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Abstract: Program testing determines whether its behavior matches the specification, 
and also how it behaves in different exploitation conditions. Proving of program 
correctness is reduced to finding a proof for assertion that given sequence of formulas 
represents derivation within a formal theory of special predicted calculus. A well-known 
variant of this conception is described: correctness based on programming logic rules. It 
is shown that programming logic rules may be used in automatic resolution procedure. 
Illustrative examples are given, realized in prolog-like LP-language (with no restrictions 
to Horn's clauses and without the final failure). Basic information on LP-language are 
also given. It has been shown how a Pascal-program is being executed in LP-system 
proffer. 
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1. INTRODUCTION 

Derivations in formal theories are the general framework for development of 
deductive methods for proving program correctness. This framework gives two basic 
methods (refuting associated predicate formula, and use of programming logic rules), as 
well as their modifications. 

Working with a formula associated to a given program requires the presence of 
additional axioms. Additional axioms describe properties of domain predicates and 
operations, giving necessary knowledge to present by deductive system. 
Proving program correctness and designation of correct programs are related theoretical 
problems with large practical significance. The first is solved in frame of program 
analysis and the second in frame of synthesis of program, because of connection of 
analyses problematic and synthesis of program we can notice interlace between each 
other of these processes. However when we speak of automatic methods of proving 
correctness and about methods of automatic synthesis of program, difference between 
them is clear. In the N. Nilson's book (Nil, 1971), is described the initial possibility of 
automatic synthesis simple programs in assistance of resolution procedure of automatic 
proving theorem (ADT) or more exactly in assistance of resolution procedure of 
deduction answer on question. By proof that question in shape (∃x)W(x) is a logical 
consequence of axioms which define the predicated W and which define (elementary) 
program operators ensuring that variable x in answer gets value which represents 
composition of (elementary) operators, in fact demanded program.     

In Manna [14, 15], resumed in [4], problems of program analysis and synthesis, 
using resolution procedure of proving and deduction of answer are discussed in detail. 
Different direction of investigation is axiomatic definition of programming language 
semantics (for example Pascal) in the form of special rules of programming logic 
derivation, as shown in [2], [5], [8], [9]. This approach enables deduction on the basis of 
programming logic rules, using accordance confirmation of concrete input-output 
predicates with deduced values. The marked laterals technique enables to find out 
conditions for refuting, which need not be known in advance. Although both presented 
approaches has common characteristic they are essentially different in concept. It is a 
deductive system on predicated language. In fact it is elaboration in special predicated 
calculation which is based on deduction in formal theory. In that way the problem of 
correctness of program is brought in connection with automatic revision (existed) proves 
of mathematics theorems. From that concept proceed both presented approaches as well 
as their modifications.  

The first of these programs was LT (Logic Theory Machine), in 1957, written 
by Newell, Shaw, and Simon. This program was proving theorems of statement calculus 
and was tested on theorems from Mathematics principia. Only a year later, the Wang Hao 
program was able to prove all theorems from Mathematics principia in only 3 minutes. 
This program has proven about 200 theorems. The interactive program based on principle 
of automatic theorem proving, written by Green and Raphael (1968) represents further 
progress in this area. Other important use of resolution, connected to program correctness 
proving and with automatic programming, is present in papers by: Waldinger R. J., Lee 
C. T. (1969), Manna Z., Waldinger R. (1971) op. cit. [20]. 
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Introduction of semantic information and creation of possibility to intervene 
outside in proving process enables further increase of proving programs' efficiency. In 
this area papers of Henschen (1974) were especially important. On the other hand, 
improvement of efficiency is accomplished by incorporation of specific properties of 
concrete theories into rules of derivation and unification algorithms. In this area, results 
of Slagle J. (1972, 1974) are especially important. Axioms of second order theory were 
used by J. L. Darlington (1968). 

The aim of automatic theorem proving is to design and implement computer 
programs that can prove or help prove a theorem. 

Programs for automatic proving of theorems could be divided as follows: 
• Independent from human participation, or purely automatic ones: program 

is independently proving theorem, if and when it succeeds; 
• Interactive proffers, where programs find parts of the proof. 
In the beginning, programs for theorem proving were implemented only in 

mathematics. When it was realized that other problems could be presented as theorems 
which needs to be proven, application possibilities were found for areas such as program 
correctness, program generating, query languages over relational databases, electronic 
circuits design an so on. 

As for formal presentation where theorem is being proven, it could be 
propositional logic, first-order predicate calculus, as well as higher-order logic. Theorems 
in propositional logic are easy to deal with for contemporary proffers, but propositional 
logic itself is not expressional enough. Higher-order logic is highly expressional, but it 
introduces a number of practical problems. Therefore, first-order predicate calculus 
appears to be the most appropriate when dealing with practical problems. 

Regarding techniques of automatic theorems proving, most investigations have 
been done in resolution rules of derivation. Resolution is a very important derivation rule 
with the completeness property. 
This paper is based on BASELOG –system, described in [3], which is  used for automatic 
proving of program structure correctness. The BASELOG-system was implemented at 
Technical Faculty "Mihajlo Pupin", Zrenjanin. Basic property of BASELOG is that there 
is no limitation to Horn's clauses and presence of CWA-controllers. Linear resolution 
with marked literals is a deductive basis of this system, while CWA controller enables 
choice of working regime in closed, open or partially closed/open environment. This 
enables behavior of proving system as a classical Prolog-system (closed environment), or 
as classical ADT-system (open environment), or as combination of these, depending on 
declared CWA predicates list. 

Management of operating mode was achieved at the predicate level, depending 
on semantic completeness of basis contents. Shortages of PROLOG and DATOLOG, 
manifesting in semantically incomplete bases, connected to negation problem and CWA-
principle, were eliminated.  

2. DEDUCTIVE TESTING OF PARTIAL CORRECTNESS 

The original rules for manual design and manual confirmation of program 
correctness ([1], [6], [19]), do not imply the possibility of automatic (resolution) 
confirmation methods. Basic relation: {P}S{Q}represent specification of program S with 
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next meaning: If predicated P in input is correct before execution of program S, then the 
predicated Q on exit is correct after execution of program S. If we wish to prove the 
correctness of program S, we must prove predicate {P}S{Q},defined as (if P is true and if 
S terminates, then Q becomes true) where the current values of program variables must 
satisfy the formula P and output values of variables must satisfy the formula Q. This 
defines so-called partial correctness of program S, since it is assumed that program S 
terminates. If we prove that S terminates and that predicate {P}S{Q} is true, we say that 
S is totally correct. Thus, designated principle of correctness is used for program design. 
Designation starts from specification {P}S{Q} with given precondition P and given 
resulting post condition Q. Process of projecting is divided on under specification  type 
{Pi}Si{Qi} from component Si from which is program constructed. On that way, basic 
idea is that projecting of program goes in the same time with proof of correctness of 
published specifications. Then the special rules of deduction ensure proof that  
fulfillment of relation {Pi}Si{Qi} comes from fulfillment f relation {Pi}Si{Qi} for 
component program Si. Rules of execution are marked for simile and complicated 
programs operators.   Formula {P}S{Q} is written as K(P, S, Q), where K is a predicate 
symbol and P,S,Q are variables of first-order predicate calculus. 
{Pz

y} z := y {P} we represent by K(t(P,Z,Y), d(Z,Y), P)...  

where t,d are function symbols and P,Z,Y are variables; 

Rules R(τ): 

 P1. {P}S{R} , R⇒Q 

            {P} S {Q}. 

we represent by K(P,S,R) ∧ Im(R,Q) ⇒ K(P,S,Q) 
where Im (implication) is a predicate symbol, and P, S, 
R, Q are variables; 

P2   R⇒P, {P}S{Q} 

             {R} S {Q}.  

we write Im(R,P) ∧ K(P,S,Q) ⇒ K(R,S,Q) 

P3  {P}S1{R} , {R}S2{Q} 

       {P} S1; S2 {Q}  

K(P,S1,R) ∧ K(R,S2,Q) ⇒ K(P,s(S1,S2),Q) where s is 
a function symbol, and P, S1, S2, R, q are variables 

P4  {P∧B}S1{Q, 
{P∧~B}S2{Q} 

        {P} if B then S1 else S2 
{Q} 

K(k(P,B),S1,Q)∧K(k(P,n(B)),S2,Q) ⇒ 
K(P,ife(B,S1,S2),Q)  

where k, n, ife are function symbols 

P5    {P∧B}S{Q} , P∧~B ⇒ 
Q 

            {P} if B then S{Q}  

K(k(P,B),S,Q) ∧ Im(k(P,n(B)),Q) ⇒ K(P,if(B,S),Q)  

where k, n, if are function symbols 

P6               {P∧B} S     {P }   

       {P} while B do S 
{P∧~B}   

K(k(P,B),S,P)  ⇒ K(P,wh(B,S),k(P,n(B)))  

where k, n, wh are function symbols 
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P7  {P}S{Q} , Q∧~B ⇒  P 
      {P} repeat S until B 
{Q∧B} 

K(P,S,Q) ∧ Im(k(Q,n(B)),P) ⇒ K(P,ru(S,B),k(Q,B)) 

where k, n, ru are function symbols 

Transcription of other programming logic rules is also possible. 

Axiom A(τ): 

A1 K(t(P,Z,Y),d(Z.Y),P) assignment axiom 

Formal theory τ is given by (α(τ), F(τ), A(τ), R(τ)), where α is a set of symbols 
(alphabet) of theory τ, F is a set of formulae (correct words in alphabet α), A is a set of 
axioms for theory τ(A⊂F), R is a set of derivation rules for theory τ.B is a theorem within 
theory τ if and only if B can be derived within calculus k from set R(τ) ∪A(τ) (k is a 
first-order predicate calculus). Let S be special predicate calculus (first-order theory) with 
it's own axioms A(S) = R(τ) ∪A(τ). This means that derivation of theorem B within 
theory τ could be replaced by derivation within special predicate calculus S, with own 
axioms A(S)= R(τ) ∪A(τ). Axioms of special predicate calculus S are: A(S)= A(τ) 
∪R(τ).We assume that s is a syntax unit whose (partial) correctness is being proven for 
certain input predicate U and output predicate V. 

Within theory S is being proved   ⎥⎯ S (∃P)(∃Q)K(P,s,Q) where S is a constant 
for presentation of a given program. Program is written using functional notation with 
symbols: s (sequence), d (assignment), ife (if-then-else), if (if-then), wh (while), ru 
(repeat-until). To the initial set of axioms A(S), negation of statement is added. The result 
of negation using resolution procedure is as follows: /Im(Xθ,Yθ,)∨ answer(Pθ,Qθ), where 
Xθ,Yθ,Pθ,Qθ are values for which successful negation of Tθ means that for these values a 
proof is found. But this does not mean that given program is partially correct. It is 
necessary to establish that input and output predicates U, V are in accordance with Pθ, Qθ, 
and also that Im (Xθ,Yθ) is really fulfilled for domain predicates ant terms. Accordance 
means confirmation that is valid. :  U ⇒ Pθ,  ∧  Qθ ⇒ V) ∧ ( Xθ ⇒ Yθ).There are two 
ways to establish the accordance: manually or by automatic resolution procedure but their 
realization is not possible within theory S. However, it becomes possible within the new 
theory, which is defined by predicates and terms that are part of the program s and input-
output predicates U, V. Within this theory U, P, Q, V, X, Y are not variables, but 
formulae with domain variables, domain terms and domain predicates. This method is 
related to derivation within special predicate calculus based on deduction within the 
formal theory. Thus the program correctness problem is associated with automatic 
proving of (existing) proofs of mathematical theorems. 

3. FORMALIZATION OF PROGRAMMING LOGIC RULES ON THE 
BASELOG SYSTEM 

This section shows how programming logic rules look within BASELOG 
system: rules and axioms are translated in component form.  These rules and axioms have 
a status of sequence elements of AKS within BASELOG system. Sequence BAKS 
(where BAKS represents elements of database) is empty, since it is not important for our 
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needs, so the number is zero. CWA predicate is not needed, so their number is also zero. 
In this way, initial set of formulae for BASELOG system operation consists of: 

• Components originating from statement negation, with their number stated 
• Elements of AKS sequence 
• Zero elements of BAKS sequence 
• Zero elements of CWA predicates. 

The P1 rule is an example. 
K(P,S,R) ∧ Im(R,Q) ⇒ K(P,S,Q) is transformed into: 

∼K(P,S,R) ∨ ∼IM(R,Q) ∨ K(S,P,R). Symbols P, S, R, and Q are replaced by 
symbols X1, Y1, Z1, X2 and a disjunction symbol is omitted. In this way, programming 
logic rules within BASELOG system are as follows: 

P1.  ~K(X1,Y1,Z1)~IM(Z1,X2)(K(X1,Y1,X2). 

P2. ~IM(X2,Y1)~K(Y1,U0,V1)K(X2,U0,V1)& /consequence rule 

P3.  K(X1,Y1,U1)~K(U1,Y2,V1)K(X1,s(Y1,Y2),V1)& / sequential  rule 

P4.  ~K(k(X1,Y1),Z1,U1)~K(k(X1,u(Y1)),Z2,U1)K(X1,ife(Y1,Z1,Z2),U1) /ife rule 

P5. ~K(k(X1,Y1),Z1,U1)~IM(k(X1,n(Y1)),U1)K(X1,if(Y1,Z1),U1)&  /if rule 

P6. ~K(k(X1,V2),U0,X1)K(X1,w(V2,U0),k(X1,n(V2)))&  /  while rule 

A1. Assigning axioma 

K(t(X1,Y1,Z1),d(Y1,Z1),X1  
 

If resolution procedure generate refutation then comes next result: /Im(Xθ,t(Yθ,Zθ,Tθ))∨   
Answer (Pθ,Qθ),where Xθ,Yθ,Zθ,Tθ,Pθ,Qθ  are instanced values for which is realised 
refutation in fact for which the proof is found. 

Marked literals which are related on prediction of implication IM collect in 
themselves instanced values of variables which are marked in process of searchinig of 
refutation. The number of these different literals also is not known before realisation of 
refutation. Because of that in this lecture is  realised modification of metod of resolutions 
refutation. Meaning of that modification is t ensure collection of all necessary literals  
connected with implication  at the beginning of resolvement. In that way refutation  is 
ended when there is no more predicate K in resolvement (all the predicates IM are 
marked). That is cleared in the last step and the standard shape of resolutions refutation 
with empty connection on end is realised.  

To avoid marking (in principe we don't know how many are of them) we have to 
execute change in program and in that way save all IM on ending level. 

Because of that the change is executed in resolvent procedure. The sense of it is 
to enable resolution to predicate K and to save all IM predicates with instanced values for 
which have to be proved agreement. It means that during the proving of correctness of 
program IM have to be always on first place. 
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4. CONCLUSION 

This paper describes general framework for investigation of program 
correctness investigation by resolution negation method. The basis for development of 
basic deduction methods and their modifications, used for establishing program 
correctness (use of programming logic rules and negation of associated predicate 
formula) are derivations within formal theories. One of the ways to solve problem of 
program correctness is to use programming logic rules. This enables deduction on this 
basis, as well as checking the accordance of concrete input-output predicates with 
deducted values. It is shown how programming logic rules look within BASELOG 
system. It is also shown how the rules and axioms are translated into component form. 
Marked literals technique enables insight in conditions for negation, which may not be 
known before negation. Efficiency of automatic procedures is especially important, as 
well as definition of complexion limits of programs for practical use of deductive 
concept. These results and examples should induce further theoretical and experimental 
investigations in this field.  

Execution in formal theories represent the basic framework for development of 
deductive methods of checking of correctness of the program. Out of that frame come 
two basic methods (refutation associated predicated formulae) as well as their 
modification. Work with formulae which are associated to given program assumes the 
presence of additional axioms without which the refutation can not be realized. 
Additional axioms describe characteristics of domain predicates and operations which 
represent necessary knowledge which have to be shown in deductive system. Existed 
theoretical results we described assume that knowledge but in practical sense that appears 
as significant difficulty. 

Another approach enables deduction based on the rule of logical program to 
check agreement of correct input-output predicates with deductive values. The techniques 
with marked literals enable us to learn conditions (which do not have to be known 
beforehand) for realization of refutation. There is a sense of investigation in both 
directions and looking for new modifications of basic ideas. We have demonstrated how 
the Pascal program is executed in resolution proofer of LP system. That is principal base 
for development of pro logicical languages of logical programming. It is especially an 
important question of efficiency of automatic procedures as well as determination of 
complexity of the program for practical use of deductive concept.  

Presented results and examples should be considered as a support for further 
theoretical and experimental examinations in this important field of science.  
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APPENDIX 

Here is presented example which is realised in BASELOG system, without 
modification of resolution procedure for prooving correctness of program structure based 
on program's logic rules. 

 

Example 1. 

begin 
max:=x[1]; 
i:=0; 
while i<=n do 
begin 
 i:=i+1; 
 if x[i]>max then max:=x[i]; 
end; 
end. 
 

Let predicate i<=n; be marked with constant b, and b1 predicate x[i]>max, by constant  t1 
term x[1]>, by constant t2 term x[i], , then it is written: 

s(s(d(max,t1),d(i,0)),w(b,s(d(i,i+1,if(b1,d(max,t2))))) 
1 
/IM1(X0,Y0)/IM(X2,Y2)O(X1,V1)~K(X1,s(h,g),Y1)~K(Y1,w(b,if(b1,e)),V1)& 
11 
~K(Y1,d(max,t1),V1)K(Y1,h,V1)& / reserve for shortening the entry length 
~K(Y1,d(i,0),V1)K(Y1,g,V1)& / reserve for shortening the entry length 
~K(Y1,d(max,t2),V1)K(Y1,e,V1)& / reserve for shortening the entry length 
~K(X1,Y1,U1)~K(U1,Y2,V1)K(X1,s(Y1,Y2),V1)&/sequention rule 
~K(k(X1,Y1),Z1,U1)~IM(k(X1,n(Y1)),U1)K(X1,if(Y1,Z1),U1)& /if rule  
~K(k(X1,V2),U0,X1)K(X1,w(V2,U0),k(X1,ng(V2)))& / while rule 
K(t(X1,Z1,Y1),d(Z1,Y1),X1)& / 
~IM(X2,Y1)~K(Y1,U0,V1)K(X2,U0,V1)& / consequence rule 
~IM(Y1,V1)~K(X1,U0,Y1)K(X1,U0,V1)& / consequence rule 
 ~IM1(X0,Y0)IM(X0,Y0)& 
~O(X1,Y1)& 
0 
0 
Baselog  system generates the following negation 
number of generated resolvents = 14 
maximal reached level = 15 
the level on which is generated empty  component = 15 
LEVEL = 1; central  component 
:/IM1(X0,Y0)/IM(X2,Y2)O(X1,V1)~K(X1,s(h,g),Y1)~K(Y1,w(b,if(b1,e)),V1)& 
6.lateral, 2.literals : 
     ~K(k(X1,V2),U0,X1)K(X1,w(V2,U0),k(X1,ng(V2)))& 
LEVEL= 2; resolvents:  

/IM1(X0,Y0)/IM(X2,Y2)O(X1,k(X3,ng(b)))~K(X1,s(h,g),X3)/~K(X3,w(b,if(b1,e)),
k(X3,ng(b)))~K(k(X3,b),if(b1,e),X3)& 
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5. lateral, 3.literals: 
~K(k(X1,Y1),Z1,U1)~IM(k(X1,n(Y1)),U1)K(X1,if(Y1,Z1),U1)& 
LEVEL= 3; resolvents:  
/IM1(X0,Y0)/IM(X2,Y2)O(X1,k(U1,ng(b)))~K(X1,s(h,g),U1)/~K(U1,w(b,if(b1,e)),k(U1
,ng(b)))/~K(k(U1,b),if(b1,e),U1)~K(k(k(U1,b),b1),e,U1)~IM(k(k(U1,b),n(b1)),U1)& 
LEVEL= 4; resolvents predecessor; 
/IM1(X0,Y0)/IM(k(k(U1,b),n(b1)),U1)O(X1,k(U1,ng(b)))~K(X1,s(h,g),U1)/~K(U1,w(b,
if(b1,e)),k(U1,ng(b)))/~K(k(U1,b),if(b1,e),U1)~K(k(k(U1,b),b1),e,U1)& 
3. lateral, 2.literals : 
~K(Y1,d(max,t2),V1)K(Y1,e,V1)& 
LEVEL= 5; resolvents:  

/IM1(X0,Y0)/IM(k(k(V1,b),n(b1)),V1)O(X1,k(V1,ng(b)))~K(X1,s(h,g),V1)/~K(V1,w(b,if
(b1,e)),k(V1,ng(b)))/~K(k(V1,b),if(b1,e),V1)/~K(k(k(V1,b),b1),e,V1)~K(k(k(V1,b),b1),
d(max,t2),V1)& 
8. lateral, 3.literals : 
  ~IM(X2,Y1)~K(Y1,U0,V1)K(X2,U0,V1)& 
LEVEL= 6; resolvents:  
/IM1(X0,Y0)/IM(k(k(V0,b),n(b1)),V0)O(X1,k(V0,ng(b)))~K(X1,s(h,g),V0)/~K(V0,w(b,
if(b1,e)),k(V0,ng(b)))/~K(k(V0,b),if(b1,e),V0)/~K(k(k(V0,b),b1),e,V0)/~K(k(k(V0,b),b1
),d(max,t2),V0)~IM(k(k(V0,b),b1),Y1)~K(Y1,d(max,t2),V0)& 
7. lateral, 1.literals : 
     K(t(X1,Z1,Y1),d(Z1,Y1),X1)& 
LEVEL= 7; resolvents:  
/IM1(X0,Y0)/IM(k(k(X2,b),n(b1)),X2)O(X1,k(X2,ng(b)))~K(X1,s(h,g),X2)/~K(X2,w(b,
if(b1,e)),k(X2,ng(b)))/~K(k(X2,b),if(b1,e),X2)/~K(k(k(X2,b),b1),e,X2)/~K(k(k(X2,b),b1
),d(max,t2),X2)~IM(k(k(X2,b),b1),t(X2,max,t2))& 
10. lateral, 2.literals : 
 ~IM1(X0,Y0)IM(X0,Y0)& 
LEVEL= 8; resolvents:  
     
/IM1(X0,Y0)/IM(k(k(X2,b),n(b1)),X2)O(X1,k(X2,ng(b)))~K(X1,s(h,g),X2)/~K(X2,w(b,
if(b1,e)),k(X2,ng(b)))/~K(k(X2,b),if(b1,e),X2)/~K(k(k(X2,b),b1),e,X2)/~K(k(k(X2,b),b1
),d(max,t2),X2)/~IM(k(k(X2,b),b1),t(X2,max,t2))~IM1(k(k(X2,b),b1),t(X2,max,t2))& 
LEVEL =9; resolvents predecessor; 
/IM1(k(k(X2,b),b1),t(X2,max,t2))/IM(k(k(X2,b),n(b1)),X2)O(X1,k(X2,ng(b)))~K(X1,s(
h,g),X2)& 
4. lateral, 3.literals : 
 ~K(X1,Y1,U1)~K(U1,Y2,V1)K(X1,s(Y1,Y2),V1)& 
LEVEL = 10; resolvents : 
/IM1(k(k(V1,b),b1),t(V1,max,t2))/IM(k(k(V1,b),n(b1)),V1)O(X0,k(V1,ng(b)))/~K(X0,s(
h,g),V1)~K(X0,h,U1)~K(U1,g,V1)& 
2. lateral, 2.literals : 
     ~K(Y1,d(i,1),V1)K(Y1,g,V1)& 
LEVEL = 11; resolvents: 
/IM1(k(k(V0,b),b1),t(V0,max,t2))/IM(k(k(V0,b),n(b1)),V0)O(X0,k(V0,ng(b)))/~K(X0,s(
h,g),V0)~K(X0,h,Y1)/~K(Y1,g,V0)~K(Y1,d(i,1),V0)& 
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7. lateral, 1.literals : 
     K(t(X1,Z1,Y1),d(Z1,Y1),X1)& 
LEVEL = 12; resolvents: 
/IM1(k(k(X1,b),b1),t(X1,max,t2))/IM(k(k(X1,b),n(b1)),X1)O(X0,k(X1,ng(b)))/~K(X0,s(
h,g),X1)~K(X0,h,t(X1,i,1))& 

1. lateral i, 2.literals : 
     ~K(Y1,d(max,t1),V1)K(Y1,h,V1)& 
LEVEL = 13; resolvents: 
/IM1(k(k(X1,b),b1),t(X1,max,t2))/IM(k(k(X1,b),n(b1)),X1)O(Y1,k(X1,ng(b)))/~K(Y1,s(
h,g),X1)/~K(Y1,h,t(X1,i,1))~K(Y1,d(max,t1),t(X1,i,1))& 
7. lateral, 1.literals : 
     K(t(X1,Z1,Y1),d(Z1,Y1),X1)& 
LEVEL= 14; resolvents:  

 
/IM1(k(k(X1,b),b1),t(X1,max,t2))/IM(k(k(X1,b),n(b1)),X1)O(t(t(X1,i,1),max,t1),k(X1,n
g(b)))& 
11. lateral, 1.literals : 
     ~O(X1,Y1)& 
LEVEL= 15; resolvents:  
     & 
The proof is printed 

Now we have to prove accordance, that is to confirm that 
( Xθ ⇒ Yθ

Zθ
Tθ ) ∧ (U ⇒ Pθ,  ∧  Qθ ⇒ V)  which is located on  LEVEL= 14; resolvents: 

/IM1(k(k(X1,b),b1),t(X1,max,t2))/IM(k(k(X1,b),n(b1)),X1)O(t(t(X1,i,1),max,t1),k(X1,n
g(b)))& 

Returning notation to domain level we have: 
(X1 ∧  (i<=n) ⇒ X1i

i+1  pp/i)i (U⇒X1i 0 px) ∧ (X1 ∧ ¬ (i<=n) ⇒ V) 

Setting for X1: max=x(i ) [ ]
1
( ( ) ( )), 1..

i

j
x j x i i n

=
∧ ≥ ∈ we obtain the following correct 

imlications: 
1

1

1

max ( 1) ( ( ) ( ))

max ( 1) ( ( ) ( )) ( ( 1) ( )

i

j

i

j

x i x j x i

x i x j x i x i x i

+

=

=

= + ∧ ≥

=> = + ∧ ≥ ∧ + ≥
 

For i=1putting : 
1

1
max (1) ( ( ) ( )) max (1)

j
x x j x i x

=
= ∧ ≥ => =  

Thus, the accordance is proved, which is sufficient for conclusion that the given 
program is partially correct. 


