to the entry point of the facility. The railway network is built 
by connecting the exit points of one facility to entry points of other facility. Facilities 
from the set P  have exactly one entry and exit point; facilities from the set S  have 
mutually equaled, and still higher than one, numbers of entry and exit points. The entry 
and exit points of the facility are provided with signals controlling its occupation. Let 
function I add to each facility the number of its entry points, and function O add to each 
facility the number of its exit points. 

Let { , , }=L bs st ee  be the set of possible facility types. The ternary relation μ  
is defined on set L  such that ( , , ) μ∈x y z  means that the facility of type y  may be 
connected through one its entry point with the facility of type x  and through one its exit 
point with facility of type z . The relation μ  shall be represented by the set of triples: 

μ={(bs,bs,bs),(bs,bs,ee),(ee,bs,bs),(bs,ee,bs),(bs,ee,st),(st,ee,bs), 
(bs,ee,ee),(ee,ee,bs),(st,ee,ee),(ee,ee,st),(ee,ee,ee),(ee,bs,ee),(ee,st,ee)}. 
The railway network N can be defined as a directed acyclic graph ( , )=N R A , 

where nodes are resources from R, and arc ( , )p qr r ∈ A  between resources pr  and qr  
means that the exit point of the pr  facility is connected to the entry point of the qr  
facility. The network is properly built if for each triple of connected facilities pr , qr , kr  
where ( , )p qr r ∈ A  and ( , )q kr r ∈ A , goes that (Type( pr ),Type( qr ),Type( kr )) μ∈  and if 
in each node qr  at most I( qr ) arcs flow in, and at most O( qr ) arcs flow out. 

The stations are modeled as resources of type st, which are, in accordance with 
relation μ , in connection with the resources of type ee through entry and exit points. 
Open-line sections between stations consist of one or more block sections (resources of 
type bs) between which bifurcation points may be found (resources of type ee). This 
makes possible for a number of trains moving in the same direction may be present 
simultaneously on the open-line section between stations, where the distance between 
them is real, spatial. The increase of the number of facilities certainly makes the train 
scheduling problem more complex. 

The example of a railway network built according to the described rules is 
presented in Figure 1. 
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Figure 1: Real example of a railway network 
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3. SINGLE-TRACK TRAIN SCHEDULING AS A JOB SHOP 
SCHEDULING PROBLEM 

The timetable is an entry into the operational railway control. The timetable 
specifies starting and final points of journey as well as the scheduled arrival and 
departure times for each intermediate station on route. The timetable is said to schedule 
trains on a given railway infrastructure. 

A real route is a series of all stations through which a train must pass from the 
origin to destination. This paper interprets the term route in somewhat modified way. The 
route is a sequence of facilities the train must cross on its journey from the origin to 
destination. A valid route in the network N is any path with nodes 

1
,lr  

2l
r , ..., 

el
r  so that 

Type(
1l

r )=Type(
el

r )=st, (for trains moving in odd direction), i.e. its inversion (for trains 
moving on even direction). 

Instead of the arrival and departure times for each train and each facility on its 
route, we shall assume that we know the ideal duration of occupation of each facility by 
train on its route. This occupation includes both the movement and any planned stopping 
of the train. Since we know the planned train arrival time to the first facility on the route 
– planned train generation, based on an ideal duration of occupation, we can assume 
that the ideal train timetable is known. 

The train movement is a series of particular trips, operations of facilities 
occupation en route. Hence, each train is accompanied by a trip in a unique way. The 
trains can also be considered as jobs to be scheduled to the infrastructure elements – 
resources. Thus, established correspondence entitles us not to make a strict distinction 
among “train”, “trip” and “job” in this paper.  

The conflicts among trains arise when a number of requests for resources exceed 
their capacities, or when some of the imposed constraints have been disturbed regarding 
the train movement control. In a general case, solving of conflicts requires an 
introduction of delay into at least one of the conflict trips. 

The scheduling model of interest in this paper is a dynamic job shop model [6, 
11]. The model is a complex processing system with several resources and several 
operations, where each job has its inherent sequence of operations (activities) and 
inherent generation time. 

The mapping of the train scheduling problem into a special case of the job shop 
scheduling problem has been made as follows: 

Let 1 2{ , , ..., }= ∪ ∪ = mR P U S r r r  be a set of railway infrastructure facilities 
available, 1{ , ..., }= nJ J J  set of train trips considered as jobs and N is the railway 
network. Each train trip ∈iJ J  is a series of ik  operations (activities) 1( , ..., )=

ii i ikJ o o . 

To each train trip iJ  the “1-1” mapping :{1, 2, ..., }φ →i ik R  is corresponded. φi  
allocates to each operation ijo  of this trip a facility ( )φi j  from R on which this operation 
is planned to be processed. Sequence (1), (2), ..., ( )φ φ φi i i ik  must represent one path 
on network N (when a direction( iJ ) is odd) or its inversion, (direction( iJ ) is even). Each 
operation ijo  has a fixed processing time ijp  corresponding to the time of facility 
occupation of ( )φi j  by the job iJ . Each train is joined its category icat , for which we 



 S. Mladenović, M. Čangalović / Heuristic Approach to Train Rescheduling 13

shall assume to specify all fixed train attributes (type – passenger or freight, length, 
weight, speed, time for stopping, time for starting, etc.). The function w  joins to each job 

iJ  its priority iw . Job priority depends on train category, the scheduling period, external 
events, etc.  

The planned start time ijd  for each operation ijo  is equal to the earliest possible 
time, i.e. the earliest completion time of the preceding operation: ( 1) ( 1)− −= +ij i j i jd d p , 
2 ≤ ≤ ij k  and 1 =i id d , where id  is the planned job generation time of iJ . If ic  denotes 
the planned, and iC  the actual job completion time of iJ , then the tardiness iT  of job iJ  
is defined as max( , 0)= −i i iT C c . We shall assume that the planned job completion time 

is the earliest possible, i.e. 
1=

= +∑
ik

i i ij
j

c d p . 

The problem of determining the timetable, i.e. train scheduling over time, 
consist of finding the actual start time ijd , ≥ij ijd d , for each operation ijo  of each of the 
jobs iJ  avoiding conflicts, meeting additional constraints and optimizing the selected 

objective function. If the ideal timetable is a feasible one, then =ij ijd d  for all operations 
of each job. 
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Figure 2: An infeasible ideal timetable with conflicts on open-line between stations 
Krnjaca – Ovca and Pancevacki most – Krnjaca 

If trains in Figure 1 started the movement simultaneously and moved at the 
same speeds, the trains 1 and 2 would have a conflict on an open-line between stations 
Krnjaca – Ovca, and trains 3 and 4 on an open-line between stations Pancevacki most – 
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Krnjaca. Hence, the ideal timetable is not feasible in this particular case. The 
visualization of this conflict is given in Figure 2 in the form that is known in railway 
traffic as the train diagram. Actually, it represents the modified Gantt's diagram, where 
the modification consists of touching resources on y-axis, and bars are replaced by their 
diagonals, which symbolizes the train movement on the resource. 

4. SOLVING TRAIN SCHEDULING PROBLEM BY CONSTRAINT 
PROGRAMMING APPROACH 

4.1. Definition of the Train Scheduling Problem as CSO Problem 

Constraint programming (CP) is a more recent approach in the field of 
programming languages, which attempts to reduce the gap between the problem 
description at a high level and algorithms implemented for its solving. One of possible 
CP definitions is: CP proposes the software architectures for simplifying the 
implementation of combinatory optimization algorithms. CP attracts the experts' attention 
in various fields, finding out that many problems in real world can be represented by 
constraints, where the satisfaction of these constraints gives a solution for the problem in 
question (CSP). 

The CP paradigm focuses on manipulation with variable domains and relations 
between corresponding variables expressed through different type of constraints. These 
variables are actually the decision variables, but they will be referred to hereinafter as 
variables, in short. 

Formally, CSP is defined as a triple ( , , )V D C  [8], where: 1{ , ..., }= nV v v  is a 
finite set of variables presenting the problem, D  is a function that joins to each variable 
in V  its domain, i.e. ( ) =i iD v D  and C  is a finite set of constrains. Constraint ∈c C  
between the variables 

1j
v , 

2j
v , ..., ∈

kj
v V , ≤k n  is a subset of Descartes' product of 

their variable domains, i.e. 
1 2 1 2

( , , ..., ) ...⊆ ×
k kj j j j j jc v v v D D D . The CSP solution is such 

an assignment of values from domains iD  to variables iv , 1, ...,=i n  which satisfies all 
constraints from C. Let S be the set of all CSP solutions. 

In real applications, there is an interest of determining the quality of the solution 
found. It is also sometimes an aim to find the best, optimal solution. The CS problem is 
therefore expanded by an objective function f that joins to each solution from S a 
numerical measure of its efficiency. Function f is defined as an arithmetical expression 
over variables in V. Formally, constraint satisfaction optimization problem (CSOP) is 
defined as a quadruple: (V, D, C, f). 

If any upper limit 0U  of function ( )f S  is known (in the case its minimization), 
then the constraint 0( ) <f S U  may be added to the set of constraints of CSP problem, i.e. 
the problem { }0( , , ( ) , )∪ <V D C f S U f  is under consideration. A solution of this 
problem gives a new limit 1U , ( 1 < oU U  for the minimization problem), and now the 
problem { }1( , , ( ) , )∪ <V D C f S U f  may be solved. Hence, CSOP can be solved 
incrementally until an optimal solution is reached. 
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If we consider the actual start times of activities ijd  as decision variables, to 
which the finite domains are associated, and the conjunctive, disjunctive and special 
constraints as a set of constraints, it is clear that the job shop scheduling problem is one 
CS problem. Supplemented by an objective function, it grows into a CSO problem. 
Hence, our initial train scheduling problem may be formulated as a CS problem, i.e. CSO 
problem. 

A support in finding the solution in CP paradigm is offered by consistency 
methods and search strategies. The consistency methods make the constraint propagation 
through variable domains. In this way, the variable domains are bounded and the search 
space reduced. The complete search is applied if the aim is to find an optimal solution; if 
the aim is a solution “good enough” in the limited time, a local search is combined with 
constraint propagation. 

The CP approach has become an appealing technology for planning and 
scheduling problems only after the appearance of commercial CP tools. Within the 
available CP tools, the consistency methods and search strategies have been implemented 
as their inference mechanisms. 

The motivation for choosing the CP approach in solving our problem is as 
follows: 

 declarative nature of constraints in CP approach offers a comfort in formulating 
the numerous and complex constraints occurring in real train scheduling 
problem on a single-track railway network; 

 the presence of commercial CP tools may significantly shorten the development 
time and length of the programming code of scheduling applications; 

 separation of the constraint component from the search component offers a 
possibility to keep the constraints once formulated (these actually being 
regulations for train movements on the railway line which are relatively seldom 
changed), and to build the search component by considering the concrete 
objective function; 

 possibility of dynamic modification of constraint set by adding new constraints 
in order to satisfy the current requirements; 

 researchers’ challenge to test a new approach to solving the train rescheduling 
problem! Namely, the train rescheduling on a single-track network has been a 
subject of research for the first author of this paper for a number of years. Thus, 
in [5, 9] the weighted priority dispatching rules and heuristic scheduling rules 
have been used, aiming at minimizing the weighted number of late trains. As 
opposed to dispatching rules permitting quick decision-making, but not taking 
into account the global information, the CP approach carries out a systematic 
search and as such, it is time-consuming, but also capable of finding better 
solutions, according to the assigned objective function. Before carrying out the 
research, it was not clear if time-consuming CP method may satisfy the time-
limited train rescheduling. 
 

4.2. Constraint Component 

In order to solve the train rescheduling problem by CP approach, it is necessary 
to define the constraint component. The constraint component in our research consists of 
four classes of constraints. 
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1. As the train scheduling problem is formulated as job shop scheduling problem, it is 
clear that the fixed route corresponds to conjunctive constraints, and the constraints 
related to job processing on the same resource, taking into consideration its capacity, are 
normal disjunctive constraints. 
 
2. The following set of constraints is related to preventing trains collisions and it exists in 
each railway system. In the carried out research a minimum set of eight safety 
constraints has been defined, covering all known regulations applicable in real train 
movement on a single-track line on the Serbia and Montenegro railway network. These 
constraints are designated as: Rule on speeds, Rule on stopping, Rule on occupying and 
making available unary resources, Rule of occupying and making available station tracks, 
Rule of sequencing, Crossing Rule, Rule of stop-over in a station and Rule of non-
simultaneous arrivals to station. 

These constraints are the same both for initial scheduling and for rescheduling. 
All constraints are formulated in meta-notation using previously introduced notation and 
making possible a simple mapping into an optimization programming language in the 
implementation phase. For example, we shall consider here in more detail: 

 

Crossing rule 
The rule is related to pJ , qJ ∈ J  so that ( ) ( ).≠p qdirection J direction J  The safety 
regulations specify that at least ct  time units must elapse since the moment of making the 
line available until the moment of exit of the train in opposite direction on the same line. 
Let ( ) ( )φ φ= =p p q q lj j r , ( 1) ( 1)φ φ+ = − =p p q q vj j r  for {2,..., 1},∈ −p pj k {2,..., 1}∈ −q qj k  
and Type( lr )=st. From network relation μ  it is clear that Type( vr )=ee. Hence, 

( 1) ( 1) ( 1)( ) ( )+ − +≤ ∨ + ≤p q q pp j q j qj p jcd d d t d . 
 
3. The third group of rules is rescheduling model constraints. These constraints 
differentiate the rescheduling problem from the initial scheduling problem. Our model 
formulates one of such constraints: 

 

The rule of no-waiting entering the system 
The modeling assumption that each job iJ  must be taken for processing at the moment 

of generation, can be simply expressed by: 1 =i id d . 
 

This actually means that the jobs cannot be “piled up” before entering the system. This 
assumption is extremely reasonable for the case of rescheduling, where the railway 
network under consideration is only a small fragment of real railway network, where 
originating and destination stations in the model are in most cases only the intermediate 
stations in the real system. 

 
4. Finally, a number of special constraints have been considered which can be of a 
practical importance in operational control and which can be included selectively in the 
constraint component, depending on requirements put to the rescheduling system. These 
constraints offer a possibility to have very specific traffic situations planned. The 
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possibilities of defining such constraints are inexhaustible, and our model deals with: 
Rule of simultaneous stop-over in the station, Rule of time distance between the 
completion of one and generation of another job, Rule of unavailability of resources, 
Rule of special separation. For example, we shall consider here in detail: 

 
Rule of simultaneous stop-over in the station 
  
The requests for every two trains to meet in the previously planned station is 
unsustainable under conditions of the timetable disturbances, and therefore in 
rescheduling overtaking and crossing stations are determined dynamically. However, 
sometimes there is an interest for two trains to “meet” necessarily in one of the stations of 
the system. The rule of a simultaneous stop-over in the station should provide for trains 

pJ , qJ ∈ J  to stop simultaneously in a station at least for mt  time units (e.g. due to the 
planned overtaking, crossing or changing trains by passengers). The station is specified 
by the resource Type( lr )=st, ( ) ( )φ φ= =p p q q lj j r , for 

{1,2,..., 1},∈ −p pj k {1,2,..., 1}∈ −q qj k . Let ( )stop it cat  be additional time for stopping 
train iJ . Then,  

( 1) ( 1)min( , ) max(( ( )), ( ( )))+ + − + + + + ≥p q p qp q
p j q j pj qjpj stop p qj stop q md d d p t cat d p t cat t . 

 
4.3. Optimization Criteria 

The makespan, maximum complete time of all jobs, is the most frequent 
criterion with the job shop scheduling problems. However, in the train scheduling, the 
criteria taking into consideration the delays and different priorities and various train 
categories are of interest. Therefore the following seven relevant optimization criteria, 
i.e. objective functions have been selected, for which optimization models have been 
developed: 
 minimization of the maximum tardiness max 1 2max{ , , ..., }= nT T T T . Although the 

criterion minimizes the maximum delay, many trips may suffer disturbances. The 
criterion is acceptable in situations when passenger trains prevail for scheduling; 

 minimization of the maximum weighted tardiness max 1 1 2 2max{ , , ..., }= n nWT w T w T w T  
may be an interesting criterion under the mixed traffic conditions. The weights iw  
are usually the same for all trains of the same category within given scheduling 
period; 

 minimization of the total tardiness 
1=

=∑
n

i
i

D T ; 

 minimization of the total weighted tardiness 
1=

=∑
n

i i
i

WD w T ; 

 minimization of the maximum slack of trains in stations, i.e. the minimization of the 
function max ( 1)max{ ( ) 1 , 1+= − + ≤ ≤ ≤ ≤i j ij ij iS d d p i n j k , Type ( ( )) }φ =i j st . 
Considering that the absolute compliance with the original timetable corresponds to 
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the situation that max 0=S , this criterion offers a support to the idea that rescheduled 
timetable should be as close as possible to the original one; 

 minimization of makespan max 1max{ , ..., }= nC C C  expresses our wish for the trains 
to leave as soon as possible the fragment of railway network under consideration. In 
the case of rescheduling, this objective function gives support to the localization of 
disturbances; 

 minimization of the number of late jobs | |LJ , where { | 0}= ∈ − >i i iLJ J J C c . 
 

4.4. The choice of strategy, policy and method of rescheduling 

Following the ideas presented in [12], the essential steps in implementation of 
rescheduling are the choice of factors, strategy, policy and method of rescheduling.  

The rescheduling is activated after recognition of the rescheduling factor. Here 
the rescheduling factor is a disturbance, i.e. an unplanned forwarding of train to the 
station that is equipped with the rescheduling system. 

The strategy is necessarily predictive-reactive since there is an original 
timetable. 

The choice of policy depends on the assessment of the minimum time spacing 
between the consecutive rescheduling factors and the expected run time for the 
rescheduling procedure. In a general case, the policy may be periodic, event-driven and 
hybrid. This paper presents a hybrid policy: the rescheduling procedure starts at the end 
of the defined period if within it some disturbances have arisen. 

So far as the choice of method is concerned, it is clear that due to time limit for 
rescheduling implementation, one should focus on partial rescheduling methods. 

The global rescheduling procedure is represented by pseudo code as follows. In 
effect, an infinite loop is in question: A disturbance is identified in the first part of the 
loop body, and its processing is made in the second part. 

 

procedure Reschedule (DB, MB) 
inputs   DB,     database  
    MB,    base of scheduling models 
forever 
 disturbance← false 
 repeat 
  Trigger (DB, disturbance, Active Jobs, J , gt ) 
 until disturbance ∧  =t k .period, ∈k Z  
 Select Model (Active Jobs, MB, DB, Model, Max B) 
 Select Preparation Model (MB, Model, Preparation Model) 
 Prepare( J , PreparationModel, Delays) 
 Separate And Schedule Related Jobs ( J , Active Jobs, Model, Delays, 
 Schedule) 
 Save Schedule (DB, Schedule) 
 Present Schedule (Schedule) 
end forever 
end procedure 
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All symbols in this one, but also in the following algorithms are of a mnemonic 
character, and therefore the comment is missing in a number of places. 

The assumption is that the database DB comprises the initial schedule and 
network topology, as well as the updated dynamic data concerning the schedule 
implementation. The occurrence of an unexpected dynamic data in database DB triggers a 
rescheduling procedure. The optimization models available are incorporated in the model 
base MB. This concept offers a support to the idea, based on the user’s wish, the period of 
the day when the rescheduling is made, statistical analysis of the system history, etc., to 
choose a model that optimizes one or the other optimization function. The procedure 
Select Model, in accordance with a certain criterion, selects a scheduling Model from 
the model base MB. MaxB is initial upper bound of objective function. It is the property of 
a chosen model and expresses the user’s wish to reach minimal schedule efficiency. The 
procedure Select Preparation Model selects a preparation model corresponding to the 
chosen scheduling model.  

Procedure Trigger verifies the contents of database DB, waiting for information 
about disturbances. If there is in time moment t  a piece of information on unplanned 
dispatching of one or more trains, the procedure returns a set ActiveJobs of all jobs 
the processing of which is underway at moment t , as well as the set of all jobs J , 
including the jobs from ActiveJobs, but also all not commenced jobs the generation 
of which is planned up to the given time moment gt . It is clear that the planning period 
[ t , gt ] should sufficiently exceed the maximum flow time of jobs. Let 

∈iJ ActiveJobs be job dispatched to the station represented by resource lr , 
Type( lr )=st and let j-th operation of iJ  be performed on that resource, i.e. ( )φ =i lj r . 
The rescheduling of the remaining part of the job iJ  will be carried out starting from 

operation ijo , and hence we can assume that the position ipos  from which the job iJ  

scheduling starts within [ t , gt ] is =ipos j . The expected train arrival to that station is a 

moment of actual generation id  of the rest of job iJ . For jobs ∈iJ J \ActiveJobs 

1=ipos , and id  is the planned job generation subject to the initial schedule.  
The procedure Prepare will be described in the part of the paper related to 

bound heuristics, and procedure Separate And Schedule Related Jobs in the part 
describing separation heuristics. 

The procedure Save Schedule accommodates the recovered schedule in 
database, while the procedure Present Schedule visualizes the schedule in an adequate 
way.  

 
4.5. Heuristics 

Manufacturers of commercial CP tools claim that it is precise enough to 
formulate what the problem is (the constraint component and objective function), and CP 
tools are capable to find an optimal solution or a series of feasible solutions thanks to 
inference incorporated algorithms. Experiments made with ILOG Solver CP tool and its 
extension for scheduling purposes ILOG Scheduler, prove unreliability of exclusive 
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reliance on CP tools and their search algorithms! The process of arriving even up to the 
first solution is sometimes very time-consuming and as such cannot meet the 
rescheduling requirements. Wishing to take advantage of good properties of CP 
approach, which have already been discussed, an idea naturally arose to “support” the CP 
tools by heuristics based on knowledge of the real problem. For this purposes three 
classes of heuristics have been formulated: bound heuristics, separation heuristics and 
search heuristics. 

 
Bound heuristics 

The aim of the bound heuristics is to limit the domains of decision variables and 
objective function in order to increase the search efficiency. Three types of bounds are 
proposed: 

 

1. Initial bound – all variables take value from interval [origin, horizon], where 
the origin and horizon are assessed based on the knowledge of the real problem: 

 

horizon = origin ( ( ) ( ))
∈ ∈

+ + +∑ ∑
i ij i

ij stop i start i
J J o J

p t cat t cat = 

      origin (( ) ( ) ( ))
∈

+ − + +∑
i

i i stop i start i
J J

c d t cat t cat ,  

where origin min{ }= ∈i id J J . 
 

horizon is determined by sum of duration of all operations, increased by additional 
times for stopping ( )stop it cat  and starting ( )start it cat  for each train trip ∈iJ J . 

 
2. Lower bound of objective function - is estimated by a special procedure. The 
estimation is based on solving the preparation model that solves the conflict between two 
jobs in isolation, disregarding the consequences it might have on other jobs. The aim of 
procedure Prepare is to find the minimum delay to incorporate in a pair of jobs, if such 
pair of jobs is observed in isolation. The element Delays[i,k] of matrix Delays is 
an optimal value of the objective function in solving the conflict between jobs iJ  and 

kJ , using a preparation scheduling model. Algorithm of procedure Prepare has the 
following form: 

 
procedure Prepare ( J , PreparationModel, Delays) 
inputs     J ,  set of all jobs, includes jobs the processing of which is  
         underway at moment t  and non-commenced jobs up  
         to upper bound of planning period gt  
 PreparationModel, scheduling model 
returns  Delay, matrix containing minimum delay if a conflict between two 
       jobs is solved in isolation  
forall ∈iJ J  
 forall ( ∈kJ J : i<k ) 
  if not ( ( )<i kc d ( )∨ <k ic d ) then 
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   origin← min( , )i kd d  
   horizon← origin+( −i ic d )+ ( ) ( )+stop i start it cat t cat + 
   ( −k kc d )+ ( ) ( )+stop k start kt cat t cat  
   Jobs { , }← i kJ J  
   LowerBound 0←  
   // setting initial upper bound of objective function 
   UpperBound← MaxB 
   // running of the model solving the conflict between two jobs 
   Solve Model (Model, Jobs, origin, horizon, LoverBound, 
   UpperBound, Schedule, ObjectiveFunction, Makespan) 
   // optimal value of objective function is stored in Delays matrix 
   Delays[i,k]← ObjectiveFunction 
  end if 
 end forall 
end forall 
end procedure 

A set of inter-related jobs will be referred to as RelatedJobs. Procedure 
Estimate, called on every time before solving the scheduling model over the set 
RelatedJobs, based on Delays matrix sets a lower bound for the objective function 
(see next procedure named Separate and Schedule Related Jobs). For objective 
functions that are not of a sum type, except for the number of late trains, and lower bound 
has the form: 

 
LowerBound=

, Re
max {

∈i jJ J latedJobs
Delays[i,j] >j i }, 

while for sum type objective functions it is of the form : 
LowerBound =

, Re
{

∈i jJ J latedJobs
sum Delays[i,j] >j i }. 

 
The lower bound of the number of late trains is a number of non-zero rows in Delays 
matrix. 

Since the PreparationModel solves the conflict between a pair of jobs in 
isolation, disregarding the consequences this might have on other jobs, it is very probable 
that such solution of a conflict situation include a conflict between jobs that have not had 
it initially. It is also less probable that the solution of one conflict will necessarily resolve 
some other initial conflicts. Therefore, such heuristic for estimation of a lower bound of 
the objective function in most cases will help in avoiding the unfruitful ways of search, 
and only in a negligibly small number of cases, we will give up very good solutions. 

 
3. Upper bound of objective function – is dynamically bound during the search. For 
example, if the objective is to minimize total tardiness, then, after finding a feasible 
solution with total delay D , we add to the model a constraint: ( )

∈
+ − ≤∑ i i

i

ik ik i
J J

d p c D . 

Initial upper bound of objective function is constant MaxB. 
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The propagation of this constraint reduces the domains of decision variables. In 
other words, the propagation discards the branches on the search tree that would not lead 
to better solutions than those already found. 

 
Separation heuristics 

The aim is to separate and schedule at the same time only those activities that 
can influence one another, in order that the system may respond faster to the recognized 
rescheduling factor. 

The set of jobs that must be scheduled jointly is already denoted as 
RelatedJobs. The procedure Separate And Schedule Related Jobs initially allocates 
to the set of related jobs a set ActiveJobs (the jobs the processing of which is 
underway at the moment of disturbance). The procedure Solve Model solves the 
scheduling model. The set AdditionalRelatedJobs includes the jobs that due to 
cascade effects among operations must be added to the set RelatedJobs. The 
procedure Exclude Activities has an assignment to recognize in the set RelatedJobs 
those jobs, i.e. their activities that may be considered definitely scheduled and exclude 
them from further scheduling. The algorithm stops when the set RelatedJobs remains 
empty. This happens in two situations: when all jobs up to the upper bound of the 
planning period are scheduled, or if a significant time division between jobs that suffer 
disturbances and the remaining jobs occurred. 

 
procedure Separate And Schedule Related Jobs ( J , ActiveJobs, Model, Delays, 
Schedule) 
inputs   J ,   set of all jobs includes jobs the processing of which is underway at 
        the moment of respond to disturbance t  and expected non- 
        commenced jobs up to the planning period upper bound gt  
ActiveJobs,   the jobs the processing of which is underway at the moment of 
        respond to disturbance  
  Model,   selected scheduling model 
  Delays,   matrix of minimum delays for solving the conflicts 
returns Schedule, the schedule of all activities directly or indirectly affected by  
      activities of jobs from the set ActiveJobs 
RelatedJobs← ActiveJobs 
repeat 
 origin min{← ∈i id J  RelatedJobs } 

 horizon← origin+
Re

(( )
∈

− +∑
i

i i
J latedJobs

c d ( ) ( )+stop i start it cat t cat ) 

 Estimate (Delays, Model, LowerBound) 
 UpperBound=MaxB 
 // solving the model 
 Solve Model (Model, RelatedJobs, origin, horizon, LowerBound, 
 UpperBound, Schedule, ObjectiveFunction, Makespan) 
 MinGen← gt  
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 // identification of additional jobs to be generated before maximum complete time of 
 // all related jobs and determine minimum moment of such jobs generation 
 AdditionalRelatedJobs {}←  

 forall ( ∈iJ J : ∉iJ  RelatedJobs) 
  if <id Makespan then 
   AdditionalRelatedJobs { }← ∪iJ  AdditionalRelatedJobs 
   if <id MinGen then 
    MinGen← id  
   end if 
  end if 
 end forall 
 // identification of the last station which the train entered not later than the minimum
 // of moments generation of additional jobs MinGen 
 forall ( ∈iJ J : ∈iJ  RelatedJobs) 
  // the moment of train entering the last station MinGen 
  // is a candidate for new generation time of the rest of the iJ  ... 

  n
id ← max{ ijj

d Type ( ( ))φ = ∧ ≤i ijj kol d MinGen} 

  //... the number of operation performed in the last station before MinGen  
  // is a candidate for a new position of job generation iJ  

  ←n
ipoz max{ j Type ( ( ))φ = ∧ ≤i ijj kol d MinGen} 

 end forall 
 // some activities of jobs from the RelatedJobs are definitely 
 // scheduled, since they cannot be affected by AdditionalRelatedJobs 
 Store Partial Schedule (Schedule, RelatedJobs) 
 Exclude Activities (RelatedJobs, AdditionalRelatedJobs, MinGen) 
 RelatedJobs ←  RelatedJobs ∪  AdditionalRelatedJobs 
// the algorithm stops when the set RelatedJobs becomes empty 
until RelatedJobs ={} 
end procedure 
 
Search heuristics 

The aim is to allocate start times to activities as early as possible so that all 
imposed constraints are satisfied, i.e. find a feasible solution. 

The procedure Set Start Times Of Activities finds start times of activities such 
that they define a feasible solution. The order of variables is in accordance with 
increasing lower bound of their domains, as well as the order of values within a domain. 
As soon as a start time is assigned to an activity, the domains (intervals) are updated 
corresponding to start times of unscheduled activities. At the moment one of the domains 
remains empty, by backtracking the algorithm tries to find a node in search where a 
wrong decision has been taken. The algorithm stops when all activities have obtained the 
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start times (i.e. a feasible solution has been found), or if there is no alternative after an 
error (no solution). 

 
procedure Set Start Times Of Activities (Jobs) 
inputs Jobs,  set of jobs to be scheduled starting from their actual positions ipos   

returns { ∈ij id J  Jobs, ≤ ≤i ipos j k }, 
       set of start times for all activities of jobs starting from 
       their actual position ipos   
begin 
 Activities← { ∈ij io J  Jobs, ≤ ≤i ipos j k } 
 PostponedActivities ← {} 
 ScheduledActivities ← {} 
 0d  min{← ∈ij ijd o  Activities } 
 repeat 
  SimultaneousActivities ← { ∈ij ijo o  Activities 0∧ =ijd d } 
  k←  Cardinality (SimultaneousActivities) 
  // creating array of all subsets of SimultaneousActivities without empty 
  // set, arranged by non-decreasing cardinality  
  Create Array Of Subsets (SimultaneousActivities, ArrayOfSubsets) 
  n← 2 1−k  
  ok← false 
  repeat 
   PostponedActivities ← {} 
   // test if the set of operations incorporated in ArrayOfSubsets[n] can  
   // start at moment 0d  
   if Can Start (ArrayOfSubsets[n], 0d ) then 
    PostponedActivities ← SimultaneousActivities \ 
    ArrayOfSubsets[n] 
    Update Start Times (PostponedActivities) 
    // a new minimum start time for remaining activities 
    ad min{← ∈ij ijd o  Activities\SimultaneousActivities} 

    pd max{← ∈ij ijd o  PostponedActivities } 
    if not ( <p ad d ) then 
     ScheduledActivities ←  ScheduledActivities∪ 
     ArrayOfSubsets[n] 
     ok← true 
    else 
     n← n-1 
     // backtracking to select another set of activities to start at moment 0d  
     Backtrack 
    end if 
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   end if 
  until ok 
  0 ← ad d  
 until ScheduledActivities = Activities 
end procedure 

 
The procedure Solve Model calls procedure Set Start Times Of Activities, and 

thereafter, based on a found feasible solution a new upper bound for the objective 
function is set, and propagation of the corresponding additional constraint reduces the 
domains of other decision variables. The procedure Solve Model stops further search if 
the upper bound of the objective function matches up with the lower bound or if 
rescheduling of start times of activities does not lead to a better value of the objective 
function. 

Such iterative process forms an optimal partial schedule, and if described 
heuristics were successful, such partial schedules form an “enough good” schedule within 
the limited time. 

 
4.6. Surrogate objective function 

Based on the nature of CP approach it is clear that the optimization of a small 
domain function is faster than the optimization of a larger domain function, except if in 
the latter case there is a very powerful heuristic. It is a reasonable idea, therefore, to use, 
instead of the real objective function with a large domain a surrogate objective function 
with a smaller domain, if there is such. We can minimize a surrogate objective function, 
but with an additional dynamic constraint, such that minimization may go only through 
those feasible solutions that do not enhance the actual objective function. For example, 
let makespan is the actual objective function and LJ  is its surrogate objective function. 

The values in domain of LJ  should be in the descending order; it is reasonable, because 
we expect “good” makespan if several trains suffer small disturbances. After every 
assigning the value to LJ , the constraint max( )

∈
+ ≤

i i
i

ik ikJ J
d p makespan will be activated. 

Hence, if the estimated number of conflicts exceeds a threshold, procedure Select Model 
should select a model with the surrogate objective function, if there is such, from the 
modelbase MB. 

5. METHOD EVALUATION 

Validation of heuristic algorithms is in a general case very complicated. One of 
the ways is their experimental verification. For this purpose, the first prototype of 
software system for train rescheduling has been designed and implemented. 

CP tool ILOG Solver and its upgrade for scheduling purpose ILOG Scheduler, 
manufactured by French company ILOG (http://www.ilog.com), have been used in 
implementation. ILOG Scheduler permits to create models in the terms of resources, 
activities and time constraints. The optimization models in our case are formed in OPL 
modeling language, while the combination and control with optimization models has 
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been achieved by using a procedural language OPL Script. The integrated development 
environment OPL Studio enabled us to create and modify the models using OPL, to 
combine and manage the models using the language OPL Script, and to run the models 
by ILOG Solver and ILOG Scheduler. The trial version of OPL Studio is available on 
Internet (http://www.ilog.com/download/opl) and this has been actually used for 
implementation of the first prototype of train scheduling system. 

Figure 3 presents a realized window of user interface of this system – a graph 
presentation of the recovered train schedule for infeasible schedule shown in Figure 2. 
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Figure 3: Recovered timetable for infeasible timetable in Figure 2 if the objective is the 

minimization of total tardiness D 

Experiments have been carried out on a fragment of real railway network (a part 
of Belgrade Railway Junction), with actual train categories operating there, but with 
traffic frequency immensely exceeding the real one. The jobs (trains) are “piled up” on 
purpose to test the endurance of the method. The train categories were joined by 
priorities assessed by expertise. All seven relevant objective functions, discussed in 4.3, 
participated in the experiments. Table 1 in Appendix A presents a yield of heuristic 
algorithms on selected examples that differ with respect to numbers of jobs for 
rescheduling and initial numbers of conflicts. Each set of jobs suffering disturbances 
includes trains of different categories and different movement directions. All experiments 
have been implemented on personal computer Intel (R) Pentium(R) 4 CPU, 2GHz. From 
the analysis of experiment results the following conclusions may be drawn: 

 CPU time of schedule recovery depends on the number of activities and number 
of conflicts; 

 solving initial conflicts may bring up additional conflicts; 
 in most cases the time performance and solution quality is satisfactory; 
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 a heuristic nature of the approach has been demonstrated (in an insignificant 
number of cases the best known solution for the given objective function has not 
been found); 

 the approach of “formal” minimization of the function, and dynamic limiting of 
the value of the other function in 90% of tested cases proved to be extremely 
efficient: an arrangement with the same value of the actual objective function is 
found, the run time of the model is reduced by around three times! If actual 
objective function is makespan and surrogate objective function is LJ , run 
time is 21.59 instead of 58.88 for the sixth example form Table 1. 
 
 

6. CONCLUSION 

The paper presents a very realistic railway transport model. Namely, actual line-
side signals that limit resources have been taken into account. These signals are used for 
control if a train may proceed its trip on a particular resource. In the available literature 
[7] the authors manipulate with approximate time spacing and not with real spatial 
spacing of trains, which may be notably different if there is a significant difference in 
length of resources and in movement speeds of trains. Also, as opposed to [10] the traffic 
mixture has been taken into account, so that different priorities have been allocated to 
different train categories. 

The train rescheduling problem has been formulated and solved as constraint 
satisfaction optimization problem. Corresponding optimization criteria take into 
consideration delays and established priorities between different train categories (e.g. the 
maximum tardiness, total tardiness, maximum weighted tardiness, etc.). In order to 
improve the time performance of available constraint programming tool ILOG Solver 
and to meet the rescheduling requirements, three classes of heuristics working together 
on seeking the solution have been proposed. They are referred to as separation heuristic, 
bound heuristic and search heuristic. In special cases, instead of the actual objective 
function with a large domain, a surrogate objective function has been used with a smaller 
domain. 

For the purpose of an experimental verification of proposed heuristic 
algorithms, the first prototype of software tool for train rescheduling has been designed 
and implemented. The experiments carried out on a fragment of real railway network (a 
part of the Belgrade Railway Junction), with real train categories in operation in that 
junction and with real possible disturbances, have proven a validity of the described 
approach, both in time performance and in solution quality. 

Although the main objective of the research is an operational reconstruction of 
the timetable under the conditions of disturbances, the described approach has a high 
degree of universality within the given problem category. By a relaxation of strict time 
limits and an increased size of the problem, the method is capable to solve the problems 
of initial train scheduling on a real network up to optimization within reasonable time. 

Also, by solving a difficult problem of train rescheduling, we have paved the 
way for solving a whole series of problems, the core of which is the train scheduling, e.g. 
timetable preparation, determining of economically acceptable capacity utilization 
interval, the estimation of train stopping and waiting for traffic reasons, anticipation of 
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the results of investment activities, identification of bottlenecks in infrastructure, choice 
of possible solutions of conflict points, research on allocation of block sections and line-
side signals etc. 

The research presented in this paper should not be considered as a closed 
system. It might be of interest to further upgrade the network model, a constraint 
component and special constraints, in particular, as well as the described heuristic 
algorithms. Also, another research could be made about criteria for choosing a surrogate 
objective function for the given actual one. 
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APENDIX A 

Table 1: A yield of heuristic algorithms in the schedule recovery - selected real examples 
SCHEDULE PERFORMANCES No. of 

example 
Initial no. 
of conflicts 

 

No. of jobs 
involved in 
the distur-

bance 

No. of 
conflicts 
solved 

CPU
time maxT  maxWT D  WD  

maxS  make- 
span 

LJ  

1 3.84 250 500 370 980 250 2634 2 
1 3.38 250 500 370 980 250 2634 2 
1 4.09 250 500 370 980 250 2634 2 
1 4.24 250 500 370 980 250 2634 2 
1 20.44 250 500 370 980 223 2634 2 
1 3.72 250 500 370 980 250 2634 2 

1. 1 2 

1 3.30 440 1760 440 1760 320 2766 1 
2 9.54 450 900 809 1858 450 6681 3 
2 9.15 450 900 809 1858 450 6681 3 
2 9.84 576 2304 884 2920 456 6499 3 
2 9.32 484 968 913 2066 309 6751 3 
2 8.97 484 968 913 2066 309 6751 3 
2 9.17 576 2304 884 2920 456 6499 3 

2. 2 3 

2 7.59 992 1984 1112 2464 992 7156 2 
3 10.74 641 2564 1064 3015 521 2067 3 
3 10.18 794 1632 1230 2482 428 2193 3 
3 9.69 641 2564 1064 3015 521 2067 3 
3 10.26 794 1632 1230 2482 428 2193 3 
3 10.90 794 1632 1230 2482 428 2193 3 
3 9.88 641 2564 1064 3015 521 2067 3 

3. 3 3 

5 8.62 641 2564 1064 3015 521 2067 3 
3 12.59 532 1064 1237 2296 532 7330 5 
3 13.29 532 1064 1237 2296 532 7330 5 
3 16.83 532 1064 1237 2296 532 7330 5 
3 17.83 532 1064 1237 2296 532 7330 5 
3 28.64 532 1064 1478 2537 363 7330 5 
3 14.67 854 1708 1331 2484 854 7102 4 

4. 3 5 

5 21.59 1904 3808 3556 7112 1652 7816 2 
6 25.77 918 3672 2463 7578 392 2854 4 
6 23.48 920 3024 2580 7536 578 2878 4 
6 27.78 918 3672 2457 6990 392 2754 4 
6 28.24 918 3672 2457 6990 392 2754 4 
6 24.33 918 3672 2463 7578 392 2854 4 
6 30.73 918 3672 2457 6990 392 2754 4 

5. 5 5 

6 24.12 918 3672 2463 7578 392 2854 4 
8 24.54 622 1244 2727 5351 619 6867 7 
8 18.82 622 1244 2727 5351 619 6867 7 
8 32.36 673 1346 2484 4677 673 7055 6 
8 32.13 673 1346 2484 4677 673 7055 6 
8 53.99 622 1244 2727 5351 619 6867 7 
8 58.88 622 1244 2727 5351 619 6867 7 

6. 6 7 

8 46.55 673 1346 2484 4677 673 7055 6 
 
 


