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Abstract: This paper considers the component system with stair-type consecutive 
minimal cuts. The system consists of n components and the set of minimal cuts can be 
linearly ordered. The proposed system generalizes the typical consecutive-k-out-of-n: F 
systems. By using integer linear programming, this paper shows that such a system can 
be converted into the consecutive-k-out-of-n: F systems with the insertion of artificial 
“broken-down” components. Then the system reliability can be obtained by the product 
form of component reliability matrices and the limit behavior of system could be easily 
analyzed. Additionally, we show that the integer constraints of the linear programming 
can be relaxed due to the total unimodularity. Thus, a general linear programming can be 
used to solve the problem. Numerical examples show the simple and effective new 
approach.  

Keywords: Stair-type consecutive minimal cuts, linear programming, consecutive-k-out-of-n:F 
system. 

1. INTRODUCTIONS 

A system of components is coherent if (i) its structure function is increasing, and 
(ii) each component is relevant (Barlow and Proschan [1]). Therefore, a physical system is 
usually a coherent system. Both series systems and parallel systems are most well known 
engineering systems.  It is known that the reliability of series system is not high, especially 
of a large series system, and the reliability of parallel system is high, but tends to be very 
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expensive (Chao et al. [5]). Since 1980, a new system, namely consecutive-k-out-of-n: F 
system (or C(k, n: F) system), has caught much attention (Chao et al. [5]) because: 

1. it usually has much higher reliability than the series systems, and 
2. it is less expensive than the parallel systems. 

The C(k, n: F) system consists of n linearly connected components and it fails if 
and only if at least consecutive k components are failed. There are numerous applications 
for such systems in practice, e.g., microwave transmission systems and oil pipe 
transportation systems etc. (Chao et al. [5]). In the early years, most of the proposed 
formulae were based upon the recursive equations and assumed that all the components 
are s-independent with the same probability. In 1984, Chao and Lin [6] first observed that 
the general C(k, n: F) system can be imbedded in a Markov chain with 2k states.  
However, only systems with small k can be manipulated. In 1986, Fu [7] successfully 
reduced the Markov chain into k+1 states and considerably simplified the probability 
structure of C(k, n: F) system. Later, Fu and Hu [8], and Chao and Fu [3][4] developed 
the following simple and well known exact formula in the product form of matrices for 
the reliability of C(k, n: F) system.   
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component i. With the use of equation (1), Hsieh [9] developed efficient lower bounds 
and upper bounds of reliability for general coherent systems. 

In this paper, we define a special class of systems with consecutive minimal 
cuts, namely stair-type consecutive minimal cuts system (or ST-CMC system). For the 
ST-CMC system, the set of minimal cuts is linearly ordered so that the i-th minimal cut 
Ci={ni,1, ni,2,…, ni,Ii}, the (i+1)-th minimal cut Ci+1={ni+1,1, ni+1,2,…, ni+1,Ii+1} with ni,1< 
ni+1,1, ni,Ii < ni+1,Ii+1 and Ci∩Ci+1≠φ i∀ , where ni,j=ni,1+j-1. With the use of integer linear 
programming, we will convert the ST-CMC system into a typical C(k, n: F) system by 
inserting several artificial “broken-down” components in the appropriate locations of 
sequence of minimal cuts. Therefore, the reliability of ST-CMC system can be computed 
by the product form of component reliability matrices. Note that the limit behavior of 
systems could be easily analyzed if their system reliabilities can be represented by the 
product form of matrices. In addition, we will show that the integer constraints of the 
integer linear programming can be relaxed due to the total unimodularity of constraints. 
Thus, a general linear programming can be used to solve the problem. Numerical 
examples are provided to show the new linear programming approach.  

This paper is organized as follows. Section 2 briefly introduces the ST-CMC 
systems and its relationship with C(k, n: F) systems. Section 3 demonstrates the 
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formulation of integer linear programming for converting the ST-CMC systems into 
typical C(k, n: F) systems by inserting several artificial broken-down components. 
Additionally, we will show that the integer constraints of the proposed linear 
programming can be relaxed due to the total unimodularity of constraints. Numerical 
examples are provided to show the new linear programming approach in this section. 
Brief conclusions are summarized in Section 4.   

2. THE ST-CMC SYSTEMS 

Assume that a coherent system consists of c minimal cuts C={C1, C2,…, Cc}.  
We define the ST-CMC system below. 
 
Definition 1.  A coherent system of components {1,2,…,n} is said to be a ST-CMC 
system if the set of minimal cuts can be linearly ordered so that the i-th minimal cut 
Ci={ni,1, ni,2,…, ni,Ii}, the (i+1)-th minimal cut Ci+1={ni+1,1, ni+1,2,…, ni+1,Ii+1} with ni,1< 
ni+1,1, ni,Ii < ni+1,Ii+1 and Ci∩Ci+1≠φ {1,2,..., 1}i c∀ ∈ − , where ni,j=ni,1+j-1.   
 
Property 1. The C(k, n: F) system is a special case of ST-CMC systems.   
 
Proof: Let Ci={i, i+1,…, i+k-1} i∀ , the ST-CMC system will lead to the C(k, n: F) 
system.   
 

Property 2. The minimal cuts of ST-CMC systems are consecutive minimal cuts.   
 

Proof:  It is straightforward and omitted by the definition.   
 

 
3. LINEAR PROGRAMMING AND EXAMPLES 

3.1. Concept of the New Approach 

Before introducing the new method, we consider the following example for the 
main idea of the new linear programming approach. 
 
Example 1. Assume that there are ten various pumps between A and B for transporting 
oil. The carrying capacity for each pump is different, so that each pump can carry oil to 
various far stations. For example, Figure 1 shows that: Pump 1 can transport oil to 
station1 and station 2, Pump 2 can transport oil to stations 1, 2, 3, and Pump 10 can 
transport oil to stations 8, 9, 10 etc. If any pump fails, then it cannot carry any oil. Let pi 
be the operational reliability of pump i. Figure 1 shows that when both pumps 1 and 2 are 
failed, there is no connection between A and B. Therefore, C 1={1,2} is a minimal cut 
for the system. In addition, C2={2,3,4},  C 3={4,5},  C 4={5,6 ,7},  C 5={7,8},  
C 6={8,9 ,10} are the other minimal cuts for the system. Figure 2 shows these six 
minimal cuts, and one may verify that these minimal cuts are connected in stair-type 
shape.   
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Figure 1: The pump system of Example 1 

 
                 

  C1  1 2 3 4 5 6 7 8 9 10     
  C2                   
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Figure 2: The six minimal cuts for Example 1 

 
                     
 * * * 1 2 3 * * 4 5 * 6 * 7 8 * * 9 10  

 
Figure 3: C(5,19: F) system.  Alternative representation of minimal cuts with the 

insertions of 9 artificial “broken-down” components (*) 
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Suppose that we insert 9 artificial “broken-down” components into the system 
of Figure 2 as that of Figure 3. Note that (*) denotes an artificial “broken-down” 
component, and there are 15 cuts in Figure 3, namely: 

C~ 1={*,*,*,1,2}  ⇒ {1,2}   ( C~ 1 is a minimal cut) 

C~ 2={*,*,1,2,3}  ⇒ {1,2,3}  ( C~ 1⊆ C~ 2, C
~

2 is redundant) 

C~ 3={*,1,2,3,*}  ⇒ {1,2,3}  ( C~ 3= C~ 2, C
~

3 is redundant) 

C~ 4={1,2,3,*,*}  ⇒ {1,2,3}  ( C~ 4= C~ 2, C
~

4 is redundant) 

C~ 5={2,3,*,*,4}  ⇒ {2,3,4}  ( C~ 5 is a minimal cut) 

C~ 6={3,*,*,4,5}  ⇒ {3,4,5}  ( C~ 7⊆ C~ 6, C
~

6 is redundant) 

C~ 7={*,*,4,5,*}  ⇒ {4,5}   ( C~ 7 is a minimal cut) 

C~ 8={*,4,5,*,6}  ⇒ {4,5,6}  ( C~ 7⊆ C~ 8, C
~

8 is redundant) 

C~ 9={4,5,*,6,*}  ⇒ {4,5,6}  ( C~ 9= C~ 8, C
~

9 is redundant) 

C~ 10={5,*,6,*,7}  ⇒ {5,6,7}  ( C~ 10 is a minimal cut) 

C~ 11={*,6,*,7,8}  ⇒ {6,7,8}  ( C~ 13⊆ C~ 11, C
~

11 is redundant) 

C~ 12={6,*,7,8,*}  ⇒ {6,7,8}  ( C~ 13⊆ C~ 12, C
~

12 is redundant) 

C~ 13={*,7,8,*,*}  ⇒ {7,8}   ( C~ 13 is a minimal cut) 

C~ 14={7,8,*,*,9}  ⇒ {7,8,9}  ( C~ 13⊆ C~ 14, C
~

14 is redundant) 

C~ 15={8,*,*,9,10} ⇒ {8,9,10}  ( C~ 15 is a minimal cut) 
 

Thus, C~ 1 = C1, C
~

5 = C2, C
~

7 = C3, C
~

10 = C4, C
~

13 = C5, C
~

15 = C6, which 
further imply that minimal cuts of Figure 2 and Figure 3 are the same. Therefore, the 
system of Figure 2 and the system of Figure 3 will have the same system reliability. 
Since Figure 3 is a C(5,19: F) system, equation (1) can be used for computing the system 
reliability.  More specifically, the system reliability for Figure 3 (or Figure 2) is： 
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9 4 ,p p= 10 5p p= , 12 6 14 7 15 8 18 9, , ,p p p p p p p p= = = = , 19 10p p= , and pi is the operational 
reliability of pump i. 
 
3.2. Linear Programming Formulation 

The example in Section 3.1 shows that the ST-CMC system can be converted 
into a typical C(k, n: F) system by inserting some artificial broken-down components.  
There are several issues for the insertion of artificial broken-down components, including 
the number of artificial broken-down components and their locations. The next integer 
programming formulation will provide a simple but effective approach for solving both 
issues simultaneously. Assume that a ST-CMC system has n components {1,2,…,n} and 
c minimal cuts C={C1, C2,…, Cc} and the i-th minimal cut Ci={ni,1, ni,2,…, ni,Ii}, the 
(i+1)-th minimal cut Ci+1={ni+1,1, ni+1,2,…, ni+1,Ii+1}, and 

,2inU ={ni,2, ni,3,…, ni+1,Ii+1 | ni+1,1-

ni,1≥2, i=1, 2,…, c-1} where ni,j= ni,1+j-1.  Let |Ci|=Ii and | Uj |=Jj. 
 
Integer Linear Programming  

Min  k (3) 

s.t. 
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Yj∈non-negative integers and k is a positive integer. (6) 
 

Remarks.   

1.  Yj ≡ the number of artificial broken-down components before component j.   
Yn+1 ≡ the number of artificial broken-down components after the last component n.  
k ≡ the length of consecutive components in C(k, n: F) system. 

2. The objective in (3) is to minimize the length of consecutive components in C(k, n: 
F) system. 
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3. Constraint (4) is to assure that each minimal cut appears in the C(k, n: F) system.   
4. Constraint (5) is to assure that each redundant cut (see Example 1) appears in the 

cuts of C(k, n: F) system. 
5. Constrain (6) denotes the ranges for all variables.   
6. There are n+2 integer variables, Y1,…, Yn+1, k, and c+|{j | Uj ≠φ }| constraints. 

 
Property 3.  Constraint (6) of integer linear programming in (3)-(6) can be relaxed to  

Yj ≥ 0 and k > 0. (7) 

Proof:  For the simplicity of proof, we (i) replace 
,2inU  ={ni,2,…, ni+1,Ii+1 | ni+1,1-ni,2≥2, 

i=1, 2,…, c-1} with 
,2inU , 

,3inU ,…, 
1,1 1inU

+ −  where 
,2inU ={ni,2,…, ni+1,Ii+1}, 

,3inU ={ni,3,…, 

ni+1,Ii+1 },…, 
1,1 1inU

+ − ={ni+1,1-1,…, ni+1,Ii+1 } if ni+1,1-ni,1≥2 for i=1, 2,…, c-1, and (ii) add 
slack variables Xi to constraints (5) such that the equalities will hold. Because 

,3inU ⊆
,2inU ,…, 

1,1 1inU
+ − ⊆

,2inU , process (i) will increase some redundant constraints but it 
will not affect the optimal solution for the integer linear programming. Note that after the 
processes of (i) and (ii), the number of constraints is exactly s=n-| Cc |+1. Denote by (A1), 
(A2), …, (As) the s constraints. Now let (Bi)←(Ai)-(Ai+1), i.e., subtracting constraint 
(Ai+1) from (Ai) to be a new constraint (Bi) for i=1, 2, …, n-| Cc | and let (Bs)←(As)-(A1).  
Thus the new constraints are now (B1), (B2), …, (Bs). Note that the left-hand-side matrix 
of constraints (B1), (B2), …, (Bs), namely M, has elements either 0, -1, or 1 and matrix M 
is a node-arc incidence matrix. Since every node-arc incidence is totally unimodular and 
the values for the right-hand-side of constraints (B1), (B2), …, (Bs) are all integers, the 
linear programming will have only integer-valued basic solutions (Bazarra et al. [2]). It 
implies that the integer constraints can be relaxed, i.e., constraint (6) could be replaced 
with constraint (7).   

 
Example 2. Consider Example 1 again for showing the proposed linear programming 
formulation. Recall that in Example 1 we have C 1={1,2},  C 2={2,3,4},  C 3={4,5},  
C 4={5,6 ,7},C 5={7,8},C 6={8,9,10}. (i) U 1=U 2=U 4=U 5=U 7=U 8=U 9=U 1 0=φ ,  
U 3={3,4 ,5},  U 6={6,7,8}, and (ii) adding slack variables X5 and X8 to constraints (5), 
we have:  

Min k 
s.t.  Y1 Y2 Y3 Y4 Y5 Y6 Y7 Y8 Y9 Y10 Y11 k X5 X8 RHS 
 1 1 1         -1   =-2 (A1) 
  1 1 1 1       -1   =-3 (A2) 
   1 1 1       -1 1  =-3 (A3) 
    1 1 1      -1   =-2 (A4) 
     1 1 1 1    -1   =-3 (A5) 
      1 1 1    -1  1 =-3 (A6) 
       1 1 1   -1   =-2 (A7) 
        1 1 1 1 -1   =-3 (A8) 
 

Y1, Y2, …, Y11, X5, X8 are non-negative integers and k is a positive integer. 
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Now let (Bi)←(Ai)-(Ai+1), i.e., subtracting constraint (Ai+1) from (Ai) to be a new 
constraint (Bi), i=1, 2, …, n-| Cc | (=10-3) and let (B8)←(A8)-(A1), we have:   

Min k 
s.t.  Y1 Y2 Y3 Y4 Y5 Y6 Y7 Y8 Y9 Y10 Y11 X5 X8 RHS 
 1   -1 -1         =1  (B1) 
  1          -1  =0  (B2) 
   1   -1      1  =-1  (B3) 
    1   -1 -1      =1  (B4) 
     1        -1 =0  (B5) 
      1   -1    1 =-1  (B6) 
       1   -1 -1   =1  (B7) 
 -1 -1 -1     1 1 1 1   =-1  (B8) 
 
Y1, Y2, …, Y11, X5, X8 are non-negative integer and k is positive integer. 
 
Thus the left-hand-side matrix of constraints (B1), (B2), …, (B8) has elements either 0, -1, 
or 1 and it is a node-arc incidence matrix (Bazarra et al. [2]). Since the values for the 
right-hand-side of constraints (B1), (B2), …, (B8) are all integers, the linear programming 
will have only integer-valued basic solutions. It implies that the integer constraints could 
be relaxed by constraint (7). Therefore the integer linear programming can be rewritten 
as: 

Min k 

s.t. 2+Y1+Y2+Y3=k    

3+Y2+Y3+Y4+Y5=k  

2+Y4+Y5+Y6=k  

3+Y5+Y6+Y7+Y8=k  

2+Y7+Y8+Y9=k  

3+Y8+Y9+Y10+Y11=k 

3+Y3+Y4+Y5≤k  

3+Y6+Y7+ Y8≤k 

Y1, Y2, …, Y11≥0 and k >0 
 

Several software systems can be used for solving this general linear 
programming, for example, LINDO, LINGO, GINO, and AMPL etc. The optimal 
solution for this linear programming is: * * * * *

1 4 9 6 7* 5, 3, 2, 1, 0ik Y Y Y Y Y Y= = = = = = =  for 
the other i. It implies that we have to insert 3 artificial broken-down components before 
component 1; insert 2 artificial broken-down components before components 4 and 9; 
insert 1 artificial broken-down components before components 6 and 7, which is exactly 
the C(5, 19: F) system in Figure 3.   
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4. CONCLUSIONS 

In this paper, we have presented a special class of consecutive minimal cut 
systems whose consecutive minimal cuts are in stair-type shape. The stair-type 
consecutive minimal cuts can be linearly ordered so that the i-th minimal cut Ci={ni,1, 
ni,2,…, ni,Ii}, the (i+1)-th minimal cut Ci+1={ni+1,1, ni+1,2,…, ni+1,Ii+1} with ni,1< ni+1,1, ni,Ii < 
ni+1,Ii+1 and Ci∩Ci+1≠φ i∀ , where ni,j=ni,1+j-1. The ST-CMC system generalizes the 
typical C(k, n：F) system. In this paper, we have shown that such a ST-CMC system can 
be converted into the well known C(k, n: F) system with the insertion of artificial 
“broken-down” components. Then the system reliability can be obtained by the product 
form of component reliability matrices and the limit behavior of system could be easily 
analyzed. A simple integer linear programming is developed for the optimal insertion of 
artificial broken-down components. Additionally, we have shown that the integer 
constraints of the integer linear programming can be relaxed due to the total 
unimodularity. Thus, a general linear programming can be used to solve the problem.  
Numerical examples show the simplicity and effectiveness of the proposed approach.   
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