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Abstract: We introduce a heuristic method for the single resource constrained project 
scheduling problem, based on the dynamic programming solution of the knapsack problem. 
This method schedules projects with one type of resources, in the non-preemptive case: once 
started an activity is not interrupted and runs to completion. We compare the implementation 
of this method with well-known heuristic scheduling method, called Minimum Slack First 
(known also as Gray-Kidd algorithm), as well as with Microsoft Project. 
Keywords: Resource scheduling, dynamic programming, knapsack problem, DELPHI. 

1. INTRODUCTION 

In practice most organizations work within limited resources, so projects are 
subject to the same constraint. A new project may seek an additional use of resources, so it 
is needed to ensure that they really would be available. 

                                                           
* Corresponding author 
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On the other hand, the time constraints are always present, so project manager must 
work under that boundary. 

Resource leveling is a way to resolve having too much work assigned to resources, 
known as resource over allocation.  

The network diagram can be used to find opportunities for shortening the project 
schedule. This involves looking at where we can cut the amount of time it takes to complete 
activities on the critical path, for example, by increasing the resources available to these 
activities. Another solution is to identify where any other routes might have some slack. We 
may then be able to reallocate resources to reduce the pressure on the team members who 
are responsible for activities on the critical path. 

We consider the problem of resource distribution at the point of minimization of the 
project makespan, and introduce a heuristic method for solving the single resource 
constrained project scheduling problem, based on the knapsack problem and dynamic 
programming. The total number of available resource units is constant and specified in 
advance. A unit of resource cannot be shared by two or more activities. An activity is ready 
to be processed only when all its predecessor activities are completed and the number of 
resource units required by it are free and can be allocated to it. Once started, an activity is 
not interrupted and runs to completion. 

When leveling resources, we do not change resource assignments, nor task informa-
tion. We only delay tasks. 

In a dynamic programming solution to the knapsack problem, we calculate the best 
combination for all knapsack sizes up to M [12]: 
 
for j:=1 to N do  
  for i:=1 to M do 
    if  i-size[j]>=O  then 
      if cost[i]<(cost[i-size[j]]+val[j]) then  
        begin 
           cost[i]:=cost[i-size[j]]+val[j];  

    best[i]:=j 
        end; 
 

In this program, N is the number of items, val[j] is the value of jth item, size[j] is its 
volume, cost[i] is the highest value that can be achieved with a knapsack of capacity i and 
best[i] is the last item that was added to achieve that maximum (this is used to recover the 
contents of the knapsack). First, we calculate the best that we can do for all knapsack sizes 
when only items of type A (for j = 1) are taken, then we calculate the best that we can do 
when only A’s and B’s (for j = 2) are taken, etc. The solution reduces to a simple calculation 
for cost[i]. Suppose an item j is chosen for the knapsack: then the best value that could be 
achieved for the total would be val[j] + cost[i - size[j]], where cost[i - size[j]] is the optimal 
filling of the rest of the knapsack. If this value exceeds the best value that can be achieved 
without an item j, then we update cost[i] and best[i]; otherwise we leave them alone. A 
simple induction proof shows that this strategy solves the problem [12]. 
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In this paper we propose a new strategy to solve the single resource constrained 
project scheduling problem. In each stage of the scheduling we consider a schedule time t 
and the corresponding eligible set of activities which could be started at the moment t 
without violation of given constraints which define the project. As it is proposed in [14] and 
[9], we activate a subset of activities from the eligible set solving the knapsack problem 
maximizing the resource utilization. But, instead of Greedy randomized adaptive search 
procedure (GRASP), used in [9], we apply the dynamic programming and Bellman’s 
principle (see [1]). 

The paper is organized as follows. In the second section we state mathematical 
formulation of the problem and compare the project duration computed by our algorithm 
with the early finish of the project. 

In the third section the algorithm and several implementation details are described. 
In the last section we compare the implementation of our algorithm with known 

software Microsoft Project 2003® and Gray-Kidd algorithm. 
 
2. MATHEMATICAL FORMULATION OF THE PROBLEM 

A project consists of a set of activities J = {Ai}i∈I, partially ordered by precedence 
constraints, where I = {1,…,n} is a set of activities indices and n is a number of activities 
required by the project. It is assumed that the project requires only one type of resources. 
The entire project is defined as the ordered pair (J, R), where the natural number R denotes 
the resource maximal units available in the project. Each of activities Ai is defined as the 
ordered triple 

Ai = (pi,, ri, Pi),  i ∈ I, 

where pi ∈ N represents the processing time (duration) of activity Ai, value ri∈N is a number 
of resources needed for Ai, and iP I⊂  is an array which contains predecessors indices for Ai. 
An activity Ai is said to be a predecessor of Aj, when Aj cannot start until Ai has finished. 
This fact is written as i∈Pj or Ai < Aj, where ’<’ defines the precedence relationship. 
Similarly Aj is said to be a successor activity of Ai. We assume that the number ri is fixed for 
the lasting time of activity Ai. 

Let F denotes the set including all pairs of activities with predecessor and successor 
relationships. These pairs define a digraph of the project G = (J, F), where (Ai, Aj) ∈ F if and 
only if i∈ Pj, Ai, Aj ∈ J. 

A project starts at time t = 0. A schedule for the project is an assignment of a start 
time s

it  to each activity Ai. An activity is said to be scheduled when it is assigned a start 
time. The vector defining starts of activities included into the project (J, R) is defined as the 
ordered n-tuple 1( ,..., )s s s

nt t t= of natural numbers, and it is called start vector of the project. 
Similarly denote the vector of activities finishes by 1( ,..., )f f f

nt t t= . The finish of each activity 
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is computed from its start as 
f s

i i it t p= + . Vectors ts and tf are being calculated in our 
algorithm. 

A feasible schedule is a schedule that satisfies the given precedence and resource 
constraints. An optimum schedule is a feasible schedule that optimizes the given objective 
function. Our goal is to find start time s

it for each activity Ai due to minimize the project 
completion time (makespan) of the project, calculated by : max{ | }.f

iDur t i I= ∈  
We define the resource units required by Ai in the scheduling time t as follows: 

,       
,

0,        

s f
t ti i i

i i i
r t t t

r x r
otherwise

⎧ ≤ ≤⎪= =⎨
⎪⎩

 

where 1t
ix =  when the activity Ai is started and still not finished (in the time interval 

s f
i it t t≤ ≤ ), and 0t

ix = otherwise. 
Formally, the aim of the general single resource constrained project scheduling 

problem is to find an optimal schedule, and can be formulated by the following 
mathematical model, in the time t: 

min max{ | }f
iDur t i I= ∈  (2.1) 

. .( )( ) s f
j j is t j I i P t t∀ ∈ ∀ ∈ ≥  (2.2) 

( ) t
i

i I

t r R
∈

∀ ∈ ≤∑N  (2.3) 

Our objective is to minimize the makespan of the project. Each activity needs to be 
started after all its predecessors activities finish (condition (2.2)), and in every moment t, the 
total number of occupied resources is less than R (condition (2.3)). 
 
Proposition 2.1. Condition (2.2) can be written in the following equivalent form: 

( )( ) f f
j j i jj I i P t t p∀ ∈ ∀ ∈ − ≥  (2.4) 

Observe that the condition (2.4) is equivalent with the corresponding one from [15].  
Therefore, mathematical model (2.1)-(2.3) is equivalent with corresponding one, 

described in [9], [15], in the case when one type of resources is used. 
Schedule ts of the project (J, R) is feasible if conditions (2.2) and (2.3) are satisfied. 

A feasible schedule is optimal if (2.1) is fulfilled. 
Next lemma can be easily proven by the induction. This lemma gives a stopping 

criterion for increasing maximal unit’s availability of the resource, i.e. the early finish of the 
project. 
 
Lemma 2.1 Let ts be the feasible schedule of the project (J, R). Let us consider the early 
finish 0

jτ  for each activity Aj, j ∈ I, recursively as follows: 
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0
0

,                        0;

max{ },     .
j

j j

j
i ji P

p P

p otherwiseτ τ
∈

=⎧⎪= ⎨ +⎪⎩

 

Then 
0f

i it τ≥ , for each .i I∈  Also 0 0max .
j

ii P
Dur τ τ

∈
≥ =  

Proof. Let us apply the topological sort of G, i.e. find the permutation i1,…,in of I such that 
1 1{ ,..., }

ji jP i i −⊆  for all j I∈ . Then we sort values 0
iτ  in the non-ascending order 

1

0 0
ni iτ τ≥ ≥" .We will continue proof by the induction. For j = 1, it follows that Pi1 = ∅, so 

1 1 1 1 1

0 s f
i i i i ip p t tτ = ≤ + = .  In the case j  > 1 suppose that the claim of lemma is satisfied for all i1, 

… , ij-1 and prove it for ij. In the case Pij  =  ∅ ;, conclusion follows from the same reasons as 
in the case j = 1. Suppose now that Pij = ∅, and consider 0 0max

j j
i j

i i kk P
pτ τ

∈
= + . From the inductive 

hypothesis we have 0 f
k ktτ ≤  for every

jik P∈ . Also, in view of (2.2) we have 

0
j j j j j

f s f
i i i k i k it t p t p pτ= + ≥ + ≥ +  (2.5) 

for all 
jik P∈ . If we take the maximum in (2.5) over all ,

jik P∈ we obtain 
0

j j

f
i it τ≥ , so we 

finished the proof by induction. The second statement of the lemma follows immediately. � 
The result of this lemma is used as the stopping criterion in the following sense: in 

each example, the maximal units of the resource is increased until all of three considered 
algorithms reach the duration equal to early finish of the project. 

We restate, in the recursive form, the notion of the late start of activity Ai, known in 
the literature: 

0
1

1

,

min{ }, 1,..., 1.
n

i
j i

i n

p i n

τ
θ

θ

⎧ =⎪= ⎨
− = −⎪⎩

 

The late finish 1
iτ  of Ai is equal to 1 1

i i ipτ θ= +  and its early start 0
iθ  is equal to 

0 0
.i i ipθ τ= −  

3. ALGORITHM 

Let us first mention some known heuristic resource scheduling methods from [4]. 
To choose a subset of activities satisfying project constraints into the schedule, several 
heuristics are known. Metrics for assigning priorities are: 
 

1) Shortest Task First  
2) Most Resources First  
3) Minimum Slack First (Gray-Kidd algorithm)  
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4) Most Critical Followers  
5) Most Successors  

 
There are many papers comparing alternative heuristic algorithms. Patterson and 

Davis in [6], [7] compared these heuristics, in serial and parallel modes and achieved the 
result the most effective algorithm is Minimum Slack First. The similar results are achieved 
in [10]. The Minimum Slack First method is described in [5] (p. 225–233). 

Kochetov and Stolyar [9] devise an evolutionary algorithm which com-bines 
genetic algorithm, path relinking, and tabu search. In order to select a subset of activities 
from the eligible set into the schedule, they solve the knapsack problem. The idea of using 
the knapsack problem with objective function maximizing the re-source utilization ratio is 
introduced in [13] and [14]. In order to solve the knapsack problem stated for the sake of 
resource utilization, in [9] and [14] use GRASP (greedy randomized adaptive search 
procedure) algorithm from [8]. GRASP is an iterative multi-start algorithm. There are two 
phases in every iteration: a greedy adaptive randomized construction phase and a local 
search phase. Starting from the feasible solution built during the greedy adaptive 
randomized construction phase, the local search explores its neighborhood until a local 
optimum is found. The best solution found overall the different iterations is kept as the result 
[8]. A solution x is said to be in the basin of attraction of the global optimum if local search 
starting from x leads to the global optimum. Once the neighborhood and objective function 
are determined, different starting solutions can be used to start the local search in a multi-
start procedure. If the starting solution is in the basin of attraction of the global optimum, 
local search finds the global optimum. Otherwise, a non-global local optimum is found [11]. 
Using greedy solutions as starting points for local search in a multi-start procedure will 
usually lead to good, though, most often, suboptimal solutions. This is because the amount 
of variability in greedy solutions is small and it is less likely that a greedy starting solution 
will be in the basin of attraction of a global optimum. If there are no ties in the greedy 
function values or, if a deterministic rule is used to break ties, there is no variability and a 
multistart procedure would produce the same solution in each iteration [11]. 

In this section we will introduce an algorithm for resource scheduling, called 
DynamicRes, which is based on the knapsack problem and the dynamic programming. This 
heuristic gives better results with respect to Gray-Kidd algorithm in most cases. Algorithm 
DynamicRes is being written in the programming language DELPHI. 

The algorithm requires a sequence of activities, and the following parameters for 
each activity ,iA i I∈ : 

- duration of the activity (integer pi),  
- array of ordinal numbers of its predecessors, denoted by Pi,  
- units of resource required (integer ri).  

Also, the input parameter of the algorithm is total number of resource units 
available in the project, denoted by R. 



 I. Stanimirović, M. Petković, P. Stanimirović, M. Ćirić / Heuristic algorithm 287

Output of algorithm are beginnings of activities after the resource scheduling is 
performed, i.e. the start vector 1( ,..., )s s

nt t  of the project activities as well as the corresponding 
makespan of the project. 

We use the status of each activity, denoted with Stati: 

0, ,
1, .

i
i

i

A is not started
Stat

A is finished
⎧

= ⎨
⎩

 

In each stage of scheduling we have a schedule time t, t ∈ N and corresponding sets 
E(t) and A(t), defined in the following definitions, restated from [9]: 

 
Definition 3.1. The set of activities which could be started at time t without violation of any 
constraints is equal to 

( ) { | 0 ( ) 1}.j j iE t j I Stat i P Stat= ∈ = ∧ ∀ ∈ =  (3.1) 

Definition 3.2. The set of activities which are in progress at the time t is 

( ) { | }.s f
i iA t i I t t t= ∈ ≤ ≤  (3.2) 

We now define the notion called moment of the project, useful in the algorithm 
description. This value is represented by variable Moment in the algorithm. 
 
Definition 3.3. The moment of the project is equal to 0 in its start, and in each other case 
the moment is equal to the minimal time when at least one of started and uncompleted 
activities is finished: 

0, ( 0),
min{ | ( )}, .f

j

when project starts t
Moment

t j A t otherwise
=⎧⎪= ⎨ ∈⎪⎩

 

We also define momentary slack. This notion is actual for activities Aj with indices 
belonging to E(t) at the time defined by moment. 

Definition 3.4. Momentary slack of the activity Ai  is equal to 

.f
iMSlack t Moment= −  

Algorithm 3.1. DynamicRes 
 
Step 1. Set the schedule time t = 0, and Stati = 0 for all i ∈ I. 
 
Step 2. Compute the number of available resource units by 

( )

( )a i
i A t

R t R r
∈

= − ∑  (3.3) 

For each j ∈ E(t) perform the following: 
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If 
1( ) ,j a j jr R t t p τ≤ ∧ + ≥  (3.4) 

where 1
jτ denotes the late finish for activity Aj, then set 

, , ( ) ( ) ;s f s
j j j j a a jt t t t p R t R t r= = + = −  (3.5) 

otherwise, delay activity Aj. 
 
This means that each activity which exceeds its own late finish, starting from the 
actual moment of the project, needs to be started if there are enough resource units 
available as it is required by it. 

 
Step 3.  If E(t) = ∅ ; then go to Step 5, otherwise go to Step 4. 
 
Step 4. Solve the knapsack problem with capacity Ra(t), where the values and volumes of 

articles are equal to ri, i ∈ E(t): 

( )\ ( )

( ) \ ( )

min ( )

. . ( ),

a i i
i E t A t

i i a
i E t A t

R t x r

s t x r R t
∈

∈

−

≤

∑

∑
 (3.6) 

where xi ∈ {0,1}, i∈E(t). 
For each i satisfying xi = 1 set , .s f s

i i i it t t t p= = +  

Step 5. Now set the new value for the variable Moment: 

min{ | ( )}f
iMoment t i A t= ∈  (3.7) 

and set Stati = 1 for all activities satisfying .Momentt f
i =  

Step 6. Set t = Moment. If there are non started activities (( ) 0),ii I Stat∃ ∈ =  go to Step 2. 
Otherwise, the makespan of the project is equal to max { | },f

it i I∈  and the schedule of 
the project is the 1( ,..., ).s s s

nt t t=  
 

Remark 3.1 Gray-Kidd algorithm schedules activities which have a minimal value of the 
momentary slack MSlack. Opposite of this algorithm, we propose the following: set the 
beginnings (like in Step 4.) for all activities which coincides with the optimal solution of the 
knapsack problem (3.6). 
 
Remark 3.2.  Problem (3.6) can be restated in the following equivalent form: 
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( )\ ( )

( ) \ ( )

max

. . ( ),

i i
i E t A t

i i a
i E t A t

x r

s t x r R t
∈

∈

≤

∑

∑
 (3.8) 

Problem (3.8) is a one-dimensional variant of the knapsack problem stated in [9] 
and [14], and a variant of the classical 0-1 knapsack problem (see, for example [2]). In 
order to solve (3.8), instead of the GRASP algorithm used in [9] and [14], we use the 
dynamic programming. Therefore, we speak of items representing requirements of the 
resource. The set of weights (volumes) as well as the set of values is equal to {ri | i∈I}. To 
avoid trivial cases we assume 

i
i I

r R
∈

≥∑ and ,ir R≤  for each i∈ I. Comparing problem (3.8) 

with the dynamic programming solution of the knapsack problem, restated from [12], the 
following analogies are evident: 

- the objective function cost is equivalent with
( )\ ( )

i i
i E t A t

x r
∈
∑ ; 

- the knapsack size M is equivalent with the number of available resource units, 
denoted by Ra(t), which is defined in (3.3) and (3.5);  

- number N of different types of items is replaced by the cardinal number of the set I, 
denoted by n;  

- val[j] = size[j] = rj;  
- Assignment best[i] = j implies xj = 1 in (3.6) and (3.8).  

It is known that the knapsack problem exhibits optimal substructure, and its 
optimal solution contains within optimal solution to sub problems [3]. Typically, the total 
number of distinct sub problems is a polynomial in the input size. When a recursive 
algorithm revisits the same problem over and over again, we say that the optimization 
problem has overlapping sub problems. Dynamic programming algorithms typically take 
advantage of overlapping sub problems by solving each sub problem once and then storing 
the solution in a table [3]. Also, it is known that greedy algorithms do not always yield 
optimal solutions [3]. 
 
Remark 3.3 Using the main idea of the Gray-Kidd algorithm, in the case when we have 
more solutions for the knapsack problem, we use the solution containing activity with the 
minimal value for MSlack. 

Here we consider an example to discuss about the difference between the Gray-
Kidd algorithm and DynamicRes algorithm. 
 
Example 3.1 Durations, units of the resource required and predecessors of all activities in 
the project are arranged in the following table. 
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Activities A B C D E F G H I 
Duration 4 4 2 4 3 3 6 5 2 
Units 5 5 3 6 4 5 7 3 4 
Predecessors    A B,C B B E F,G 

 
Assume that R = 12 resource units are available in the project. 

Observe the first actual interval: [0, 2]. We should numerate activities A, B and C, 
in accordance to Gray-Kidd algorithm. Activity B is critical and we mark it by the number 1. 
Activity C has a slack of 2 days and it is marked by the number 2. Finally, activity A has the 
biggest slack of 4 days and is assigned by the number 3. Activities A, B and C require all 
together 13 units of the resource, so we put the start of activity A at the moment 2, and 
schedule activities B, C. 

On the other hand, using algorithm DynamicRes we fill the knapsack of capacity 12 
by objects whose values and capacities are r1 = 5, r2 = 5, r3 = 3. Therefore, the maximal 
volume is filled with volumes r1 = 5, r2 = 5. In accordance with algorithm DynamicRes, it is 
necessary to move the start of activity C at the moment 2. 

In both algorithms, the remainder of the project starts at the moment 2. 
Gray-Kidd and DynamicRes give different solutions with the same duration of the 

project (17 days). Here are given two different solutions of the project scheduling, first using 
DynamicRes algorithm (Figure 3.1) and the other using Gray-Kidd algorithm (Figure 3.2). 

 

 

 
Figure 3.1. Solution given by DynamicRes          Figure 3.2. Solution given by Gray-Kidd  

Activities are denoted by letters A, B,..., I, and it is shown how many resources 
each of them requires. Here, cells in StringGrid assigned with the sign ’>’ represent the total 
slack for each of activities. Activities that are started after their late finish are colored white, 
otherwise are blue. 
 
Theorem 3.1 Schedule ts produced by DynamicRes algorithm is feasible (satisfies condi-
tions (2.2) and (2.3)). 
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Proof. Start time ts
j for each activity Aj can be determined in two different ways, applying 

Step 2 and Applying Step 4. 
Firstly we verify Condition (2.2). Using Step 2 in a fixed schedule time t we 

schedule all activities whose indices satisfy j ∈ E(t) and (3.4) and set ts
j = t for these activiti-

es. On the other hand, from Step 5, it is satisfied max{ | 1}.f
i iMoment t Stat≥ = After setting t 

= Moment in Step 6 it is satisfied max{ | 1}.f
i it t Stat≥ = From (3.5) we conclude that 

max{ | 1}s f
j i it t t Stat= ≥ = , for each j∈E(t) satisfying (3.4). Therefore, we conclude 

( ) .s f
j j ii P t t∀ ∈ ≥  

In the second case, according to Step 4 of DynamicRes algorithm, we conclude that 
in the knapsack problem are included only these activities Aj satisfying j ∈ E(t)\A(t). 
Therefore, in accordance with (3.1), all predecessors included in the knapsack are finished 
(( ) 1)j ii P Stat∀ ∈ = . Moreover, in Step 4 we schedule activities corresponding to the optimal 
solution of the knapsack problem. Analogous to the previous case, according to Step 5, 
condition (2.2) is satisfied for all activities included. 

We now verify condition (2.3). It is clear that condition (2.3) can be written as 

( )

( ) i
i A t

t N r R
∈

∀ ∈ ≤∑  (3.9) 

In view of (3.3), this condition is later equivalent with 

( ) ( ) 0.at N R t∀ ∈ ≥  (3.10) 

Now, Step 2 satisfies condition (3.10) because of (3.5) and condition (3.4). 

In the sequel we prove that Step 4 also satisfies (3.10). Denote by  A’(t) the set of 
indices of just started activities: 

'( ) { | }.s
iA t i I t t= ∈ =  

Since ts
i = t implies i ∈A’(t), we conclude 

( ) ( ) '( )A t A t A t= ∪  

after Step 4. At this moment, the number of available resources is 

'( )
( ) ( )a a i

i A t

R t R t r
∈

= − ∑  (3.11) 

According to condition in the knapsack problem (3.6), we conclude Ra(t) ≥ 0. 
Taking into account (3.3), we get 

( ) '( )
( ) 0a i i

i A t i A t
R t R r r

∈ ∈

= − − ≥∑ ∑  (3.12) 

Denote by A’’(t) the set of just finished activities in Step 6: 
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''( ) { | }.f
iA t i I t Moment= ∈ =  

Now, in Step 2 it is satisfied ( ) ( ) '( ) \ ''( )A t A t A t A t= ∪ and applying (3.12) we obtain 

( ) '( ) ''( ) ( ) '( )
( ) 0.a i i i i i

i A t i A t i A t i A t i A t
R t R r r r R r r

∈ ∈ ∈ ∈ ∈

= − − + ≥ − − ≥∑ ∑ ∑ ∑ ∑  

The proof is complete.  

4. NUMERICAL EXPERIMENTS 

In this section we compare three algorithms for resources scheduling: algorithm 
included in MS Project, Gray-Kidd algorithm and DynamicRes algorithm. According to our 
assumptions of the algorithm, in MS Project it is assumed that resources leveling cannot 
split task and check box Level only within available slack in Resource Leveling options is 
cleared. 

Example 4.1.  Consider the project defined as follows: 
 

Activities A B C D E F G H 
Duration 5 4 4 9 5 5 4 4 
Units 4 5 2 6 2 3 7 8 
Predecessors    A B C A G 

 
Increasing the number of available resource units we get the following table. The 

early finish for this example is 14 days, so we stop searching for new solutions when all 
three algorithms reach this limit, using the result of lemma 2.1. 

 
 Duration of the project 

Max.  units Ms Project Gray-Kidd DynamicRes 
8 26 26 26 
9 25 25 22 

10 22 22 22 
11 22 22 22 
12 22 22 22 
13 22 18 18 
14 18 17 18 
15 18 17 18 
16 18 17 14 
17 18 17 14 
18 14 14 14 

Data presented in the table are illustrated by the following chart: 
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Figure 4.1. Comparison of three methods 

Average values, geometrical means and standard deviations for project durations 
are presented in the table. 

 
Statistical function Ms Project Gray-Kidd DynamicRes 

AVERAGE 20.45454545 19.72727273 19.09090909 
Geometrical mean 20.1617992 19.39008818 18.69455204 
Standard deviation 3.559877424 3.849439156 4.036199833 

 
The average values are minimal for DynamicRes algorithm. This means that 

DynamicRes produces, generally, minimal values for makespan of the project. Also, method 
DynamicRes produces maximal value for the standard deviation, because the project 
makespan corresponding to this algorithm decreases most rapidly. 
 
Example 4.2. Activities, their durations, maximal units of the resource and predecessors of 
the project are defined in the table: 
 
 

Activities A B C D E F G H
Duration 5 4 4 9 5 5 4 4 
Units 4 5 2 6 2 3 7 8 
Predecessors    A B C D,F G

Increasing the number of available resource units we get the following table. It can 
easily be calculated that the early finish here is 22 days. 
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 Duration of the project 
Max.  units Ms Project Gray-Kidd DynamicRes 

8 26 26 31 
9 27 27 22 

10 26 26 22 
11 22 22 22 

 
We illustrate the data in the table by the following chart: 

 
 

Figure 4.2. Comparison of three methods 

Average values, geometrical means and standard deviations for project durations 
are presented in the table. The conclusions are similar as in the previous example. 
 

Statistical function Ms Project Gray-Kidd DynamicRes 
AVERAGE 25.25 25.25 24.25 

Geometrical mean 25.17290201 25.17290201 23.96941496 
Standard deviation 2.217355783 2.217355783 4.5 

 
Example 4.3. Project is defined by the following data: 
 

Activities A B C D E F G H I 
Duration 4 4 2 4 3 3 6 5 2 
Units 3 5 3 6 4 5 7 3 4 
Predecessors   A A,C B D B E F,G 
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Increasing the number of available units of the resource, we get the following table. 
The early finish for this example is 15 days. 
 

 Duration of the project 
Max.  units Ms Project Gray-Kidd DynamicRes 

7 31 29 29 
8 24 22 24 
9 22 22 22 

10 21 21 19 
11 21 21 19 
12 20 18 19 
13 18 18 18 
14 16 16 16 
15 16 16 16 
16 16 16 16 
17 15 15 15 

 
The data in the table are illustrated by the following chart. 

 
Figure 4.3. Comparison of three methods 

 
Average values, geometrical means and standard deviations for project durations 

are presented in the table. 
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Statistical function Ms Project Gray-Kidd DynamicRes 

AVERAGE 20 19.45454545 19.36363636 
Geometrical mean 19.55234723 19.097246 18.99493701 
Standard deviation 4.69041576 4.107642544 4.201731245 

 
In this case, the maximal standard deviation produces the Ms Project. But, this fact 

is caused by the maximal makespan (equal to 31) for the minimal number of Max. units 
(equal to 7). 
 
Example 4.4. Consider the following project: 
 

Activities A B C D E F G H I J 
Duration 6 3 6 2 4 1 4 2 4 2 
Units 6 5 7 3 4 5 7 3 2 3 
Predecessors   A B A,B C,E D,E D,F G,H G,H 

 
Increasing the number of available resource units, we get the following table. 
 

 Duration of the project 
Max.  units Ms Project Gray-Kidd DynamicRes 

7 30 30 30 
8 30 30 30 
9 30 30 30 

10 28 30 28 
11 21 23 21 
12 20 20 20 
13 20 20 20 
14 19 19 19 

The following chart illustrates the data in the table.  
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Figure 4.4. Comparison of three methods 

Here are given some of statistical functions for project durations represented in the 
table. 

 
Statistical function Ms Project Gray-Kidd DynamicRes 

AVERAGE 24.75 25.25 24.75 
Geometrical mean 24.27696182 24.76727954 24.27696182 
Standard deviation 5.14781507 5.2030211 5.14781507 

5. CONCLUSION 

A new algorithm for solving the single resource constrained project scheduling 
problem is introduced. At each schedule time t we consider the eligible set of activities 
which could be started without violation of given constraints (defined by predecessor 
relationships). Using activities from this set we consider the adequate knapsack problem and 
use the Bellman’s principle. The possibility for the farther research can be the generalization 
of DynamicRes algorithm for solving the multiple resource constrained project scheduling 
problems, and the comparison with GRASP algorithm from [11]. 
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