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Abstract: This paper deals with the problem of determining the optimal selling price and 
order quantity simultaneously under EOQ model for deteriorating items. It is assumed 
that the demand rate depends not only on the on-display stock level but also the selling 
price per unit, as well as the amount of shelf/display space is limited. We formulate two 
types of mathematical models to manifest the extended EOQ models for maximizing 
profits and derive the algorithms to find the optimal solution. Numerical examples are 
presented to illustrate the models developed and sensitivity analysis is reported. 
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1. INTRODUCTION 

In the classical inventory models, the demand rate is regularly assumed to be 
either constant or time-dependent but independent of the stock levels. However, 
practically an increase in shelf space for an item induces more consumers to buy it. This 
occurs owing to its visibility, popularity or variety. Conversely, low stocks of certain 
goods might raise the perception that they are not fresh. Therefore, it is observed that the 
demand rate may be influenced by the stock levels for some certain types of inventory. In 
years, marketing researchers and practitioners have recognized the phenomenon that the 
demand for some items could be based on the inventory level on display. Levin et al. 
(1972) pointed out that large piles of consumer goods displayed in a supermarket would 
attract the customer to buy more. Silver and Peterson (1985) noted that sales at the retail 
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level tend to be proportional to stock displayed. Baker and Urban (1988) established an 
EOQ model for a power-form inventory-level-dependent demand pattern. Padmanabhan 
and Vrat (1990) developed a multi-item inventory model of deteriorating items with 
stock-dependent demand under resource constraints and solved by a non-linear goal 
programming method. Datta and Pal (1990) presented an inventory model in which the 
demand rate is dependent on the instantaneous inventory level until a given inventory 
level is achieved, after which the demand rate becomes constant. Urban (1992) relaxed 
the unnecessary zero ending-inventory at the end of each order cycle as imposed in Datta 
and Pal (1990). Pal et al. (1993) extended the model of Baker and Urban (1988) for 
perishable products that deteriorate at a constant rate. Bar-Lev et al. (1994) developed an 
extension of the inventory-level-dependent demand-type EOQ model with random yield. 
Giri et al. (1996) generalized Urban’s model for constant deteriorating items. Urban and 
Baker (1997) further deliberated the EOQ model in which the demand is a multivariate 
function of price, time, and level of inventory. Giri and Chaudhuri (1998) expanded the 
EOQ model to allow for a nonlinear holding cost. Roy and Maiti (1998) developed multi-
item inventory models of deteriorating items with stock-dependent demand in a fuzzy 
environment. Urban (1998) generalized and integrated existing inventory-control models, 
product assortment models, and shelf-space allocation models. Datta and Paul (2001) 
analyzed a multi-period EOQ model with stock-dependent, and price-sensitive demand 
rate. Kar et al. (2001) proposed an inventory model for deteriorating items sold from two 
shops, under single management dealing with limitations on investment and total floor-
space area. Other papers related to this area are Pal et al. (1993), Gerchak and Wang 
(1994), Padmanabhan and Vrat (1995), Ray and Chaudhuri (1997), Ray et al. (1998), 
Hwang and Hahn (2000), Chang (2004), and others.  

As shown in Levin et al. (1972), “large piles of consumer goods displayed in a 
supermarket will lead customers to buy more. Yet, too many goods piled up in 
everyone’s way leave a negative impression on buyers and employees alike.” Hence, in 
this present paper, we first consider a maximum inventory level in the model to reflect 
the facts that most retail outlets have limited shelf space and to avoid a negative 
impression on customer because of excessively piled up in everyone’s way. Since the 
demand rate not only is influenced by stock level, but also is associated with selling 
price, we also take into account the selling price and then establish an EOQ model in 
which the demand rate is a function of the on-display stock level and the selling price. In 
Section 2, we provide the fundamental assumptions for the proposed EOQ model and the 
notations used throughout this paper. In Section 3, we set up a mathematical model. The 
properties of the optimal solution are discussed as well as its solution algorithm and 
numerical examples are presented. In Section 4, an optimal ordering policy with selling 
price predetermined is investigated. Theorems 1 and 2 are provided to show the 
characteristics of the optimal solution. An easy-to-use algorithm is developed to 
determine the optimal cycle time, economic order quantity and ordering point. Finally, 
we draw the conclusions and address possibly future work in Section 5. 

 
2. ASSUMPTIONS AND NOTATIONS 

A single-item deterministic inventory model for deteriorating items with price- 
and stock-dependent demand rate is presented under the following assumptions and 
notations. 
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1. Shortages are not allowed to avoid lost sales. 
2. The maximum allowable number of displayed stocks is B to avoid a negative 

impression and due to limited shelf/display space. 
3. Replenishment rate is infinite and lead time is zero. 
4. The fixed purchasing cost K per order is known and constant. 
5. Both the purchase cost c per unit and the holding cost h per unit per unit time 

are known and constant. The constant selling price p per unit is a decision variable within 
the replenishment cycle, where p > c. 

6. The constant deterioration rate θ  (0 ≤ θ  < 1) is only applied to on-hand 
inventory. There are two possible cases for the cost of a deteriorated item s: (1) if there is 
a salvage value, that value is negative or zero; and (2) if there is a disposal cost, that 
value is positive. Note that c > s (or s− ). 

7. All replenishment cycles are identical. Consequently, only a typical planning 
cycle with T length is considered (i.e., the planning horizon is [0, T]). 

8. The demand rate R(I(t), p) is deterministic and given by the following 
expression: 

R(I(t), p) = )( pα + β )(tI ,  

where I(t) is the inventory level at time t, β  is a non-negative constant, and 
)( pα  is a non-negative function of  p with )(' pα = d )( pα /d p < 0. 

9. As stated in Urban (1992), “it may be desirable to order large quantities, 
resulting in stock remaining at the end of the cycle, due to the potential profits resulting 
from the increased demand.” Consequently, the initial and ending inventory levels y are 
not restricted to be zero (i.e., y 0≥ ). The order quantity Q enters into inventory at time t = 
0. Consequently, I(0) = Q + y. During the time interval [0, T], the inventory is depleted 
by the combination of demand and deterioration. At time T, the inventory level falls to y, 
i.e., I(T) = y. The initial and ending inventory level y can be called ordering point. 

The mathematical problem here is to determine the optimal values of T, p and y 
such that the average net profit in a replenishment cycle is maximized. 

 
3. MATHEMATICAL MODEL AND ANALYSIS 

At time t = 0, the inventory level I(t) reaches the top I (with I ≤  B) due to 
ordering the economic order quantity Q. The inventory level then gradually depletes to y 
at the end of the cycle time t = T mainly for demand and partly for deterioration. A 
graphical representation of this inventory system is depicted in Figure 1. The differential 
equation expressing the inventory level at time t can be written as follows: 
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Figure 1. Graphical Representation of Inventory System 
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Hence, the average profit per unit time is 
AP = TP / T  
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Necessary conditions for an optimal solution 
Taking the first derivative of AP as defined in (4) with respect to T, we have 

TAP ∂∂ /   

= 2
1

T
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From Appendix 1, we show that [ 1)( )()( +−+ ++ TT eTe βθβθβθ ] is greater than 
zero. [ β)( cp − ] is the benefit received from a unit of inventory and [ )( sch ++θ ] is the 
total cost (i.e., holding and deterioration costs) per unit inventory. Let 1Δ = β)( cp −  and 

2Δ = )( sch ++θ , based on the values of 1Δ and 2Δ , two distinct cases for finding the 

optimal *T are discussed as follows:   
Case 3.1 1Δ ≥ 2Δ  (Building up inventory is profitable) 

  “ 1Δ ≥ 2Δ ” implies that the benefit received from a unit of inventory is larger 
than the total cost (i.e., holding and deterioration costs) due to a unit of 
inventory. That is, it is profitable to build up inventory. Using Appendix 1, 

TAP ∂∂ / > 0, if 1Δ ≥ 2Δ . Namely, AP is an increasing function of T with )(tI ≤  
B. Therefore, we should pile up inventory to the maximum allowable number B 
of stocks displayed in a supermarket without leaving a negative impression on 
customers. So, I(0) = B.  From I(0) = B , we know  
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which implies that T is a function of p and y. 
Substituting (6) into (4), we know that AP is a function of y and p.  

The necessary conditions of AP to be maximized are 0/ =∂∂ yAP  and 
0/ =∂∂ pAP . Hence, we have the following two conditions: 
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From (7) and (8), the optimal values of p* and y* are obtained. Substituting p* 
and y* into (6), the optimal value T* is solved. 

Since AP(y, p) is a complicated function, it is not possible to show analytically 
the validity of the sufficient conditions. However, according to the following mention, 
we know that the optimal solution can be obtained by numerical examples. Because 
building up is profitable and AP is a continuous function of y and p over the compact set 
[0, B]× [0, L], where L is a sufficient large number, so AP has a maximum value. It is 
clear that AP is not maximum at y = 0 (or B) and p = 0 (or L). Therefore, the optimal 
solution is an inner point and must satisfy (7) and (8). If the solution from (7) and (8) is 
unique, then it is the optimal solution. Otherwise, we have to substitute them into (4) and 
find the one with the largest values. 
Case 3.2. 21 Δ<Δ  (Building up inventory is not profitable) 

First taking the partial derivative of AP with respect to y, we obtain 

yAP ∂∂ /  = 
T
1 [( 21 Δ−Δ )

βθ +
1 ( 1)( −+ Te βθ )] < 0. (10) 

Next, we get y* = 0. Substituting y* = 0 into (4), we have AP is a function of p 
and T.  

So, the necessary conditions of AP to be maximized are TAP /∂  = 0 and 
0/ =∂ pAP . Then, we get the following two conditions:  
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From (11) and (12), we can obtain the values for T and p. Substituting y* = 0, T 
and p into (2) and check whether I(0) < B or not. If I(0) < B, then the optimal values T* = 
T, p* = p and Q* = I(0). If I(0)≥B, then set I(0) = B and obtain 
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which is a function of p. Substituting y* = 0 and (13) into (4), we have AP is 
only depend on p. Then, the necessary conditions of AP to be maximized is dAP / dp = 0. 
Hence, 
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The optimal value p* is determined by (14). Substituting p* into (13), the 
optimal value T* is solved. 

 
Algorithm : 

The algorithm for determining an optimal selling price p*, optimal ordering 
point y*, optimal cycle time T*, and optimal economic order quantity Q* is summarized 
as follows: 
Step 1. Solving (7) and (8), we get the values for p and y.  
Step 2. If 21 Δ≥Δ , then p* = p, y* = y, Q* = B – y*, and the optimal value T* can be 
obtained by substituting p and y into (6). 
Step 3. If 21 Δ<Δ , then re-set y* = 0. By solving (11) and (12), we get the values for T 
and p. Substituting y* = 0, p and T into (2) to find I(0). If I(0) < B, then the optimal 
values T* = T, p* = p and Q* = I(0), and stop. Otherwise, go to Step 4. 
Step 4. If the simultaneous solutions T and p in (11) and (12) make I(0) > B, then the 
optimal value p* is determined by (14), T* is obtained by substituting p* into (13), and 
Q* = I(0) by substituting p* and T* into (2). 

 
Numerical examples 

To illustrate the proposed model, we provide the numerical examples here. For 
simplicity, we set the function )( pα = rxp− , where x and r are non-negative constants. 
That is, we assume that demand is a constant elasticity function of the price. 
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Example 3.1 Let K = $10 per cycle, x = 1000 units per unit time, h = $0.5 per 
unit per unit time, s = $0 per unit, r = 2.5 and θ  = 0.05. Following through the proposed 
algorithm, the optimal solution can be obtained. Since (4) and (6)-(9) are nonlinear, they 
are extremely difficult to solve. We use Maple 9.5 software to solve them. The 
computational results for the optimal values of p, y, T, Q and AP with respect to different 
values of β , B, c are shown in Table 3.1. 

 
Table 3.1 Computational results for the case of 21 Δ≥Δ  
β  B c y* Q* p* T* AP* 
0.15 100 1.5 29.7671 70.2329 6.036963 2.995380 53.8080 
0.20   27.5915 72.4085 5.057843 2.228339 65.6087 
0.25   21.6955 78.3045 4.401015 1.874682 74.6548 
0.30   12.9392 87.0608 3.916335 1.700138 81.5477 
0.35   1.5681 98.4319 3.542865 1.626419 86.6871 
0.20 100 1.5 27.5915 72.4085 5.057843 2.228339 65.6087 
 110  25.7399 84.2601 4.916473 2.437927 66.5322 
 130  19.8247 110.1753 4.727722 2.927107 67.8135 
 150  12.1859 137.8141 4.618470 3.478172 68.6228 
 170  3.9578 166.0422 4.552949 4.059602 69.1629 
0.20 100 1.1 47.2880 52.7120 5.192483 1.538303 79.0717 
  1.3 38.7618 61.2382 5.099564 1.811917 72.2547 
  1.5 27.5915 72.4085 5.057843 2.228339 65.6087 
  1.7 14.7100 85.2900 5.094514 2.827599 59.3269 
  1.9 2.3596 97.6404 5.209061 3.598091 53.5902 

Based on the computational results as shown in Table 3.1, we obtain the 
following managerial phenomena when building up inventory is profitable:  

(1) A higher value of β causes higher values of Q* and AP*, but lower values 
of y*, p* and T*. It reveals that the increase of demand rate will result in the increases of 
optimal economic order quantity and average profit, but the decreases of optimal 
ordering point, selling price and cycle time. 

(2) A higher value of B causes higher values of Q*, T* and AP*, but lower 
values of y*and p*. It implies that the increase of shelf space will result in the increases 
of optimal economic order quantity, cycle time and average profit, but the decreases of 
optimal ordering point and selling price. 

(3) A higher value of c causes higher values of Q* and T*, but lower values of 
y* and AP*. It implies that the increase of purchase cost will result in the increases of 
optimal economic order quantity and cycle time, but the decreases of optimal ordering 
point and average profit. 

Example 3.2 Let K = $10 per cycle, x = 1000 units per unit time, h = $0.2 per 
unit per unit time, c = $1.0 per unit, s = $0 per unit, r = 2.8,θ  = 0.05 and B = 300. From 
Step 3 of the proposed algorithm, we obtain the optimal ordering point y* = 0. Using 
Maple 9.5 software, we solve (2), (4), (11) and (12). The computational results for the 
optimal values of p, Q, T and AP with respect to different values of β  are shown in 
Table 3.2. 
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Table 3.2 Computational results for the case of 21 Δ<Δ  

 
β  Q* p* T* AP* 

0.10 162.6161 1.685130 0.666568 129.4149 
0.12 169.2624 1.689956 0.693068 130.4691 
0.15 181.2873 1.698773 0.741555 132.1537 
0.17 191.2537 1.706166 0.782279 133.3611 
0.20 211.0556 1.721085 0.864684 135.3406 

 

Table 3.2 shows that a higher value of β causes in higher values of Q*, p*, T* 
and AP*. It indicates that the increase of demand rate will result in the increases of 
optimal economic order quantity, selling price, cycle time and average profit, when 
building up inventory is not profitable. 

 
4. AN OPTIMAL ORDERING POLICY MODEL WITH SELLING PRICE 

PREDETERMINED 

In the previous section, only the necessary condition was outlined for 
determining optimal values of p, T, Q and y. The existence and uniqueness of the optimal 
solution remained unexplored. In addition, most firms have no pricing power in today’s 
business competition. As a result, most firms are not able to change price. In order to 
reflect this important fact, in this section, we study a special case that the selling price is 
predetermined. In this special case, we are able to show that the optimal solution to the 
relevant problem exists uniquely. Theorems 1 and 2 are provided to present the 
characteristics of the optimal solution. An easy-to-use algorithm is proposed to determine 
the optimal cycle time, ordering point and order quantity. 

Necessary conditions for an optimal solution 
Since p is predetermined, )( pα is reduced toα . Equation (4) can be rewritten as 

follows: 
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Evidently, AP is a function of T and y. The model now is to determine the 
optimal values of T and y such that AP in (16) is maximized. 

Taking the first derivative of AP with respect to T, we have 
TAP ∂∂ /   

= 2
1
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By applying analogous argument with Equation (5), there are two distinct cases 
for finding the optimal T* are discussed as follows:  

Case 4.1 21 Δ≥Δ  (Building up inventory is profitable) 

Using Appendix 1, ∂ AP / ∂ T > 0 if 21 Δ≥Δ . Namely, AP is an increasing 
function of T with I(t) ≤  B. Consequently, I(0) = B.  From I(0) = B , we know 

T  = 
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1
⎟⎟
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⎞
⎜⎜
⎝

⎛
++
++
αβθ
αβθ

)(
)(ln

y
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which indicates that T is a function of y. 
Substituting (18) into (16), we know that AP is only a function of y. The first-

order condition for finding the optimal y* is dAP / dy = 0, which leads to  
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To examine whether (19) has a unique solution, we set 
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Taking the first derivative of H(y) with respect to y, we get 

H'(y) = )( βθ + ⎟⎟
⎠

⎞
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⎝

⎛
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By H(B) = 0 and (20), we know that H(y ) is negative and strictly increasing to 
zero at y  = B. Consequently, we can obtain the following theorem. 
Theorem 1. Under the condition 21 Δ≥Δ , I(0) = B and the following results state  

If H(0) ≤  – K 2)( βθ + /( 21 Δ−Δ ), then there exists a unique solution y* in (19) 
which maximizes AP in (16). 

If H(0) > – K 2)( βθ + /( 21 Δ−Δ ), then y* = 0. 
Proof. AP is a continuous function of y over the compact set [0, B], and hence a 
maximum exists. The proof of part (a) immediately follows from (21) and H(0) ≤  – 
K 2)( βθ + / ( 21 Δ−Δ ) < H(B) = 0. From Appendix 2, we show that AP is a strictly 
concave function at y*. Therefore, the unique optimal solution is an inner point if H(0) < 
– K 2)( βθ + /( 21 Δ−Δ ). Otherwise (i.e., H(0) > – K 2)( βθ +  / ( 21 Δ−Δ )), the optimal 
solution is at the boundary point y = 0 (Since AP is zero at y = B, y = B is not an optimal 
solution). The proof of part (b) is completed. 
Case 4.2 21 Δ<Δ  (Building up inventory is not profitable) 

The necessary conditions for maximizing AP are ∂ AP/ ∂ T = 0 and ∂ AP/ ∂ y = 
0. For the part ∂ AP/∂ T = 0, we have  
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Taking the partial derivative of AP with respect to y, we obtain 
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Therefore, we get y* = 0.  Substituting y* = 0 into (22), we can get 
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Again, to examine whether (24) has a solution or not, we set 

G(T) = 1)( )()( +−+ ++ TT eTe βθβθβθ . (25) 

Taking the first derivative of G(T) with respect to T, we have 

)(TG′  = TTe )(2)( βθβθ ++  > 0. (26) 

Since G(0) = 0, there exists a unique solution T (which is greater than 0) for 
(24). This is done in the following theorem.         
Theorem 2. If 21 Δ<Δ , then the optimal ordering point y* = 0, and there exists a unique 
solution T * in (24) which maximizes AP in (16). 
Proof. AP is a continuous function of T over the compact set [0, T], and hence a 
maximum exists. Since AP is zero at T = 0, the optimal T * is an inner point. From 
Appendix 3, we know that AP is a strictly concave function at T *. Thus, the unique 
solution to (24) is the optimal solution that maximizes AP in (16).  
 
Algorithm  

It is apparent from Theorem 1 and 2 that the value of AP is influenced by the 
values of 1Δ and 2Δ . Consequently, the algorithm for determining the optimal cycle time 
T *, optimal ordering point y* and optimal economic order quantity Q* is summarized as 
follows: 
Step 1. If 21 Δ≥Δ and H(0)≤  – K 2)( βθ + /( 21 Δ−Δ ), then the optimal ordering point y* 
can be determined by (19), the optimal cycle time T * can be obtained by substituting y* 
into (18), and the optimal economic order quantity Q* = B – y*. 
Step 2. If 21 Δ≥Δ and H(0) > – K 2)( βθ + /( 21 Δ−Δ ), then the optimal ordering point y* 
= 0, and thus the optimal cycle time T * can be obtained by substituting y* = 0 into (18), 
and the optimal economic order quantity Q* = B. 
Step 3. If 21 Δ<Δ , then the optimal y* = 0. By solving (24), we get the value for T. 
Substituting y* = 0 and T into (2) to find I(0). If I(0) < B, then the optimal economic 
order quantity Q* = I(0) and the optimal cycle time T * = T. Otherwise, Q* = B and the 
optimal cycle time T * can be determined by I(0) = B. 
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Numerical examples 

The numerical examples are given here to demonstrate the applicability of the 
proposed model. 

Example 4.1 Let K = $100 per cycle, α = 100 units per unit time, h = $1.0 per 
unit per unit time, c = $1.0 per unit, s = $0 per unit, p = $6 per unit,θ  = 0.2 and B = 250. 
If β = 0.05, 010, 0.15 and 0.20, then 21 Δ<Δ . Using the Step 3 of the proposed 
algorithm, we can obtain the optimal solution that is the optimal ordering point y* = 0, T* 
and Q*. If β = 0.25 and 0.30, then 21 Δ≥Δ  and H(0) > –K 2)( βθ + /( 21 Δ−Δ ). We can 
use Step 2 of the proposed algorithm and find the optimal solution that is the optimal 
ordering point y* = 0, optimal economic order quantity Q* = B and T*. If β = 0.4, 05, 

0.6 and 0.7, then 21 Δ≥Δ  and H(0) ≤  – K 2)( βθ +  / ( 21 Δ−Δ ). From Step 1 of the 
proposed algorithm, the optimal solutions of y*, T* and Q* can be attained. The 
computational results for the optimal values of y, T, Q and AP with respect to different 
values of β are shown in Table 4.1. 

 
Table 4.1 Computational results with respect to different values of β  
β  y* Q* T* AP* 
0.05 0 153.6248 1.300090 354.0565 
0.10 0 182.7822 1.457292 372.0525 
0.15 0 235.4000 1.717078 394.0700 
0.20 0 250.0000 1.732868 420.1574 
0.25 0 250.0000 1.675048 445.7724 
0.30 0 250.0000 1.621860 470.8288 
0.40 26.5083 223.4917 1.281150 521.2066 
0.50 63.1794 186.8206 0.921989 582.1333 
0.60 82.9370 167.0630 0.737114 649.2866 
0.70 92.5158 157.4842 0.620301 719.6862 

 
Table 4.1 reveals that (1) If 21 Δ<Δ , then the values of Q*, T* and AP* increase 

when the value of β increases. It implies that the increase of demand rate causes the 
increases of optimal economic order quantity, cycle time and average profit when 
building up inventory is not profitable.(2) If 21 Δ≥Δ , then the values of  y* and AP* 
increase but the values of Q* and T* decrease when the value of β  increase. It shows 
that a higher demand rate causes higher values of optimal ordering point and average 
profit, but lower values of economic order quantity and cycle time. 

 
5. CONCLUSION 

This article presents the inventory models for deterioration items when the 
demand is a function of the selling price and stock on display. We also impose a limited 
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maximum amount of stock displayed in a supermarket without leaving a negative 
impression on customers. Under these conditions, a proposed model has been shown for 
maximizing profits. Then, the properties of the optimal solution are discussed as well as 
its solution algorithm and numerical examples are presented to illustrate the model. In 
addition, in order to reflect an important fact that most firms have no pricing power in 
today’s business competition, we study a special case that the selling price is considered 
by predetermination. We then provide Theorems 1 and 2 to show the characteristics of 
the optimal solution and establish an easy-to-use algorithm to determine the optimal 
cycle time, economic order quantity and ordering point. Furthermore, we discover some 
intuitively reasonable managerial results. For example, if the benefit received from a unit 
of inventory is larger than the total cost per unit inventory, then the building up inventory 
is profitable and thus the beginning inventory should reach to the maximum allowable 
level. Otherwise, building up inventory is not profitable and the ending inventory should 
be zero. Finally, numerical examples are provided to demonstrate the applicability of the 
proposed model. The results also indicate that the effect of stock dependent selling rate 
on the system behavior is significant, and hence should not be ignored in developing the 
inventory models. The sensitivity analysis shows the influence effects of parameters on 
decision variables. 

The proposed models can further be enriched by incorporating inflation, 
quantity discount, and trade credits etc. Besides, it is interested to extend the proposed 
model to multi-item inventory systems based on limited shelf space or to consider the 
demand rate which is a polynomial form of on-hand inventory dependent demand. 
Finally, we may extend the deterministic demand function to stochastic fluctuating 
demand patterns. 

 

APPENDIX 

Appendix 1. If 21 Δ≥Δ , then AP is an increasing function of T. 

To prove ∂ AP/ ∂ T > 0, we set 

)(xf = 1+− xx exe , for 0≥x . (A.1) 

Then (A.1) yields )(xf ′ = xxe > 0. So, )(xf is an increasing function of x 
for 0≥x . We get 

)(xf > f (0) = 0. (A.2) 

Let x = T)( βθ + . Using (A.1) and (A.2), we obtain 

1)( )()( +−+ ++ TT eTe βθβθβθ  > 0, for T > 0. (A.3) 

Applying (5) and (A.3), we have ∂ AP/ ∂ T > 0.  
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Appendix 2. If 21 Δ≥Δ , then AP is strictly concave at y*. 

From (19), we know the second-order derivative of AP with respect to y as: 

2

2

y
AP

∂
∂   

= 2
1

T
{( 21 Δ−Δ ) (

βθ +
1 )[

)(
)(

βθα
βθα

++
++

y
B -1] (

)(
1

βθα ++
−

y
)} < 0, (A.4) 

which implies AP is strictly concave at y*. 
 
Appendix 3. If 21 Δ<Δ , then AP is strictly concave at T *. 

Applying (22) and y* = 0, we obtain the second-order derivative:  

2

2

T
AP

∂
∂  = ( 21 Δ−Δ ) TTe )( βθα + < 0, (A.5) 

which implies AP is strictly concave at T*. 
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