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1. INTRODUCTION

Facility location problems are fundamental optimization models in operations
research which are concerned with locating facilities on a system in order to serve
a given set of customers in an optimal way under certain assessment criteria. In
recent years, different variants of these problems have found significant interest
due to their applications in theory and practice. Two widely investigated models
in location theory are the “center” and “obnoxious center” problems. Whereas
the center problem aims to obtain the best locations for establishing one or more
desirable facilities such that the maximum of distances from the customers to
the closest facility becomes minimum, the obnoxious center problem wishes to
determine the best locations for installing some undesirable facilities so that the
minimum of distances between the customers and the nearest facility is maxi-
mized. Such problems occur when the places of fire stations, hospitals, bank
branches and also the locations of undesirable facilities like mega-airports, mili-
tary bases, chemical plants and nuclear reactors have to be found. For a detailed
survey on location problems see e.g. Eiselt [8], Mirchandani and Francis [10] and
Zanjirani and Hekmatfar [17].

In contrast to the classical location problems, in practice we may envisage some
situations on a facility system where the facilities have already been located at the
present and they cannot serve the customers in an optimal way anymore. On the
other hand, the replacement of them is not possible for the sake of some available
restrictions. In this situation, a decision maker may attempt to improve the
underlying system by formulating and solving one of the following improvement
problems:

a) Inverse location problem: Modify specific input parameters of the underly-
ing system in the cheapest possible way until the already installed facilities
get their optimal positions.

b) Reverse location problem: Modify certain input parameters of the underly-
ing system within a given modification budget so that the locations of the
already established facilities are improved as much as possible under the
new parameter values. Another variant of the reverse problem wishes to
modify the input parameters at the minimum total cost such that the cor-
responding objective value of the predetermined facility locations obey an
upper (a lower) bound.

In 1999, Cai et al. [7] proved that the inverse 1-center location problem with
edge length modifications on unweighted directed graphs is NP-hard. More-
over, theNP-hardness of this problem on undirected graphs was proved in [11].
Therefore, the special polynomially solvable cases were considered. In 2008, Yang
and Zhang [16] considered the inverse vertex center problem with variable edge
lengths on unweighted trees and suggested an O(n2 log n) time algorithm for this
problem. Later, Alizadeh et al. [4] developed an O(n log n) time combinatorial
algorithm for the inverse 1-center location problem with edge length augmenta-
tion on trees. For the inverse absolute (and vertex) 1-center location problems,
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solution algorithms with time complexities of O(n2) were designed by Alizadeh
and Burkard [1]. The same authors investigated the uniform-cost inverse 1-center
location model on trees and showed that the problem can be solved in O(n log n)
time if there exists no topology change [2]. In 2012, Alizadeh and Burkard [3]
derived a linear time combinatorial approach for the inverse obnoxious center
location problem with edge length variations on general networks. Nguyen and
Anh [13] investigated the inverse k-centrum problem on weighted trees with vari-
able vertex weights and showed that this problem isNP-hard. They proposed an
O(n2) time algorithm for the inverse 1-center problem with vertex weight modifi-
cations on a tree. The inverse version of the 1-center problem on weighted trees
with variable edge lengths under the Chebyshev and bottleneck-type Hamming
cost norms was recently studied by Nguyen and Sepasian [12]. The authors pre-
sented anO(n log n) time solution approaches for the case that no topology change
is permitted on the underlying tree. Furthermore, they showed that the general
model can be solved in O(n2) time.

Concerning the reverse center (obnoxious center) location models, Berman et
al. [6] proved that the reverse 1-center problem on unweighted graphs under
the rectilinear norm is NP-hard. In 2000, Zhang et al. [18] developed a solution
algorithm with O(n2 log n) running time for the reverse 1-center location problem
on an unweighted tree. Nguyen [14] considered the uniform cost reverse 1-center
location problem with edge length modifications on weighted trees and designed
an O(n2) time method. Recently, Alizadeh and Etemad [5] proposed a linear time
combinatorial algorithm for the reverse obnoxious center problem on general
networks which is based on a binary search procedure. A variant of the reverse
center location problem, called the vertex-to-vertices problem, was investigated
in [19]. The authors showed that the problem with uniform modification costs
on unweighted networks is solvable in O(n3) time under the Chebyshev norm,
but under the rectilinear and Euclidean norms acheiving an approximation ratio
O(log n) isNP-hard.

In this paper, we investigate two variants of the reverse “selective” center
location problem on tree graphs with variable edge lengths under the Chebyshev
norm and the bottleneck-type and sum-type Hamming distances in which an
arbitrary subset of the vertex set is assumed to be the existing customer points.
We develop novel combinatorial algorithms with polynomial time complexities
for obtaining the optimal solutions of the problems under the mentioned cost
norms.

The organization of the paper is as follows: In the next section, we define and
formulate the problems under investigation and discuss some basic properties.
The exact solution algorithms are proposed in sections 3 and 4. Finally, the
conclusion of the paper is presented in Section 5.

2. PROBLEM DEFINITION AND PRELIMINARIES

Let an undirected tree network T = (V(T),E(T)) with vertex set V(T) and
edge set E(T), |E(T)| + 1 = |V(T)| = n, be given such that each edge e ∈ E(T) has
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a nonnegative length `(e). Moreover, let Vc ⊆ V(T) denote the set of existing
customer points and V f ⊆ V(T) stand for the set of candidate facility locations.
The length of the unique path between two vertices u and v with respect to the
edge lengths ` is denoted by d`(u, v). In a classical selective center location problem
on the given tree T, the task is to find a facility location p∗ ∈ V f as an optimal
solution for

minimize F`(p) = max
v∈Vc

d`(p, v)

subject to p ∈ V f .

Note that the above “selective model” is a generalization of the well-known
vertex center location problem withV f = V(T) andVc = V(T) on the underlying
network.

In contrast to the classical selective center model, we are going to state two
variants of the reverse selective center location problem: Let the underlying tree
T with associated edge lengths ` = (`(e))e∈E(T) and the existing customer points
Vc ⊆ V(T) be given. Assume that s ∈ V f is a prespecified facility location on T.
We want to change the original lengths ` in order to improve the quality of the
service center s as much as possible. Let ux(e) and uy(e) denote the amounts by
which the length `(e), e ∈ E(T), is increased and decreased, respectively. Since
the edge lengths of the tree T cannot be modified arbitrarily, the increasing and
decreasing amounts x(e) and y(e) have to obey the given upper bounds ux(e) and
uy(e), respectively. On the other hand, note that any modification imposes us a
cost. Hence, suppose that G

(
(x,y)

)
denotes the cost function for measuring the

incurred total cost for modifying the edge lengths by(
x,y

)
=

(
x(e), y(e)

)
e∈E(T)

.

In the first variant of the reverse selective center location problem, so-called
budget-constrained reverse selective center problem (RSCPb−c for short), on the
tree network T, we are given a budget B. The aim is to modify the edge lengths
`(e) to the new nonnegative lengths

˜̀(e) = `(e) + x(e) − y(e)

such that the following three statements hold:

(i) The objective value F ˜̀(s) is minimized under the new edge lengths ˜̀.

(ii) The budget constraint G
(
(x,y)

)
6 B is satisfied.

(iii) The modifications x(e) and y(e) fulfill the bounds

0 6 x(e) 6 ux(e) ∀e ∈ E(T),
0 6 y(e) 6 uy(e) ∀e ∈ E(T).
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In the second variant of the reverse selective center location problem, so-called
objective-bounded reverse selective center problem (RSCPo−b for short), on the
given tree T, an upper bound λ for the objective value F`(s) is specified. The
goal is to modify the edge lengths ` to the new lengths ˜̀ so that the following
statements are fulfilled:

i) The total modification cost G
(
(x,y)

)
is minimized.

ii) The objective constraint
F ˜̀(s) 6 λ

is satisfied under the new lengths ˜̀.

iii) The modification amounts x(e) and y(e) obey the bounds

0 6 x(e) 6 ux(e) ∀e ∈ E(T),
0 6 y(e) 6 uy(e) ∀e ∈ E(T).

In this paper, we concentrate on the RSCPb−c and RSCPo−b models on the under-
lying tree T where the cost function G(.) is defined in the following three cases:

(i) The total modification cost is measured by the weighted Chebyshev norm.
In this case, we have

G

(
(x, y)

)
= max

e∈E(T)

{
c(e)x(e), d(e)y(e)

}
,

where c(e) and d(e) are the costs for increasing and decreasing the length of
an edge e ∈ E(T) by one unit, respectively.

(ii) The total modification cost is measured by the weighted sum-type Hamming
distance. In this case, we have

G

(
(x,y)

)
=

∑
e∈E(T)

(
ĉ(e)H

(
x(e), 0

)
+ d̂(e)H

(
y(e), 0

))
,

where ĉ(e) and d̂(e) are the costs for increasing and decreasing `(e) by any
positive amount, respectively. Moreover, H(a, b) denotes the Hamming
distance between a and b, i.e.,

H(a, b) =

1 a , b,
0 a = b.

(iii) The modification cost is measured by the weighted bottleneck-type Ham-
ming distance. In this case, we have

G

(
(x,y)

)
= max

e∈E(T)

{
ĉ(e)H

(
x(e), 0

)
, d̂(e)H

(
y(e), 0

)}
.
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In the next sections, we try to develop combinatorial algorithms for the
RSCPb−c and RSCPo−b models under the weighted Chebyshev norm and the
weighted sum-type and bottleneck-type Hamming distances. As mentioned, the
special models of RSCPb−c and RSCPo−b on tree networks with Vc = V f = V(T)
under the weighted rectilinear cost norm have been studied in [18] and solution
approaches with O(n2 log n) time complexities have been presented. From the
specific structure of the RSCPb−c and RSCPo−b models, it is easy to observe that
any augmentation of the edge lengths imposes us an additional cost. Therefore,
we immediately conclude that

Lemma 2.1. In order to solve the RSCPb−c and RSCPo−b models, it is sufficient to
decrease the edge lengths of the underlying tree.

Hence, we set x(e) = 0 and try to obtain only the optimal values of y(e) for all
e ∈ E(T) in the following. Let the underlying tree T be rooted at the prespecified
vertex s and

Lea(T) = {z1, · · · , zk}

denote the set of leaves of T. Suppose that qi is the farthest customer to s on the
unique path P(s, zi) between s and any leaf zi. If there does not exist any customer
on P(s, zi), then set qi = s. Removing all paths P(qi, zi), i = 1, · · · , k, from T, we
obtain a subtree Tcri which is called the critical subtree of T. Observe that

F`(s) = max {d`(s, z) : z ∈ Lea(Tcri)} .

Hence, we get

Lemma 2.2. In order to solve the RSCPb−c and RSCPo−b models on the tree T, it is
sufficient to decrease the edge lengths of the critical subtree Tcri in an optimal way.

3. OPTIMAL ALGORITHMS FOR RSCPb−c MODELS

In this section, we first investigate the RSCPb−c model on the given tree T under
the sum-type Hamming distance and prove that this problem isNP-hard. For the
uniform-bound case, we develop an exact polynomial time solution algorithm.
Then, we show that the RSCPb−c model under the bottleneck-type Hamming
distance and the Chebyshev norm can be solved in linear time.

3.1. The problem under the sum-type Hamming distance
Consider the RSCPb−c model on the given tree T where the budget constraint

under the sum-type Hamming distance is given by∑
e∈E(T)

(
ĉ(e)H (x(e), 0) + d̂(e)H

(
y(e), 0

) )
6 B.

Note that since the Hamming distance is used for measuring the modification
cost, any variation of the edge length `(e) imposes us a fixed cost ĉ(e) or d̂(e)
(depending on the augmentation or reduction of `(e)) regardless its magnitude.
We first prove the following important result.
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Theorem 3.1. The RSCPb−c model on a tree under the sum-type Hamming distance is
NP-hard.

Proof. Consider an instance of the problem on a path P =
(
V(P),E(P)

)
where one

of the end points of P is the prespecified facility location s and the other endpoint
stands for the unique existing customer location. This instance of RSCPb−c model
can equivalently be formulated as

maximize
∑

e∈E(P)

uy(e)p(e)

subject to
∑

e∈E(P)

d̂(e)p(e) 6 B,

p(e) ∈ {0, 1} ∀ e ∈ E(P).

This optimization model is a binary knapsack problem which is well-known to
be NP-hard (see e.g. Korte and Vygen [9]). This result immediately proves the
claim of the theorem.

According to Theorem 3.1, in case that the modification bounds and costs are
arbitrary, the problem of selecting the best edges for modifications is NP-hard.
However, in the uniform-bound case, the edges will be selected for modifications
with respect to their fixed cost coefficients. Based on this fact, we consider the
RSCPb−c model with uniform modification bounds under the sum-type Hamming
distance on the tree T and try to derive a solution approach to it. In the uniform-
bound model, we suppose that

ux(e) = uy(e) = ρ ∀e ∈ E(T).

As a subroutine of our solution approach, we have somehow benefited from
the solution idea presented in [18] for the reverse center problem under the recti-
linear cost norm. But, our algorithm in general carries out different computational
operations. In fact, the algorithm is based on a sequence of minimum s− t cuts in
an auxiliary network N which is constructed as follows: Add an additional vertex
t to the critical subtree Tcri rooted at s and connect it to every leaf z ∈ Lea(Tcri),
namely set

V(N) = V(Tcri) ∪ {t}

and
E(N) = E(Tcri) ∪ E1,

where
E1 = {(z, t) | z ∈ Lea(Tcri)} .

All edges on N are also directed from s to t. Let M be a very big value. The length,
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bound and cost coefficient of any edge e ∈ E(N) are defined as

`N(e) =

`(e) if e ∈ E(Tcri),
F`(s) − d`(s, z) if e = (z, t) ∈ E1,

uN(e) =

ρ if e ∈ E(Tcri),
`N(e) if e ∈ E1,

cN(e) =


d̂(e) if e ∈ E(Tcri),
0 if e = (z, t) ∈ E1, d`(s, z) < F`(s),
M if e = (z, t) ∈ E1, d`(s, z) = F`(s).

Observe that, there exist |Lea(Tcri)| paths from s to t on the network N and all
of them have equal lengths F`(s). For solving the uniform-bound RSCPb−c model
under the sum-type Hamming distance on the underlying tree T, we propose
Algorithm 1 which is based on decreasing the lengths of all edges contained in
a finite sequence of minimum s − t cuts on the auxiliary network N. Let R be a
minimum s − t cut on N and E(R) be the set of the edges which are contained in
the cut R. The capacity of R is computed as

C(R) =
∑

e∈E(R)

cN(e). (1)

If C(R) 6 B and C(R) < M, then it means that we can decrease the lengths of all
edges e ∈ E(R) by the amount

δ(R) = min
{
uN(e) : e ∈ E(R)

}
(2)

in order that the objective value F`(s) of the problem is improved by the amount
δ(R) incurring the minimum cost C(R). Performing the above modification, the
remaining budget will be

B = B − C(R). (3)

If the remaining budget and the modification bounds permit, then we can re-
peat the above procedure on the auxiliary network N with updated lengths and
capacities

`N(e) =

`N(e) − δ(R) if e ∈ E(R),
`N(e) else,

(4)

cN(e) =


cN(e) if e < E(R),
0 if e ∈ E(R), uN(e) > δ(R),
M if e ∈ E(R), uN(e) = δ(R),

(5)
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and the modification bounds

uN(e) =

uN(e) − δ(R) if e ∈ E(R),
uN(e) else,

(6)

until an optimal modification is achieved. Considering the above discussion, our
solution approach is summarized as follows:

Algorithm 1 (solves the uniform-bound RSCPb−c model under the sum-type Ham-
ming distance on the tree T )

Begin
Step 1. Construct the critical subtree Tcri.

Step 2. Set F ∗ = F`(s).

Step 3. Determine a minimum s − t cut R in N and compute the corresponding
capacity C(R) by (1).

Step 4. If C(R) >M or C(R) > B, then stop; otherwise, compute δ(R) by (2).

Step 5. Update B, `N, cN and uN according to (3), (4), (5) and (6), respectively.

Step 6. Set F ∗ = F ∗ − δ(R) and go to Step 3.
End

By executing Algorithm 1, the optimal objective value F ∗ and the optimal
solution

(
x∗,y∗

)
with

x∗(e) = 0, (7)

y∗(e) =

`(e) − `N(e) if e ∈ E(Tcri),
0 else,

(8)

for all e ∈ E(T) is determined.
We are now going to proceed the correctness arguments of the algorithm:

Observe that the objective value F`(s) of the original problem is decreased by
an amount δ if and only if the lengths of all paths P(s, z) ∪ {(z, t)}, z ∈ Lea(Tcri),
is decreased by the amount δ. On the other hand, the modification of the edge
lengths must be performed within an associated budget B. Hence, it is necessary
to take such edges on every path P(s, z) ∪ {(z, t)}, z ∈ Lea(Tcri), which have the
smallest total capacity. To this end, by finding a minimum s− t cut on the network
N, one can decrease the lengths of all paths P(s, z) ∪ {(z, t)}, z ∈ Lea(Tcri), at the
minimum total cost. LetRbe a minimum s−t cut on N. If C(R) >M, then according
to the definition of the capacities cN(e), we conclude that there exists a path
P(s, z′) ∪ {(z′, t)}, z′ ∈ Lea(Tcri), such that its length cannot be decreased anymore.
If C(R) > B, then it means that there is no enough budget for simultaneous
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perturbation of the lengths `N(e), e ∈ E(R), on the paths P(s, z)∪{(z, t)}, z ∈ Lea(Tcri).
Therefore, if at least one of the above two cases occurs, then it implies that the
objective valueF`(s) cannot be improved any more and its current value is optimal.
In case that C(R) 6 B and C(R) < M, the objective value F`(s) is decreased by any
amount δwith 0 < δ 6 δ(R) at the minimum cost C(R), if all lengths `N(e), e ∈ E(R),
are decreased by the amount δ. Let us now suppose that the objective value F`(s)
is decreased by the amount δ(R) enduring the cost C(R). If the budget B is not
completely spent, i.e.

B − C(R) > 0,

and the associated bounds permit for further improvement, then we update the
parameters of the network N according to (4), (5) and (6). Iterating the above
process, we obtain a finite sequence of minimum s − t cuts, let say R1, · · · ,Rt,
which lead successively to the reduction of F`(s) by the amounts δ(R1), · · · , δ(Rt)
until an optimal objective value

F
∗ = F`(s) −

t∑
j=1

δ(R j)

is derived for the problem under investigation. As an important remark, recall
that the cost function G

(
(x,y)

)
is defined under the Hamming distance in this

subsection. Hence, we should set cN(e) = 0 for every e ∈ E(R) with uN(e) > δ(R),
in order to appearing these edges in the next minimum s − t cut. Otherwise, we
may incur an additional cost not leading to an optimal solution.

Let us now study the time complexity of the algorithm. The critical subtree
Tcri is constructed in O(n) time. In each iteration of the algorithm, at least one
edge e of the minimum s− t cut R in N reaches its lower bound and its capacity is
updated to cN(e) = M, then it will not be contained in the next minimum s− t cuts,
except in the last iteration. Then, the total number of iterations of the algorithm
is bounded by n. On the other hand, every minimum s − t cut in N can be found
in O(n) time, since N − {t} is an arborescence (see e.g. Vygen [15]). Moreover, the
updating of the network N takes O(n) time. Therefore, we conclude

Theorem 3.2. The uniform-bound RSCPb−c model under the sum-type Hamming dis-
tance is solvable in O(n2) time on a tree with n vertices.

3.2. The problem under the bottleneck-type Hamming distance
Suppose that the budget constraint of the RSCPb−c model is defined as

max
e∈E(T)

{
ĉ(e)H (x(e), 0) , d̂(e)H

(
y(e), 0

)}
6 B.

Due to Lemma 2.2, the above inequality is equivalently reduced to

max
e∈E(Tcri)

d̂(e)H
(
y(e), 0

)
6 B.
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We can clearly observe that an optimal modification for the problem under in-
vestigation is to decrease the length of any edge e ∈ E(Tcri) with d̂(e) 6 B to its
modification bound uy(e). Therefore, an optimal solution

(
x∗,y∗

)
of the problem is

obtained by

x∗(e) =0,

y∗(e) =

uy(e) if e ∈ E(Tcri), d̂(e) 6 B,
0 else,

for all e ∈ E(T) in linear time. Since the critical subtree Tcri is also constructed in
linear time, we have

Theorem 3.3. The RSCPb−c model on trees under the bottleneck-type Hamming distance
can be solved in O(n) time.

3.3. The problem under the Chebyshev norm
Consider the RSCPb−c model on the given tree T in which the budget constraint

is given as

max
e∈E(T)

{
c(e)x(e), d(e)y(e)

}
6 B. (9)

According to Lemma 2.2, our modification is limited to the reduction of the edge
lengths of the critical subtree Tcri. Hence, the constraint (9) is equivalently reduced
to

max
e∈E(Tcri)

d(e)y(e) 6 B.

Considering the structure of the above constraint, we can observe that for any
edge e ∈ E(Tcri), the modification y(e) must satisfy the bound

y(e) 6 min
{

uy(e),
B

d(e)

}
.

Recall that we want to decrease the edge lengths ` as big as possible to minimize
the objective value F ˜̀(s) under the new edge lengths ˜̀. Therefore, an optimal
solution

(
x∗,y∗

)
of the RSCPb−c model under the Chebyshev norm on the given

tree T can be found by

x∗(e) =0

y∗(e) =

uy(e) if d(e)uy(e) 6 B,
B

d(e) else,

for all e ∈ E(T) in O(n) time. Recall that the critical subtree Tcri can also be
constructed in O(n) time. Therefore, we get the following result.

Theorem 3.4. The RSCPb−c model on trees under the Chebyshev norm is solvable in
O(n) time.
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4. OPTIMAL ALGORITHMS FOR RSCPo−b MODELS

This section is dedicated to the RSCPo−b model on the underlying tree T under
the sum-type Hamming and bottleneck-type Hamming distances and the Cheby-
shev norm with edge lengths variations. Recall that the aim is to increase or
decrease the edge lengths at the minimum total cost subject to the given modifica-
tion bounds ux(e) and uy(e) for e ∈ E(T) such that the maximum of distances from
the prespecified facility location s to the existing customer points v ∈ Vc does not
exceed the given objective bound λ.

According to Lemma 2.2, it is sufficient to decrease the edge lengths ` on the
critical subtree Tcri to ˜̀ at the minimum total cost so that the inequality

d ˜̀(s, z) 6 λ

holds for any leaf z ∈ Lea(Tcri). Note that the problem is feasible if and only if

d`(s, z) −
∑

e∈E(P(s,z))

uy(e) 6 λ

is satisfied for all z ∈ Lea(Tcri). Furthermore, assume that there exists a leaf
z′ ∈ Lea(Tcri) such that d`(s, z′) > λ. Otherwise, the problem is trivial.

4.1. The problem under the sum-type Hamming distance
Consider the RSCPo−b model under the sum-type Hamming distance on the

given tree T. This problem is equivalently formulated as the following optimiza-
tion model:

minimize
∑

e∈E(Tcri)

d̂(e)p(e)

subject to
∑

e∈E(P(s,z))

uy(e)p(e) > d`(s, z) − λ ∀ z ∈ Lea(Tcri), (10)

p(e) ∈ {0, 1} ∀ e ∈ E(Tcri). (11)

The above problem is a multi-dimensional binary knapsack problem which is
stronglyNP-hard (see e.g. Korte and Vygen [9]). Then, we immediately get

Theorem 4.1. The RSCPo−b model on trees under the sum-type Hamming distance is
NP-hard.

Considering the above theorem and the discussion given in Subsection 3.1, we
try to develop an exact O(n2)-time algorithm for the problem with uniform mod-
ification bounds

ux(e) = uy(e) = ρ, ∀ e ∈ E(T).

Now, define the gap
D = F`(s) − λ.
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If the problem is feasible, then we should decrease the edge lengths ` on the subtree
Tcri until the gap D 6 0 is gotten under the new lengths ˜̀. In fact, our solution
approach relies on a sequence of minimum s−t cutsR1, · · · ,Rt with corresponding
edge sets E(R1), · · · ,E(Rt) on the auxiliary network N as introduced in Section 3.
The optimal modification is done by decreasing the lengths of the edges contained
in any obtained minimum cut R by the amount

δ(R) = min
{

min {uN(e) : e ∈ E(R)} ,D
}

(12)

provided that the modification bounds permit, i.e., C(R) < M and the objective
value gap D is positive. Our proposed solution algorithm is outlined in the fol-
lowing.

Algorithm 2 (solves the uniform-bound RSCPo−b model under the sum-type Ham-
ming distance on the tree T )

Begin
Step 1. Set C∗ = 0.

Step 2. Construct the critical subtree Tcri.

Step 3. Find a minimum s − t cut R of N and obtain its capacity C(R) by (1).

Step 4. If C(R) >M, then stop; otherwise, compute δ(R) by (12) and set

C∗ = C∗ + C(R).

Step 5. If δ(R) = D, then update the lengths `N by (4) and stop.

Step 6. If δ(R) < D, then update `N, cN and uN according to (4), (5) and (6),
respectively. Set

D = D− δ(R)

and go to Step 3.
End

The correctness arguments for Algorithm 2 is analogous to Algorithm 1. How-
ever, note that in the RSCPo−b model, we do not wish to decrease the edge lengths
and consequently the objective value F`(s) as much as possible even if the modi-
fication bounds permit. We only want to decrease the gapD to zero value at the
minimum total cost with respect to the given bounds. Hence, for any minimum
cut R, the edges e ∈ E(R) should exactly be decreased by the amount δ(R), if the
problem is feasible. If the algorithm is terminated at Step 4 when C(R) >M, then
it means that we have not succeeded to decrease the gap D to zero and then the
problem is infeasible. But, when the algorithm is terminated at Step 5, it implies
that we have decreased the gapD to zero and consequently the optimal objective
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value C∗ of the RSCPo−b model is determined and an optimal solution is found by
(7) and (8).

Since Algorithm 2 also requires at most n minimum s − t cuts on the tree-like
network N and every minimum cut is determined in O(n) time, then the time
complexity of the algorithm is bounded by O(n2).

Therefore, we get

Theorem 4.2. The uniform-bound RSCPo−b model on trees under the sum-type Ham-
ming distance can be solved in O(n2) time.

4.2. The problem under the bottleneck-type Hamming distance
Based on Lemma 2.2, the RSCPo−b model under the bottleneck-type Hamming

distance on the underlying tree T is equivalently transformed to the problem

minimize max
e∈E(Tcri)

d̂(e)p(e)

subject to (10) − (11)

on the critical subtree Tcri. It can be observed that the optimal objective value
of the problem is equal to d̂(e) for some e ∈ E(Tcri). The specific structure of
the problem helps us to develop a solution algorithm based on a binary search
approach. Let E(Tcri) =

{
e1, · · · , ek

}
and define

Ei =
{
e ∈ E(Tcri) : d̂(e) 6 d̂(ei)

}
for i = 1, · · · , k. Let Di(s, z) denote the modified distance between the prespecified
facility location s and any leaf z ∈ Lea(Tcri) after decreasing the lengths `(e),
e ∈ Ei ∩ E (P(s, z)) by the amounts uy(e) on the path P(s, z), namely, define

Di(s, z) = d`(s, z) −
∑

e∈Ei∩E(P(s,z))

uy(e).

Now, let us consider the following definition and let

Di
max = max

z∈Lea(Tcri)
Di(s, z). (13)

Definition 4.3. After renumbering the edges of the subtree Tcri such that

d̂(e1) 6 d̂(e2) 6 · · · 6 d̂(ek),

an edge eb ∈ {ei : i = 1, · · · , k} is called a break edge for the RSCPo−b model under the
bottleneck-type Hamming distance if and only if

Db−1
max > λ and Db

max 6 λ.
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We immediately get

Lemma 4.4. If the break edge eb for the RSCPo−b model under the bottleneck-type Ham-
ming distance is known, then an optimal solution

(
x∗,y∗

)
of the problem is given by

x∗(e) =0, (14)

y∗(e) =

uy(e) if e ∈ Eb,

0 if e ∈ E(T) \ Eb,
(15)

for all e ∈ E(T) with the corresponding optimal value

C∗ = d̂(eb).

The break edge eb can be determined by a combination of the linear time
algorithm for finding the median of a finite set with a binary search approach
(Procedure BrE).

Procedure BrE (finds the break edge eb)

Step 1. Let I = E(Tcri).

Step 2. Find the median med = d̂(em) of the set
{
d̂(ei) : ei ∈ I

}
.

Step 3. Let

I
> =

{
ei ∈ I : d̂(ei) > med

}
,

I
< =

{
ei ∈ I : d̂(ei) < med

}
.

Step 4. For any z ∈ Lea(Tcri), compute the distances Dm(s, z) and Dm′ (s, z), where

em′ = argmax
{
d̂(ei) : ei ∈ I

<
}
.

Step 5. If Dm
max 6 λ and Dm′

max > λ, then eb = em is a break edge and stop.

Step 6. If Dm
max 6 λ and Dm′

max 6 λ, then set I = I< and go to Step 2. If Dm
max > λ,

then set I = I> and return to Step 2.

Let us now discuss the running time of Procedure BrE. In each iteration, the
median med and the parameters Dm(s, z) and Dm′ (s, z) are computed in O(n) time.
On the other hand, the procedure terminates at most in O(log(|E(Tcri)|) iterations
with |E(Tcri)| 6 n. Then, the time complexity of Procedure BrE is bounded by
O(n log n).

When the break edge em is determined by Procedure BrE, an optimal solution of
the RSCPo−b model is attained by (14) and (15) inO(n) time. Therefore, considering
the fact that the time needed to construct the critical subtree Tcri is O(n), we
conclude

Theorem 4.5. The RSCPo−b model on trees under the bottleneck-type Hamming distance
is solvable in O(n log n) time.



382 R. Etemad, B. Alizadeh / Reverse Selective Center Location Problem

4.3. The problem under the Chebyshev norm
Now, we deal with the RSCPo−b model on the given tree T under the Chebyshev

norm where according to Lemma 2.2, the aim is to minimize

max
e∈E(Tcri)

d(e)y(e).

Let E(Tcri) =
{
e1, · · · , ek

}
and define the edge sets Ei, i = 1, · · · , k, as

Ei =
{
e ∈ E(Tcri) : f (e) 6 f (ei)

}
,

where
f (e) = d(e)uy(e) ∀e ∈ E(Tcri).

Let Di(s, z), i = 1, · · · , k, denote the modified distance between the prespecified
location s and any leaf z ∈ Lea(Tcri) after decreasing the edge lengths by

y(e) =


uy(e) if e ∈ Ei,
f (ei)
d(e) if e ∈ E(Tcri) \ Ei,

0 else.

Moreover, let Di
max be defined as (13) and consider the following definition.

Definition 4.6. After renumbering the edges of the subtree Tcri such that

f (e1) 6 f (e2) 6 · · · 6 f (ek),

an edge eb ∈ {ei : i = 1, · · · , k} is called a break edge for the RSCPo−b model under the
Chebyshev norm if and only if

Db
max > λ and Db+1

max 6 λ.

The connection between the break edge eb and the optimal solution (x∗,y∗) is
given by the following lemma:

Lemma 4.7. If the break edge eb for the RSCPo−b model under the Chebyshev norm is
known, then the optimal solution can be found by

x∗(e) =0, (16)

y∗(e) =


uy(e) if e ∈ Eb,
C∗

d(e) if e ∈ E(Tcri) \ Eb,

0 else,
(17)

for all e ∈ E(T) with the corresponding optimal value

C∗ = max
z∈Lea(Tcri)

∆(z)
∆′(z)

, (18)



R. Etemad, B. Alizadeh / Reverse Selective Center Location Problem 383

where

∆(z) = d`(s, z) −
∑

e∈Eb∩E(P(s,z))

uy(e) − λ,

∆′(z) =
∑

e∈(E(Tcri)\Eb)∩E(P(s,z))

1
d(e)

for all z ∈ Lea(Tcri).

Proof. According to definition of the break edge, the optimal solution (x∗,y∗) can
obviously be obtained by (16) and (17). Since the optimal solution (x∗,y∗) is
feasible, the inequality

d`(s, z) −
∑

e∈Eb∩E(P(s,z))

uy(e) −
∑

e∈(E(Tcri)\Eb)∩E(P(s,z))

C∗

d(e)
− λ 6 0

holds for every leaf z ∈ Lea(Tcri). Hence, we conclude

C∗ >
∆(z)
∆′(z)

∀ z ∈ Lea(Tcri).

These inequalities immediately imply the equation (18).

Obviously, we can find the break edge eb in O(n log n) time by applying a
combination of the linear time algorithm for finding the median of a finite set
with a binary search approach similar to Procedure BrE. The values ∆(z) and ∆′(z)
for all z ∈ Lea(Tcri) can be computed in linear time using a breadth-first search
algorithm. Then, the optimal value C∗ is obtained in linear time if the break edge
is identified. Moreover, the optimal solution (x∗,y∗) is obtained according to (16)
and (17) in O(n) time. Recall that the critical subtree Tcri is constructed in linear
time.

Altogether, we get

Theorem 4.8. The RSCPo−b model on trees under the Chebyshev norm can be solved in
O(n log n) time.

5. CONCLUSION

In this paper, we investigated two variants of the reverse selective center loca-
tion problem, the so-called RSCPb−c and RSCPo−b, on tree networks. We showed
that the RSCPb−c and RSCPo−b models under the sum-type Hamming distance are
NP-hard on graphs even on trees. So, we considered the special case of uniform
modification bounds and outlined O(n2) time solution algorithms. Moreover, we
showed that the RSCPb−c model under the bottleneck-type Hamming distance
and the Chebyshev norm can be solved in linear time. Finally, we developed two
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solution methods with O(n log n) time complexities for the RSCPo−b model under
the bottleneck-type Hamming distance and the Chebyshev norm.

For future research, it is interesting to consider the reverse selective center
problem on other special networks like cacti, cycles, wheels, unicyclic graphs and
etc. Another direction of future research is the investigation of the problem under
other cost norms.

REFERENCES

[1] Alizadeh, B., and Burkard, R.E., “Combinatorial algorithms for inverse absolute and vertex
1-center location problems on trees”, Networks, 58 (2011) 190-200.

[2] Alizadeh, B., and Burkard, R.E., “Uniform-cost inverse absolute and vertex center location
problems with edge length variations on trees”, Discrete Applied Mathematics, 159 (2011) 706-716.

[3] Alizadeh, B., and Burkard, R.E., “A linear time algorithm for inverse obnoxious center location
problems on networks”, Central European Journal of Operations Research, 21 (2012) 585-594.

[4] Alizadeh, B., Burkard, R.E., and Pferschy, U., “Inverse 1-center location problems with edge
length augmentation on trees”, Computing, 86 (2009) 331-343.

[5] Alizadeh, B., and Etemad, R., “The linear time optimal approaches for reverse obnoxious center
location problems on networks”, Optimization 65 (11) (2016) 2025–2036.

[6] Berman, O., Ingco, D.I., and Odoni, A.R., “Improving the location of minmax facility through
network modification”, Networks, 24 (1994) 31-41.

[7] Cai, M.C., Yang, X.G., and Zhang, JZ., “The complexity analysis of the inverese center location
problem”, Journal of Global Optimization, 15 (1999) 213-218.

[8] Eiselt, H.A., Foundation of Location Analysis, Springer Verlag, New York, 2011.
[9] Korte, B., and Vygen, J., Combinatorial Optimization, Theory and Algorithms, Springer Verlag, New

York, 2011.
[10] Mirchandani, P.B., and Francis, R.L., Discrete Location Theory, John Wiley, New York, 1990.
[11] Nguyen, K.T., and Chassein, A., “Inverse eccentric vertex problem on networks”, Central European

Journal of Operations Research, 23 (2015) 687-698.
[12] Nguyen, K.T., and Sepasian, A.R., “The inverse 1-center problem on trees with variable edge

lengths under Chebyshev norm and Hamming distance”, Journal of Combinatorial Optimization,
32 (3) (2016) 872–884.

[13] Nguyen, K.T., and Anh, L.Q., “Inverse k-centrum problem on trees with variable vertex weights”,
Mathematical Methods of Operations Research, 82 (2015) 19-30.

[14] Nguyen, K.T., “Reverse 1-center problem on weighted trees”, Optimization, 65 (2015) 253-264.
[15] Vygen, J., “On dual minimum cost flow algorithms”, Mathematical Methods of Operations Research,

56 (2002) 101-126.
[16] Yang, X., and Zhang, J., “Inverse center location problem on a tree”, Journal of System Science and

Complexity, 21 (2008) 651-664.
[17] Zanjirani, R., and Hekmatfar, M., Facility location: concepts, models, algorithms and case studies,

Physica-Verlag, Berlin, 2009.
[18] Zhang, J.Z., Liu, Z.H., and Ma, Z.F., “Some reverse location problems”, European Journal of

Operational Research, 124 (2000) 77-88.
[19] Zhang, J.Z., Yang, X.G., and Cai, M.C., “A network improvement problem under different

norms”, Computational Optimization and Applications, 27 (2004) 305-319.


	1 INTRODUCTION
	2 PROBLEM DEFINITION AND PRELIMINARIES
	3 OPTIMAL ALGORITHMS FOR RSCPb-c MODELS
	3.1 The problem under the sum-type Hamming distance
	3.2 The problem under the bottleneck-type Hamming distance
	3.3 The problem under the Chebyshev norm

	4 OPTIMAL ALGORITHMS FOR RSCPo-b MODELS
	4.1 The problem under the sum-type Hamming distance
	4.2 The problem under the bottleneck-type Hamming distance
	4.3 The problem under the Chebyshev norm

	5 CONCLUSION



